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Preface

This book is based on a course in real analysis offered to advanced undergraduates and
first-year graduate students at Bowling Green State University. In many respects it is
a perfectly ordinary first course in analysis, but there are some important differences.
For one, the typical audience for the class includes many nonspecialists, students of
statistics, economics, and education, as well as students of pure and applied mathematics
at the undergraduate and graduate levels. What’s more, the students come from a wide
variety of backgrounds. This makes the course something of a challenge to teach. The
material must be presented efficiently, but without sacrificing the less well-prepared
student. The course must be essentially self-contained, but not so pedestrian that the
more experienced student is bored. And the course should offer something of value
to both the specialist and the nonspecialist. The following pages contain my personal
answer to this challenge.

To begin, I make a few compromises: Extra details are given on metric and normed
linear spaces in place of general topology, and a thorough attack on Riemann-Stieltjes
and Lebesgue integration on the line in place of abstract measure and integration. On
the other hand, I avoid euphemisms and specialized notation and, instead, attempt to
remain faithful to the terminology and notation used in more advanced settings. Next,
to make the course more meaningful to the nonspecialist (and more fun for me), I toss
in a few historical tidbits along the way.

By way of prerequisites, I assume that the reader has had at least one semester of
advanced calculus or real analysis at the undergraduate level. For example, I assume
that the reader has been exposed to (and is moderately comfortable with) an “g-§
presentation of convergence, completeness, and continuity on the real line; a few “name”
theorems (Bolzano—-Weierstrass, for one); and a rigorous definition of the Riemann
integral, but I do not presuppose any real depth or breadth of understanding of these
topics beyond their basics.

The writing style throughout is deliberately conversational. While I have tried to
be as precise as possible, the odd detail here and there is sometimes left to the reader,
which is reflected by the use of a parenthetical (Why?) or (How?). The decision to
omit these few details is motivated by the hope that the student who can successfully
navigate through this “guided tour” of analysis, who is willing to get involved with the
mathematics at hand, will come away with something valuable in the process.

You will notice, too, that I don’t try to keep secrets. Important ideas are often
broached long before they are needed in the formal presentation. A particular theme
may be repeated in several different forms before it is made flesh. This repetition is
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X1l Preface

necessary if new definitions and new ideas are to seem natural and appropriate. Once
such an idea is finally made formal, there is usually a real savings in the “definition—
theorem—proof” cycle. The student who has held on to the thread can usually see the
connections without difficulty or fanfare.

The book is divided, rather naturally, into three parts. The first part concerns gen-
eral metric and normed spaces. This serves as a beginner’s guide to general topology.
The second part serves as a transition from the discussion of abstract spaces to con-
crete spaces of functions. The emphasis here is on the space of continuous real-valued
functions and a few of its relatives. A discussion of Riemann—Stieltjes integration is
included to set the stage for the later transition to Lebesgue measure and integration in
the third and last part. A more detailed description of the contents is given below.

Where to start is always problematic; a certain amount of review is arguably neces-
sary. Chapters One, Two, and Ten, along with their references, provide a source for such
review (albeit incomplete at times). These chapters serve as a rather long introduction
to Parts One and Two, primarily spelling out notation and recalling facts from advanced
calculus, but also making the course somewhat self-contained.

The “real” course begins in Chapter Three, with metric and normed spaces, with
frequent emphasis on normed spaces. From there we collect “C” words: convergence,
continuity, connectedness, completeness, compactness, and category.

Part Two concerns spaces of functions. The reader will find a particularly heavy
emphasis on the interplay between algebra, topology, and analysis here, which serves as
a transition from the “sterile” abstraction of metric spaces to the “practical” abstraction
of such results as the Weierstrass theorem and the Riesz representation theorem.

Part Three concerns Lebesgue measure and integration on the real line, culminating
in Lebesgue’s differentiation theorem. While I have opted for a “hands-on” approach to
Lebesgue measure on the line, I have not been shy about using the machinery developed
in the first two parts of the book. In other words, rather than presenting measure theory
from an abstract point of view, with Lebesgue measure as a special case, I have chosen
to concentrate solely on Lebesgue measure on the line, but from as lofty a viewpoint as
I can muster. This approach is intended to keep the discussion down to earth while still
easing the transition to abstract measure theory and functional analysis in subsequent
courses.

This is an ambitious list of topics for two semesters. In actual practice, several topics
can safely be left for the interested and ambitious reader to discover independently.
For example, the sections on completions, equivalent metrics, infinitely differentiable
functions, equicontinuity, continuity and category, and the Riesz representation theorem
(among others) could be omitted.

A few words are in order about the exercises. I included as many as I could manage
without undermining the text. They come in all shapes and sizes. And, like the text
itself, there is a fair amount of built-in repetition. But the exercises are intended to be
part of the presentation, not just a few stray thoughts appended to the end of a chapter.
For this reason, the exercises are peppered throughout the text; each is placed near what
I consider to be its natural position in the flow of ideas.

The beginner is encouraged to at least read through the exercises — those that look
too difficult at first may seem easier on their third or fourth appearance. And the key
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ideas come up at least that often. A word of warning to the instructor in this regard:
Some restraint is needed in assigning certain problems too early. There are occasional
“sleepers” (deceptively difficult problems), intended to serve more as brainwashing
than as homework. A veteran will have little trouble spotting them. And a word of
warning to the student, too: Since the exercises are part of the text, a few important
notions make their first appearance in an exercise. Be on the lookout for bold type; it’s
used to highlight key words and will help you spot these important exercises.

You will notice that certain of the exercises are marked with a small triangle (>)
in the margin. For a variety of reasons, I have deemed these exercises important for a
full understanding of the material. Many are straightforward “computations,” some are
simple detail checking, and at least a few unveil the germs of ideas essential for later
developments. Again, a veteran will find it easy to distinguish one from the other. In
my own experience, the marked exercises provide a reasonable source for assignments
as well as topics for in-class discussion.

To encourage independent study (and because I enjoyed doing it), I have included
a short section of “Notes and Remarks” at the end of each chapter. Here I discuss
additional or peripheral topics of interest, alternate presentations, and historical com-
mentary. The references cited here include not only primary sources, both technical and
historical, but also various secondary sources, such as survey or expository articles.

A word or two about organization: Exercises are numbered consecutively within
a given chapter. However, when referring to a given exercise from outside its home
chapter, a chapter number is also included. Thus, Exercise 14 refers to the fourteenth
exercise in the current chapter, while Exercise 3.26 refers to the twenty-sixth exercise in
Chapter Three. The various lemmas, theorems, corollaries, and examples are likewise
numbered consecutively within a chapter, without regard to label, and always carry
the number of the chapter where they reside. This means that the lemma immediately
following Proposition 10.5 is labeled Lemma 10.6, even if it is the first lemma to appear
in the chapter, and Lemma 10.6 may well be followed by Theorem 10.7, the second
theorem in the chapter. In any case, all three items appear in Chapter Ten.

Many people endured this project with me, and quite a few helped along the way.
I would not have survived the process had it not been for the constant encouragement
and expert guidance offered by my friends Patrick Flinn and Stephen Dilworth. Equally
important were my colleagues Steven Seubert and Kit Chan, who graciously agreed to
field-test the notes, and who patiently entertained endless discussions of minutiae. Of
course, a large debt of gratitude is also owed to the many students who suffered through
early versions of these notes. You have them to thank for each passage that “works”
(and only me to blame for those that don’t). Finally, copious thanks to my wife Cheryl,
who, with good humor and affection, indulged my musings and maintained my sanity.

-N.C.
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CHAPTER ONE

Calculus Review

Our goal in this chapter is to provide a quick review of a handful of important ideas from
advanced calculus (and to encourage a bit of practice on these fundamentals). We will
make no attempt to be thorough. Our purpose is to set the stage for later generalizations
and to collect together in one place some of the notation that should already be more
or less familiar. There are sure to be missing details, unexplained terminology, and
incomplete proofs. On the other hand, since much of this material will reappear in later
chapters in a more general setting, you will get to see some of the details more than
once. In fact, you may find it entertaining to refer to this chapter each time an old name
is spoken in a new voice. If nothing else, there are plenty of keywords here to assist
you in looking up any facts that you have forgotten.

The Real Numbers

First, let’s agree to use a standard notation for the various familiar sets of numbers. R
denotes the set of all real numbers; C denotes the set of all complex numbers (although
our major concern here is R, we will use complex numbers from time to time); Z stands
for the integers (negative, zero, and positive); N is the set of natural numbers (positive
integers); and Q is the set of rational numbers. We won’t give the set of irrational
numbers its own symbol; rather we’ll settle for writing R\ Q (the set-theoretic difference
of R and Q).

We will assume most of the basic algebraic and order properties of these sets, but
we will review a few important ideas. Of greatest importance to us is that the set R of
real numbers is complete — in more than one sense! First, recall that a subset A of R
is said to be bounded above if there is some x € R such that a < x foralla € A. Any
such number x is called an upper bound for A. The real numbers are constructed so
that any nonempty set with an upper bound has, in fact, a least upper bound (l.u.b.).
We won’t give the details of this construction; instead we’ll take this property as an
axiom:

The Least Upper Bound Axiom (sometimes called the completeness axiom).
Any nonempty set of real numbers with an upper bound has a least upper bound.

That is, if A C R is nonempty and bounded above, then there is a number s € R
satisfying: (i) s is an upper bound for A; and (ii) if x is any upper bound for A, then
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4 Calculus Review

s < x. In other words, if y < s, then we must have y < a < s for some a €
A. (Why?) We even have a notation for this: In this case we write s = lL.ub.A =
sup A (for supremum). If A fails to be bounded above, we set sup A = +o00, and if

= @, we put supA = —oo since, after all, every real number is an upper bound
for A.

Example 1.1

sup(—oo, 1) = landsup{2 — (1/n):n =1, 2,...} = 2. Notice, please, that sup A
is not necessarily an element of A.

An immediate consequence of the least upper bound axiom is that we also have
greatest lower bounds (g.1.b.), just by turning things around. The details are left as
Exercise 1.

EXERCISE

> 1. If A is a nonempty subset of R that is bounded below, show that A has a greatest
lower bound. That is, show that there is a number m € R satisfying: (i) m is a lower
bound for A; and (i1) if x is a lower bound for A, then x < m. [Hint: Consider the
set —A = {—a : a € A} and show that m = —sup(—A) works.]

We have a notation for greatest lower bounds, too, of course: We writem = g.1.b. A =
inf A (for infimum). It follows from Exercise 1 that inf A = —sup (—A). Thus, inf A =
—oo if A isn’t bounded below, and inf @ = +o00. In case a set A is both bounded above
and bounded below, we simply say that A is bounded.

EXERCISES

2. Let A be a bounded subset of R containing at least two points. Prove:

(@) —o0o <infA <supA < +o0.

(b) If B is a nonempty subset of A, theninfA < inf B < sup B < sup A.

(c) If B is the set of all upper bounds for A, then B is nonempty, bounded below,
and inf B = sup A.

> 3. Establish the following apparently different (but “fancier”) characterization of
the supremum. Let A be a nonempty subset of R that is bounded above. Prove that
s = sup A if and only if (i) s is an upper bound for A, and (ii) for every € > 0, there
is an a € A such thata > s — ¢. State and prove the corresponding result for the
infimum of a nonempty subset of R that is bounded below.

Recall that a sequence (x,) of real numbers is said to converge to x € R if, for every
€ > 0, there is a positive integer N such that |[x, — x| < € whenevern > N. In this
case, we call x the limit of the sequence (x,) and write x = lim,_, o X,.

> 4. Let A be a nonempty subset of R that is bounded above. Show that there
is a sequence (x,) of elements of A that converges to sup A.
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S. Suppose thata, < b, for all n, and that a = lim,,_, , a, exists. Show thata < b.
Conclude that a < sup, a, = sup{a, : n € N}.

> 6. Prove that every convergent sequence of real numbers is bounded. Moreover, if
(an) is convergent, show that inf, a, < lim,_, o, a, < sup, a,.

As an application of the least upper bound axiom, we next establish the Archimedean
property in R.

Lemma 1.2. If x and y are positive real numbers, then there is some positive integer
n such that nx > y.

PROOF. Suppose that no such n existed; that is, suppose that nx < y foralln € N.
Then A = {nx : n € N} is bounded above by y, and so s = sup A is finite. Now,
since s —x < §, we must have some element of A in between, thatis,s —x < nx <s
forsomen € N.Butthens < (n+1)x. And what’s wrong? Well, since (n+1)x € A,
we should instead have (n+ 1)x < s. This contradiction tells us that it is unacceptable
to have nx < y for all n, and so we must have nx > y forsomen. 0O

This simple observation does a lot of good:

Theorem 1.3. Ifa and b are real numbers witha < b, then there is a rationalr € QQ
witha <r < b.

PROOF. Since b — a > 0, we may apply Lemma 1.2 to get a positive integer q
such that g(b — a) > 1. But if ga and gb differ by more than 1, there must be some
integer in between. That is, there is some p € Z withqa < p < gb. Thusa <

p/lgq <b. O

EXERCISES

7. Ifa < b, then there is also an irrational x € R \ Q witha < x < b. [Hint: Find
an irrational of the form p+/2/q.]

8. Given a < b, show that there are, in fact, infinitely many distinct rationals
between a and b. The same goes for irrationals, too.

9. Show that the least upper bound axiom also holds in Z (i.e., each nonempty sub-
set of Z with an upper bound in Z has a least upper bound in Z), but that it fails to
hold in Q.

It follows from Theorem 1.3 that every real number is the limit of a monotone (i.e.,
increasing or decreasing) sequence of rationals (or irrationals). We’ll want to take full
advantage of this fact, and we’ll see at least one more reason why it’s true. First, though,
let’s give a formal statement of the property behind it.
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Theorem 1.4. A monotone, bounded sequence of real numbers converges.

PROOF. Let (x,) C R be monotone and bounded. We first suppose that (x,) is
increasing. Now, since (x,) is bounded, we may set x = sup, x, (a real number). We
will show that x = lim,_, « X,.

Lete > 0.Since x —¢ < x = sup, x,, we must have xy > x —¢ for some N.But
then, foranyn > N,wechavex — € < xy < x, < x.(Why?) Thatis, |x — x,| < €
for all n > N. Consequently, (x,) converges and x = sup, x, = lim,_,  x,.

Finally, if (x,) is decreasing, consider the increasing sequence (—x,). From the
first part of the proof, (—x,) converges to sup,(—x,) = —inf, x,. It then follows
that (x,,) converges to inf, x,. O

In subsequent chapters we will consider certain properties of the real line that may be
defined either in terms of sequences or in terms of subsets of R. To better appreciate the
connection between sequences and sets, we will show how Theorem 1.4 gives a quick proof
of the nested interval theorem. Later in this chapter we will use the nested interval theorem
to define a strange and beautiful subset of R called the Cantor set.

The Nested Interval Theorem 1.5. If (I,) is a sequence of closed, bounded,
nonempty intervals in R with Iy D I, D I3 D ---, then (oo, In # @. If, in
addition, length (1,) — O, then (\°—_, I, contains precisely one point.

PROOF. Write I, = [a,,b,]). Then I, D I,,), means thata, < an41 < bpy1 <
b, for all n. Thus, a = lim,,a, = sup,a, and b = lim,_,, b, = inf, b,
both exist (as finite real numbers) and satisfy a < b. (Why?) Thus we must have
(o I = [a,b]. Indeed, if x € I, for all n, then a, < x < b, for all n, and
hence a < x < b. Conversely, ifa < x < b, then a, < x < b, for all n. That is,
x € I, for all n. Finally, if b, — a, = length(l,) = 0, thena = b and so [ |,

I, ={a). O

Examples 1.6

(a) Please note that it is essential that the intervals used in the nested interval theorem
be both closed and bounded. Indeed, (.- ,[n, 00) = @ and [ ).=,(0, 1/n] = @.

(b) Suppose that (/,,) is a sequence of closed intervals with I, D I, for all n and with
length (1,) > Oasn — oo.If (|, I, = {x}, then any sequence of points (x,),
with x, € I, for all n, must converge to x. (Why?)

A sequence of sets (I,) with I, D I,,, for all n is often said to be a decreas-
ing sequence of sets. Thus, the nested interval theorem might be paraphrased by say-
ing that a decreasing sequence of closed, bounded, nonempty intervals “converges” to a
nonempty set. In this language, the nested interval theorem is at least reminiscent of the
fact that a monotone bounded sequence of real numbers is convergent. And with good rea-
son: The fact that monotone bounded sequences converge is actually equivalent to the
least upper bound axiom, as is the nested interval theorem. That is, we might just as
well have assumed the conclusion of either Theorem 1.4 or Theorem 1.5 as an axiom
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for R and deduced the existence of least upper bounds as a corollary. As evidence, here
is a proof that the nested interval theorem implies the existence of least upper bounds (this
is similar in spirit to Bolzano’s original proof):

Let A be anonempty subset of R that is bounded above. Specifically, leta; € A andlet b,
be an upper bound for A. For later reference, set I, = [ a;, b, ]. Now consider the point x, =
(a; +b,)/2, halfway between a, and b,. If x, is an upper bound for A, we set I, = [a;, x; ];
otherwise, there is an elementa, € A witha, > x;.In this case, set I, = [ a,, b, ]. In either
event, /5 is a closed subinterval of /, of the form [ a3, b; ], where a, € A and b, is an upper
bound for A. Moreover, length (/;) < length(/;)/2. We now start the process all over
again, using I, in place of /,, and obtain a closed subinterval I3 = [a3, b3 ] C I, where
as € A and bj; is an upper bound for A, with length (/3) < length (/3)/2 < length (/,)/4.
By induction, we get a sequence of nested closed intervals I, = [ an, b, ], where a, € A
and b, is an upper bound for A, with length (/) < length (1,)/2"~! — 0asn — o00c. The
single point b € (") _, I, is the least upper bound for A. (Why?)

EXERCISES
10. Leta, = V2 and let a,+1 = +/2a, forn > 1. Show that (a,) converges and
find its limit. [Hint: Show that (a,) is increasing and bounded.]

11. Fixa > Oand let x; > \/a. Forn > 1, define

1 a
Xntl = E(xn + ;‘)

Show that (x,,) converges and that lim,_, », x, = 1/a.

12. Suppose that s, > s, > 0 and let 5,4, = %(s,, 4+ s,_1) for n > 2. Show that
(s.) converges. [Hint: Show that (s,,—,) decreases and (s,,) increases.]

> 13. Leta, > O for all n, and let s, = Z?:l a;. Show that (s,) converges if and
only if (s,) is bounded.

Recall that a sequence of real numbers (x,) is said to be Cauchy if, for every
¢ > 0, there is an integer N > 1 such that [x, — x,,|] < € whenevern,m > N.

> 14. Prove that a convergent sequence is Cauchy, and that any Cauchy sequence is
bounded.

> 15. Show thataCauchy sequence with a convergent subsequence actually converges.

16.

(@) Why is 0.4999... = 0.57? (Try to give more than one reason.)

(b) Write 0.234234234 . . . as a fraction.

(c) Precisely which real numbers between O and 1 have more than one decimal
representation? Explain.

Our second approach to describing the elements of R as limits of sequences of rational
numbers is to consider decimals. We might as well do this in some generality.
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Propeosition 1.7. Fix an integer p > 2, and let (a,) be any sequence of integers
satisfying 0 < a, < p — 1 for all n. Then, Y .. | a,/p" converges to a number in
[0,1].

PROOF. Since a, > 0, the partial sums ZL, a,/p" are nonnegative and increase
with N. Thus, to show that the series converges to some number in [0, 1 ], we just
need to show that 1 is an upper bound for the sequence of partial sums. But this is
easy:

(Why? What does this say when p = 10?) O
Conversely, each x in [0, 1 ] can be so represented:

Proposition 1.8. Let p be an integer, p > 2, and let 0 < x < 1. Then there is a
sequence of integers (a,) withQ < a, < p — 1 for all n such that x = z:‘;l a,/p".

PROOF. Certainly the case x = 0 causes no real strain, so let us suppose that
0 < x < 1. We will construct (a,) by induction.

Choose a, to be the largest integer satisfying a,/p < x. (How?) Since x > 0,
it follows that a; > 0; and since x < 1, we have a; < p. Because a, is an in-
teger, this means that a; < p — 1. Also, since a, is largest, we must have a,/p <
x <(a+1)/p.

Next, choose a; to be the largest integer satisfying a, / p + a2/ p? < x. Check that
0<a, <p—landthata,/p + a2/p*> <x <a\/p + (a2 + 1)/ p.

By induction we get a sequence of integers (a,) with 0 < a, < p — 1 such that

91+...+_al <xsa_'+...+a"+l.
p p" p p"

Obviously, x = Y - a,/p". (Why?) O

The series Z::n a,/p" is called a base p (or p-adic) decimal expansion for x. It is
sometimes written in the shorter form x = 0.a,a2a3 - - - (base p). It does not have to be
unique (even for ordinary base 10 decimals: 0.5 = 0.4999- - -). One problem is that our
construction is designed to produce nonterminating decimal expansions. In the particular
case where x = a,/p+ ---+ (a, + 1)/p" = q/p", for some integer 0 < g < p", the
construction will give us a repeating string of p — 1°’s in the decimal expansion for x since
1/p" =Y re,1(p—1)/ p*. Thatis, any such x has two distinct base p decimal expansions:

a a, +1 a a, 20 —1
x=_|+...+ ~ =_l+...+_n+zpk .
p p p P° = P

We now have several methods for finding a sequence of rationals that increase or decrease
to a given real number. An application of this fact can be used to define expressions such
as a* for real exponents x. For example, if a > 1, and if x is any real number, then we




The Real Numbers 9

set a* = sup{a” : r € Q, r < x}. We get away with this because a” is well defined and
increasing for r € Q.

You may have been tempted to use logarithms or exponentials to define a*, but we would
need a similar line of reasoning to define, say, €* (or even e itself!), and we would need quite
a bit more machinery to define log x. As long as we’ve already digressed from decimals,
let’s construct e. For this we’ll use a simple (but extremely useful) inequality.

Bernoulli’s Inequality 1.9. If a > —1,a # 0, then (1 + a)" > 1 + na for any
integer n > 1.

The proof of Bernoulli’s inequality is left as an exercise. We’ll apply it to prove:
Propeosition 1.10.
(1) (l + %)n is strictly increasing.
(ii) (1 + %)"“ is strictly decreasing.
Gi) 2<(1+1)" <(1+4)"*" <4
(iv) Both sequences converge to the same limit e = lim,_,. o, (1 4+ (1/n))", where
2<e<4

PROOF. (i) We need to show that (1 + 1/(n + 1))"*!/(1 + (1/n))" > 1. For this we
rewrite and apply Bemnoulli’s inequality:

1 \n+l L\ !
(1+m) _ ]+l . 1+n_+f
(14 ) n 1+

L+ 141 \"
T+ -0+ D \T+ 5

n+1

1 :
> (n n l) : (l + ;) =1 (by Bernoulli).

(iii) Since 14 (1/n)>1, we have (1 + (1/n))" < (1 +(1/n)"*'. Since
(1 4+ (1/n))" increases, the left-hand side is at least 2 (the first term); and since
(1+4+(/ n))"*! decreases, the right-hand side is at most 4 (the first term).
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(iv) Finally, we define e = lim,_,, (1 4+ (1/n))", and conclude that

. l n+1 . l . l n
Im (] 4+ - =lim{l+-)Ilim|[l4+-) =e O
n— oo n n— oo n/ n—-o0 n

The same proof applies to the sequence (1 4+ (x/n))" for any x € R, and we may define
e* = lim,_ (1 4+ (x/n))". The full details of this last conclusion are best left for another
day. See Exercise 18(b).

EXERCISES

> 17. Given real numbers a and b, establish the following formulas: |a + b|

lal +|b, | la| — |b] | < |a — b|, max{a, b} = 3(a + b+ |a — b]), and min{a. b)

%(a + b — |a - b)).

18.

(a) Givena > —1, a # 0, use induction to show that (1 + a)” > | + na for any
integern > 1.

(b) Use (a) to show that, for any x > 0, the sequence (1 + (x/n))" increases.

(c) If a > O, show that (1 + a)” > 1 + ra holds for any rational exponent r > 1.
[Hint: If r = p/q, then apply (a) with n = g and (b) with x = ap.]

(d) Finally, show that (c) holds for any real exponent r > 1.

19. If0 < ¢ < 1, show that ¢ — 0; and if ¢ > 0, show that ¢!/" — 1. [Hint;

Use Bemoulli’s inequality for each, once with c = 1/(1 + x), x > 0 and once with

c'/" =1+ x,, where x, > 0.]

20. Givena,b > 0, show that v/ab < 1(a + b) (this is the arithmetic-geometric

mean inequality). Generalize this to (a, - @3 - - - a,)"/" < (1/n)(a, + a2 + - - - + an).
[Hint: Induction and Bernoulli’s inequality. ]

Il 1A

> 21. Let p > 2 be a fixed integer, and let 0 < x < 1. If x has a finite-length base p
decimal expansion, thatis, if x = a,/p+-- -+ a,/p" witha, # 0, prove that x has
precisely two base p decimal expansions. Otherwise, show that the base p decimal
expansion for x is unique. Characterize the numbers 0 < x < | that have repeating
base p decimal expansions. How about eventually repeating?

As long as we are on the subject of sequences, this is a good time to outline part of
the master plan! Virtually everything that we need to know about the real line R and
about functions f : R — R can be described in terms of convergent sequences. In-
deed, a continuous function f : R — R could be defined as a function that “pre-
serves’ convergent sequences: f(lim,_ o X,) = lim,_. f(x,). If we hope to under-
stand continuous functions (and we do!), then it is of great importance to us to know
precisely which real sequences converge. So far we know that monotone, bounded se-
quences converge, and that any convergent sequence is necessarily bounded. (Why?)
These two facts together raise the question: Does every bounded sequence converge?
Of course not. But just how “far” from convergent is a typical bounded sequence? To
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answer this, we will want to broaden our definition of limit. First a few easy observa-
tions.

Let (a,) be a bounded sequence of real numbers, and consider the sequences:
t, = inf{a,, ap+1,ans2, ...} and T, = sup{a,, anpi1,niz, ...}

Then (t,) increases, (T,) decreases, and infy a, < t, < T, < sup, a, for all n. (Why?)
Thus we may speak of lim,_, », ¢, as the “lower limit” and lim,,_, o, 7, as the “upper limit”
of our original sequence (a,). And that is exactly what we will do.

Now these same considerations are meaningful even if we start with an unbounded
sequence (a, ), although in that case we will have to allow the values 100 for at least some
of the t,’s or T,’s (possibly both). That is, if we permit comparisons to 00, then the ¢,’s
still increase and the T,’s still decrease. Of course we will want to use sup, ¢, and inf, 7,
in place of lim,_, #, and lim,_, 7,, since “sup” and “inf”’ have more or less obvious
extensions to subsets of the extended real number system [—o00, +00] whereas “lim” does
not. Even so, we are sure to get caught saying something like “(,) converges to +00.” But
we will pay a stiff penalty for too much rigor here; even a simple fact could have a tediously
long description. For the remainder of this section you are encouraged to interpret words
such as “limit” and *“converges” in this looser sense.

Given any sequence of real numbers (a,), we define

liminfa, = lim a, = sup (inf{a,, a,+1, ans2, ... })
n—00 n—00 n>1

and

limsupa, = lim a, = inf (sup{a,, An41, An42, - - - }).
n— 00 n— 0o n>1

That is, liminf, . a, = sup,t, (=lim,_ ¢, if (a,) is bounded from below) and
limsup,_, . a, = inf, T, (=lim,_, « T, if (a,) is bounded from above). The name “liminf™’
is short for “limit inferior,” while “lim sup” is short for “limit superior.”

EXERCISES

22. Show thatinf,a, < liminf, . a, < limsup,_, _a, < sup, a,.

23. If(a,)isconvergent, show thatliminf,_, ., a, = limsup,_,  a, = lim,_ « a,.
> 24. Show that limsup,_, . (—a,) = —liminf,_ . a,.
> 25. Iflimsup,_ . a, = —00, show that(a,) diverges to —oo. If limsup,_, . a, =

+00, show that (a,) has a subsequence that diverges to +00. What happens if
liminf,_ . a, = £00?

If we start with a bounded sequence (a,). then

M = limsupa, = lim (sup{a; : kK > n}) # oo,

n—00
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and hence:

for every € > O, there is an integer N > 1 such that
M—¢<suplay:k>n} <M+eforalln > N.

Thus, the number M = lim sup,_, . a, is characterized by the following:

[

[

for every € > 0, we have a, < M + ¢ for all but finitely
(%) M 7
many n, and M — € < a, for infinitely many n.

EXERCISES

26. Prove the characterization of lim sup given above. That is, given a bounded se-
quence (a,), show that the number M = limsup,_,  a, satisfies (%) and, conversely,
that any number M satisfying (*) must equal limsup,_, ., a,. State and prove the
corresponding result for m = liminf,_, . a,.

27. Prove that every sequence of real numbers (a,) has a subsequence (a,,) that
converges to limsup,_, . a,. [Hint: If M = lim sup,_, ., a, = £00, we must inter-
pret the conclusion loosely; this case is handled in Exercise 25. If M # +00, use (x)
to choose (a,, ) satisfying |a,, — M| < 1/k, for example.] There is necessarily also
a subsequence that converges to liminf,_, o, a,. Why?

28. By modifying the argument in the previous exercise, show that every sequence
of real numbers has a monotone subsequence.

29. If (a,) is a convergent subsequence of (a,), show that liminf,_, a, <
lim;_, o an, < limsup,_, . a,.

30. If a, <b, for all n, and if (a,) converges, show that lim,_, , a, <liminf,_,
b,.

31. If (a,) is convergent and (b,) is bounded, show that limsup,_, . (a, + b,) <
lim,_, . a, + limsup,_, . b,.

32. Given a sequence (a,) of real numbers, let S be the set of all limits of conver-
gent subsequences of (a,) (including, possibly, +00). For example, it follows from
Exercise 27 that limsup,_, . a, and lim inf, _, . a, are both elements of S. Show
that, in fact, limsup,_, . a, = sup S and liminf,_,  a, = inf S.

The ability to find a convergent subsequence of an arbitrary sequence, as in Exercise 27,

leads to a whole slew of corollaries. See if you can supply proofs for the following:

The Bolzano-Weierstrass Theorem 1.11. Every bounded sequence of real numbers
has a convergent subsequence.

Corollary 1.12. If (a,) is a convergent sequence, then liminf,_, . a,=
lim SUP,_,00@n = llmn—-boo a,.

Corollary 1.13. Every Cauchy sequence of real numbers converges.
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Corollary 1.14. Every bounded sequence of real numbers has a Cauchy subse-
quence.

[Hint: See Exercises 14 and 15 for more on Cauchy sequences.]
Finally, we come full circle:

Proposition 1.15. If (a,) is bounded, and if liminf,_,  a, = limsup,_, . a,, then
(a,) converges and lim, _, o a, = limsup,_, ., a.

PROOF. Leta = liminf,,a, = limsup,_,  a,, and let € > 0. From our char-
acterizations of lim inf and lim sup, there is an Ny, > 1 such thata — ¢ < a, forall
n > N, (since a = liminf,_ » a,), and there is an N; > | suchthata, <a + ¢
for all n > N, (since @ = limsup,_,  a,). Thus, for n > max{N,, N,} we have
la—a,| <¢e. O

You may recall that a sequence of real numbers converges if and only if it is Cauchy.
Although one approach to this fact has already been suggested in the exercises, it is such
an important property of the real numbers that it is well worth the effort to give a second
proof'!

First recall that if a sequence converges, then it is Cauchy; and if a sequence is Cauchy,
then it is also bounded. (See the exercises for more details.) We want to reverse the first
implication, and so we may assume that we have a bounded sequence to start with. This
helps, since for abounded sequence (a,) both lim sup,,_, . a, and lim inf,,_, ., a, are (finite)
real numbers. Given a Cauchy sequence, then, we only need to check that these two numbers
are equal, which is easier than it might sound.

Theorem 1.16. A sequence of real numbers converges if (and only if) it is Cauchy.

PROOF. Let (a,) be Cauchy, and let ¢ > 0. Choose N > | such that |a, — an,| < €
forallm,n > N.Then, in particular, we haveay — € < a, < ay +¢€foralln > N;
thus, (a,) is bounded. Butay — € < a, forn > N implies thatay — ¢ < liminf a,,
while a, < ay + € forn > N implies that limsup,_,  a, < ay + €. (Why?)
Since —00 < liminfa, < limsup,_, . a, < 00, we may subtract these results and
conclude that limsup,_, ., a, — liminf,_, a, < 2¢. Since € > 0 is arbitrary, we
get that limsup,_, _a, = liminf,_,a,. O

EXERCISES

> 33. Show that (x,) converges to x € R if and only if every subsequence (x,,) of
(x,) has a further subsequence (x,,,l ) that converges to x.

34. Suppose thata, > O and that } -2 a, < 00.
(1) Show that liminf,_ ., na, = 0.
(ii) Give an example showing that limsup,_, . na, > 0 is possible.
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35. (The ratio test): Leta, > O.
(i) Iflimsup,_,  an+1/a, < 1, show that } - a, < oo.
(i) If liminf,_, @nt+1/an > 1, show that Y .- | a, diverges.
(iii) Find examples of both a convergent and a divergent series having
lim,— an+l/an = 1.
36. (Theroot test): Leta, > O.
(i) If limsup,_, ., ¥/a, < 1, show that > > a, < oo.
@ii) Ifliminf,_ a, > 1, show that ) .- a, diverges.
(iii) Find examples of both a convergent and a divergent series having
lim,_ . {a, = 1.

> 37. If (E,) is asequence of subsets of a fixed set S, we define

o0 (0. ©) o o] oC
limsup E, = ) ( Ek) and liminfE, = |_J (ﬂ Ek) .
k=n oo n=1 \ k=n

n— 00 n=1

Show that

liminf E, C limsup E, andthat liminf(E{) = (lim sup E,.) .

n—00 n— 00 n—00 n—00

38. Show that

limsup E, = {x € S : x € E, for infinitely many n}

n— 00

and that

liminf E, = {x € § : x € E, for all but finitely many n}.

n— 00

39. How would you define the limit (if it exists) of a sequence of sets? What should
the limitbe if £, D E, D ---?2If E, C E; C --- ?Compute liminf,_,, E, and
limsup,_, ., E» in both cases and test your conjecture.

Limits and Continuity

In this section we present a brief refresher course on limits and continuity for real-valued
functions. With any luck, much of what we have to say will be very familiar. To begin,
let f be a real-valued function defined (at least) for all points in some open interval con-
taining the point a € R except, possibly, at a itself. We will refer to such a set as a

punctured neighborhood of a. Given a number L € R, we write lim,_,, f(x) = L to
mean:

for every € > O, there is some § > Osuchthat |f(x) — L| <€
whenever x satisfies 0 < |x — a| < 4.

We say that lim,_,, f(x) exists if there is some number L € R that satisfies the requirements

spelled out above. The proof of our first result is left as an exercise.
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Theorem 1.17. Let f be a real-valued function defined in some punctured neighbor-
hood of a € R. Then, the following are equivalent:
(1) There exists a number L such that im,_,, f(x) = L (by the €-6 definition).
(ii) There exists a number L such that f(x,) — L whenever x, — a, where
Xn # a forall n.
(iii) (f(x,)) converges (to something) whenever x, — a, where x,, # a for all n.

The point to item (iii) is that if lim,_ o f(x,) always exists, then it must actually be
independent of the choice of (x,). This is not as mystical as it might sound; indeed, if
x, = a and y, — a, then the sequence x|, y,, X2, 3, . . . also converges to a. (How does
this help?) This particular phrasing is interesting because it does not refer to L. That is, we
can test for the existence of a limit without knowing its value.

Now suppose that f is defined in a neighborhood of a, this time including the point a
itself. We say that f is continuous at a if lim,_,, f(x) = f(a). That is, if:

for every € > 0, there is ad > 0 (that depends on f, a, and ¢)
such that | f(x) — f(a)| < € whenever x satisfies |[x —a| < 6.

Notice that we replaced L by f(a) and we dropped the requirement that x # a. Theo-
rem 1.17 has an obvious extension to this case (and its proof is also left as an exercise).

Theorem 1.18. Let f be a real-valued function defined in some neighborhood of
a € R. Then, the following are equivalent:

(i) f is continuous at a (by the -8 definition),

(1) f(x,) = f(a) whenever x, — a;
(iii) (f(x,)) converges (to something) whenever x, — a.

Notice that we dropped the requirement that x,, # a. Thus, if lim,_, o, f(x,) always exists,
then it must equal f(a). (Why?)

You might also recall that we have a notation for left- and right-hand limits and left and
right continuity. For example, if we define

f(a-) = lim f(x) and f(a+) = lim f(x)
x—a- x—a*
(provided that these limits exist, of course), then we could add another equivalence to
Theorem 1.18:

1.18. (iv) f(a—) and f(a+) both exist, and both are equal to f(a).

One-sided limits are peculiar to functions defined on R, and they do not generalize very
well (because they are tied to the order in R ). But they are very good at what they do: They
permit the cataloguing of very refined types of discontinuities. For example, we say that f
is right-continuous at a if f(a+) exists and equals f(a), and we say that f has a jump
discontinuity at a if f(a—) and f(a+) both exist but at least one is different from f(a).
A function having only jump discontinuities is not so very bad. In particular, monotone
functions are rather well behaved:
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Proposition 1.19. Let f : (a,b) = R be monotone and let a < ¢ < b. Then,
f(c—=)and f(c+) both exist. Thus, f can have only jump discontinuities.

PROOF. We might as well suppose that f is increasing (otherwise, consider — f ).
In that case, f(c) is an upper bound for { f(t) : a < t < ¢} and a lower bound for
{f(®) : ¢ <t < b}. All that remains is to check that sup{f(t) :a <t < ¢} =
lim,_, . f(x)andinf{f(¢):c <t < b} = lim,_, .+ f(x). We will sketch the proof
of the first of these.

Given € > 0, there is some xo witha < xo < c¢ such that sup,_. f(t) — € <
f(x0) < sup,_. f(t).Nowletd =c—xp > 0.Then,ifc—68 < x < c,wegetxy <
x < c,and so f(xo) < f(x) <sup,_. f(t). Thus, |f(x) —sup, .. f()| <e. O

EXERCISES

40. Prove Theorem 1.17.

41. Prove Theorem 1.18, including 1.18 (iv) as one of the equivalent conditions.
42. Given f:(a,b)— R and x €(a, b), consider the statements: (i) lim,_,o
| f(x + h) — f(x)] = 0 and (ii) limy_o|f(x + h) — f(x — h)] = 0. Show
that (i) always implies (i1). Give an example where (ii) holds but not (i).

43. Modify Theorem 1.17 to characterize the statement lim,_, .+ f(x) = L, and
check your new version by providing a proof!

4. If f : R - R is increasing and bounded, show that lim,_, ., f(x) and
lim,_, _o f(x) both exist.

45. Let f : [a,b] — R be continuous and suppose that f(x) = 0 whenever x is
rational. Show that f(x) = O for every x in [a, b ].

46. Let f : R —> R be continuous.

(@) If £(0) > 0, show that f(x) > O for all x in some open interval (—a, a).

(b) If f(x) > O for every rational x, show that f(x) > O for all real x. Will this
result hold with “>0" replaced by “>0"? Explain.

47. Let f, g, h, and k be definedon [0, 1] as follows:

[

_J0 ifx¢Q@Q _Jl=x ifx¢Q
f(")‘ﬂl if x € Q h(x)_{x if x €Q
: 0 if x € Q

g(x)=4{g ::);i% k(x)=21/n if x=m/neQ

(in lowest terms).

Prove that f is not continuous at any point in [0, 1], that g is continuous only at
x = 0, that A is continuous only at x = 1/2, and that k is continuous only at the
irrational points in [0, 1 ].

48. Give an example of a one-to-one, onto function f : [0,1] — [0, 1] that is
not monotone. Can you find a monotone, one-to-one function that is not onto? Or a
monotone, onto function that is not one-to-one?




Notes and Remarks 17

49. Let f : (a, b) > Rbemonotone andleta < x < b.Show that f is continuous
at x if and only if f(x—) = f(x+).

50. Let D denote the set of rationals in [0, 1 ] and suppose that f : D — R
is increasing. Show that there is an increasing function g : [0, 1] — R such that
g(x) = f(x)whenever x isrational. [Hint: Forx € [0, | ],define g(x) = sup{ f(¢) :
0<t<l,teQ)]

§1. Let f : [a,b] — R be increasing and define g : [a,b] &> R by g(x) =
f(x+) fora < x < b and g(b) = f(b). Prove that g is increasing and right-
continuous.

Notes and Remarks

Although we cannot claim to have reviewed every last detail that you might need for an
untroubled reading of these pages, we have managed to at least recall several important
issues. Bartle [1964] and Fulks [1969] are good sources for a review of advanced calculus;
Apostol [1975] and Stromberg [1981] are good sources for further details on the topics
discussed in this chapter.

Full details of the construction of the real numbers “from scratch” can be found in
Birkhoff and MacLane [1965], Goffman [1953a], Hewitt and Stromberg [1965], and
Sprecher [1970]. For more on the various equivalent notions of completeness for the real
numbers, see the aptly titled article “Completeness of the real numbers” in Goffman [1974].
For more on the history of rigorous analysis, see Boyer [1968], Edwards [1979], Grabiner
[1983], Grattan-Guinness [1970], Kitcher [1983], Kleiner [1989], and Kline [1972]. As
an interesting tidbit in this vein, Dudley [1989] points out that no proof of the so-called
Bolzano-Weierstrass theorem (Corollary 1.11) has ever been found among Bolzano’s writ-
ings. For a curious observation about real numbers with “ambiguous” decimal representa-
tions, see Petkovsek [1990].

Exercise 42 is taken from Apostol [1975].




CHAPTER TWO

Countable and Uncountable Sets

Equivalence and Cardinality

We have seen that the rational numbers are densely distributed on the real line in the
sense that there is always a rational between any two distinct real numbers. But even
more is wrue. In fact, it follows that there must be infinitely many rational numbers
between any two distinct reals. (Why?) In sharp contrast to this picture of the rationals
as a “dense” set, we will show in this section that the rational numbers are actually
rather sparsely represented among the real numbers. We will do so by “counting” the
rationals!

We say that two sets A and B are equivalent if there is a one-to-one correspondence
between them. That is, A and B are equivalent if there exists some function f : A —> B
that is both one-to-one and onto. As a quick example, you might recall from calculus that
the map x > arctanx is a strictly increasing (hence one-to-one) function from R onto
the open interval (—n/2, /2). Thus, R is equivalent to (—m /2, m/2). For convenience
we may occasionally write A ~ B in place of the phrase “A is equivalent to B.” Please
note that the relation “is equivalent to” is an equivalence relation.

The notion of equivalence is supposed to lead us to a notion of the relative sizes of sets.
Equivalent sets should, by rights, have the same “number” of elements. For this reason
we sometimes say that equivalent sets have the same cardinality. (A cardinal number
is a number that indicates size without regard to order; we will have more to say about
cardinal numbers later.) We put this to immediate use: A set A is called finite if A = @
or if A is equivalent to the set {1, 2, ..., n} for some n € N; otherwise, we say that A is
infinite. It follows that an infinite set must contain finite subsets of all orders. (Why?)

An infinite set A is said to be countable (or countably infinite) if A is equivalent to
N. That is, the elements of a countable set A can be enumerated, or counted, according
to their correspondence with the natural numbers: A = {x;. x2, x3, ...}, where the x;
are distinct. Note that this is not quite the same as a sequence. Here A is the range of
a one-to-one function f : N - A and we are simply displaying the elements of A in
the order inherited from N; thatis, A = {f(1), f(2)....}. Let us look at a few specific
examples.

Examples 2.1

(@) Z ~ N.Tosee this,define f : Z - Nby f(n) =2nifn > land f(n) = —2n+1
if n < 0. The positive integers in Z are mapped to the even numbers in N, while
0 and the negative integers in Z are mapped to the odd numbers in N. That f is

18
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both one-to-one and onto is easy to check. Notice, please, that Z is equivalent
to a proper subset of itself! This is typical of infinite sets.

(b) NxN ~ N. A quick proof is supplied by the fundamental theorem of arithmetic:
Each positive integer k € N can be uniquely written as k = 2™"~!(2n — 1) for
some m, n € N. (Factor out the largest power of 2 from k and what remains
is necessarily an odd number.) Here is our map: Define f : Nx N —» N by
f(m,n) =2™"1(2n — 1). That f is both one-to-one and onto is obvious. We will
give a second proof shortly.

In actual practice it makes life easier if we simply lump finite and countably infinite
sets together under the heading of countable sets or, to be precise, at-most-countable
sets. After all, the elements of a finite set can surely be counted. The easiest way to
perform this consolidation is by modifying our definition of a countable set. Henceforth,
we will say that a countable set is one that is equivalent to some subset of N. This
obviously now includes finite sets, but does it include any new, inappropriate sets? To
see that this gives us just what we wanted, we prove:

Lemma 2.2. An infinite subset of N is countable; that is, if A C N and if A is
infinite, then A is equivalent to N.

PROOF. Recall that N is well ordered. That is, each nonempty subset of N has a
smallest element. Thus, since A # @, there is a smallest element x; € A. Then
A\({x1} # @, and there must be a smallest x, € A\ {x;}. Butnow A\ {x,, x2} # @,
and so we continue, setting x3 = min(A \ {x;.x2}). By induction we can find
X1y X2, X3y ..., Xn,... € A, Where x, =min(A \ {x1, ..., X,—1}).

How do we know that this process exhausts A? Well, suppose that x € A\
{x1,x2,...} # @. Then the set {k : x; > x} must be nonempty (otherwise we
would have x € A and x < x; = min A), and hence it has a least element. That is,
there i1s some n with x; < --- < x,_; < x < x,. But this contradicts the choice of
xn as the first element in A \ {x,. ..., x,_;}. Consequently, A is countable. O

It follows from Lemma 2.2 that a subset of N is either finite or is infinite and
equivalent to N. Please be forewarned: Not all authors agree with the convention that
we have adopted. We have chosen to group finite and countably infinite sets together
under the heading of countable sets to avoid the nuisance of providing two separate
statements for each of our results.

The proof of Lemma 2.2 shows that an infinite subset S of N can be written as a
strictly increasing subsequence of N; that is, § = {n, < n; < n3 < ---}. This, together
with the order properties of the real line R, make short work of finding monotone
subsequences.

Theorem 2.3. Every sequence of real numbers has a monotone subsequence.

PROOF. Given asequence (a,).letS = {n : a, > a, for all m > n}. If S is infinite,
with elements ny < n; < n3 < ---, then a,, < a,, < ap,, < --- is a (strictly)
increasing subsequence.
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If, on the other hand, S is finite, then N \ S is a nonempty subset of N. Thus,
there is aleastelementn, € N\Ssuchthatn ¢ Sforalln > n,.Sincen, ¢ S, there
is some n; > n, such that a,, < a,,. But np ¢ S, and so there is some n3; > n,
such that a,, < a,,. And so on. Thus, a,, > a,, > a,, = --- is a decreasing
subsequence. O

We cannot pass up a chance to drop a few names:

Corollary 2.4. (The Bolzano—Weierstrass Theorem) Every bounded sequence
of real numbers has a convergent subsequence.

Corollary 2.5. Every Cauchy sequence of real numbers converges.

EXERCISES

1. Check that the relation “is equivalent to” defines an equivalence relation. That
is, show that (i) A~ A, (ii) A ~ B if and only if B ~ A, and (iii) if A ~ B and
B ~ C,then A ~ C.

2. If Ais an infinite set, prove that A contains a subset of size n for any n > 1.

3. Given finitely many countable sets A,,..., A,, show that Ay U-.-U A, and
A, x --- X A, are countable sets.

> 4. Show that any infinite set has a countably infinite subset.

S. Prove that a set is infinite if and only if it is equivalent to a proper subset of itself.
[Hint: If A is infinite and x € A, show that A is equivalentto A \ {x}.]

> 6. If Aisinfinite and B is countable, show that A and A U B are equivalent. [Hint:
No containment relation between A and B is assumed here.]

7. Let A be countable. If f : A — B is onto, show that B is countable;if g : C —
A is one-to-one, show that C is countable. [Hint: Be careful!]

8. Show that (0, 1) is equivalent to [ 0, 1 ] and to R.

9. Show that (0, 1) is equivalent to the unit square (0, 1) x (0, 1). [Hint: “Interlace”
decimals - but carefully!]

10. Prove that (0, 1) can be put into one-to-one correspondence with the set of all
functions f : N — {0, 1}.

To motivate our next several results, we present a second proof that N x N is equiva-
lent to N. We begin by arranging the elements of N x N in a matrix (see Figure 2.1).

The arrows have been added to show how we are going to enumerate N x N. We will
count the pairs in the order indicated by the arrows: (1, 1), (2, 1), (1,2), (3, 1), (2, 2),
and so on, accounting for each upward slanting diagonal in succession.

Notice that all of the pairs along a given diagonal have the same sum. The entries of
(1, 1) add to 2, the entries of both (2, 1) and (1, 2) add to 3, each pair of entries on the
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(1,1) (1,2) (1,3) (1,4)
/ / /

(2,1) (2,2) (2,3)
/ /

(3,1) (3,2)
/

(4,1)

next diagonal add to 4, and so on. Moreover, for any given n, there are exactly n pairs
whose entries sum to n + 1. Said in other words, there are exactly n pairs on the nth
diagonal. Based on these observations, it is possible to give an explicit formula for this
comrespondence between N and N x N. We leave the details as Exercise 11.

Now the fact that N x N ~ N actually gives us a ton of new information. For example:

Theorem 2.6. The countable union of countable sets is countable; that is, if A;
is countable fori = 1,2,3, ..., then 2, A; is countable.

PROOF. Since each A; is countable, we can arrange their elements collectively in
a matrix:

A: a, a2 a3
Ay: ay) a2 a3
Ay: a3 azx ayz -,

and so | J;-, A; is the range of a map on N x N. (How?) That is, |2, A; is
equivalent to a subset of N x N and hence to a subset of N. O

Corollary 2.7. Q is countable. (Why?)

Example 2.8

While we are at it, let us make an observation about decimals. Given an integer
p = 2, recall that the real numbers having a nonunique base p decimal expansion
are of the form a/p", wherea € Z and n = 0, 1, 2, .... Thus, only countably
many reals have a nonunique base p decimal expansion. (Why?) In fact, because
there are only countably many bases p to consider, the set of real numbers having
a nonunique decimal expansion relative to some base is still a countable set.

EXERCISES

11. Here is an explicit correspondence between N x N and N (based on the “di-
agonal” argument preceding Corollary 2.6). Leta; = 0, and forn = 2, 3, ..., let
a, = Z;’;,' i = n(n — 1)/2. Show that the correspondence (m, n) = ap4n—1 + n,
from N x N to N, is both one-to-one and onto. Said in another way, show that the




22 Countable and Uncountable Sets

mapm — (a, —m+1,m — a,_,), where n is chosen so that a,_; < m < a,,
defines a one-to-one correspondence from N onto N x N.

12. Given an integer p > 2, “count” the real numbers in (0, 1) that have an even-
tually repeating base p decimal expansion.

> 13. Show that N contains infinitely many pairwise disjoint infinite subsets.

14. Prove that any infinite set can be written as the countably infinite union of
pairwise disjoint infinite subsets.

> 1S8. Show that any collection of pairwise disjoint, nonempty open intervals in R is
at most countable. [Hint: Each one contains a rational']

16. The algebraic numbers are those real or complex numbers that are the roots of
polynomials having integer coefficients. Prove that the set of algebraic numbers is
countable. [Hint: First show that the set of polynomials having integer coefficients is
countable.]

Any infinite set that is not countable is called uncountable, for obvious reasons.
Countably infinite sets are considered ‘“small” infinite sets, while uncountable sets are
“big” infinite sets (see the exercises for more on this). From this point of view, Q is
“small” relative to R:

Theorem 2.9. R is uncountable.

PROOF. To begin, first note that it is enough to show that R has an uncountable
subset. (Why?) Thus, it is enough to show that (0, 1) is uncountable. To accomplish
this we will show that any countable subset of (0, 1) is proper.

Given any sequence (a,) in (0, 1), we construct an element x in (0, 1) with
x # a, for any n. We begin by listing the decimal expansions of the a,; for
example:

aq=0.(3]1 5§ 72
aa =0. 0 (4] 2 6 8
a3 =0. 9 1 |5] 36
ag =0. 7 5 9 19|9

(If any a, has two representations, just include both — the resulting list is still
countable.)

Now let x = 0.533353..., where the nth digit in the expansion for x is taken
to be 3, unless a, happens to have 3 as its nth digit, in which case we take 5. (This
is why we highlighted the nth digit in the expansion of a,. The choices 3 and 5§
are more or less arbitrary here — we just want to avoid the troublesome digits 0
and 9.) Then, the decimal representation of x is unique because it does not end in
all Os or all 9s, and x # a, for any n because the decimal expansions for x and a,
differ in the nth place. Thus we have shown that (a,) is a proper subset of (0, 1)
and hence that (0, 1) is uncountable. O

Corollary 2.10. R \ Q, the set of irrational numbers, is uncountable. (Why?)
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Examples 2.11

(a) Returning to an earlier observation, recall that the set of real numbers having
a nonunique decimal expansion relative to some base is a countable set. Thus,
“most” real numbers have a unique decimal expansion relative to every base!

(b) A real number that is not algebraic is called transcendental. It follows from
Exercise 16 that “most” real numbers are transcendental, although it is not at all
clear how we would find even one such number! This example demonstrates
the curious power of cardinality in existential arguments. Other notions of “big”
versus “small” sets will lend themselves equally well to similar sorts of existence
proofs. We will repeat this theme several times before we are finished.

EXERCISES

17. If A is uncountable and B is countable, show that A and A \ B are equivalent.
In particular, conclude that A \ B is uncountable.

18. Show that the set of all real numbers in the interval (0, 1) whose base 10 decimal
expansion contains no 3s or 7s is uncountable.

19. Show that the set of all functions f : A — {0, 1} is equivalent to P(A), the
power set of A (i.e., the set of all subsets of A).

20. Prove that N contains uncountably many infinite subsets (N, )qcr such that
Ny N Ny is finite if a # B. (This one’s hard!)

Here is what we have so far: A countably infinite set is small in the sense that every
subset is either finite or else the same “size” as the whole set. An uncountable set, on
the other hand, is certainly bigger than any countable set because a countable subset
of an uncountable set is necessarily proper. From this point of view, countably infinite
sets are the “smallest” infinite sets; a “smaller” subset of a countably infinite set must
be finite. But while there is a “smallest infinity,” there is no largest — we can always
build bigger and bigger sets.

Given a set A, we write P(A) for the power set of A — the set of all subsets of A.
Now A is clearly equivalent to a subset of P(A) (namely, the collection of all singletons
{a}, where a € A) but, as it happens, P(A) is always “bigger’” than A:

Cantor’s Theorem 2.12. Nomap F : A — P(A) can be onto.

PROOF. Given F : A > P(A),consider B={x € A:x ¢ F(x)} € P(A). We
claim that B # F(y) for any y € A. Indeed, if B = F(y), then we are faced with
the following alternatives:

ye F(y)=8B y¢ F(y)=B
or
= y & F(y) — y € F(y),

and both lead to contradictions! O
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While we won'’t take the time to fully justify the notation, each set has a cardinal
number assigned to it, written card(A) and read “the cardinality of A,” that uniquely
specifies the number of elements of A. For finite sets the cardinality is literally the
number of elements, as in card{l, ..., n} = n. For countably infinite sets we use the
cardinal R, (read “aleph-nought”), as in card(N) = Ry. And for R we write card(R) = ¢
(for “continuum’).

We will not pursue this notation much further, but it does provide a convenient
shorthand and can actually clarify certain arguments. For example, we might write
card(A) = card(B) to mean that the sets A and B are equivalent. And we might use the
formula card(A) < card(B) to mean that there is a one-to-one map f : A - B from A
into B. (Why is this a good choice?) But this raises the question of whether the order
that we have imposed on cardinal numbers is reasonable. In other words, if card(A) <
card(B) and card(B) < card(A) both hold, is it the case that card(A) = card(B)? The
answer is “yes” and is given in the following celebrated theorem.

F. Bernstein’s Theorem 2.13. Let A and B be nonempty sets. If there exist a
one-to-one map f : A - B, from A into B, and a one-to-one map g : B — A,
from B into A, then there isa map h : A — B that is both one-to-one and onto.

PROOF. First, consider Figure 2.2. We would like to find a subset S of A so that

A B
............... 0 5 o
Y A ) I
S 1-1 and onto f(5)

we may define htobe f on S and g~! on A\ S. As the figure suggests, for this to
work we will need a subset S satisfying g(B \ f (S)) = A\ S. To this end, define
amap H : P(A) - P(A) by

H(S)=A\g(B\ f(9)).

In this notation, the problem is to find a “fixed point” for H, that is, a set S such
that H(S) = S.

Claim. H is “increasing”; thatis, S C T => H(S) C H(T). (Just check.)

Now to see that H must fix some set, letC = {S C A : S C H(S)}, and let
S = |JC. (§ is the least upper bound of the sets with S C H(S). We do not exclude
the possibility that C = @ here; in that case we take S = @.) We will show that
H(S‘) = §.

First, § C H(S). Indeed, because S C S forall S € C, we have S C H(S) C
H(S) forall S € C and hence S C H(S).

It now follows that H(S) c H (H(S))- Thatis, H(S) € Cand hence H(S) C
S. Consequently, H(§)=§. O
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What we have actually been doing in this section is developing an “arithmetic” for
cardinal numbers. For example, it turns out that card(A x B) = card(A) - card(B), which
works just as you would suspect for finite sets. For infinite sets A and B, we instead use
the equation to define the product of cardinal numbers. For instance, Example 2.1 (b)
tells us that R¢ - Rp = Rg. How might you justify the formula: ¢ - Ry = ¢?

A few more examples will help to explain this “arithmetic” with cardinal numbers.

Examples 2.14

(a8) The collection of all sequences of Os and 1s is uncountable. How so? Well,
if (a,) is a sequence of Os and ls, then E;’,‘;, a,/2" represents an element of
[0, 1] and, conversely, each element of [ 0, 1] can be so represented. That is, the
map (a,) > 0.aja:as - - - (base 2) is onto. Hence the set of all 0-1 sequences,
written {0, 1}V, has cardinality at least that of [0, 1]. But, in fact, the two sets
are equivalent. (Why?)

(b) We next note that the set of all 0—1 sequences is equivalent to P(N). This is easy:
If A C N, we define a sequence (a,) bya, =1ifne Aanda, =0if n ¢ A.
The correspondence A — (a,) is clearly both one-to-one and onto.

With the help of these two examples, we can make a rather fanciful calculation:
¢ =card ([0, 1]) = card (P(N)) = card ({0, 1}N) = 274N = 2%,

Here we used a variation on the formula card(A x B) = card(A) - card(B), namely,
card(AB) = card(A)>dB),

Occasionally it is convenient to use a shorthand for certain sets that mirrors their
cardinality. For example, if we use “2” as a shorthand for the two-point set {0, 1}, then
we might write 2N in place of P(N), or, more generally, 24 in place of P(A). Along
similar lines, we can prove that R, the collection of all real sequences, has the same
cardinality as R. Of course, R® is the same as RN, the product of countably many copies
of R, and so

card (RV) = ¢ = (2%)™ = 2% — g% — ¢,

The Cantor Set

We next examine an intriguing and unusual subset of R called the Cantor set (or,
sometimes, Cantor’s ternary set). Our investigations here should provide us with a
natural lead-in to several of the topics that are ahead of us. We will construct an
uncountable (hence “large”) subset of [0, 1] that is somehow also “meager.” We begin
by applying the nested interval theorem to a particular batch of intervals.

Consider the process of successively removing “middle thirds” from the interval
[0, 1] (Figure 2.3).

We continue this process inductively. At the nth stage we construct /, from /,_, by
removing 2"~! disjoint, open, “middle thirds” intervals from I,_,, each of length 37";
we will call this discarded set J,,. Thus, /I, is the union of 2" closed subintervals of /,_,,
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and the complement of /, in [0.1]is J; U---U J,. The Cantor set A is defined as the
set of points that still remain at the end of this process, in other words, the “limit” of
the sets 1,. More precisely, A = (), /.. It follows from the nested interval theorem
that A # @, but notice that A is at least countably infinite. The endpoints of each I, are
in A:

0.1, 1/3, 2/3, 1/9, 2/9, ... € A.

We will refer to these points as the endpoints of A, that is, all of the points in A of the
form a/3" for some integers a and n.

As we shall see presently, A is actually uncountable! This is more than a little
surprising. Just try to imagine how terribly sparse the next few levels of the “middle
thirds” diagram would look on the page. Adding even a few more levels defies the limits
of typesetting! For good measure we will give two proofs that A is uncountable, the
first being somewhat combinatorial.

Notice that each subinterval of /,_, results in two subintervals of /, (after discarding
a middle third). We label these two new intervals L and R (for left and right) as in
Figure 2.4.

As we progress down through the levels of the diagram toward the Cantor set (some-
where far below). imagine that we “step down’ from one level to the next by repeatedly
choosing either a step to the left (landing on an L interval in the next level below) or a
step to the right (landing on an R interval). At each stage we are only allowed to step
down to a subinterval of the interval we are presently on — jumping across “gaps” is
not allowed! Thus, each string of choices, LRLRRLLRLLLR ..., describes a unique
“path” from the top level /o down to the bottom level A. The Cantor set, then, is quite
literally the “dust’” at the end of the trail. Said another way, each such *“path” determines
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a unique sequence of nested subintervals, one from each level, whose intersection is a
single point of A.

Conversely, each point x € A lies at the end of exactly one such path, because at any
given level there is only one possible subinterval of /, on our diagram, call it 7,, that
contains x. The resulting sequence of intervals () is clearly nested. (Why?) Thus, the
Cantor set A is in one-to-one correspondence with the set of all paths, that is, the set of
all sequences of Ls and Rs. Of course, any two choices would have done just as well,
so we might also say that A is equivalent to the set of all sequences of Os and 1s — a set
we already know to be uncountable. Here is what this means:

card(A) = card (2N ) = card ([0, 1]).

Absolutely amazing! The Cantor set is just as “big” as [0, 1] and yet it strains the
imagination to picture such a sparse set of points.

Before we give our second proof that A is uncountable, let’s see why A is “small”
(in at least one sense). We will show that A has “measure zero”; that is, the “measure”
or “total length” of all of the intervals in its complement [0, 1]\ A is 1. Here’s why:
By induction, the total length of the 2"~! disjoint intervals comprising J, (the set
we discard at the nth stage) is 2"~!/3", and so the total length of [0.1]\ A must
be

2 =1 X 2\ 1
§3n=52(5) =3 7-z="

We have discarded everything!? And left uncountably many points behind!? How
bizarre! This simultaneous *“bigness” and *‘smallness™ is precisely what makes the
Cantor set so intriguing. The exercises will supply even more ways to say that A is both
“big” and ““small.”

Our second proof that A is uncountable is based on an equivalent characterization of
A in terms of ternary (base 3) decimals. Recall that each x in [0, 1] can be written, in
possibly more than one way, as: x = 0.a)a»a; - - - (base 3), where eacha, =0, 1, or 2.
This three-way choice for decimal digits (base 3) corresponds to the three-way splitting
of intervals that we saw earlier. To see this, let us consider a few specific examples.
For instance, the three cases a; = 0, 1, or 2 correspond to the three intervals [0, 1/3 ],
(1/3,2/3), and [2/3. 1], as in Figure 2.5.

(11:0 (Ll=1 a1=2

Il (“’hy?)
0

Cuofr—
(R]] &)
[—

There is some ambiguity at the endpoints:

1/3 = 0.1 (base 3) = (0.0222... (base 3).
2/3 = 0.2 (base 3) = 0.1222... (base 3),
1 = 1.0 (base 3) =0.2222... (base 3),

but each of these ambiguous cases has at least one representation with a, in the proper
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range. Next, Figure 2.6 shows the situation for /; (but this time ignoring the discarded

a; =0 and a; =2 and
I az =0 a; =2 a =0 a; = 2
2
1 2 1 2 7 8
0 3 5 3 - s 1

intervals). Again, some confusion is possible at the endpoints:

1/9 = 0.01 (base 3) = 0.00222... (base 3),
8/9 = 0.22 (base 3) = 0.21222... (base 3).

We will take these few examples as proof of the following

(Why?)

Theorem 2.15. x € A ifand only if x can be written as 3 _..., a, /3", where each

a, is either 0 or 2.

Thus the Cantor set consists of those points in [0, 1] having some base 3 decimal
representation that excludes the digit 1. Knowing this we can list all sorts of elements
of A. For example, 1/4 € A because 1/4 = 0.020202... (base 3). Theorem 2.15 also
leads to another proof that A is uncountable; or, rather, it gives us a new way of writing
the old proof. The first proof used sequences of Os and 1s, and now we find ourselves

with sequences of Os and 2s; the connection isn’t hard to guess.

Corollary 2.16. A is uncountable; in fact, A is equivalent to [0, 1].

PROOF. By altering our notation we can easily display a correspondence between
A and [0, 1]. Each x € A may be written x = ) -, 2b,/3", where b, =0 or 1,

and now we define the Cantor function f : A — [0, 1] by

002bn oob" _
f(Z 3")—,.=12—" (bn =0, 1).

n=\

That is,

a) a; as

f(0.aia2a3--- (base 3)) =0.— 22 ... (base2)  (ar =0, 2).

222

Now f is clearly onto, and hence we have a second proof that A is uncountable.

(Why?) But f isn’t one-to-one; here’s why:

£(1/3) = £(0.0222... (base 3)) = 0.0111... (base 2)
= 0.1 (base 2) = (0.2 (base 3)) = f(2/3).

The same phenomenon occurs at each pair of endpoints of any discarded “middle

third” interval (i.e., a subinterval of J,):

f(1/9) = f(0.00222... (base 3)) = 0.00111... (base 2)
= 0.01 (base 2) = f(0.02 (base 3)) = £(2/9).
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It is easy to see that f is increasing; that is, if x, y € A with x < y, then
f(x) < f(y). We leave it as an exercise to check that f(x) = f(y) if and only if
x and y are endpoints of a discarded “middle third” interval (see Exercise 26).
Thus, f is one-to-one except at the endpoints of A (a countable set), where it’s
two-to-one. It follows that A is equivalent to [0, 1 ]. (How?) O

EXERCISES

> 21. Show that any temary decimal of the form Q.aa; - - - a,11 (base 3), i.e., any
finite-length decimal ending in two (or more) s, is not an element of A.

> 22. Show that A contains no (nonempty) open intervals. In particular, show that
if x, y € A withx < y, then thereissome z € [0,1]\ A withx <z < y. (It
follows from this that A is nowhere dense, which is another way of saying that A is
“small.”)

> 23. The endpoints of A are those points in A having a finite-length base 3 decimal
expansion (not necessarily in the proper form), that is, all of the points in A of the
form a/3" for some integers n and 0 < a < 3". Show that the endpoints of A other
than 0 and 1 can be written as 0.a,a; - - - a,4, (base 3), where each a; is 0 or 2, except
a,+1, which is either 1 or 2. That is, the discarded “middle third” intervals are of the

form (0.aya; - - - a,l, 0.a)a; - - - a,2), where both entries are points of A written in
base 3.

24. Show that A is perfect; that is, every point in A is the limit of a sequence of
distinct points from A. In fact, show that every point in A is the limit of a sequence
of distinct endpoints.

25. Defineg :R —> Rbyg(x) =1if x € A, and g(x) = 0 otherwise. At which
points of R is g continuous?

> 26. Let f: A — [0, 1] be the Cantor function (defined above) and letx, y € A
with x < y. Show that f(x) < f(y). If f(x) = f(y), show that x has two distinct
binary decimal expansions. Finally, show that f(x) = f(y) if and only if x and y
are “consecutive” endpoints of the form x = 0.a1a;---a,1 and y = 0.a1a; - - - a,2
(base 3).

27. Fixn>l,andletl,;,k=1,..., 271 be the component subintervals of the
nth level Cantor set /,. If x, y € A with |[x — y| < 37", show that x and y are in

the same component /, ;. For this same pair of points show that | f(x) — f(y)| <
27",

The observation made in Exercise 26 enables us to extend the definition of the Cantor
function f to all of [0, 1] in an obvious way: We take f to be an appropriate constant
on each of the open intervals that make up [0, 1] \ A. For example, we would set
f(x)= f(1/3) = 1/2 for each x in the interval (1/3,2/3) and f(x) = f(1/9) = 1/4 for
each x in (1/9, 2/9). See Figure 2.7.
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Formally, we define f(x) = sup{f(y): y€ A, y <x}forx € [0.1]\ A. The new
function f : [0, 1] — [0, 1] is still increasing (why?) and is actually continuous! (We
will prove this in the next section.) Some authors refer to this extension as the Cantor-
Lebesgue function or Lebesgue’s singular function. We will simply call it the Cantor
function. It is called a singular function because f’ = 0 at almost every point in [0, 1 ].
Thatis, f'=00n[0, 1]\ A, a set of measure 1. But we are getting ahead of ourselves.

EXERCISES
28. Let f : A — [0, 1] be the Cantor function (as originally defined). Check that
f(x)=sup{f(y): ye A, y <x)foranyx € A.

> 29. Prove that the extended Cantor function f : [0,1] — [0, 1] (as defined
above) is increasing. [Hint: Consider cases.]

The construction of the Cantor set admits all sorts of generalizations. For example,
suppose that we fix @« with 0 < o < | and we repeat our “middle thirds” construction
except that at the nth stage each of the open intervals we remove is now taken to have
length  37". (And we still want these to be in the “middle” of an interval from the
current level — it is important that the remaining closed intervals turn out to be nested.)
Figure 2.8 shows the first few levels of this generalized construction in the case @ = 3/5.

Io
0 1
Il 2 3
10 2 3 1
2
5 7 2 3 23 25
0 30 30 5 5 30 30 1

The limit of this process, called a generalized Cantor set, is very much like the ordinary
Cantor set. It is uncountable, perfect, nowhere dense, and so on, but this one now has
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nonzero measure. We leave it as an exercise to check that the generalized Cantor set with
parameter ¢ has measure 8 = 1 —a. We label these sets according to their measure;
that 1s, we write Ag to mean the generalized Cantor set with measure 8.

EXERCISES

30. Check that the construction of the generalized Cantor set with parameter «, as
described above, leads to a set of measure 1 — «; that is, check that the discarded
intervals now have total length «.

31. Now that we know the description of A in terms of temary decimals, it might
be interesting to consider a similar construction using another base. For example, fix
aninteger p > 3 (to use as the base) and an integer 0 < d < p (as the omitted digit).
Describe the set of all points in [ 0, 1 ] that have some base p decimal expansion that
excludes the digit d. Is it uncountable? Does it have measure zero?

The Cantor set satisfies another rather curious property: The set of all possible
differences of pairs of elements of A fills up the interval [—1, 1]; in symbols, A — A =
{y—x:x, y e A} =[-1, 1]. The original proof, due to Steinhaus, is based on a clever
geometric observation. The claim is that the equation y — x = b has asolution x, y € A
forany —1 < b < 1. That is, forany —1 < b < 1, the line y = x + b must pass through
the set A x A.

Now the set A x A can be constructed inside the square [0, 1] x [0, 1] in much
the same way that A is constructed inside [0, 1]. We begin with the full square A,
remove “middle thirds” both horizontally and vertically, and arrive at the set of four
subsquares A; = ([0, 1/3]U[2/3,1)) x ([0,1/3]U[2/3,1]). Next “cross out” the
middle thirds, both horizontally and vertically, from these four squares to arrive at 16
smaller subsquares, a set that we will call A,. And continue. The “limit” of this process
istheset A x A =, An.

To see that a line of the form y = x + b, where —1 < b < I, must pass through
A x A, itis enough to show that y = x + b always hits any A,, for then we could apply
a version of the nested interval theorem in R? to finish the proof. (We will see just such
a theorem in Chapter Seven.) For now we will settle for the following “visual” proof.
Convince yourself that any line of slope 1 that passes through the square [0, 1] x [0, 1]
must also pass through each A, by considering the following pictures (showing A, on
the left, A; on the right, and a “worst-case” line drawn through each square). Note that
by “scaling” it is enough to understand just the first case; see Figure 2.9.

Monotone Functions

As we saw in the first chapter, monotone functions are reasonably well behaved. In
particular, a monotone function has (at worst) only jump discontinuities. It follows that
a monotone function must have lots of points of continuity. Here’s why:
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Theorem 2.17. If f : (a,b) = R is monotone, then f has at most countably
many points of discontinuity in (a, b), all of which are jump discontinuities.

PROOF. That f has only jump discontinuities follows from Proposition 1.19.
Now we just need to count the points of discontinuity.

Let's reflect on the situation. If f : (a, b)) - R is, say, increasing, and if ¢ €
(a, b), then the left- and right-hand limits of f atc satsfy f(c—) < f(c) < f(c+).
(Why?) In particular, f is discontinuous at c¢ if and only if f(c-) < f(c+).
Consequently, if ¢ and d are two different points of discontinuity for f, then
the intervals ( f(c-), f(c+)) and ( f(d—), f(d+)) are nonempty and disjoint.
(Why?) Thus,

{ (f(c—). f(c+)) : cis a point of discontinuity for f }

is a collection of nonempty, dis joint open intervals in R, and any such collection
must be countable (see Exercise 15). O

Theorem 2.17 allows us to clean up a few details from the last section:

Corollary 2.18. If f : [a,b]) — [c,d] is both monotone and onto, then f is
continuous.

Corollary 2.19. The Cantor function f : [0.1] — [0, 1] is continuous!

Theorem 2.17 has a converse (see Exercise 34 for a detailed statement). Given any
countable set D in R, we can construct an increasing function f : R — R that is

discontinuous precisely at the points of D. Here is a brief sketch:

co. We define f(x) = )__ _, en, where the sum is over the set {n : x, < x} and where

Let D = (x;, x2, ...}, and let (¢.) be a sequence of positive numbers with Y7 | &, <

f(x) = 0 if this set is empty. Notice that 0 < f(x) < Z;”;, En < OO in any case.

Now, if x < y, then

fO=) =) et Y &a=f)+ Y &2 f(x).

Xa<Yy Xal<x X<Xaq<y X<X o<y
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Thus, f is increasing. Next we consider this formula in each of the cases x = x, and
y = X. First,

x=x<y = fO)=f@)+ ) &

Xk <Xn <y
Claim. f(xx+) = f(x); i.e.,
00
lim Z e, =0 because Ze,,—»O as N - oo.
YK gy <xa<y n=N

And, in the second case,

x<xu=y = [f@)=f@+ )Y &= f(x)+ea.

X<Xq<X3

Claim. f(x;—) = f(x) — &; e,

lim z En = Ei.

X=X x<x,<xg

Thus, f(xi—)+ & = f(xx) = f(xe+) and f(xe+) — f(xe—) = &.

The proof that f is continuous at each x € R \ D is similar.

EXERCISES

32. Deduce from Theorem 2.17 that a monotone function f : R — R has points
of continuity in every open interval.

33. Let f:[a, b]— Rbemonotone. Givenn distinct pointsa < x; < x3 < :-- <
X, < b,show that ZL, | f(xi+)— f(xi=)| < |f(b)— f(a)l.Use this to give another
proof that f has at most countably many (jump) discontinuities.

34. Let D = {x;,x2,...},and let &, > O with Y -, &, < 00. Define f(x) =
anq €n (as above). Check the following: (i) f is discontinuous at the points of D;
(i1) f_ isright-continuous everywhere; and (iii) f is continuous ateach pointx € R\ D.
How might this construction be modified so as to yield a strictly increasing function
with these same properties?

35. Let f :[a,b] = R be increasing, and let (x,) be an enumeration of the dis-
continuities of f. For each n, leta, = f(x,) — f(x,—)and b, = f(x,+) — f(x,)
be the left and right “jumps™ in the graph of f, wherea, = 0ifx, =aand b, =0
if x, = b. Show that Y - a, < f(b) — f(a)and Y - b, < f(b) — f(a).

36. In the notation of Exercise 35, define h(x) = Y, _ @, +)_, _, ba. Show that
h is increasing and that g = f — h is both continuous and increasing. Thus, each
increasing function f can be written as the sum of a continuous increasing function
g and a “pure jump” function A.

Q
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Notes and Remarks

For an infinitely enjoyable discussion of the infinite, see the article “Infinity” by Hans
Hahn [1956a]. The clever proof of Theorem 2.3, and more, can be found in Newman
and Parsons [1988]. For an alternate proof of Corollary 2.7, see Campbell [1986].

Countable (and uncountable) sets were introduced by Cantor. Indeed, most of the
results in this chapter are due to Cantor himself. In particular, Corollary 2.7, Theo-
rem 2.9, and Theorem 2.12 are due to Cantor; see Dunham [1990]. The statement of
Theorem 2.13 originated as an open question in one of Cantor’s seminars. You will
often see it referred to variously as the Cantor-Bemstein theorem or as the Schréder—
Bemstein theorem. According to Dudley [ 1989], full credit should go to Felix Bernstein,
who was a 19-year-old student at the time! At any rate, Hausdorff [1937] refers to it as
Bernstein’s theorem. The proof given here is taken from an exercise in Willard [1970]
but is probably much older.

The proof of Theorem 2.12 may remind you of Russell’s paradox. Briefly, Russell’s
paradox demonstrates that there are limitations on what may be regarded as a sez. As
Russell would ask, is the collection U of all sets again a set? If so, then we might consider
the set B= (A € U : A ¢ A}. Now if we accept U as a set, then the “rules” of set
operations say that we are stuck with accepting B as a set, too. With that decision made,
the “rules” likewise permit us to ask the question, is B € B ? A moment’s reflection on
what this means will have your head spinning! Evidently not everyone gets to be a set.
We have taken the easy way out and left the concept of “set” as a primitive, undefined
notion. Not to worry, though; we are on solid ground. Trust me!

Although Example 2.11 (b) might suggest that it is impossible to construct a sin-

gle transcendental number, that is not entirely true. Since the algebraic numbers are
countable, the “diagonalization” technique used in the proof of Theorem 2.9, if care-
fully applied, would yield a specific transcendental number. Better still, it is actually
possible to display uncountably many transcendental numbers: In 1844, Liouville first
proved that transcendental numbers exist by showing that any number of the form
Y o (an/10" ', where the a, are integers with | < a, < 9, is transcendental. However,
not all transcendental numbers are of this form. Following this discovery, Hermite
showed in 1873 that e is transcendental, and Lindemann showed in 1882 that r is tran-
scendental. For more details, see Oxtoby [1971], Stromberg [1981], and Kline [1972].
For more on what mathematicians mean by the word “impossible,” see Davis [1986].

In addition to the books by Dudley [1989] and Hausdorff [1937], you can find
more abstract set theory in the books by Boas [1960], Folland [1984], Hewitt and
Stromberg [1965], Halmos [1960], Kaplansky [1977], Kolmogorov and Fomin [1970],
and Torchinsky [1988]. Several of the references include a bit of history, too. The
books by Willard and Dudley, for example, have copious notes and references to original
works. Kline [ 1972] is a mammoth source of information about mathematics in general.
Hawkins [1970] has a detailed exposition of the events leading to the great “revolution”
in analysis following the work of Riemann, Weierstrass, and Cantor (roughly speaking,
the years 1875-1925). Manheim [1964)] traces the early development of abstract set
theory and point set topology.
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Cantor first mentioned *“the’” Cantor set in connection with the concept of “perfect”
sets in Cantor [1883], but the set itself was not discovered by Cantor. Examples of
this type, including “the” Cantor set, had already been introduced by H. J. S. Smith in
connection with two constructions for nowhere dense sets in H. J. S. Smith [1875]. Ac-
cording to Hawkins [1970], Smith’s results did not become well known until the 1880s.
The title of Smith’s paper, “On the integration of discontinuous functions,” highlights
the connection between abstract set theory and integration. Interest in infinite sets and
“pathological” sets was born out of the study of Riemann’s integrability condition and
its relation to Fourier’s work on trigonometric series. (See Hawkins [1970], Manheim
[1964], Rogosinski [1950], and the series of articles by Dauben [1971, 1974, 1983].)
We will have more to say about this in Part Three; in any event, the Cantor set will
remain an important example throughout this course.

The “visual” proof that A — A = [—1, 1] is originally due to Steinhaus [1917]. For
a proof based on the ternary decimal representation of A, see Randolph [1940]. For
more on the Cantor set and generalized Cantor sets, see Chae [1980], Randolph [1968],
Coppel [1983], and Majumder [1965]. For more on the Cantor function, see Chalice
[1991] and Hille and Tamarkin [1929].

The construction used in the converse to Theorem 2.17 is based on the presentation in
Rudin [1953]. Our results about monotone functions will turn out to be very useful later
in the course when we discuss “the problem of moments.” This famous problem has
its roots in mathematical physics, but it is of consequence to probability and statistics
as well. We will postpone further discussion of the problem; for more details and a

few clues about what is ahead, see the short note “Stieltjes on the Stieltjes integral” in
Birkhoff [1973].




CHAPTER THREE

Metrics and Norms

Inthe beginning there were operations — hundreds of them — limits, derivatives, integrals,
sums; all of the many operations on functions, sequences, sets, vectors, matrices, and
whatever else you might have encountered in calculus. The hallmark of twentieth-
century mathematics is that we now view these operations as functions defined on
entire collections of “abstract” objects rather than as specific actions taken on individual
objects, one at a time. Maurice Fréchet, in a short expository article from 1950, had
this to say (the italics are his own):

In modern times it has been recognized that it is possible to elaborate full mathematical
theories dealing with elements of which the nature is not specified, that is, with abstract
elements. A collection of these abstract elements will be called an abstract set. If to this
set there is added some rule of association of these elements, or some relation between
them, the set will be called an abstract space. A natural generalization of function consists
in associating with any element x of an abstract set £ a number f(x). Functional analysis
is the study of such “functionals™ f(x). More generally, general analysis is the theory of
the transformations y = F[x] of an element x of an abstract set £ into an element y of
another (or the same) abstract set F. It is obvious that the study of general analysis should
be preceded by a discussion of abstract spaces.

It is necessary to keep in mind that these notions are not of a metaphysical nature;
that when we speak of an abstract element we mean that the nature of this element is
indifferent, but we do not mean at all that this element is unreal. Our theory will apply
to all elements; in particular, applications of it may be made to the natural sciences. Of
course, due attention must be paid to any properties which depend essentially on the nature
of any special category of elements under investigation.

Early examples of this type of abstraction appeared in 1906 in Fréchet’s thesis, “Sur
quelques points du calcul functionnel,” in which he introduced a notion of distance de-
fined on abstract sets of points. In particular, Fréchet considered the collection C[ 0, 1],
consisting of all continuous real-valued functions defined on the closed interval (0, 1],
where we measure the distance between two functions by taking the maximum vertical
distance between their graphs; that is, dist( f, g) = maxo<,<; | f(t) — g(¢)|. (This distance
function was actually well known in 1906, but Fréchet was the first to view it as a small
part of a much bigger picture.) Given a notion of distance between elements of C[ 0, 1],
it makes sense to ask questions like: I's integration continuous? That is, are the numbers
fo' f(t)dt and fO' g(t) dt “close” whenever f and g are “close”?

This new point of view proved to have immediate applications; in that same year
Friedrich Riesz used Fréchet’s ideas to give a new proof of a result of Erhardt Schmidt,

36
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stating that any orthonormal system in C[0, 1 ] must be countable. In fact, Riesz ex-
tended this result to another collection of functions and in so doing introduced the L,
spaces. Riesz’s techniques revolutionized the study of trigonometric series. To say that
Fréchet’s ideas caught on would be an understatement; the study of modern analysis
would be lost without them. By 1928, Fréchet had compiled a monograph on his re-
search on abstract spaces entitled Les Espaces Abstraits. (The word “space” has come
to connote an abstract set of points that carmes with it some additional structure.) Much
of the terminology we will use, and certainly most of our examples of abstract spaces,
can be found in Fréchet’s monograph. By mathematical standards, 1928 is not so very
long ago.

Metric Spaces

Given a set M, how might we define a distance function on M? What would we want a
“reasonable” distance to do? Certainly we would want our distance to be (defined and)
nonnegative for any pair of points in M. Let’s start there: Letd : M x M — [0, oo) be
a nonnegative, real-valued function defined on all pairs of elements from M. We would
probably expect to have d(x, x) = 0 for any x € M. And d(x. y) = 0 should mean that
x = y. We would most likely want our distance to also satisfy d(x, y) = d(y, x) for
all pairs of points x, y € M. Anything else? Well, in the hope of preserving at least
a bit of the geometry granted by the familiar distances in R and R", we might also
require one last property. The distance function should satisfy the triangle inequality:
For each triple of points x, y, z in M, we ask that d(x, y) < d(x,z) + d(z,y). The
triangle inequality is the embodiment of that old saw, “The shortest distance between
two points is a straight line.” This timid little inequality will turn out to be immensely
valuable.

A function d on M x M satisfying the following properties is called a metric on M.

(1) 0 <d(x,y) < oo forall pairs x,y € M.
(i) d(x, y) =0 if and only if x = y.
(ii1) d(x, y) =d(y, x) for all pairs x, y € M.
(iv) d(x,y) <d(x,z)+d(z,y) forall x,y,ze M.

A function d on M x M that satisfies all of the above save item (ii) is sometimes called
a pseudometric. Thus, a pseudometric will permit distinct points to be 0 distance apart.

The couple (M, d), consisting of a set M together with a metric 4 defined on M, is
called a metric space. If a particular metric on M is understood, or if the argument at
hand works equally well for any metric, we may forego this formality and simply refer
to the set M as a metric space, with the tacit understanding that a metric d is available
on demand.

Examples 3.1

(a) Every set M admits at least one metric. For example, check that the function
defined by d(x, y) = 1 forany x # yin M, and d(x, x) =0 forall xin M, is a
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metric. This mundane, but always available, metric is called the discrete metric
on M. It will prove to be much more interesting than first appearances suggest.
A set supplied with its discrete metric will be called a discrete space.

(b) An important example for our purposes is the real line R together with its usual
metric d(a, b) = |a — b|. Any time we refer to R without explicitly naming a
metric, the absolute value metric is always understood to be the one that we
have in mind.

(c) Any subset of a metric space is again a metric space in a very natural way. If d
is a metric on M, and if A is a subset of M, then d(x, y) is defined for any pair of
points x, y € A. Moreover, the restriction of 4 to A x A obviously still satisfies
properties (1)—(iv). That is, the metric that is defined on M automatically defines
a metric on A by restriction. We will even use the same letter d and simply
refer to the metric space (A, d). Of particular interest in this regard is that N,
Z, Q, and R \ Q each come already supplied with a natural metric, namely, the
restriction of the usual metric on R. In each case, we will refer to this restriction
as the usual metric.

EXERCISES

1. Show that
1 1
d(x’ y) = |— - _‘
X Yy

defines a metric on (0, 00).
2. Ifdisametricon M, show that |d(x, z)—d(y, 2)| < d(x, y)foranyx,y,z € M.

3. As it happens, some of our requirements for a metric are redundant. To see why
this is so, let M be a set and suppose thatd : M x M — R satisfies d(x, y) = 0 if
and only if x = y, and d(x, y) < d(x, z) + d(y, z) for all x, y, z € M. Prove that
d is a metric; that is, show that d(x, y) > O and d(x, y) = d(y, x) hold for all x, y.

4. Let M be a set and suppose thatd : M x M — [0, 00) satisfies properties
(i), (ii), and (iii) for a metric on M and the triangle inequality reversed: d(x, y) >
d(x, z) + d(z, y). Prove that M has at most one point.

5. There are other, albeit less natural, choices for a metric on R. For instance,
check that p(a, b) = /la = b|,o0(a,b) = |a — b|/(1 + |a — b|), and T(a, b) =
min{|a — b|, 1} each define metrics on R. [Hint: To show that o is a metric, you
might first show that the function F(t) = t/(1 + ¢t) is increasing and satisfies
F(s +1t) < F(s)+ F(¢) fors,t > 0. A similar approach will also work for p
and t.]

6. Ifdisany metricon M, show that p(x, y) = /d(x, y),o(x, y) = d(x, y)/(1+
d(x, y)), and t(x, y) = min{d(x, y), 1} are also metrics on M. [Hint: o(x, y) =
F(d(x, y)), where F is as in Exercise 5.]

7. Here is a generalization of Exercises 5 and 6. Let f : [0, 00) — [0, 00) be
increasing and satisfy f(0) = 0, and f(x) > O for all x > 0. If f also satisfies
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f(x+y) < f(x)+ f(y) forall x, y > O, then f od is a metric whenever d
is a metric. Show that each of the following conditions is sufficient to ensure that
f(x+y)< f(x)+ f(y)forallx, y > O:

(a) f has a second derivative satisfying f” < 0;

(b) f has a decreasing first derivative;

(¢) f(x)/x is decreasing for x > 0.

[Hint: First show that (a) = (b) = (¢).]

8. If d, and d, are both metrics on the same set M, which of the following yield
metrics on M: d, +d,? max{d,, d>}? min{d,, d>}? If d is a metric, is d* a metric?

9. Recall that 2N denotes the set of all sequences (or “strings™) of Os and 1s. Show
that d(a. b) = Z:c:, 27"|a, — b,|, where a = (a,) and b = (b,) are sequences of
Os and 1s, defines a metric on 2N.

10. The Hilbert cube H* is the collection of all real sequences x = (x,) with

lxal < 1formn=1,2,....

(i) Show thatd(x,y) =) oo, 27"|x, — ¥a| defines a metric on H>.

(ii) Givenx,y € H* and k € N, let M, = max{|x; — yi|,..., |xx — w|}. Show
that 27*M, < d(x,y) < M, +27~.

11. Let R* denote the collection of all real sequences x = (x,). Show that the
expression

= l lxn - ,an

d(x,y) = —
“~n!'l+|x, — yal

defines a metric on R*°.

12. Check that d(f, g) = max,<,<p | f(t) — g(¢)| defines a metric on C[a, b},
the collection of all continuous, real-valued functions defined on the closed interval
[a,b].
13. Fréchet's metric on C[ 0, 1] is by no means the only choice (although we will
see later that itis a good one). For example, show that o( f, g) = fo' | f(t) — g(t)| dt
ando(f, g) = fol min{| f(¢) — g()|, 1} dt also define metrics on C[ O, 1].

> 14. We say that a subset A of a metric space M is bounded if there is some xo € M

and some constant C < oo such that d(a, xo) < C foralla € A. Show that a finite
union of bounded sets is again bounded.

> 15. We define the diameter of a nonempty subset A of M by diam(A)=
sup{d(a, b) : a, b € A}. Show that A is bounded if and only if diam(A) is finite.

Normed Vector Spaces

A large and important class of metric spaces are also vector spaces (over R or C).
Notice, for example, that C[O0, 1] is a vector space (and even a ring). An easy way to
build a metric on a vector space is by way of a length function or norm. A norm on a
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vector space V is a function || - || : V — [0, oo) satisfying:

(i) 0<|x|]| <oo forall x € V;
(11)) |Ix|l =0 if and only if x = 0 (the zero vector in V);
(1ii) |lax]| = || |lx]|l for any scalar « and any x € V; and
(iv) the triangle inequality: ||x + y|| < x| + ||yl forallx,y e V.

A function || - || : V = [0, oo) satisfying all of the above properties except (ii) is called
a pseudonorm on V; that is, a pseudonorm permits nonzero vectors to have 0 length.
The pair (V, || - || ), consisting of a vector space V together with a norm on V, is

called a normed vector space (or normed linear space). Just as with metric spaces, we
may be a bit lax with this formality. Phrases such as “let V be a normed vector space”
carry the tacit understanding that a norm is lurking about in the background.

It is easy to see that any norm induces a metric on V by setting d(x, y) = |lx — y]|.
We will refer to this particular metric as the usual metric on (V, || - || ). We may even be
so bold as to refer to (V, || - || ) as a metric space with the clear understanding that the
usual metric induced by the norm is the one that we have in mind. Not all metrics on
a vector space come from norms, however, so we cannot afford to be totally negligent
(see Exercise 16).

Examples 3.2

(a) The absolute value function | - | clearly defines a norm on R.
(b) Each of the following defines a norm on R":

Ixlly = glx,-l. Ixll2 = (Z |x.-|2>”2.

i=1
and |Ixllcc = max,<;<n |X;|, where x = (x;,...,x,) € R". The first and last
expressions are very easy to check while the second takes a bit more work.
(Although this is probably familiar from calculus, we will supply a proof shortly.)
The function | - ||, is often called the Euclidean norm and is generally accepted
as the norm of choice on R". As it happens, for any 1 < p < oo, the expression
lxll, = (z |x,-|P)'/p defines a norm on R"; see Theorem 3.8.
(c) Each of the following defines a norm on C[a, b ]:
1/2

b b
Iflh =/ |f(0)ldt, Ifll2 = (/ If(t)lzdt) \

and I flloo = argglf(t)l-

Again, the second expression is hardest to check (and we will do so later; for
now, see Exercise 25). The last expression is generally taken as “the” norm on

Cla,b].

(d) If (V, |l - || ) is a normed vector space, and if W is a linear subspace of V, then
W is also normed by | - ||. That is, the restriction of || - || to W defines a norm
on W.

(e) We might also consider the sequence space analogues of the *““scale” of norms
on R" given in (b). For 1 < p < oo, we define £, to be the collection of all
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real sequences x = (x,) for which } > |x,|? < oo, and we define £, to be
the collection of all bounded real sequences. Each ¢, is a vector space under
“coordinatewise” addition and scalar multiplication. Moreover, the expression
Ixl, = (S 1xa1?) P if 1 < p < 00 or ||x|leo = SUP, |xal if p = 0o defines a
norm on €,. The cases p = | and p = oo are easy to check (see Exercise 21),

the case p = 2 is given as Theorem 3.4, while the case 1 < p < oo is given as
Theorem 3.8.

We can complete the details of several of our examples if we prove that ¢, is a vector
space and that || - ||, is a norm on £,. Now it is easy to see that if ||x||; =0, thenx, =0
for all n and hence that x = 0 (the zero vector in ¢;). Also, given x € ¢; and @ € R,
it is easy to see that ax € €,, where ax = (ax,), and that |ax|; = |a||lx|l2. What is
not so clear is whether x + y = (x, + y.) is in £, whenever x and y are in £,. In other
words, if x and y are square-summable, does it follow that x + y is square-summable?
A moment’s reflection will convince you that to answer this question we will need
to know something about the “dot product” ) x,y,. This extra bit of information is
supplied by the following lemma.

Lemma 3.3. (The Cauchy-Schwarz Inequality) > oo, |xiyil < lixll2 llyll2 for
any x, y € €.

PROOF. To simplify our notation a bit, let’s agree to write (x, y) = Y x;y;. We
first consider the case where x, y € R" (that is, x;, = 0 = y; for all i > n). In this
case, (x, y) is the usual “dot product” in R". Also notice that we may suppose
that x, y # 0. (There is nothing to show if either is 0.)

Now let ¢ € R and consider

0<|x+tyli=(x+ty,x+1ty) = Ix113 + 2t (x, y) + £2|lyll3.

Since this (nontrivial) quadratic in ¢ is always nonnegative, it must have a nonpos-
itive discriminant. (Why?) Thus, (2(x, y))2 —4|Ix|13 llyl3 < Oor,after simplifying,

1(x, Y)I < lxll2 Iyll2- Thatis, |37, xiyi| < llxll2 llyll2.
Now this isn’t quite what we wanted, but it actually implies the stronger in-

equality in the statement of the lemma. Why? Because the inequality that we have
shown must also hold for the vectors (|x;|) and (|y;|). That is,

Z'xill)’il < WCDI2 NCHyi D2 = llxli2 Iyll2-
i=l

Finally, let x, y € £,. Then for each n we have

‘z:;lx.-y.-l = (; Ixelz>”2<iz;:|y.-lz)l/2 < lixliz 1yl

Thus, ) 2, x;y; must be absolutely convergent and satisfy Z,f";, |xi yi| <
Ixll2 Iyll. O

Now we are ready to prove the triangle inequality for the £;-norm.
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Theorem 3.4. (Minkowski’s Inequality) Ifx, y € €;, then x + y € €. Moreover,
lx + yll2 < llxll2 + lyll2

PROOF. It follows from the Cauchy-Schwarz inequality that for each n we have

n n n n
Doyl =) Il +2) xiyi+ )il
i=1 i=l1 i=lI i=l
< Ixl3 + 20xl2 iyl + Iy13 = Cllxll2 + Iyli2)*-
Thus, since n is arbitrary, we have x + y € €; and ||x + y|l2 < |Ix]l2 + |Iyll2. O
We have now shown that ¢, is a vector space and that || - ||> is a norm on ¢;. As you
have no doubt already surmised, the proof is essentially identical to the one used to

show that || - || is a norm on R". In the next section a variation on this theme will be
used to prove that €, is a vector space and that || - || , is a norm.

EXERCISES

16. Let V be a vector space, and let d be a metric on V satisfying d(x, y) =
d(x — y,0) and d(ax,ay) = |a|d(x, y) for every x, y € V and every scalar a.
Show that ||x|| = d(x, 0) defines anormon V (that has d as its “usual” metric). Give
an example of a metric on the vector space R that fails to be associated with a norm
in this way.

17. Recall that for x € R" we have defined ||x|l;= Y ;_, |xi| and [|x|lce =
max, <;<» |Xi|- Check that each of these is indeed a norm on R".

> 18. Show that || x|l < |Ix|l2 <||Ix]|l; for any x € R". Also check that ||x|, <
n|xllo and [lx [} < /7 llx|l2.
19. Show that we have 2;’___, xiyi = llx|l2 l|vll2 (equality in the Cauchy—Schwarz
inequality) if and only if x and y are proportional, that is, if and only if either x = ay
or y = ax for some a > 0.

12 .
20. Show that ||A|| = max<i<, (Z'}':, la; ;%) /2 is a norm on the vector space
R"*™ of all n x m real matrices A = [a; ;].

21. Recall that we defined £, to be the collection of all absolutely summable se-
quences under the norm || x||;, = Z:‘_’__, |x,|, and we defined £, to be the collection
of all bounded sequences under the norm ||x|looc = sup, |x,|. Fill in the details
showing that each of these spaces is in fact a normed vector space.

22. Show that ||x|loc < ||x]l2 forany x € €5, and that ||x||, < ||x||, forany x € ¢;.

23. The subset of €., consisting of all sequences that converge to 0 is denoted
by co. (Note that cq is actually a linear subspace of €.; thus c¢ is also a normed
vector space under || - ||o0.) Show that we have the following proper set inclusions:
€, Cl CcoC ly.




More Inequalities 43
More Inequalities

We next supply the promised extension of Theorem 3.4 to the spaces ¢,, 1 < p < oc.
Just as in the case of ¢, notice that several facts are easy to check. For example, itis clear
that ||x ||, = Oimplies that x = 0, and it iseasy to see that |ax |, = || |Ix || , for any scalar
a. Thus we lack only the triangle inequality. We begin with a few classical inequalities
that are of interest in their own right. The first shows that £, is at least a vector space:

Lemma3.5. Let1| < p < ooand let a, b > 0. Then, (a + b)? < 2P(a” + bP).
Consequently, x + y € ¢, whenever x, y € €.

PROOF. (a + b)? < (2max{a, b})? = 2P max{a®,bP} < 2P(aP? + bP). Thus, if
x,y €&€p,then Y22 |x, + yal? 2P 327 |xp|P +2P 32 |yl <00. O

Lemma 3.6. (Young’s Inequality) Let 1 < p < oo and let q be defined by
1/p+1/q = . Then, for any a, b > 0, we have ab < a?/p + b7 /q, with equality
occurring if and only if aP~' = b.

PROOF. Since the inequality trivially holds if either a or b is 0, we may certainly
suppose that a, b > 0. Next notice that ¢ = p/(p — 1) also satisfies | < g < 00
and p— 1 = p/q = 1/(q — 1). Thus, the functions f(¢) = P~ and g(t) = 19!
are inverses fort > 0.

The proof of the inequality follows from a comparison of areas (see Figure 3.1).
The area of the rectangle with sides of lengths a and b is at most the sum of the
areas under the graphs of the functions y = x?~! for0 < x <agand x = y?~! for

Yy

S

0 <y <b. That is,
a b P b9
ab < f xPVdx +f yi~ldy = = + —.
0 0 p q
Clearly, equality can occur only if a?~! =b. O
When p = g = 2, Young’s inequality reduces to the arithmetic-geometric mean in-

equality (although it is usually stated in the form vab < (a+b)/2). Young’s inequality
will supply the extension of the Cauchy-Schwarz inequality that we need.
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Lemma 3.7. (Holder’s Inequality) Let 1 < p < oo and let q be defined by
1/p+1/q=1.Givenx € €, and y € &, we have 3.2, Ixiyil < x|l llyllq.

PROOF. We may suppose that ||x||, > 0 and |lyll, > O (since, otherwise, there is
nothing to show). Now, for n > 1 we use Young’s inequality to estimate:

l"
S;z

2

P 1

1
< —4+-=1
P q

XiYi
lxllp llyllq

Xj

x|l »

Yi q
lyllg

1 n
-5
9=

Thus, Y/, Ixiyil < IIxll, llylly for any n > 1, and the result follows. O

Our proof of the triangle inequality will be made easier if we first isolate one of the
key calculations. Notice that if x € £,, then the sequence (|x,.|""'),°,°=l € €4, because
(p — D)g = p. Moreover,

00 l/q
I~ llg = (Z lx.-l") = x5
i=l

Theorem 3.8. (Minkowski’s Inequality) Ler 1 < p < o00. Ifx, y € €, then x +
y€tpandlix+ylp < llxllp, + llyllp.

PROOF. We have already shown that x + y € €, (Lemma 3.5). To prove the
triangle inequality, we once again let g be defined by 1/p+ 1/q = 1, and we now
use Holder’s inequality to estimate:

o0 (.o}
Dok +yil? =) Ik + yil - lx + yilP!
i=l| i=l1

(0 ¢]

00
< lef;r|'|xi+)'il""I + z:|y,-|.|x,. +y‘.|p-l
i=I

< llxlp - UCIXn + Yal®™Dllg + Wyl - 1C1xn + yal®~Hllg
= llx + yI5~" (lxll, + lyllp)-

That is, llx + yll5 < lx + yI5~" (llxll, + Iyl p), and the triangle inequality fol-
lows. O

EXERCISES

24. The conclusion of Lemma 3.7 also holds in the case p = | and g = 00. Why?

25. The same techniques can be used to show that || f|l, = ( fol | £(2)|P dt)l/P
defines a norm on C[0, 1] for any 1 < p < 00. State and prove the analogues of
Lemma 3.7 and Theorem 3.8 in this case. (Does Lemma 3.7 still hold in this setting
for p=1and g = 00?)
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26. Givena,b > 0, show thatlim,_, o (a? + bP)!/P = max{a, b). [Hint: Ifa < b
and r = a/b, show that (1/p)log(l + r?) —> 0 as p — 00.] What happens as
p—>0?asp—> —1?2as p > —00?

Limits in Metric Spaces

Now that we have generalized the notion of distance, we can easily define the notions
of convergence and continuity in metric spaces. It will help a bit, though, if we first
generate some notation for “small” sets. Throughout this section, unless otherwise
specified, we will assume that we are always dealing with a generic metric space
(M, d).

Given x € M and r > 0, the set B,(x) = {y € M : d(x,y) < r} is called the
open ball about x of radius r. If we also need to refer to the metric d, then we write
B;‘(x). We may occasionally refer to the set {y € M : d(x,y) < r} as the closed
ball about x of radius r, but we will not bother with any special notation for closed
balls.

Examples 3.9

(a) In R we have B,(x) = (x —r, x +r), the open interval of radius r about x, while
in R? the set B,(x) is the open disk of radius r centered at x.

(b) In adiscrete space Bi(x) = {x} and By(x) = M.

(c) Inanormed vector space (V, || - ||) the balls centered at O play a special role (see
Exercise 32); in this setting B,(0) = {x : ||x]| < r}.

A subset A of M is said to be bounded if it is contained in some ball, that is, if A C
B,(x) for some x € M and some r > 0. But exactly which x and r does not much matter.
In fact, A is bounded if and only if for any x € M we have sup,., d(x, a) < oo. (Why?)
Related to this is the diameter of A, defined by diam(A) = sup{d(a, b) : a, b € A}. The
diameter of A is a convenient measure of size because it does not refer to points outside
of A.

EXERCISES
Each of the following exercises is set in a generic metric space (M, d).

27. Show that diam(B,(x)) < 2r, and give an example where strict inequality
occurs.

28. If diam(A) < r, show that A C B,(a) for some a € A.
> 29. Prove that A is bounded if and only if diam(A) < oo.
> 30. If A C B, show that diam(A) < diam(B).

31. Give an example where diam(A U B) > diam(A) + diam(B).If AN B # @,
show that diam(A U B) < diam(A) + diam(B).
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> 32. Inanormed vector space (V, || - ||) show that B,(x) = x + B,(0) = {x + y :
lyll < r}andthat B,(0) =rB,(0) = {rx: |x|| <1}.

A neighborhood of x is any set containing an open ball about x. You should think of
a neighborhood of x as a “thick” set of points near x. We will use this new terminology
to streamline our definition of convergence.

We say that a sequence of points (x,) in M converges to a point x € M |if
d(x,, x) — 0. Now, since this definition is stated in terms of the sequence of real

numbers (d(xn, x)) ., We can easily derive the following equivalent reformulations:

(xn) converges to x if and only if, given any £ > 0, there is
an integer N > 1 such that d(x,, x) < € whenever n > N,

or

(x,) converges to x if and only if, given any € > 0, there is
an integer N > | such that {x, : n > N} C B.(x).

If it should happen that {x, : n > N} C A for some N, we say that the sequence (x,) is
eventually in A. Thus, our last formulation can be written

(xn) converges to x if and only if, given any £ > 0,
the sequence (x,) is eventually in B,(x)

or, in yet another incamation,

(xn) converges to x if and only if the sequence
(xn) 1s eventually in every neighborhood of x.

This final version is blessed by a total lack of Ns and &s! In any event, just as with
real sequences, we usually settle for the shorthand x, — x in place of the phrase (x,)
converges to x. On occasion we will want to display the set M, or d, or both, and so
we may also write x, 4 x or x, = x in (M, d). We also define Cauchy (or d-Cauchy,
if we need to specify d ) in the obvious way: A sequence (x,) is Cauchy in (M, d) if,
given any ¢ > 0, there is an integer N > 1 such that d(x,,, x,) < € wheneverm,n > N.
We can reword this just a bit to read: (x,) is Cauchy if and only if, given ¢ > 0, there is
an integer N > 1 such that diam({x, : n > N}) < &. (How?)

Much of what we already know about sequences of real numbers will carry over
to this new setting — but not everything! The reader is strongly encouraged to test the
limits of this transition by supplying proofs for the following easy results.

EXERCISES
Each of the following exercises is set in a metric space M with metric d.
33. Limits are unique. [Hint: d(x, y) < d(x, x,) + d(x,, ¥).]

> 34. If x, & xin(M,d), show that d(x,, y) = d(x, y) for any y € M. More
generally, if x, = x and y, — y, show thatd(x,, y,) = d(x, y).
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35. If x, — x,then x,, — x for any subsequence (x,,) of (x,).

> 36. A convergent sequence is Cauchy, and a Cauchy sequence is bounded (that is,
the set {x, : n > 1} is bounded).

> 37. A Cauchy sequence with a convergent subsequence converges.

38. A sequence (x,) has a Cauchy subsequence if and only if it has a subsequence
(Xn,) for which d (x, , xp,.,) < 27* for all k.

> 39. Ifevery subsequence of (x,) has a further subsequence that converges to x, then
(xn) converges to x.

Now, while several familiar results about sequences in R have carried over success-
fully to the “abstract” setting of metric spaces, at least a few will not survive the journey.
Two especially fragile cases are: Cauchy sequences need not converge and bounded
sequences need not have convergent subsequences. A few specific examples might help
your appreciation of their delicacy.

Examples 3.10

(a) Consider the sequence (1/n)32, living in the space M = (0, 1] under its usual
metric. Then, (1/n) is Cauchy but, annoyingly, does not converge to any point
in M. (Why?) Notice too that (1/n) is a bounded sequence with no convergent
subsequence.

(b) Consider M = R supplied with the discrete metric. Then, ()32, is a bounded
sequence with no Cauchy subsequence!

(c) Atleast one good thing happens in any discrete space: Cauchy sequences always
converge. But for a simple reason. In a discrete space, a sequence (x,) is Cauchy
if and only if it is eventually constant; that is, if and only if x, = x for some
(fixed) x and all n sufficiently large. (Why?)

Let’s take a closer look at R” (with its usual metric). Since d(x, y) = ||x — y|» =
(X0, |Jc,--y,-|2)'/2 > |x;—y;|forany j = 1, ..., n,it follows that a sequence of vectors
x® = (x£, ..., x¥) in R" converges (is Cauchy) if and only if each of the coordinate
sequences (xf )so, converges (is Cauchy) in R. (Why?) Thus, nearly every fact about
convergent sequences in R “lifts” successfully to R". For example, any Cauchy sequence
in R"” converges in R", and any bounded sequence in R" has a convergent subsequence.

How much of this has to do with the particular metric that we chose for R"? And
will this same result “lift” to the spaces ¢,, ¢,, or €, for example? We cannot hope
for much, but each of these spaces shares at least one thing in common with R". Since
all three of the norms || - Il1, || - Il2, and || - ||« satisfy [lx]| > |x;| for any j, it follows
that convergence in ¢,, €,, or £, will imply “coordinatewise’” convergence. That is, if
x® = (xky2, k=1,2,...,is a sequence (of sequences!) in, say, €, and if x¥) — x
in £, then we must have x* — x, (as k —» oo) foreachn = 1,2,.... A simple
example will convince you that the converse does not hold, in general, in this new
setting. The sequence e¥) = (0,...,0, 1,0, ...), where the kth entry is 1 and the rest
are Os, converges “coordinatewise” to 0 = (0. 0, .. .), but (e*’) does not converge to 0
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in any of the metric spaces €, 2, or . Why? Because in each of the three spaces we
have d(e*), 0) = ||e®|| = 1. In fact, (¢*') is not even Cauchy because in each case we
also have ||’ — e™| > 1 for any k # m.

EXERCISES

40. Here is a positive result about £, that may restore your faith in intuition. Given
any (fixed) element x € ¢,, show that the sequence x® = (x,....x,0,...) €€
(i.e., the first k terms of x followed by all Os) converges to x in £,-norm. Show
that the same holds true in £,, but give an example showing that it fails (in general)
in {.

41. Given x, y € €,, recall that (x, y) = Y v x;y;. Show that if x** — x and
y® = yin €,, then (x®, y®) 5 (x, y).

> 42. Two metrics d and p on a set M are said to be equivalent if they generate the
same convergent sequences; that is, d(x,, x) — 0 if and only if p(x,, x) = 0. If d
is any metric on M, show that the metrics p, o, and 7, defined in Exercise 6, are all
equivalent to d.

> 43. Show that the usual metric on N is equivalent to the discrete metric. Show that
any metric on a finite set is equivalent to the discrete metric.

> 44. Show that the metrics induced by || ||y, || - ||2, and || - || .o On R" are all equivalent.
[Hint: See Exercise 18.]

45. We say that two norms on the same vector space X are equivalent if the metrics

they induce are equivalent. Show that || - || and ||| ||| are equivalent on X if and only
if they generate the same sequences tending to O; that is, ||x,|| — O if and only if
lllxx Il — O.

> 46. Given two metric spaces (M, d ) and (N, p), we can define a metric on the
product M x N in a variety of ways. Our only requirement is that a sequence of
pairs (a,, x,) in M x N should converge precisely when both coordinate sequences
(a,) and (x,) converge (in (M, d ) and (N, p ), respectively). Show that each of the
following define metrics on M x N that enjoy this property and that all three are
equivalent:

di((a, x), (b, y)) = d(a, b) + p(x, y),

dy((a, x), (b, y)) = (d(a, b + p(x, y)})'",
dx((a, x), (b, y)) = max{d(a, b), p(x, y)}.

Henceforth, any implicit reference to *“the” metric on M x N, sometimes called the
product metric, will mean one of d,, d5, or d». Any one of them will serve equally
well; use whichever looks most convenient for the argument at hand.

While we are not yet ready for an all-out attack on continuity, it couldn’t hurt to give
a hint as to what is ahead. Given a function f : (M,d) — (N, p) between two metric
spaces, and given a point x € M, we have at least two plausible sounding definitions
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for the continuity of f at x. Each definition is derived from its obvious counterpart for
real-valued functions by replacing absolute values with an appropriate metric.

For example, we might say that f is continuous at x if o(f(x,), f(x)) — 0
whenever d(x,, x) — 0. That is, f should send sequences converging to x into se-
quences converging to f(x). This says that f “commutes” with limits: f(lim,_, ox,) =
lim,_, » f(x,). Sounds like a good choice.

Or we might try doctoring the familiar ¢-§ definition from a first course in calculus.
In this case we would say that f is continuous at x if, given any € > 0, there always
exists a § > 0 such that p(f(x), f(y)) < € whenever d(x, y) < §. Written in slightly
different terms, this definition requires that f (Bf(x)) C B?(f(x)). That is, f maps a
sufficiently small neighborhood of x into a given neighborhood of f(x).

We will rewrite the definition once more, but this time we will use an inverse image.
Recall that the inverse image of a set A, under a function f : X — Y, is defined to be
the set {x € X : f(x) € A} and is usually written f~'(A). (The inverse image of any set
under any function always makes sense. Although the notation is similar, inverse images
have nothing whatever to do with inverse functions, which don’t always make sense.)
Stated in terms of an inverse image, our condition reads: Bf(x) C f~'( B(f(x))).
Look a bit imposing? Well, it actually tells us quite a bit. It says that the inverse image
of a “thick” set containing f(x) must still be “thick” near x. Curious. Figure 3.2 may
help you with these new definitions. Better still, draw a few pictures of your own!

f 1 (Be(fx))

This sets the stage for what is ahead. Each of the two possible definitions for conti-
nuity seems perfectly reasonable. Certainly we would hope that the two turn out to be
equivalent. But what do convergent sequences have to do with “thick” sets? And just
what is a “thick” set anyway?

Notes and Remarks

The quotation at the start of this chapter is taken from Fréchet [1950]; his thesis
appears in Fréchet [1906]. His book, Fréchet [1928], was published as one of the
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volumes in a series of monographs edited by Emile Borel. The authors in this series in-
clude every “name” French mathematician of that time: Baire, Borel, Lebesgue, Lévy,
de La Vallée Poussin, and many others. The full title of Fréchet’s book, including subti-
tle, is enlightening: Les espaces abstraits et leur théorie considérée comme introduction
a l’analyse générale (Abstract spaces and their theory considered as an introduction to
general analysis). The paper by Riesz mentioned in the introductory passage is Riesz
[1906].

It was Hausdorff who gave us the name “metric space.” Indeed, his classic work
Grundzige der Mengenlehre, Leipzig, 1914, is the source for much of our terminology
regarding abstract sets and abstract spaces. An English translation of Hausdorff’s book
is available as Set Theory (Hausdorff [1937]). If we had left it up to Fréchet, we would
be calling metric spaces “spaces of type (D).”

For more on metric spaces, normed spaces, and R", see Copson [1968], Goffman and
Pedrick [1965], Goldberg [1976], Hoffman [1975], Kaplansky [1977], Kasriel [1971],
Kolmogorov and Fomin [1970], and Kuller [1969]. For a look at modern applications
of metric space notions, see Barnsley [1988] and Edgar [1990].

Normed vector spaces were around for some time before anyone bothered to for-
malize their definition. Quite often you will see the great Polish mathematician Stefan
Banach mentioned as the originator of normed vector spaces, but this is only partly true.
In any case, it is fair to say that Banach gave the first thorough treatment of normed
vector spaces, beginning with his thesis (Banach [1922]). We will have cause to mention
Banach’s name frequently in these notes.

The several “name” inequalities that we saw in this chapter are, for the most part,
older than the study of norms and metrics. Most fall into the category of “mean values”
(various types of averages). An excellent source of information on inequalities and
mean values of every shape and size is a dense little book with the apt title Inequalities,
by Hardy, Littlewood, and P6lya [1952]. Beckenbach and Bellman [1961] provide an
elementary introduction to inequalities, including a few applications. For a very slick,
yet elementary proof of the inequalities of Holder and Minkowski, see Maligranda
[1995].

Certain applications to numerical analysis and computational mathematics have
caused a renewed interest in mean values. For a brief introduction to this exciting area,
see the selection “On the arithmetic-geometric mean and similar iterative algorithms”
in Schoenberg [1982], and the articles by Almkvist and Berndt [1988], Carlson [1971],
and Miel [1983]. For a discussion of some of the computational practicalities, see
D. H. Bailey [1988].




CHAPTER FOUR

Open Sets and Closed Sets

Open Sets

One of the themes of this (or any other) course in real analysis is the curious interplay
between various notions of “big” sets and “small” sets. We have seen at least one such
measure of size already: Uncountable sets are big, whereas countable sets are small. In
this chapter we will make precise what was only hinted at in Chapter Three — the rather
vague notion of a “thick™ set in a metric space. For our purposes, a “thick” set will
be one that contains an entire neighborhood of each of its points. But perhaps we can
come up with a better name. ... Throughout this chapter, unless otherwise specified,
we live in a generic metric space (M, d).

A set U in a metric space (M, d) is called an open set if U contains a neighborhood
of each of its points. In other words, U is an open set if, given x € U, there is some
€ > 0 such that B,(x) C U.

Examples 4.1

(a) In any metric space, the whole space M is an open set. The empty set @ is also
open (by default).

(b) In R, any open interval is an open set. Indeed, given x € (a.b), let ¢ = min
{x —a,b—x}. Then, ¢ > 0and (x — ¢, x + €) C (a, b). The cases (a, oo) and
(—o0. b) are similar. While we’re at it. notice that the interval [0, 1), for example,
is not open in R because it does not contain an entire neighborhood of 0.

(c¢) In adiscrete space, B)(x) = {x} is an open set for any x. (Why?) It follows that
every subset of a discrete space is open.

Before we get too carried away, we should follow the lead suggested by our last two
examples and check that every open ball is in fact an open set.

Proposition 4.2. Foranyx € M and any € > 0, the open ball B,(x) is an open set.

PROOF. Let y € B.(x). Thend(x,y) < £ and hence § = ¢ — d(x, y) > 0. We
will show that Bs(y) C B.(x) (as in Figure 4.1). Indeed, if d(y, z) < 4§, then,
by the triangle inequality, d(x, z) < d(x,y) +d(y,2) <d(x,y)+ 8 =d(x,y) +
e—dx,y)=¢. O

Let’s collect our thoughts. First, every open ball is open. Next, it follows from the
definition of open sets that an open set must actually be a union of open balls. In fact,

Sl
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if U is open, then U = | J{B:(x) : B.(x) C U}. Moreover, any arbitrary union of open
balls is again an open set. (Why?) Here’s what all of this means:

Theorem 4.3. An arbitrary union of open sets is again open; that is, if (Uy)aca

is any collection of open sets, then V = .4 Ua is open.

PROOF. If x € V, then x € U, for some ¢ € A. But then, since U, is open,
B:(x)Cc U, CV forsomee >0 0O

Intersections aren’t nearly as generous:

Theorem 4.4. A finite intersection of open sets is open; that is, if each of

Ui,....U,isopen, thensois V =U,N---NU,.
PROOF. If x € V,thenx € U; foralli = 1, ..., n. Thus, for each i there is an
g; > 0 such that B, (x) C U;. But then, setting ¢ = min{e,, ..., &,} > 0, we have

B.(x)Cc iy Bex)c N, Ui=V. O

Example 4.5

The word “finite” is crucial in Theorem 4.4 because () ,(—1/n, 1/n) = {0}, and
{0} 1s not open in R. (Why?)

Now, since the real line R is of special interest to us, let’s characterize the open
subsets of R. This will come in handy later. But it should be stressed that while this
characterization holds for R, it does not have a satisfactory analogue even in R2. (As
we will see in Chapter Six, not every open set in the plane can be written as a union of
disjoint open disks.)

Theorem 4.6. If U is an open subset of R, then U may be written as a countable
union of disjoint open intervals. That is, U = | J.>, I,, where I, = (an, b,) (these
may be unbounded) and 1, N\ I,, = @ for n # m.

PROOF. We know that U can be written as a union of open intervals (because
each x € U is in some open interval / with I C U). What we need to show is
that U is a union of disjoint open intervals — such a union, as we know, must be
countable (see Exercise 2.15).

We first claim that each x € U is contained in a maximal open interval I, C U
in the sense that if x € / C U, where I is an open interval, then we must have
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I C I,.Indeed, given x € U, let
a, = inf{a : (a, x] C U} and b, = sup{b: [x,b) C U}.

Then, I, = (a,, b,) satisfies x € I, C U, and I, is clearly maximal. (Check this!)

Next, notice that for any x, y € U we have either I, NI, = @ or I, = I,. Why?
Because if I, N I, # @, then I, U I, is an open interval containing both /; and
I,. By maximality we would then have I, = I,. It follows that U is the union of
disjoint (maximal) intervals: U =, Ix- O

Now any time we make up a new definition in a metric space setting, it is usually
very helpful to find an equivalent version stated exclusively in terms of sequences. To
motivate this in the particular case of open sets, let’s recall:

Xp = X <= (x,)iseventually in B,(x), for any € > 0
and hence
Xn = X <= (x,)is eventually in U, for any open set U containing x.

(Why?) This last statement essentially characterizes open sets:

Theorem 4.7. A set U in (M, d) is open if and only if, whenever a sequence
(xn) in M converges to a point x € U, we have x, € U for all but finitely
many n.

PROOF. The forward implication is clear from the remarks preceding the theorem.
Let’s see why the new condition implies that U is open:

If U is not open, then there is an x € U such that B,(x)N U # @ forall ¢ > 0.
In particular, for each n there is some x, € Bj/,(x) N U€. But then (x,) C U and
xn = x. (Why?) Thus, the new condition also fails. O

In slightly different language, Theorem 4.7 is saying that the only way to reach a
member of an open set is by traveling well inside the set; there are no inhabitants on
the “frontier.” In essence, you cannot visit a single resident without seeing a whole
neighborhood!

Closed Sets

What good would “open’ be without “closed”? A set F in a metric space (M, d ) is said
to be a closed set if its complement F© = M \ F is open.
We can draw several immediate (although not terribly enlightening) conclusions:

Examples 4.8

(a) @ and M are always closed. (And so it is possible for a set to be both open and
closed!)

(b) An arbitrary intersection of closed sets is closed. A finite union of closed sets is
closed.
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(c) Any finite set is closed. Indeed, it is enough to show that {x} is always closed.
(Why?) Given any y € M \ {x} (that is, any y # x), note that ¢ = d(x. y) > 0,
and hence B.(y) C M \ {x).

(d) In R, each of the intervals [a, b], [a. o0), and (—o0, b] is closed. Also, N and A
are closed sets. (Why?)

(e) In a discrete space, every subset is closed.

(F) Sets are not “doors”! (0, 1] is neither open nor closed in R!

As yet, our definition is not terribly useful. It would be nice if we had an intrinsic
characterization of closed sets — something that did not depend on a knowledge of
open sets — something in terms of sequences, for example. For this let’s first make an
observation: F is closed if and only if F€ is open, and so F is closed if and only if

x€ F"= B.(x)C F* for some ¢ > 0.
But this is the same as saying: F is closed if and only if
B{(x)NF #@ forevery ¢ > 0= x € F. 4.1)

This is our first characterization of closed sets. (Compare this with the phrase “F is not
open,” as in the proof of Theorem 4.7. They are similar, but not the same!)

Notice, please, that if x € F, then B.(x)N F # @ necessarily follows; we are inter-
ested in the reverse implication here. In general, a point x that satisfies B.(x) N F # @
forevery € > Ois evidently “very close” to F in the sense that x cannot be separated from
F by any positive distance. At worst, x might be on the “boundary” of F. Thus condition
(4.1) is telling us that a set is closed if and only if it contains all such “boundary” points.
Exercises 33, 40, and 41 make these notions more precise. For now, let’s translate
condition (4.1) into a sequential characterization of closed sets.

Theorem 4.9. Given a set F in (M, d), the following are equivalent:
(1) F isclosed; that is, F© = M \ F is open.
(i) If B.(x)NF # @ for everye > 0, then x € F.
(iii) If a sequence (x,) C F converges to some point x € M, then x € F.

PROOF. (1) &= (11): This is clear from our observations above and the definition
of an open set.

(ii)) = (iii): Suppose that (x,) C F and x, % x € M. Then B.(x) contains
infinitely many x, for any ¢ > 0, and hence B.(x) N F # @ for any £ > 0. Thus
x € F, by (i1).

(i) = (i): If B(x)N F # @ for all ¢ > 0, then for each n there is an
xn € By/a(x) N F. The sequence (x,) satisfies (x,) C F and x, — x. Hence, by
(i), xe F. O

Condition (iii) of Theorem 4.9 is just a rewording of our sequential characterization
of open sets (Theorem 4.7) applied to U = F*. Most authors take (iii) as the definition
of a closed set. In other words, condition (iii) says that a closed set must contain all of
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its limit points. That is, “closed” means closed under the operation of taking of limits.
(Exercise 33 explores a slightly different, but more precise, notion of limit point.)

EXERCISES

1. Show that an “open rectangle” (a, b) x (c, d) is an open set in R?. More generally,
if A and B are open in R, show that A x B is open in R2. If A and B are closed in
R, show that A x B is closed in R?.

2. If F is aclosed set and G is an open set in a metric space M, show that F \ G
is closed and that G \ F is open.

> 3. Some authors say that two metrics d and p on a set M are equivalent if they
generate the same open sets. Prove this. (Recall that we have defined equivalence to
mean that d and p generate the same convergent sequences. See Exercise 3.42.)

4. Prove that every subset of a metric space M can be written as the intersection of
open sets.

> §. Let f: R — R be continuous. Show that {x : f(x) > 0} is an open subset of
R and that {x : f(x) = 0} is a closed subset of R.

6. Give an example of an infinite closed set in R containing only irrationals. Is there
an open set consisting entirely of irrationals?

7. Show that every open set in R is the union of (countably many) open intervals
with rational endpoints. Use this to show that the collection I/ of all open subsets of
R has the same cardinality as R itself.

> 8. Show thatevery open interval (and hence every open set) in R is a countable union
of closed intervals and that every closed interval in R is a countable intersection of
open intervals.

9. Let d be a metric on an infinite set M. Prove that there is an open set U in M
such that both U and its complement are infinite. [Hint: Either (M, d) is discrete or
isnot....]

10. Giveny = (y,) € H*, N € N, and ¢ > 0, show that {x = (x,) € H*® :
lxx = Yl <&, k=1,..., N}is openin H* (see Exercise 3.10).

> 11. Lete® = (0,...,0,1,0,...), where the kth entry is 1 and the rest are Os.
Show that {¢’ : k > 1} is closed as a subset of ¢,.

12, Let F be the set of all x € £, such that x, = O for all but finitely many n. Is
F closed? open? neither? Explain.

13. Show thatc is a closed subset of €. [Hint: If (x!) is a sequence (of sequences!)
in co converging to x € o, note that |xx| < |xx — x;”’| + |x;"’| and now choose n

so that |xk - x,(‘")l is small independent of k.]
14. Show thattheset A = {x € €, : |x,| < 1/n, n = 1,2,...} is a closed set

in §&; butthat B = {x € ¢, : |x,| < 1/n, n =1,2,...} is not an open set. [Hint:
Does B O B.(0)7]
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Now, as we’ve seen, some sets are neither open nor closed. However, it is possible
to describe the “open part” of a set and the “closure” of a set. Here’s what we’ll do:

Given a set A in (M, d), we define the interior of A, written int(A) or A°, to be the
largest open set contained in A. That is,

int(A) = A° = U(U :U isopenand U C A)
= U{Be(x) : B:(x)C Aforsomex € A, ¢ >0}  (Why?)
= {x € A: B.(x) C A for some ¢ > 0).

Note that A° is clearly an open subset of A.
We next define the closure of A, written cl(A) or A, to be the smallest closed set
containing A. That is,

cl(A)= A = \{F: Fisclosedand A C F).

Please take note of the “dual” nature of our two new definitions.

Now it is clear that A is a closed set containing A — and necessarily the smallest
one. But it’s not so clear which points are in A or, more precisely, which points are
in A\ A. We could use a description of A that is a little easier to “test” on a given set
A. It follows from our last theorem that x € A if and only if B.(x) N A # @ for every
¢ > 0. The description that we are looking for simply removes this last reference to A.

Proposition 4.10. x € A ifand only if B.(x)N A # @ for every € > 0.

PROOF. One direction is easy: If B,(x)NA # @ for every € > 0, then B,(x)NA #
@ for every € > 0, and hence x € A by Theorem 4.9.

Now, for the other direction, let x € A and lete > 0. If B,(x) N A = @, then
A is a subset of (B,(x)) , a closed set. Thus, A C (B¢(x))". (Why?) But this is a
contradiction, because x € A while x ¢ (B.(x))". O

Corollary 4.11. x € A ifand only if there is a sequence (x,) C A with x, = x.

That is, A is the set of all limits of convergent sequences in A (including limits of
constant sequences).

Example 4.12

Here are a few easy examples in R. (Check the details!)

(a) int((0, 1]) =(0,1) and cI((0,1]) = [0, 1],

() int({(1/n):n>1})=@ andcl({(1/n) : n > 1}) ={(1/n) : n > 1} U {0},
(¢) int(Q) =@ and cl(Q) =R,

(d) int(A) =@ and cl(A) = A.

EXERCISES

Unless otherwise specified, each of the following exercises is set in a generic metric
space (M, d).
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15. Theset A= {y € M :d(x, y) < r} is sometimes called the closed ball about
x of radius r. Show that A is a closed set, but give an example showing that A need
not equal the closure of the open ball B, (x).

16. If(V, || -|l) is any normed space, prove that the closed ball {x € V : ||x|| < 1}
is always the closure of the open ball {x € V : |Ix|| < 1}.

1_7. Show that A is open if and only if A° = A and that A is closed if and only if
A=A

18. Given a nonempty bounded subset E of R, show that sup E and inf E are
elements of E. Thus sup E and inf E are elements of E whenever E is closed.

19. Show that diam(A) = diam(A).

20. If A C B, show that A C B. Does A C B imply A C B? Explain.

21. If A and B are any setsin M, showthat AUB = AUBand AN B C AN B.
Give an example showing that this last inclusion can be proper.

22. True or false? (AU B)° = A° U B°.

23. If x $# y in M, show that there are disjoint open sets U, V with x € U and
y € V. Moreover, show that U and V can be chosen so that even U and V are
disjoint.

24. Show that A = (int(A)) and that A° = (cl(A°))".

25. A set that is simultaneously open and closed is sometimes called a clopen set.

Show that R has no nontrivial clopen sets. [Hint: If U is a nontrivial open subset of
R, show that U is strictly bigger than U .]

26. We define the distance from a point x € M to a nonempty set A in M by
d(x, A) = inf{d(x,a) : a € A). Prove thatd(x, A) = 0 if and only if x € A.

27. Show that |d(x, A) — d(y, A)| < d(x, y) and conclude that the map x >
d(x, A) is continuous.

28. Givenaset Ain M and € > 0, show that {x € M : d(x, A) < €} is an open
set and that {x € M : d(x, A) < &} is aclosed set (and each contains A).

29. Show that every closed set in M is the intersection of countably many open sets
and that every open set in M is the union of countably many closed sets. [Hint: What

is (oo {x € M : d(x, A) < (1/n)}7]

30.

(a) Foreachn € Z, let F, be a closed subset of (n, n 4+ 1). Show that F = U"ez F,
is a closed set in R. [Hint: For each fixed n, first show that there is aé, > 0 so
that |[x — y| > 8, whenever x € F,and y € F,,, m # n.]

(b) Find a sequence of disjoint closed sets in R whose union is not closed.

31. Ifx ¢ F, where F is closed, show that there are disjoint open sets U, V with
x € U and F C V. (This extends the first result in Exercise 23 since {y) is closed.)
Is it possible to find U and V so that U and V are disjoint? Is it possible to extend
this result further to read: Any two disjoint closed sets are contained in disjoint open
sets?
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32. We define the distance between two (nonempty) subsets A and B of M by
d(A, B) = inf{d(a,b) : a € A, b € B}. Give an example of two disjoint closed
sets A and B in R? with d(A, B) = 0.

33. Let A be a subset of M. A point x € M is called a limit point of A if every
neighborhood of x contains a point of A that is different from x itself, that is, if
(B:(x)\ {x})N A # @ forevery ¢ > 0. If x is a limit point of A, show that every
neighborhood of x contains infinitely many points of A.

34. Show that x is a limit point of A if and only if there is a sequence (x,) in A
such that x, = x and x,, # x for all n.

35. Let A’ be the set of limit points of a set A. Show that A’ is closed and that A =
A’ U A. Show that A’ C A if and only if A is closed. (A’ is called the derived set
of A.)

36. Suppose that x, 4 x € M,and let A = {x} U {x, : n > 1}. Prove that A is
closed.

37. Prove the Bolzano-Weierstrass theorem: Every bounded infinite subset of R
has a limit point. [Hint: Use the nested interval theorem. If A is a bounded infinite
subset of R, then A is contained in some closed bounded interval /,. At least one of
the left or right halves of /, contains infinitely many points of A. Call this new closed
interval /;. Continue.]

38. Aset P is called perfect if it is empty or if it is a closed set and every point of P
is a limit point of P. Show that A is perfect. Show that R is perfect when considered
as a subset of R,

39. Show that a nonempty perfect subset P of R is uncountable. This gives yet
another proof that the Cantor set is uncountable. [Hint: First convince yourself that
P is infinite, and assume that P is countable, say P = {x,, x3,...}. Construct a
decreasing sequence of nested closed intervals [ a,, b, ] such that (a,, b,) N P # @
but x, € [a,, b, ]. Use the nested interval theorem to get a contradiction.]

40. If x € A and x is not a limit point of A, then x is called an isolated point of A.
Show that a point x € A is an isolated point of A if and only if (B,(x) \ {x})NA =@
for some € > 0. Prove that a subset of R can have at most countably many isolated
points, thus showing that every uncountable subset of R has a limit point.

41. Related to the notion of limit points and isolated points are boundary points. A
point x € M is said to be a boundary point of A if each neighborhood of x hits
both A and A°. In symbols, x is a boundary point of A if and only if B,(x)N A # @
and B.(x) N A° # @ for every € > 0. Verify each of the following formulas, where
bdry(A) denotes the set of boundary points of A:

(@) bdry(A) = bdry(A°),

(b) cl(A) = bdry(A) U int(A),

(c) M =int(A) Ubdry(A) U int(A°).

Notice that the first and last equations tell us that each set A partitions M into three
regions: the points “well inside” A, the points “well outside™ A, and the points on the
common boundary of A and A°.
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42. If E is a nonempty bounded subset of R, show that sup E and inf E are both

boundary points of E. Hence, if E is also closed, then sup E and inf E are elements
of E.

43. Show that bdry(A) is always a closed set; in fact, bdry(A) = A \ A°.
44. Show that A is closed if and only if bdry(A) C A.

45. Give examples showing that bdry(A) = @ and bdry(A) = M are both pos-
sible.

46. A set A is said to be dense in M (or, as some authors say, everywhere dense) if
A = M. For example, both Q and R \ Q are dense in R. Show that A is dense in M
if and only if any of the following hold:

(a) Every pointin M is the limit of a sequence from A.

(b) B.(x)N A # @ forevery x € M and every € > 0.

(c) U N A # ¢ for every nonempty open set U.

(d) A‘ has empty interior.

47. Let G be open and let D be dense in M. Show that GN D = G. Give an
example showing that this equality may fail if G is not open.

48. A metric space is called separable if it contains a countable dense subset. Find
examples of countable dense sets in R, in R?, and in R".

49. Prove that £, and H * are separable. [Hint: Consider finitely nonzero sequences
of the form (ry,...,r,, 0,0, ...), where each r; is rational.]

50. Show that €, is not separable. [Hint: Consider the set 2V, consisting of all
sequences of Os and 1s, as a subset of £.,. We know that 2N is uncountable. Now

what?]

S1. Show that a separable metric space has at most countably many isolated
points.

52. If M is separable, show that any collection of disjoint open sets in M is at most
countable.

53. Can you find a countable dense subset of C[ 0, 1]?

54. A set A is said to be nowhere dense in M if int (cl(A)) = @. Show that {x} is
nowhere dense if and only if x is nor an isolated point of M.

§5. Show that every finite subset of R is nowhere dense. Is every countable subset
of R nowhere dense? Show that the Cantor set is nowhere dense in R.

§6. If A and B are nowhere dense in M, show that A U B is nowhere dense. Give

an example showing that an infinite union of nowhere dense sets need not be nowhere
dense.

5§7. If A is closed, show that A is nowhere dense if and only if A€ is dense if and
only if A has an empty interior.

58. Let(r,)be an enumeration of Q. For each n, let /, be the open interval centered
atr, ofradius 27", and let U = | J._, I,. Prove that U is a proper, open, dense subset
of R and that U°¢ is nowhere dense in R.
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59. If A is closed, show that bdry(A) is nowhere dense.

60. Show that each of the following is equivalent to the statement “A is nowhere

dense’:

(a) A contains no nonempty open set.

(b) Each nonempty open set in M contains a nonempty open subset that is disjoint
from A.

(c) Each nonempty open set in M contains an open ball that is disjoint from A.

The Relative Metric

Although it is a digression at this point, we need to generate some terminology for
later use. First, given a nontrivial subset A of a metric space (M, d ), recall that A
“inherits” the metric d by restriction. Thus, the metric space (A, d) has open sets,
closed sets, convergent sequences, and so on, of its own. How are these related to the
open sets, closed sets, convergent sequences, and so on, of (M, d )? The answer comes
from examining the open balls in (A, d ). Note that for x € A we have

Brx)={ae A:d(x,a)<e)=AN{yeM:d(x,y) <e}=ANBM(x),

where superscripts have been used to distinguish between a ball in A and a ball in M.
Thus, a subset G of A is open in (A, d ), or open relative to A, if, given x € G, there is
some £ > 0 such that

G D BA(x) = AnBM(x).

This observation leads us to the following:

Proposition 4.13. Let A C M.
(1) AsetG C Aisopenin(A,d)ifand only if G = ANU, where U is open in
M, d).
(ii)) Aset FC Aisclosedin(A,d) ifandonly if F = ANC, where C is closed
in(M,d).
(ii1) cla(E) = ANcly(E) for any subset E of A (where the subscripts distinguish
between the closure of E in (A, d ) and the closure of E in (M, d)).

PROOF. We will prove (i) and leave the rest as exercises.

First suppose that G = AN U, where U isopenin (M,d).If x € G C U, then
X € Be“(x) C U for some € > 0. Butsince G C A, wehavex € AN Be”(x) =
BA(x) c ANU = G. Thus, G is open in (A, d).

Next suppose that G is open in (A, d). Then, for each x € G, there is some
ex > 0 such that x € BA(x) = AN BM(x) C G. But now it is clear that U =
UIBM(x): x € G} is an open set in (M, d) satisfyingG = ANU. O

We paraphrase the statement “G is open in (A, d)” by saying that “G is open in A,”
or “G is open relative to A,” or perhaps “G is relatively open in A.” The same goes for
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closed sets. In the case of closures, the symbols cl,(E) are read “the closure of E in
A Another notation for cl4(E) is E*.

Examples 4.14

(@) Let A = (0, 1]U {2}, considered as a subset of R. Then, (0, 1] is openin A and
{2} is both open and closed in A. (Why?)

(b) We may consider R as a subset of R? in an obvious way — all pairs of the form
(x,0), x € R. The metric that R inherits from R? in this way is nothing but the
usual metric on R. (Why?) Similarly, R? may be considered as a natural subset
of R? (as the xy-plane, for instance). What happens in this case? Figure 4.2

might help.
EXERCISES

Throughout, M denotes an arbitrary metric space with metric d.
> 61. Complete the proof of Proposition 4.13.

> 62. Suppose that A is open in (M, d) and that G C A. Show that G is open in A
if and only if G is open in M. Is the result still true if “open” is replaced everywhere
by “closed”? Explain.

63. Isthere a nonempty subset of R that is open when considered as a subset of R??
closed?

64. Show that the analogue of part (iii) of Proposition 4.13 for relative inte-
riors is false. Specifically, find sets E C A C R such that int4(E) = A while
intg(F) = @.

6S. Let A be a subset of M. If G and H are disjoint open sets in A, show that
there are disjoint open sets U and V in M suchthat G = U NAand H =V N A.
[Hint: Let U = [J{BY,(x) : x € G and B/(x) C G}. Do the same for V and
H.]

66. Let AC B C M.If Aisdensein B (how would you define this?), and if B is
dense in M, show that A is dense in M.

67. Let G be open and let D be dense in M. Show that G N D is dense in G. Give
an example showing that this may fail if G is not open.

68. If A is a separable subset of M (that is, if A has a countable dense subset of its
own), show that A is also separable.
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69. A collection (U, ) of open sets is called an open base for M if every open set in
M can be written as a union of U,. For example, the collection of all open intervals
in R with rational endpoints is an open base for R (and this is even a countable
collection). (Why?) Prove that M has a countable open base if and only if M is
separable. [Hint: If {x,} is a countable dense set in M, consider the collection of open
balls with rational radii centered at the x,,.]

¢

Notes and Remarks

For sets of real numbers, the concepts of neighborhoods, limit points (Exercise 33),
derived sets (Exercise 35), perfect sets (Exercise 38), closed sets, and the characteri-
zation of open sets (Theorem 4.6) are all due to Cantor. Fréchet introduced separable
spaces (Exercise 48). Much of the terminology that we use today is based on that used
by either Fréchet or Hausdorff. For more details on the history of these notions see
Dudley [1989], Manheim [1964], Taylor [1982], and Willard [1970]; also see Fréchet
[1928], Haussdorf [1937], and Hobson [1927].

For an alternate proof of Theorem 4.6, see Labarre [1965], and for more on “Cantor-

like” nowhere dense subsets of R (as in Exercise 58), see the short note in Wilansky
[1953b].




CHAPTER FIVE

Continuity

Continuous Functions

Throughout this chapter, unless otherwise specified, (M, d) and (N, p) are arbitrary
metric spaces and f : M — N is a function mapping M into N. We say that f is
continuous at a point x € M if:

for every € > 0, there is a § > 0 (which depends on f, x, and ¢) such
that o(f(x). f(y)) < € whenever y € M satisfies d(x, y) < 4.

Recall from our earlier discussions that we may rephrase this definition (how?) to read:

f is continuous at x if, for any ¢ > O, there is a § > 0 such that
f (B{(x)) C BP(f(x)) or, equivalently, Bf(x) C f~' (B2(f(x))).

If f is continuous at every point of M, we simply say that f is continuous on M, or
often just that f is continuous.

By now it should be clear that any statement concerning arbitrary open balls will
translate into a statement concerning arbitrary open sets. Thus, there is undoubtedly
a characterization of continuity available that may be stated exclusively in terms of
open sets. Of course, any statement concemning open sets probably has a counterpart
using closed sets. And don’t forget sequences! Open sets and closed sets can each
be characterized in terms of convergent sequences, and so we would expect to find a
characterization of continuity in terms of convergent sequences, too. At any rate, we’ve
done enough hinting around about reformulations of the definition of continuity. It’s
time to put our cards on the table.

Theorem 5.1. Given f : (M,d) — (N, p), the following are equivalent:
(1) f is continuous on M (by the -6 definition).

(ii) Foranyx e M, ifx, = xin M, then f(x,) = f(x)in N.

(iii) If E is closed in N, then f~'(E) is closed in M.

(iv) If Visopenin N, then f~'(V)is openin M.

PROOF. (1) = (i1): (Compare this with the case f:R — R.) Suppose that
Xp < x.Givene > 0, let § > 0 be such that f(Bf(x)) C B2(f(x)). Then, since
Xn 4 x, we have that (x,) is eventually in Bg’ (x). But this implies that ( f(x,)) is
eventually in B?(f(x)). Since ¢ is arbitrary, this means that f(x,) 4 f(x).
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(i) = (iii): Let E be closed in (N, p). Given (x,) C f~'(E) such that x, LA
x € M, we need to show that x € f~'(E). But (x,) C f~'(E) implies that
(f(xn)) C E, while x, 4 x € M tells us that f(x,) 4 f(x) from (ii). Thus, since
E is closed, we have that f(x) € E or x € f~'(E).

(iii) < (iv) is obvious, since f~!(A°) = (f~!(A))°. See Exercise 1.

(iv)=> (1): Givenx € M ande > 0, the set B®(f(x))isopenin(N, p)and so, by
(iv), the set f~' (BP(f(x))) is open in (M, d). Butthen B(x) C f~' (B2(f(x))),
for some § > 0, because x € f~! (B2(f(x))). O

Example 5.2

(a) Define Xqg : R = Rby Xq(x) = 1,if x € Q, and Xq(x) = 0, if x ¢ Q. Then,
X{)'(Bm(l)) = Q and Xa'(Bm(O)) = R\ Q. Thus Xq cannot be continuous at
any point of R because neither Q nor R \ Q contains an interval.

(b) A function f : M — N between metric spaces is called an isometry (into) if
f preserves distances: p(f(x), f(y)) = d(x, y) for all x, y € M. Obviously, an
isometry is continuous. The natural inclusions from R into R? (i.e., x — (x,0))
and from R? into R? (this time (x, y) = (x, y, 0)) are isometries. (Why?)

(c) Let f : N > R be any function. Then f is continuous! Why? Because {n} is an
open ball in N. Specifically, {n} = By,2(n) C f~' (B:(f(n))) for any ¢ > 0.

(d) f:R — Niscontinuous if and only if f is constant! Why? [Hint: See Exercise
4.25.]

(e) Relative continuity can sometimes be counterintuitive. From (a) we know that
X q has no points of continuity relative to R, but the restriction of X¢q to Q is
everywhere continuous relative to Q! Why? (See Exercise 9 for more details.)

(f) If y is any fixed element of (M, d), then the real-valued function f(x) = d(x, y)
is continuous on M. As we will see, even more is true (see Exercises 20 and 34).

EXERCISES

Throughout, M denotes an arbitrary metric space with metric d.

1. Givena function f : S > T andsets A, B C Sand C, D C T, establish the
following:

i) A C f7'(f(A)), with equality for all A if and only if f is one-to-one.

@) f(f7'(C)) c C, with equality for all C if and only if f is onto.

(iii) f(A UB)= f(A)U f(B).

iv) f~'(CubD)=f(C)u f-I(D).

(v) f(A N B)C f(A)N f(B), with equality for all A and B if and only if f is

one-to-one.

(vi) f-(CND)= fY(C)n fY(D).

(vii) f(A)\ f(B) C f(A\ B).
iii) f~'(C\ D)= f1(O)\ (D).

Generalize, wherever possible, to arbitrary unions and intersections.
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> 2. Given asubset A of some “universal” set S, we define X 4 : S — R, the charac-
teristic function of A, by X4,(x) = lifx € Aand X4,(x) =0if x ¢ A. Prove or
disprove the following formulas: X y,up = X4 + Xg, Xang = X4 - X5, Xa\g =
X 4 — X 5. What corrections are necessary?

3. If f:A—> Band C C B, whatis X¢ o f (as a characteristic function)?

4. Show that X 5, : R — R, the characteristic function of the Cantor set, is discon-
tinuous at each point of A.

5. Is there a continuous characteristic function on R? If A C R, show that X 4 is
continuous at each point of int (A). Are there any other points of continuity?

6. Let f : R > R becontinuous. Show that {x : f(x) > 0} is an open subset of R
and that {x : f(x) = 0} is a closed subset of R. If f(x) = 0 whenever x is rational,
show that f(x) = O for every real x.

7.

@) If f : M — R is continuous and a € R, show that the sets {x : f(x) > a} and
{x : f(x) < a} are open subsets of M.

(b) Conversely, if the sets {x : f(x) > a} and {x : f(x) < a} are open for every
a € R, show that f is continuous.

(c) Show that f is continuous even if we assume only that the sets {x : f(x) > a)
and {x : f(x) < a} are open for every rational a.

> 8 Let f:R — R be continuous.

(@) If £(0) > 0, show that f(x) > O for all x in some interval (—a, a).

(b) If f(x) > O for every rational x, show that f(x) > O for all real x. Will this
result hold with “>0" replaced by “>0""? Explain.

> 9. LetA C M.Showthat f : (A,d) = (N, p)iscontinuous ata € A if and only
if, given € > 0, there is a§ > 0 such that p(f(x), f(a)) < € wheneverd(x,a) < §
and x € A. We paraphrase this statement by saying that * f has a point of continuity
relative to A.”

10. Let A = (0, 1] U {2}, considered as a subset of R. Show that every function
f : A > Ris continuous, relative to A, at 2.

11. Let A and B be subsets of M, and let f : M — R. Prove or disprove the

following statements:

(a) If f is continuous at each point of A and f is continuous at each point of B, then
f is continuous at each point of A U B.

(b) If f |4 is continuous, relative to A and f |p is continuous, relative to B, then
f | aus is continuous, relative to A U B.

If either statement is not true in general, what modifications are necessary to make

it s0?

12. Let/ = (R\ Q) N [0, 1] with its usual metric. Prove that there is a continuous

function g mapping I onto QN [0, 1].

13. Let (r,) be an enumeration of the rationals in [0, 1 ] and define f on [0, 1 ] by
f(x) = zr,. <« 2 ". Show that f is everywhere discontinuous on [0, 1] but that f
is everywhere continuous when considered as a function on only [0, 1]\ Q.
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14. A continuous function on R is completely determined by its values on Q. Use
this to “count” the continuous functions f : R — R.

15. Suppose that f : R — R satisfies f(x + y) = f(x) + f(y) for every x,
y € R. If f is continuous at some point xo, € R, prove that there is some constant
a € R such that f(ax) = ax for all x € R. That is, an additive function that is
continuous at even one point is linear — and hence continuous on all of R.

16. Let f : R — R, and define G : R — R? by G(x) = (x, f(x)), so that the
range of G is the graph of f. Show that f is continuous if and only if G is continuous
if and only if both of thesets A = {(x,y): y < f(x)}and B = {(x,y): y = f(x)}
are closed in R2. In particular, if f is continuous, then the graph of f is closed in R2.
17. Let f,g:(M,d) — (N, p)be continuous, and let D be a dense subset of M.
If f(x) = g(x)forall x € D, show that f(x) = g(x) forall x € M. If f is onto,
show that f(D) is dense in N.

18. Let f : (M,d) — (N, p) be continuous, and let A be a separable subset of
M. Prove that f(A) is separable.

19. A function f : R — R is said to satisfy a Lipschitz condition if there is a
constant K < oosuchthat | f(x)— f(y)| < K|x — y|forall x, y € R. More econo-
mically, we may say that f is Lipschitz (or Lipschitz with constant K if a particular
constant seems to matter). Show that sin x is Lipschitz with constant K = 1. Prove
that a Lipschitz function is (uniformly) continuous.

20. If d is a metric on M, show that |d(x, z) — d(y, z)| < d(x, y) and conclude
that the function f(x) = d(x, z) is continuous on M for any fixed z € M. This says
that d(x, y) is separately continuous — continuous in each variable separately.

21. If x # y in M, show that there are disjoint open sets U, V with x € U and
y € V. Moreover, U and V can be chosen so that U and V are disjoint.

22, Define E:N—> ¢, by E(n)=(1,...,1,0,...), where the first n entries are
1 and the rest 0. Show that E is an isometry (into).

23. Define S : co = co by S(x1,x2,...) = (0, xy, x2,...). That is, S shifts the
entries forward and puts O in the empty slot. Show that S is an isometry (into).

24. LetV beanormed vector space. If y € V is fixed, show that the mapsa > a y,
from R into V,and x — x + y, from V into V, are continuous.

25. A function f : (M,d) — (N, p) is called Lipschitz if there is a constant
K < o0 such that p(f(x), f(y)) < Kd(x,y) for all x, v € M. Prove that a
Lipschitz mapping is continuous.

26. Provide the answer to a question raised in Chapter Three by showing that inte-
gration is continuous. Specifically, show thatthe map L(f) = fa i f(t)dt is Lipschitz
with constant K = b — a for f € Cla, b].

27. Fixk > | and define f : €., & R by f(x) = xi.Is f continuous? [Hint: f
is Lipschitz.]

28. Define g: £, > Rby g(x) = Y oo, xn/n.Is g continuous?

29. Fix y € €, and define h : € — €, by h(x) = (xpyn);—;. Show that h is
continuous.
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> 30. Let f:(M,d)— (N, p).Prove that f is continuous if and only if f (A) C
f(A) forevery A C M ifand only if f~'(B°) C (f~'(B)) forevery B C N.
Give an example of a continuous f such that f (/i) # f(A) forsome A C M.

31. Letf:(M,d)— (N,p).

(a) If M = U:i, U,, where each U, is an open set in M, and if f is continuous on
each U,, show that f is continuous on M.

) If M = Url:":l E,, where each E, is a closed setin M, and if f is continuous on
each E,, show that f is continuous on M.

(c) Give an example showing that f can fail to be continuous on all of M if, instead,
we use a countably infinite union of closed sets M = U:°=, E, in (b).

32. Areal-valued function f on a metric space M is called lower semicontinuous if,
foreachreal a,theset {x € M : f(x) < a}isclosedin M. (Forexample,ifg : M —
R is continuous and xy € M, then the function f defined by f(x) = g(x)for x # x,
and f(xo) = g(x¢) — 1 is lower semicontinuous.) Prove that f is lower semicontinu-
ous if and only if f(x) < liminf,_,», f(x,) whenever x, = x in M. [Hint: For the
forward implication, suppose that x, = x and m = liminf,_, . f(x,) < 0o. Then,
forevery e > O,theset { € M : f(t) < m + €} is closed and contains infinitely
many Xx,.]

33. A function f : M — Ris called upper semicontinuous if — f is lower semi-
continuous. Formulate the analogue of Exercise 32 for upper semicontinuous func-
tions.

Theorem 5.1 characterizes continuous functions in terms of open sets and closed sets.
As it happens, we can use these characterizations “in reverse” to derive information
about open and closed sets. In particular, we can characterize closures in terms of certain
continuous functions.

Given a nonempty set A and a point x € M, we define the distance from x to A by:

d(x, A) = inf{d(x,a) :a € A}.

Clearly, 0 < d(x, A) < oo for any x and any A, but it is not necessarily true that
d(x, A) > 0 when x ¢ A. For example, d(x, Q) = 0 for any x € R.

Proposition 5.3. d(x, A) =0 ifand only if x € A.

PROOF. d(x, A) = 0if and only if there is a sequence of points (a,) in A such that
d(x.a,) — 0.Butthis meansthata, — xand. hence.x € AbyCorollary4.10. O

Note that Proposition 5.3 has given us another connection between limits in M
and limits in R. Loosely speaking, Proposition 5.3 shows that 0 is a limit point of
{d(x,a) : a € A} if and only if x is a limit point of A. We can get even more mileage
out of this observation by checking that the map x — d(x. A) is actually continuous.
For this it suffices to establish the following inequality:

Proposition 5.4. |d(x. A) — d(y. A)| <d(x.Yy).
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PROOF. d(x,a) < d(x, y)+ d(y, a) for any a € A. But d(x, A) is a lower bound
for d(x, a); hence d(x, A) < d(x, y) + d(y, a). Now, by taking the infimum over
a € A, we getd(x, A) < d(x,y)+d(y, A). Since the roles of x and y are inter-
changeable, we’re done. O

To appreciate what this has done for us, let’s make two simple observations. First,
if f: M — R is a continuous function, then the set E = {(x e M : f(x) = 0} is
closed. (Why?) Conversely, if E is a closed set in M, then E is the “zero set” of some
continuous real-valued function on M; in particular, E = (x € M : d(x, E) = 0}. Thus
a set E is closed if and only if E = f~'({0}) for some continuous function f : M — R.
Conclusion: If you know all of the closed (or open) sets in a metric space M, then you
know all of the continuous real-valued functions on M (Theorem 5.1). Conversely, if
you know all of the continuous real-valued functions on M, then you know all of the
closed (or open) sets in M.

EXERCISES

Unless otherwise stated, each of the following exercises is set in a general metric
space (M, d).

> 34. Show that d is continuous on M x M, where M x M is supplied with “the”
product metric (see Exercise 3.46). This says that d is jointly continuous, that is,
continuous as a function of two variables. [Hint: If x, — x and y, — Yy, show that

d(xp, ya) = d(x, y).]

35. Show thataset U isopenin M ifand only if U = f~!(V) for some continuous
function f : M — R and some openset V in R.

> 36. Suppose that we are given a point x and a sequence (x,) in a metric space M,
and suppose that f(x,) = f(x) for every continuous, real-valued function f on M.
Does it follow that x, — x in M ? Explain.

37. If F is closed and x ¢ F, show that there are disjoint open sets U, V with
x € Uand F C V. Can U and V be chosen so that U and V are disjoint?

38. Given disjoint nonempty closed sets E, F, define f : M - R by f(x) =
d(x, E)/[d(x, E) + d(x, F)]. Show that f is a continuous function on M with
0< f <1, f'({0})) = E,and f~!({1}) = F. Use this to find disjoint open sets U
and V with E C Uand F C V.Can U and V be chosen so that U and V are disjoint?

39. Show that every open set in M is the union of countably many closed sets, and
that every closed set is the intersection of countably many open sets.

40. We define the distance between two nonempty subsets A and B of M by
d(A, B) = inf{d(a,b) : a € A, b € B}. Give an example of two disjoint closed
sets A and B in R? withd(A, B) = 0.

41. LetC be aclosedsetin Randlet f : C — R be continuous. Show that there
is a continuous function g : R — R with g(x) = f(x) for every x € C. We say that
g is a continuous extension of f to all of R. In particular, every continuous function
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on the Cantor set A extends continuously to all of R. [Hint: The complement of C
is the countable union of disjoint open intervals. Define g by “connecting the dots”
across each of these open intervals.]

42. Suppose that f : Q — R is Lipschitz. Show that f extends to a continuous
function A : R — R. Is h unique? Explain. [Hint: Given x € R, choose a sequence
of rationals (r,) converging to x and argue that h(x) = lim,_, o f(r,) exists and is
actually independent of the sequence (r,).]

Homeomorphisms

By now we have seen how the convergent sequences in a metric space determine all of
its open (or closed) sets and all of its continuous functions. We have also seen how the
open sets determine which sequences converge and which functions are continuous.
And we have seen that the continuous functions, in turn, determine the open sets in a
metric space and so too, indirectly, its convergent sequences.

Any one of these three — the convergent sequences, the open sets, or the continuous
functions — forms the “soul” of a metric space, the essence that distinguishes one metric
space from another in “spirit,” if not in “body.” As a concrete example of this *“gestalt,”
consider Z and N. The algebraic and order properties of Z and N are surely different, but
as metric spaces Z and N are essentially the same: countably infinite discrete spaces.
Every subset is open, every real-valued function is continuous, and only (eventually)
constant sequences converge. From this point of view, Z and N are indistinguishable as
metric spaces.

All of this suggests an idea: Two metric spaces might be considered “similar” if
there is a “similarity” between their open sets, or their convergent sequences, or their
continuous functions. Not necessarily “identical,” mind you, just “similar.” But how do
we make this precise? The answer comes from examining our notion of equivalence
for metrics.

Suppose that we are handed two metrics, d and p, on the same set M. How do
we compare (M, d) and (M, p)? Well, consider the following list of observations (see
Exercises 3.42 and 4.3):

(M, d) and (M, p) are “similar”
¢ d and p are equivalent metrics on M
= d and p generate the same convergent sequences
<= d and p generate the same open (closed) sets.

Now let’s bring continuous functions into the picture:

d and p are equivalent metrics on M
d and p generate the same continuous real-valued
functions on M

d and p generate the same continuous functions
(with any range) on M.
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And, finally, let’s consolidate all of these observations into one:

d and p are equivalent metrics on M
The identity map i : (M, d) = (M, p)and its inverse i ' :
(M, p) = (M, d) (also the identity) are both continuous. (Why?)

Generalizing on this last observation, we say that two metric spaces (M.d) and
(N. p) are homeomorphic (‘“‘similar-shape”) if there is a one-to-one and onto map
f : M = N such that both f and f~' are continuous. Such a map f is called a
homeomorphism from M onto N. Note that f is a homeomorphism if and only if f~!
is a homeomorphism (from N onto M). You should think of homeomorphic spaces as
essentially identical. In particular, if d and p are equivalent metrics on M, then (M, d)
and (M, p) are homeomorphic.

Theorem 5.5. Let f : (M,d) = (N, p) be one-to-one and onto. Then the follow-
ing are equivalent:
(1) f is a homeomorphism.
(i) xn > x < f(xa) 5 f(x).
(1) GisopeninM < f(G)isopeninN.
(iv) Eisclosedin M < f(F)isclosedin N.
v) d(x, y) = p( f(x), f( y)) defines a metric on M equivalent to d.

The proof of Theorem 5.5 is left as an exercise. The conclusion to be drawn from
this rather long statement is that a homeomorphism provides a correspondence not just
between the points of M and N, but also between the convergent sequences in M and N,
as well as between the open and closed sets in M and N. There is also a correspondence
between the continuous real-valued functions on M and N; see Exercise 54.

Let’s look at a few specific examples.

Examples 5.6

(a) Note that the relation “is homeomorphic to” is an equivalence relation. In par-
ticular, every metric space is homeomorphic to itself (by way of the identity
map). More generally, note that f : M — N is a homeomorphism if and only if
f~!': N - M is a homeomorphism.

(b) From our earlier discussion, we know that if 4 and p are equivalent metrics on M,
then (M, d) and (M, p) are homeomorphic (under the identity map). However,
if (M,d) and (M, p) are homeomorphic, it does not follow that 4 and p are
equivalent; see Exercise 50.

(¢) (R, usual) is not homeomorphic to (R, discrete ). Why? (Try to think of more
than one reason.) But (N, usual ) is homeomorphic to (N, discrete ). Check this!

(d) All three of the spaces (R", || - [l1). (R", || - ll2), and (R", || - ||~ ) are homeo-
morphic. See Exercises 3.18 and 3.44.

(e) Suppose that f : M — N is an isometry from M onto N; that is, an onto map
satisfying o(f(x), f(y)) = d(x, y)forall x, y € M. Now an isometry is evidently
one-to-one; hence f has an inverse that satisfies p(a, b) = d(f~'(a), f~'(b))
for all a, b € N. (Why?) That is, f~! is also an isometry. Clearly, then, f is a
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homeomorphism. In this case, however, we would emphasize the fact that M and
N are more than merely “alike” by saying that M and N are isometric. Isometric
spaces are exact replicas of one another; they are identical in every feature save
the “names” of their elements. For example, the interval [ 0, 1] is isometric to
the interval [ 4, 5 ]; indeed, it is isometric to any closed interval of length 1.

(f) In R, any two intervals that look alike are homeomorphic. [0, 1 ] and [ a, b] are
homeomorphic, as are (0, 1) and (a. ). The interval (0, 1) is also homeomorphic
to R, and (0, 1] is homeomorphic to [ a, b). Why? [Hint: The map x — 2 — 3x
is a homeomorphism from (0, 1] onto [—1, 2), while x — arctan x is a homeo-
morphism from R onto (—n /2, 7 /2).]

(g) Any two intervals that look different are different. For example, (0, 1] is not
homeomorphic to (a. ). The argument may be a bit hard to follow, so hang on!
Suppose that (0, 1] is homeomorphic to (a, b) under some homeomorphism f.
Then, by removing 1 from (0, 1 ] and its image ¢ = f(1) from (a. b), we would
have that (0, 1) is homeomorphic to (a, c) U (c, b). (Why should this work?) But
(0, 1) is homeomorphic to R, and so R would be have to be homeomorphic to
(a. c) U (c, b), too. From this it follows that R could be written as the disjoint
union of two nontrivial open sets, which is impossible (see Exercise 4.25). The
arguments in the various other cases are similar in spirit.

(h) Although it will take some time before we can explain all of the details, you
might find it comforting to know that R is not homeomorphic to R? and that
the unit interval [0, 1] is not homeomorphic to the unit square [0, 1] x [0, 1].
More generally, if m # n, then R" and R™ are not homeomorphic. In other
words, spaces with different “‘dimensions” are apparently different.

EXERCISES

43. If you are not already convinced, prove that two metrics d and p on a set M are
equivalent if and only if the identity map on M is a homeomorphism from (M, d ) to
(M, p).

44. Check that the relation “is homeomorphic to” is an equivalence relation on pairs
of metric spaces.

45. Prove that N (with its usual metric) is homeomorphic to { (1/n) : n > 1} (with
its usual metric).

> 46. Show that every metric space is homeomorphic to one of finite diameter. [Hint:
Every metric is equivalent to a bounded metric.)

47. Define E: N — ¢, by E(n)=(1,....1,0,...), where the first n entries are
1 and the rest are 0. Show that E is an isometry (into).

> 48. Prove that R is homeomorphic to (0, 1) and that (0, 1) is homeomorphic to
(0, 00). Is R isometric to (0, 1) ? to (0, 0o) ? Explain.

49. Let V be a normed vector space. Given a fixed vector y € V, show that the
map f(x) = x + y (translation by y) is an isometry on V. Given a nonzero scalar
a € R, show that the map g(x) = ax (dilation by a) is a homeomorphismon V.
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50. Let(M,d)denotetheset {0} U {(1/n): n > 1} under its usual metric. Define
a second metric p on M by setting p(1/n,1/m) = |1/n —1/m| form, n > 2,
p(l/n,1) = 1/nforn > 2, p(1/n,0) =1—-1/nforn > 2,and p(0,1) = 1.
Show that (M, d) and (M, p) are homeomorphic but that the identity map from
(M,d)to (M, p) is not continuous.

51. Let(M, p)beaseparable metric space and assume that p(x, y) < 1 forevery x,
y € M. Given acountable dense set {x, : n > 1}in M,defineamap f : M —> H®,
from M into the Hilbert cube (Exercise 3.10), by f(x) = (p(x, x,,)):il.
(i) Prove that f is one-to-one and continuous. In fact, f satisfies d( f(x), f( y)) <
po(x, y), where d is the metric on H*.
(ii) Fixe > 0and x € H*°. Find § > 0 such that p(x, y) < £ whenever d(f(x).
f( y)) < 4. Conclude that f is a homeomorphism into H*°.

You may find the following simple lemma useful in working the subsequent batch
of exercises.

LemmaS.7. Let f:L > Mandg : M - N, where L, M, and N are metric
spaces. If f is continuous at x € L, and if g is continuous at f(x) € M, then
gof:L — Niscontinuousat x € L.

PROOF. x, = xinL = f(x,) = f(x)InM = g(f(x,)) = g(f(x))inN. O

EXERCISES

Throughout, M denotes a generic metric space with metric d.
> S§2. Prove Theorem 5.5.

> 53. Suppose that we are given a point x and a sequence (x,) in a metric space M,
and suppose that f(x,) = f(x) for every continuous real-valued function f on M.
Prove that x, = xin M.

> S54. Let f : (M,d) — (N, p) be one-to-one and onto. Prove that the following
are equivalent: (i) f is a homeomorphism and (ii) g : N — R is continuous if
and only if g o f : M — R is continuous. [Hint: Use the characterization given in
Theorem 5.5 (i1).]

§5. Let f:(M,d) — (N, p) be a homeomorphism. Prove that M is separable if
and only if N is separable.

> §6. Let f:(M,d)— (N,p).

(i) We say that f is an open map if f(U) is open in N whenever U is open in M;
that is, f maps open sets to open sets. Give examples of a continuous map that
is not open and an open map that is not continuous. [Hint: Please note that the
definition depends on the target space N.]

(ii) Similarly, f is called closed if it maps closed sets to closed sets. Give examples
of a continuous map that is not closed and a closed map that is not continuous.
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> §7. Letf:(M,d)— (N, p)beone-to-one and onto. Show that the following are
equivalent: (i) f is open; (ii) f is closed; and (iii) f~' is continuous. Consequently,
f is a homeomorphism if and only if both f and f~' are open (closed).

58. Let f :(M,d) — (N, p) be one-to-one and onto. Prove that f is a homeo-
morphism if and only if f (/i) = f(A) for every subset A of M.

59.

(a) Show that an open, continuous map need not be closed, even if it is onto. [Hint:
Consider the map 7 (x, y) = x from R? onto R.]

(b) Show that a closed, continuous map need not be open, even if it is onto. [Hint:
Consider the map x +> cos x from [0, 27 Jonto [ —1, 1].]

60. Let (M, d) be a metric space, and let T be the discrete metric on M. Then,
(M, d) and (M, t) are homeomorphic if and only if every subset of M is open in
(M, d) if and only if every function f : (M,d ) — R is continuous.

61. Show that N is homeomorphic to the set {¢!” : n > 1} when considered as
a subset of any one of the spaces cp, £, €2, or €. [Hint: The map n > €™ is
continuous and open. Why?] If we instead take the discrete metric on N, show that
the map n — € is an isometry into co.

—————— e ——— o —

Perhaps you have heard the word ropology? Well, now you know something about
it! Topology is the study of continuous transformations or, what amounts to the same
thing, the study of open sets. This rather loose description will have to do for now. In
any case, a property that can be characterized solely in terms of open sets is usually
referred to as a ropological property. In other words, a topological property is one
that is preserved by homeomorphisms. For example, separability (having a countable
dense subset) is a topological property, while boundedness is not (see Exercises S5 and
46). And Example 5.6 (h) would seem to suggest that the “dimension” of a space is a
topological property. The word topology is also used as the name for the collection of
all open sets. For example, we might say that convergence and continuity in M depend
on the topology of M. This description is more to the point than saying that either
depends on the metric of M.

From this point on we will be very much concerned with whether or not a given
property is preserved by homeomorphisms. Such properties are invariant under slight
changes in the metric and so are typically more “forgiving” than those that depend
intimately on a particular metric.

The Space of Continuous Functions

We write C(M) for the collection of all continuous, real-valued functions on (M, d). As
we have seen, the collection C(M) contains a wealth of information about the metric
space (M, d) itself. This being a course in analysis (or had you forgotten?), we want
to know everything possible about continuous functions on metric spaces. Since we
are allowed to focus our attention on real-valued functions, C(M) is the space that we
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need to master. We will find that C(M) comes equipped with an incredible amount of
algebraic structure — all inherited from R. We will show that C(M) is a vector space,
an algebra. and a lartice. One of our goals will be to find a metric (or norm) on C(M)
that is compatible with its algebraic structure. While this will take no small effort on
our part, it is well worth it. The scenery alone more than justifies the trip; analysis,
algebra, and topology all flourish in C(M).

Given real-valued functions f, g : M — R, we define all of the usual algebraic
operations on f and g “pointwise.” That is, we definec- f,c € R, f + g, and f - g by
(c- flx)=cf(x). (f +g)x) = f(x)+ g(x),and (f - g)(x) = f(x)g(x), forall x € M.
In this way, the ring structure of R “lifts” to the real-valued functions on M. The order
structure of R also lifts: We define f < g to mean that f(x) < g(x) forall x € M. From
here we can make sense out of all sorts of expressions, for example, | f|(x) = | f(x)I,
max{ f. g}(x) = max{f(x). g(x)}, and min{ f, g}(x) = min{ f(x), g(x)}.

Now if M is a metric space, what we would like to know is whether the space C(M)
is “closed” under all of these various operations. You won’t be surprised to learn that
the answer is: Yes. For example, it follows from Lemma 5.7 that if f : M — R is
continuous, then so are cf, | f|, f2, sin(f), and so on (How?) The other cases that we
want to consider are slightly more elaborate compositions involving two functions at
a time, such as x — (f(x). g(x)) = f(x)+ g(x). Another easy lemma will make short
work of the details.

Lemma 5.8. If f.g : M — Rare continuous, then so is the functionh : M — R?,
defined by h(x) = (f(x). g(x)) forx € M.

PROOF. x, > xIn M = f(x,) > f(x) and g(x,) — g(x) in R = h(x,) —
h(x) in R2. (Why?) O

Here’s the plan of attack: Each of the functions f + g, f-g, max{ f, g}, and min{ f. g} is
the composition of two functions. First, x — (f(x). g(x)), and then the pair ( f(x), g(x))
in R? is mapped to f(x) + g(x), or f(x)g(x). or max{f(x). g(x)}, or min{ f(x), g(x)}.
If f and g are continuous, then the first map is always continuous by Lemma 5.8, and
so we only need to know whether the second map is continuous from R? into R in
each of the four cases. Here are some of the details (you may want to supply a few
more).

Examples 5.9

(@) The map (x.y) — x + y is continuous: If x, - x and y, — y in R, then
Xn+Yn = x+y because |(x, + yn) — (x + ¥)| < |x, — x|+ |yn — y|. Alternatively,
you might show that the set {(x, y) : |[(x + y) — (@ + b)| < &} is open in R?.

(b) The map (x, y) —» max{x, v} is continuous; an easy way to see this is to write
max{x, y} = 3(x + y + |x — y|). (How does this help?) For (x. y) -~ min{x, y},
use the fact that min{x. y} = 3(x + y — |x — y|).

(c) The map (x, y) — xy is continuous since xy = § [(x + y)* — (x — y)?]. (How
would a “direct” proof go?)
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Combining these observations with Lemma 5.8 gives:

Theorem 5.10. Let f. g : M — R be continuous. Then, f + g, f - g, max{f. g},
and min{ f, g} are all continuous.

If we use the pointwise definitions for algebraic operations in C(M), then C(M)
becomes a vector space (it is closed under addition and scalar multiplication), an algebra
(or ring — it is also closed under products), and a lattice (each pair of functions has a
max and a min back in C(M)). The most important observation for now is that C(M) is
a vector space; we will have much more to say about the lattice and ring structures later.

Our next task is to determine, if possible, a metric or a norm on C(M) that will
be compatible with these algebraic operations. We have been given a hint as to how
to do this by Fréchet himself. The norm of choice on C[a. b] is apparently || flloc =
max, <, <p | f(¢)|. We have already checked that this is, in fact, a norm on C[a, b] (that
is, it “respects” the vector space operations in C[a, b]). That this norm does still more
is outlined in the following exercise.

EXERCISE

62. If f,g € Cla,b].showthat| fgll~ < Il fllx l|lx- Alsoshow that || max{ f,
gllloo < max {|| fll, lIgllx}. and that | fllc < gl whenever | f| < |gI.

We know that homeomorphic spaces are supposed to have (essentially) the same
collection of continuous functions. Let’s make this even more precise in at least one
special case.

EXERCISE

63. Let|[a,b] be any closed, bounded interval in R,and leto : [0, 1] — [a,b]
be defined by o (f) = a + ¢t(b — a). Prove that:
(i) o is a homeomorphism.

(ii) f € Cla,b]if(andonlyif) foo € C[O0.1].

(iii) The map f — f o o is an isometry from C[a, b ] onto C[O0, 1 ]. The map
T(f) = f oo actually does much more; it is both an algebra and a lat-
tice isomorphism. That is, it also preserves the algebraic and order structures.
Specifically, given any f, g € C[a, b ], check that:

(iv) T(af + Bg)=aT(f)+ BT(g)foralla, B € R.

V) T(fg)=T(f)T(g).

(vi) T(f) <T(g)ifandonlyif f < g.

Thus, for all practical purposes, C[a, b ] and C[ 0. 1] are identical.

But will the norm on C| a. b] give any clues to a possible norm on C(R)? Since the
elements of C(R) need not be bounded (let alone actually attain a maximum value), we
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cannot expect to use sup,.g | f(¢)|, for example. A norm may be too much to hope for,
but it is easy enough to define a metric on C(R). This, too, comes to us from Fréchet.

EXERCISE
64. Givenn € Nand f,g € C(R), letd,(f, g) = maxy <, | f(¢) — g(¢)|. Thend,

defines a pseudometric on C(R). (Why?) Show thatd(f, g) = Y -, 27"dn(f, g)/
(1 + d.(f, g)) defines a metric on C(R).

It will take quite a bit more work before we can settle the issue of a reasonable metric
on C(M) - even in a few special cases. But at least one case is easy to describe. If M is
a finite set, say M = {x,, ..., x,} (under any metric), then we may identify C(M) with
R" by identifying each f € C(M) with its range (f(x)), ..., f(x,)) € R". Why does
this work? Recall that any metric on a finite set is necessarily equivalent to the discrete
metric, and so every function f : M — R is continuous. Thus, each y € R" defines an
element f € C(M) by setting f(xx) = y, fork =1,...,n.

If we use coordinatewise operations on R”", this correspondence even preserves
the algebraic structure on C(M). For example, check that if f, g € C(M), then f + g
corresponds to the vector ( f(x;) + g(xy), ..., f(xa) + g(x,)). Similarly, f-g corresponds
to(f(x1)g(x1), ..., f(xn)g(xn))and| f| correspondsto (| f(x))I. ..., | f(x)]). Finally, we
can induce a suitable norm on C(M) by taking the “max” norm on R". Specifically,
check that || f|l.c = max, <<, | f(x;)|, the norm induced on C(M) by this correspondence,
satisfies || fglloo < | flloo I€lloo and || flloo < lglloc Whenever | f| < |gI.

Our goal is now a little clearer: To define a norm on C(M), we want M to be “like”
a finite set. Whatever that might mean, we would certainly hope that [a, b] turns out
to be “like” a finite set (after all, that case works just fine already). We will put these
issues aside for now, but they will resurface in Chapter Eight when we finally arrive
at a plausible generalization of finite sets (which really will include [ a, b ] as a special
case).

Notes and Remarks

The so-called Lipschitz condition of Exercises 19 and 25 was introduced by Rudolph
Lipschitz in 1876 (for more on this, see the discussion in Chapter Seven).

The definition of continuity in terms of open sets is due to Hausdorff. For various
notions of “almost” continuous and “nearly” continuous functions, based on variations
of Exercise 30, see Beslin [1992] and Tong [1992].

Semicontinuity (Exercises 32 and 33) was introduced by René Baire in his thesis,
Baire [1899]. Also see Radé [1942]. Related to Exercises 7 and 32 is the intoxicating
article by Foster Brooks [1971], where sets of the form {x : f(x) > a} are called “cut
sets.”

For more on the notion of “dimension,” which was referred to in passing in Exam-
ple 5.6 (h), see Menger [1943].
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The algebraic and lattice structures of the space C(M) have been the topic of a
great deal of research during the last 50 years. For much more on this, see Birkhoff
[1948], Gillman and Jerison [1960], Goffman and Pedrick [1965], Jameson [1974],
Kuller [1969], Schaefer [1980], and Simmons [1963]. The short note by Aron and
Fricke [1986] provides an elementary proof of the fact that a linear, multiplicative map

¢ : C(R) — R (i.e., an algebra homomorphism) is given by point evaluation. Compare
this with Exercise 63.




CHAPTER SIX

Connectedness

Connected Sets

We have a few details to clean up before we move on to other things; these concern the
special role of intervals in R and their use in characterizing the open sets in R given in
Chapter Four (see Theorem 4.6 and Exercise 4.25). As we’ll see in this section, a better
understanding of the special nature of intervals in R will allow us to generalize the
intermediate value theorem of calculus. The intermediate value theorem is the formal
statement of the informal notion that the graph of a continuous function is “unbroken.”
The historical basis of the theorem is the concept of a function as measuring, over time,
the relative position of an object moving along a straight line. Thus, if we track the
position y = f(x) of a moving object between time x = a and some subsequent time
x = b, we would expect the object to “visit” all of the positions y that are intermediate
to f(a) and f(b). In short, the continuous image of the time interval [a, b] should
contain (at least) the full interval of positions between f(a) and f(b).

The secret here is the intuitively obvious fact that no interval in R can be split into
two relatively open parts. Let’s prove this by *“brute force” for the interval [a, b] (we’ll
do the other cases shortly).

Suppose to the contrary that [a, b] = AU B, where A and B are nonempty, disjoint,
relatively open sets in [a. b]. We are going to find a contradiction by examining the
“border” between A and B. The trouble comes from the fact that A and B are necessarily
also closed in [ a. b ], since each is the complement of an open set: A = [a,b]\ B and
B =[a.b]\ A, and so each of A and B lays claim to the “border.”

To get started, we might as well assume that b € B, and so (b — ¢, b] C B, for some
e > 0, since B is open. Now let ¢ = sup A. Clearly, a < ¢ < b, but note that, since A
and B are open in [a, b], we actually have a < ¢ < b. (Why?) Next, it follows from
the definition of ¢ that (c —&,c)NA # @ and (c,c+€)N B # @ forany ¢ > 0; in
fact, (c,b) Cc B. Thatis,c € Aandc € B. Butthen,c € ANB = A NB = @. This
contradiction shows that no such splitting of [ a, b] into nonempty, disjoint, open sets
is available.

Based on this observation, we say that a metric space M is disconnected (or not
connected) if M can be split into the union of two nontrivial open sets, that is, if
there are nonempty open sets A and Bin M with A N B = @ and AUB = M.
The pair of open sets A and B is called a disconnection of M. We say that M is
connected if no such disconnection can be found. Thus, for example, [a, b] is con-
nected.

78
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Notice that we could just as well have used closed sets in our definition. If a discon-
nection A, B exists, then the disconnecting sets are also closed: A = B and B = A°.
That is, A and B are clopen (simultaneously open and closed) sets. Conversely, if
M contains a nontrivial clopen subset A (other than @ or M), then A and A€ are a
disconnection for M. This gives us our first theorem:

Theorem 6.1. M is connected if and only if M contains no nontrivial clopen sets.

Examples 6.2

(a) Ris connected. (This follows from Exercise 4.25, but we will give another proof
shortly based on the fact that [ a, b ] is connected.)

(b) A discrete space containing two or more points is disconnected.

(¢) The empty set @ and any one-point space are connected (by default).

(d) The Cantor set A is (very!) disconnected. Indeed, it follows from Exercise 2.22
that for any x, y € A withx < y thereisa z ¢ A such that x < z < y. Thus, A
is disconnected by the (relatively) open sets A = [0, z)NAand B = (z, | |N A.

Our terminology for connectedness is unavoidably fussy. After all, we have defined
connectedness in terms of what it is not, namely, disconnected. To make matters worse,
at least on the surface, Example 6.2 (d) and our proof that [a, b] is connected both
suggest the frightening prospect of “relatively connected” as an altogether separate
notion. Well, fear not! Connectedness is not a relative property for metric spaces. To
see why, we will need to face the relative definition head-on.

A subset E of ametric space M is disconnected in E if there exist disjoint, nonempty,
open (in E) sets U and V such that E = U U V. Now, it is immediate that this gives
us a pair of open sets A and Bin M suchthat U = ANE and V = BN E. And so
“unrelating” the relative definition, by writing it in terms of A and B, yields: ANE # @,
BNE #3,(ANEYNBNE)=@,and E=(ANE)U(BNE),orEC AUB.
(Phew!) This mess would be greatly simplified if we could take A and B to be disjoint
in M. While this need not hold true in more general settings, luck is with us in a metric
space.

Lemma 6.3. Let E be a subset of a metric space M. If U and V are disjoint open
sets in E, then there are disjoint open sets A and B in M such that U = AN E
andV =BNE.

PROOF. We will only sketch the proof, leaving the full details as an exercise. The
hard work here is largely a matter of notational bookkeeping. To spare us much
of this notation, let’s avoid the relative metric wherever possible. We will state
everything in terms of open balls in M, using the simple notation B,(x) in place
of the more cumbersome BM (x).

For each x € U thereis an ¢, > O such that EN B, (x) C U, because U is open
in E. Likewise, for each y € V there is a §, > 0 such that E N B; (y) C V. Since
UNV =g, wealso get EN B, (x)N Bs (y) = @. We would like to get rid of the
set E in this conclusion, and we can do so at a small price:
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Claim. B, ,(x)N B;s, 2(y) = @ forevery x € U and y € V. (Just check.)
Thus A = U{Be,,z(x) . X € U} and B = U{Ba_'/z(y) .y e V} work. O

The conclusion to be drawn from Lemma 6.3 is that E is disconnected (in E) if and
only if there exist disjoint, nonempty, open sets A and B in M such that AN E # @,
BNE # @,and E C AU B. And it does not matter whether we take “open” to mean
“open in E” or “open in M.” That is, this statement reduces to the original definition
in case E = M, and it gives the correct “relative” definition in any case (by taking
U = ANE and V = BN E). Thus, there is no harm in simply taking it as our new
definition of a disconnected set, as opposed to a disconnected space. In other words,
we have dodged a bullet! By adopting this harmless rewording of the definition of
disconnected, and hence also a rewording of the definition of connected, we have freed
the concept from any apparent dependence on the relative metric. We would be foolish
to do otherwise.

Henceforth, when considering a subset E of a given metric space M, we will call a
pair of disjoint open sets A and B a disconnection of E if ANE # @, BNE # Q,
and E C AU B. And, of course, we will say that E is a connected set if no such
disconnection of E can be found.

Let’s put this new definition to use by giving another characterization of the intervals
in R.

Theorem 6.4. A subset E of R, containing more than one point, is connected if
and only if, whenever x, y € E with x < y, we also have [x,y) C E. That is,
the connected subsets of R (containing more than one point) are precisely the
intervals.

PROOF. One direction is easy: If there exist points x < z < y suchthatx, y € E
but z ¢ E, then E C (—00, 2) U (z, +00); that 1s, A = (—00, z) and B = (z, +00)
is a disconnection of E.

For the other direction, suppose that E satisfies the condition that (x, y] C E
whenever x, y € E with x < y, but that E is disconnected. Then there are disjoint
opensets Aand BinRsuchthat ANE # @, BNE # @,and E C AU B.
Given pointsa € AN E and b € BN E, we might as well assume thata < b
and hence that [a,b] C E. Butnow [a,b] C E C AU B; thatis, A and B
are a disconnection of the interval [ a, b]. This contradicts the fact that (a, b] is
connected. Hence E is connected.

Finally, suppose that E satisfies [x, y] C E whenever x, y € E with x < y.
We want to prove that E is an interval. But it follows from this condition that
E contains the open interval (inf E, sup E), where we include the possibilities
infE = —oo and supE = +o0o0. (Why?) Thus, E must be an interval; which
particular type of interval depends on the disposition of inf E and sup E as finite,
or not, and as elements, or not, of E. O

We can now shed some light on the structure of open sets in R. The proof of Theo-
rem 4.6 shows that each nonempty open set U in R can be uniquely written as the union
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of connected subsets. Indeed, we wrote an open set in terms of “maximal” intervals /,,
and such intervals are actually maximal with respect to being connected subsets of U
(i.e., no larger subset of U will be connected). At each x € U, we took /, to be the union
of all of the open subintervals in U that contain x. Thus, /, is both open and connected
(see Exercise 6), and hence it is an open interval. The remainder of the proof of Theo-
rem 4.6 shows that two such connected “components” of U are either identical or dis-
joint. There are at most countably many distinct /,, the union of which must be all of U.

Given any set E, we call the maximal (with respect to containment) connected
subsets of E the connected components of E. Essentially the same line of reasoning
as above shows that every set can be written (uniquely) as the disjoint union of
its connected components. A connected set, then, is a set with only one connected
component (namely, itself).

EXERCISES

Except where noted, each of the following exercises is set in a generic metric space
M with metric d.

1. Supply the missing details in the proof of Lemma 6.3.

2. Show that the only nonempty connected subsets of A are singletons. (We would
say that A is totally disconnected.)

3. If E is aconnected subset of M, and if A and B are disjoint open sets in M with
E C A U B, prove that either E C Aor E C B.

4. Prove that E is disconnected if and only if there exist nonempty sets A and B in
M satisfying A NB=@,BNA=@,and E = A UB.

> S. If E and F are connected subsets of M with E N F % @, show that E U F is
connected.

> 6. More generally, if C is a collection of connected subsets of M, all having a point

in common, prove that | JC is connected. Use this to give another proof that R is
connected.

> 7. If every pair of points in M is contained in some connected set, show that M is
itself connected.

8. If E and F are nonempty subsets of M, and if E U F is connected, show that
ENF #¢@.

We are more than ready to speak of continuous functions and connectedness. Our
first result shows that the two-point discrete space is the canonical disconnected set.

Lemma 6.5. M isdisconnected if and only if there exists a continuous map from
M onto (0, 1} (the two-point discrete space).

PROOF. If f:M — {0, 1} is onto, then A = f~!({0}) and B = f~'({1}) are
disjoint, nonempty, and satisfy A U B = M. If f is also continuous, then A and
B are clopen sets and so form a disconnection of M.
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Conversely, if A and B are a disconnection of M, then setting f(a) = O for
a € Aand f(b) = 1 for b € B defines a continuous map f from M onto {0, 1}.
(Why?) O

Lemma 6.5 is telling us that there is no continuous method of splitting a connected
set M into two discrete “parcels.” More generally, it follows that M is connected if and
only if any continuous map from M into a discrete space is necessarily constant.

Lemma 6.5 gives a nearly perfect replacement for the definition of disconnected.
All of the notational difficulties that we faced earlier are now hidden in subtleties of
language. For example, we have traded the cumbersome notation of relatively open
sets for the tacit understanding that continuity may mean relative continuity. Most
convenient. All of this hard work is beginning to pay off! In fact, we can now give a very
short proof of that generalized intermediate value theorem we have been looking for:

Theorem 6.6. Let f : (M,d) — (N, p) be continuous, and let E be a subset of
M. If E is connected, then f(E) is connected.

PROOF. Suppose that f(E) is not connected. Then there exists a continuous, onto
map g : f(E) — {0, 1}. But this means that g o f : E — {0, 1} is continuous and
onto. That is, E is not connected. O

To see that Theorem 6.6 is a generalization of the intermediate value theorem, we just
need to bring Theorem 6.4 back into the picture: The connected subsets of R (containing
more than one point) are precisely the intervals. Thus, the image of an interval under a
nonconstant continuous function is again an interval.

Corollary 6.7. Ifl isanintervalinR and if f : I —> Risanonconstant continuous
function, then f(I) is an interval. In particular, if a, b € I with f(a) # f(b), then
f assumes every value between f(a) and f(b).

EXERCISES
Throughout, M denotes an arbitrary metric space with metric d.

> 9 IfAC BC A C M, and if A is connected, show that B is connected. In
particular, A is connected.

10. Trueorfalse? If A C B C C C M, where A and C are connected, then B is
connected.

11. An alternate definition of connectedness for metric spaces can be phrased in
terms of continuous real-valued functions: Prove that M is disconnected if and only
if there is a continuous function f : M — R such that f~'({0}) = @ while
f'((=00,0)) # @ and f~'((0, 00)) # @. [Hint: If A and B are a disconnection,
consider f(x) =d(x, A) —d(x, B).]

12. If M is connected and has at least two points, show that M is uncountable.
[Hint: Find a nonconstant, continuous, real-valued function on M.]
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> 13. If f : [a,b] — [a, b] is continuous, show that f has a fixed point; that is,
show that there is some point x in [ a, b ] with f(x) = x.

14. Let f :[0,2] — R becontinuous with f(0) = f(2). Show that there is some
xin [0, 1] such that f(x) = f(x + 1).

15. If f : R — R is continuous and open, show that f is strictly monotone.
16. If f : R — R is continuous and one-to-one, show that f is strictly monotone.

17. Prove that there does not exist a continuous function f : R — R satisfying

f(Q CR\Qand f(R\Q) C Q.

18. Let A and B be closed subsets of M, and suppose thatboth A UBand A N B
are connected. Prove that A and B are connected.

19. Let/ = (R\Q)N[0,1]and Q = Q N[O, 1], with their usual metrics.
Prove that there is a continuous map from / onto Q, but that there does not exist a
continuous map from [ 0, 1 ] onto Q. [Hint: Given a sequence of rationals 0 = ro <
ry <---<r, < lincreasing to 1, notice that / can be written as the disjoint union
of the openssets (r,—;,7,)N[0,1),n=1,2,....]

20. Let f : [a,b] — R be continuous, and suppose that f takes on no value
more than twice. Show that f takes on some value exactly once. [Hint: Either the max-
imum or the minimum value occurs only once.] Consequently, f is piecewise mono-
tone.

21. Suppose that f : R — R takes on each of its values exactly twice; that is,
for each y € R, the set {x : y = f(x)} has either O or 2 elements. Show that f is
discontinuous at infinitely many points.

22. Supposethat f : R — R has the intermediate value property; that is, suppose
that if x < y with f(x) # f(y), then f assumes every value intermediate to f(x)
and f(y) on the interval (x, y). If, in addition, we assume that the graph of f is
closed in IR?, prove that f is continuous. [Hint: If f is discontinuous at b, then there
is a sequence b, — b such that | f(b,) — f(b)| > € for some € > 0 and all n. By
passing to a subsequence, we may suppose that, say, f(b,) > f(b) + ¢ for all n.
How does this help?]

23. If f : R —> R is differentiable, prove that f’ has the intermediate value
property. Specifically, if a < band f'(a) < m < f'(b), show that f '(c) = m for
some ¢ € (a, b). [Hint: Consider g(x) = f(x) — mx.]

Although it follows easily from the definition (since it is given in terms of open
sets), Theorem 6.6 also shows that connectedness is preserved by homeomorphisms.
This observation allows us to clarify one of the harder examples from Chapter
Five.

Example 6.8

Intervals that “look” different are different. Specifically, no pair of intervals from
among [a, b}, (a, b], and (a, b) can be homeomorphic. The reasons we gave in
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Chapter Five can now be restated in terms of our new language. To see that (a, b ]
and (a, b) are not homeomorphic, for example, suppose that f : (a,b] — (a, b) is
one-to-one and onto, and let c = f(b). (Hence, a < ¢ < b.) Then, the restriction
of fto(a, b]\{b} = (a, b) is still one-to-one, but now its range is the disconnected
set (a, b)\ {c} = (a.c)U(c, b). Since f maps a connected set onto a disconnected
set, f cannot be continuous. The other cases are similar.

The key observation in Example 6.8 is that between two “different” intervals one
can always afford to lose more points than the other before becoming disconnected. For
example, [a. b] can afford to give up two points and still remain connected, whereas
(a. b ] only has one point to spare. We could stretch this same reasoning to show that the
unit interval [ 0, 1 ] is not homeomorphic to the unit square [0, 1] x [0, 1], for example.
For this, we first need a lemma:

Lemma 6.9. If A and B are connected, then A x B is connected.

PROOF. Suppose that f: A x B — {0, 1} is continuous. We need to show that f
is constant. But, given any a € A and b’ € B, each of the functions f(a, -): B —
{0,1}and f(-.b"): A — {0, 1} is continuous. (This follows from what we know
about “the” product metric; see Exercise 3.46.) Consequently, since A and B are
connected, each of these new maps must be constant.

This means that f is constant along *‘horizontal” and “vertical” lines in A x B.
Thus, f(a,b) = f(a’, b’) because f(a, -)and f(-, b’ ) are constant and the two
functions must agree at (a, b’ ). (Figure 6.1 may help; f is constant along each
dotted line, and these values must agree at the “intersections.”) That is, f is
constant. (]

B

2 P

Thus [0, 1 ]x [0, 1]isconnected, and now it is easy to see why [0, 1 ] x [0, 1 ] cannot
be homeomorphic to [0, 1]. Indeed, [0, 1]\ {1/2} is disconnected while [0, 1] x[O, 1]
minus any point is still connected. (Why?) Similarly, R? is connected, and essentially
the same argument shows that R? is not homeomorphic to R. By induction, R" is
connected (we will outline a second proof in the exercises), and this line of reasoning
can be used to show that R" is not homeomorphic to R for n > 1. But the question of
whether R” is homeomorphic to R™ for arbitrary n # m is very difficult! Nevertheless,




Connected Sets 85

the argument is the same in spirit (the “bigger” space is “more” connected), and it is in
fact true that R" is not homeomorphic to R™ for n # m.

EXERCISES

24. Show that (0, 1) x (0, 1), although an open set in R?, cannot be written as a
disjoint union of open balls in R2. (Compare with Theorem 4.6.)

28S.

(a) Give an example of a continuous function having a connected range but a dis-
connected domain.

(b) Let D C R, and let f : D — R be continuous. Prove that D is connected if
{(x, f(x)) : x € D}, the graph of f, is a connected subset of R.

26. Let f:[0,1] —> R bedefined by f(x) = sin(1/x) for x # 0and f(0) = 0.
Show that although f is not continuous, the graph of f is a connected subset of R?.
[Hint: Use Exercise 9.]

27. Let V be a normed vector space, and let x # y € V. Show that the map
f() = x +t(y — x) is a homeomorphism from [0, 1] into V. The range of f
is the line segment joining x and y, and it is often written [x, y] (since f is a
homeomorphism, this interval notation is justified). [Hint: That f is continuous and
one-to-one is easy; next show that if f(¢,) — z, then (1,) converges to some ¢ in
[0, 1] withz = f(¢).]

28. Deduce from Exercises 7 and 27 that any normed space V is connected.

The full details will have to wait for a while, but we have enough “savvy” at this
point to discuss an extremely curious and highly counterintuitive phenomenon. In spite
of the fact that [0, 1] and [0, 1] x [0, 1] are not homeomorphic, and in spite of the
fact that the square [0, 1] x [0. 1] should, by rights, be much “bigger” than the interval
[0, 1], there exists a continuous ontomap f : [0,1] — [0, 1] x [0, 1].(As we will see
in Chapter Eight, no such map can be one-to-one. In fact, no continuous, one-to-one
map from [0, 1]Jto [0, 1] x [0, 1] can have a dense range.)

Now a map f(¢t) = (x(t), y(t)) from [0, 1] to [0,1] x [0, 1] is called a path, or
curve. If the range of f “fills” the square, we say that f is a space-filling curve. The
existence of any space-filling curve was considered quite shocking at one time, let
alone a continuous space-filling curve! But, as is typical of such discoveries, once a
continuous space-filling curve was shown to exist, dozens of other examples followed.
We will briefly describe two such examples.

The first example is due to Peano in 1890. The idea is to define a sequence of paths
that visit ever more points in the square; the “limit” path will be onto since it ultimately
visits a dense set of points in the square (more on this in Chapter Eight). Figure 6.2
shows the first two paths.

Figure 6.2 shows the unit square broken into nine equal subsquares; the first path
travels from (0, 0) to (1, 1) (i.e., from lower left to upper right) in a series of straight
line paths, in the direction indicated by the circled numbers.
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Figure 6.3 shows each of the subsquares of Figure 6.2 broken into 9 equal subsquares,
giving us 81 subsquares in all. The second path travels from (0, 0) to (1, 1) by repeating
the first path in “miniature” in each 3 x 3 block of subsquares. The new path traverses
each of the nine original subsquares in the same order as before (the path wends its way
up the first column of 3 x 3 blocks, down the center column, and up the last column).
Notice, too, that the direction of each of the nine “miniature” paths is determined by
the direction of the corresponding segment of the first path. That is, we enter the first
3 x 3 block at the lower left and exit at the upper right; we enter the second 3 x 3 block
at the lower right and exit at the upper left; we enter the third block at the lower left
and exit at the upper right, and so on.

The third path is obtained by repeating this process in each of the 81 subsquares of
Figure 6.3. That is, divide each subsquare into 9 more equal subsquares, giving us 729
in all, and repeat the first path in “microminiature” in each of the new 3 x 3 blocks.
Continue. The limit of this process (which can be made rigorous) is a continuous path
mapping [0, 1] onto the square [0, 1] x [0, 1].
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Our second example of a space-filling curve is essentially due to Lebesgue in 1928.
This one is even more amazing than Peano’s example (if such a thing is possible).
Lebesgue’s idea is this: Since the Cantor function maps A (a tiny set) onto all of [0, 1]
(a big set), perhaps some variation on the Cantor function will map A onto the square
[0,1] x [0, 1] (an even bigger set). And it does!! Incroyable!

Here's the setup: Recall that each element t € A can be writtenast = ) - | 2a,/3",
where each a, is either O or 1; in other symbols, t = 0.(2a,)(2a;)(2a3)... (base 3).
Now define a map ¢ (x(¢), y(t)) by x(t)=0.a2a4a¢... (base 2) and y(t)=
0.aasas ... (base 2). Each of x(t) and y(¢) is rather like the Cantor function; each
is continuous on A, and each maps A onto [0, 1 ]. (Why?) Moreover, x(t) and y(r)
extend to continuous functions on [0, 1], and the path f(¢r) = (x(¢), y(?)) is actually
a continuous space-filling curve (which maps A onto [0, 1] x [0, 1]). Amazing! And
now that we know the “trick,” we can play this same game again to get a continuous
map from A onto [0, 1] x [0, 1] x [0, 1]. Just take each element of A, written as a
ternary decimal, and “spread out” the temary decimal to make up three binary decimals,
this time using every third ternary digit: 0.a,a4a . .., and so on. By induction, [0, 1]"
is the continuous image of A for every n > 1. Unbelievable! What was counterintuitive
and simply out of the question moments ago has reduced to “one small step” after the
fact. (And it gets even better! But we will save that story for another day.)

Notes and Remarks

For complete details of the proof that R" and R™ are not homeomorphic for n # m, see
M. H. A. Newman [1951].

For a thorough discussion of topics related to the intermediate value theorem (Corol-
lary 6.7), including the intermediate value property for derivatives (Exercise 23), see
Boas [1960].

The brand of connectedness found in Exercise 28 is called pathwise connectedness
(or, to be precise, arcwise connectedness). A space is pathwise connected if there is a
path (a continuous map on [ 0, 1]) joining any pair of points in the space. Exercise 7 and
Theorem 6.4 show that pathwise connected spaces are connected in our sense (but not
conversely — in the example given in Exercise 26, the point (0, 0) cannot be connected
to the rest of the graph by means of a path). Pathwise connectedness is older than
connectedness; according to Willard [1970], Weierstrass used it as early as the 1880s.
The modem version evolved through the efforts of several mathematicians, including
Cantor, Jordan, Schoenflies, Lennes, Riesz, and Hausdorff. For amore complete history,
see Wilder [1978, 1980].

For functions f:R — R, continuity, the intermediate value property, and the con-
nectedness of the graph of f (as a subset of R?) are essentially equivalent. For much
more on this, see Burgess [1990]. Exercise 22 is based on the discussion in Burgess’s
paper, but see also Boas [1960] and Randolph [1968].

Lebesgue’s simplification of Peano’s space-filling curve appears in his book, Legons
sur I’'Integration (Lebesgue [1928]), which was originally published as one of the vol-
umes in Borel’s series of monographs. Lebesgue’s example was subsequently modified
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by I. Schoenberg in Schoenberg [1938]. For further details, see Schoenberg [1982] and
Sagan [1986, 1992]). We will have more to say about the Schoenberg-Lebesgue curve
later in the book.

Space-filling curves have been a constant source of fascination in the mathematical
literature. New examples and simplifications of old examples continue to surface in
popular journals; dozens of articles on space-filling curves have appeared in the Monthly
over the years. Two such articles, one old and one new, are Moore [1900] and Holbrook
[1991] (but see also Swift[1961], Wen [1983], and Lance and Thomas [1991]). Moore’s
paper is particularly interesting; he discusses Hilbert’s example of a space-filling curve,
Weierstrass’s nondifferentiable function, and other early work. Holbrook, on the other
hand, takes a novel approach: He shows that a curve f(¢) = (x(t), y(t)) is space-filling
whenever the coordinate functions x(t) and y(¢) are stochastically independent. For
a discussion of space-filling curves in general, see Boas [1960] and the articles by
Whybum [1942] and Hahn [1956b]. For a thorough treatment of related constructions,
see A. N. Singh [1969].




CHAPTER SEVEN

Completeness

Totally Bounded Sets

At the end of Chapter Five we discussed the problem of defining a norm on C(M), the
space of continuous, real-valued functions on a metric space M. We saw that an easy
solution presents itself in the case where M is finite, and the suggestion was made that
it is enough for M to be “like” a finite set. In this chapter we will come one step closer
to making this vague suggestion precise. To begin, we consider sets that can be written
as the union of finitely many small “parcels.”

A set A ina metric space (M, d) is said to be totally bounded if, given any ¢ > 0, there

exist finitely many points x,, ..., x, € M suchthat A C | Ji_, B:(x;). Thatis,eachx € A
is within £ of some x;. For this reason, some authors would say that the set {x,, ..., Xp} 1S
e-dense in A, orthat {x,. ..., xn} 1s an e-net for A. For our purposes, we will paraphrase

the statement A C (Ji_, B:(x;) by saying that A is covered by finitely many ¢-balls.
In the definition of a totally bounded set A, we could easily insist that each &-
ball be centered at a point of A. Indeed, given ¢ > 0, choose x,,...,x, € M so that
A C |JI_, B¢j2(xi). We may certainly assume that A N B;,»(x;) # @ for each i, and so
we may choose a point y; € A N B, ,2(x;) for each i. By the triangle inequality, we then
have A C |Ji_, B:(yi). (Why?) That is, A can be covered by finitely many ¢-balls, each
centered at a point in A. More to the point, a set A is totally bounded if and only if A
can be covered by finitely many arbitrary sets of diameter at most ¢, for any £ > 0.

Lemma 7.1. A is totally bounded if and only if, given € > 0, there are finitely
many sets A,.. ... A, C A, with diam(A;) < € for all i, such that A C U;;, A;.

PROOF. First suppose that A is totally bounded. Given £ > 0, we may choose
Xy, ..., xn € M such that A C |J_, B:(x;). As above, A is then covered by the
sets A, = AN B:(x;) C A and diam(A;) < 2¢ for each i.

Conversely, given ¢ > 0, suppose that there are finitely many sets A, ..., A, C
A, with diam(A;) < ¢ for all i, such that A C |J]_, A;. Given x; € A;, we then
have A; C By (x;) foreach i and, hence, A C | J;_, Ba.(x)).

Since ¢ is arbitrary in either case, we are done. O

Notice that the condition in Lemma 7.1 demands that A,, ..., A, be subsets of A.
This is no real constraint since, after all, if A is covered by B, .... B, C M, then A is
also covered by the sets A;, = AN B; C A and diam(A;) < diam(B;).

89
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Examples 7.2

(a) By the triangle inequality, a totally bounded set is necessarily bounded. (Why?)
Note also that any subset of a totally bounded set is again totally bounded. (See
Exercise 1.)

(b) A finite set is always totally bounded. In a discrete space, a set is totally bounded
if and only if it is finite. (Why?)

(c) In R, we do not get anything new: A subset of R is totally bounded if and only if
it is bounded. (See Exercise 2.) Thus, total boundedness is apparently not a topo-
logical property; it depends intimately on the metric at hand. (See Exercise 3.)

(d) In general, not every bounded set is totally bounded. The discrete metric
gives us a clue as to how we might construct such a set. Recall the sequence
e” = (0,...,0,1,0,...) in £;, where the single nonzero entry is in the nth
place. Then, {¢™ : n > 1} is a bounded set in ¢,, since ||e™|;, = 1 for all n,
but not totally bounded. Why? Because [le™ — ™|, = 2 for m # n; thus,
{¢™ : n > 1} cannot be covered by finitely many balls of radius <2. In fact, the
set {¢(™ : n > 1} is discrete in its relative metric. (Compare with Exercise 8.)

EXERCISES

Except where noted, each of the following exercises is set in an arbitrary metric space
M with metric d.

> 1. IfA C B C M, and if B is totally bounded, show that A is totally bounded.

> 2. Show that a subset A of R is totally bounded if and only if it is bounded. In

particular, if / is a closed, bounded, interval in R and ¢ > 0, show that / can be
covered by finitely many closed subintervals Jy, ..., J;, each of length at most €.

3. Istotal boundedness preserved by homeomorphisms? Explain. [Hint: R is home-
omorphic to (0, 1).]

4. Show that A is totally bounded if and only if A can be covered by finitely many
closed sets of diameter at most ¢ for every € > 0.

> 5. Prove that A is totally bounded if and only if A is totally bounded.

We next give a sequential criterion for total boundedness. The key observation is
isolated in:

Lemma 7.3. Let (x,) be a sequence in(M,d), and let A = {x, : n > 1} be its
range.

(1) If (x,) is Cauchy, then A is totally bounded.

(ii) If A is totally bounded, then (x,) has a Cauchy subsequence.

PROOF. (i) Let ¢ > 0. Then, since (x,) is Cauchy, there is some index N > 1 such
that diam{x, : n > N} < €. Thus:

A=!x.}U---U{x~-.}U{x,,:n_>_Nl.

N sets of diameter < ¢
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(i1) If A is a finite set, we are done. (Why?) So, suppose that A is an infinite
totally bounded set. Then A can be covered by finitely many sets of diameter <1.
One of these sets, at least, must contain infinitely many points of A. Call this
set A,. But then A, is also totally bounded, and so it can be covered by finitely
many sets of diameter <1/2. One of these, call it A,, contains infinitely many
points of A;. Continuing this process, we find a decreasing sequence of sets A D
A; D A; O ---, where each A, contains infinitely many x, and where diam(A;) <
1/k. In particular, we may choose a subsequence (x,, ) with x,, € A, for all k.
(How?) That (x5,,) is Cauchy is now clear since diam{x,, : j > k} < diam(A,) <
1/k. O

Examples 7.4

(a) The sequence x, = (—1)" in R shows that a Cauchy subsequence is the best that
we can hope for in Lemma 7.3 (ii).
(b) Note that the sequence (e'™) in £, has no Cauchy subsequence.

We are finally ready for our sequential characterization of total boundedness:

Theorem 7.5. A set A is totally bounded if and only if every sequence in A has
a Cauchy subsequence.

PROOF. The forward implication is clear from Lemma 7.3. To prove the backward
implication, suppose that A is not totally bounded. Then, there is some £ > 0 such
that A cannot be covered by finitely many e-balls. Thus, by induction, we can
find a sequence (x,) in A such that d(x,, x,,) > € whenever m # n. (How?) But
then, (x,) has no Cauchy subsequence. O

All of this should remind you of the Bolzano—Weierstrass theorem - and for good
reason:

Corollary 7.6. (The Bolzano—Weierstrass Theorem) Every bounded infinite sub-
set of R has a limit point in R.

PROOF. Let A be a bounded infinite subset of R. Then, in particular, there is
a sequence (x,) of distinct points in A. Since A is totally bounded, there is a
Cauchy subsequence (x,,) of (x,). But Cauchy sequences in R converge, and so
(xn,) converges to some x € R. Thus, x is a limit point of A. O

EXERCISES

Unless otherwise specified, each of the following exercises is set in a generic metric
space (M, d ).

6. Prove that A is totally bounded if and only if every sequence (x,) in A has a
subsequence (x,,) for which d(x,, , xn,,,) < 27%.

7. Show that Corollary 7.6 follows from the nested interval theorem.

8. If A is not totally bounded, show that A has an infinite subset B that is homeo-
morphic to a discrete space (where B is supplied with its relative metric). [Hint: Find
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¢ > (0 and a sequence (x,) in A such that d(x,, x,,) > € for n # m. How does this
help?]

> 9. Give an example of a closed bounded subset of €., that is not totally
bounded.

> 10. Prove that a totally bounded metric space M is separable. [Hint: For each n,
let D, be a finite (1/n)-net for M. Show that D = | J._, D, is a countable dense
set.]

11. Prove that H® is totally bounded (see Exercises 3.10 and 4.48).

Complete Metric Spaces

As you can now well imagine, we want to isolate the class of metric spaces in which
Cauchy sequences always converge. It follows from Theorem 7.5 that we would have
an analogue of the Bolzano—Weierstrass theorem in such spaces (see Theorem 7.11).
In fact, we will find that this class of metric spaces has much in common with the real
line R.

A metric space M is said to be complete if every Cauchy sequence in M converges —
to a point in M!

Examples 7.7

(a) R is complete. This is a consequence of the least upper bound axiom; in fact,
as we will see, the completeness of R is actually equivalent to the least upper
bound axiom.

(b) R" is complete (because R is).

(¢) Any discrete space is complete (trivially).

(d) (0, 1) is not complete. (Why?) Hence, completeness is not preserved by homeo-
morphisms. Which subsets of R are complete?

(e) co, €1, €2, and €4, are all complete. The proofs are all very similar; we sketch the
proof for ¢; below and leave the rest as exercises.

(f) Cla.b] is complete. The proof is not terribly difficult, but it will best serve
our purposes to postpone it until Chapter Ten, where several similar proofs are
collected.

The proof that ¢, is complete is based on a few simple principles that will generalize
to all sorts of different settings. This generality will become all the more apparent if
we introduce a slight change in our notation. Since a sequence is just another name for
a function on N, let’s agree to write an element f € €; as f = (f(k));2,, in which case
Wfll2 = (i | f (k)|2)'/ ? For example, the notorious vectors ¢'” will now be written
en, where e, (k) = &, . (This is Kronecker’s delta, defined by §, , = 1 if n = k and
3, x = 0 otherwise.)

Let (f,) be a sequence in ¢;, where now we write f, = (f,(k));2,, and suppose that
(fa) 1s Cauchy in ¢,. That is, suppose that for each ¢ > 0 there exists an ng such that
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| fn — fmll2 < € whenever m, n > no. Of course, we want to show that ( f,) converges,
in the metric of €,, to some f € ¢,. We will break the proof into three steps:

Step 1. f(k) = lim,_, fa(k) exists in R for each k.

To see why, note that | f,(k) — fa(k)|<|fs — fmll2 for any k, and hence
(fn(k))22, 1s Cauchy in R for each k. Thus, f is the obvious candidate for the
limit of (f,), but we still have to show that the convergence takes place in the
metric space ¢5; that is, we need to show that f € ¢, and that || f, — f|l2 = 0 (as
n — o0).

Step 2. f € ¢5; that is, || f]l2 < 0.
We know that ( f,,) is bounded in €, (why?); say, || f,|l- < B for all n. Thus, for
any fixed N < oo, we have:

N N
DR = lim B | fu(k) < B2,
k=1 k=1

Since this holds for any N, we get that | f||. < B.

Step 3. Now we repeat Step 2 (more or less) to show that f, — f in €.
Given ¢ > 0, choose ng so that || f, — finllo < € whenever m, n > ng. Then, for
any N and any n > n,,

N N
SR = fulF = lim Y"1 fulk) — Sl < €.
k=1 k=1

Since this holds for any N, we have || f — f,|l2 < e forall n > ny. Thatis, f, = f
in 82.

Examples 7.8

(a) Just having a candidate for a limit is not enough. Consider the sequence ( f,,) in
¢ defined by f, =(1,..., 1,0, ...), where the first n entries are 1 and the rest
are 0. The “obvious” limitis f = (1, 1,...)(all 1), but | f — fulloo = 1 for all n.
What’s wrong?

(b) Worse still, sometimes the “obvious” limit is not even in the space. Consider
the same sequence as in (a) and note that each f, is actually an element of cy.
This time, the natural candidate f is not in ¢o. Again, what’s wrong?

As you can see, there can be a lot of details to check in a proof of completeness, and
it would be handy to have at least a few easy cases available. For example, when is a
subset of a complete space complete? The answer is given as:

Theorem 7.9. Let (M, d) be a complete metric space and let A be a subset of
M. Then, (A.d) is complete if and only if A is closed in M.

PROOF. First suppose that (A, d) is complete, and let (x,) be a sequence in A that
converges to some point x € M. Then (x,) is Cauchy in (A, d ) and so converges
to some point of A. That is, we must have x € A and, hence, A is closed.
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Next suppose that (x,) is a Cauchy sequence in (A, d ). Then (x,) is also Cauchy
in (M, d). (Why?) Hence, (x,) converges to some point x € M. But A is closed
and so, in fact, x € A. Thus, (A, d) is complete. O

Examples 7.10

(@) [0,1], [0,00), N, and A are all complete.

(b) It follows from Theorem 7.5 that if a metric space (M, d ) is both complete and
totally bounded, then every sequence in M has a convergent subsequence. In
particular, any closed, bounded subset of R is both complete and totally bounded.
Thus, for example, every sequence in [a, b ] has a convergent subsequence. As
you can easily imagine, the interval [a, b] is a great place to do analysis! We
will pursue the consequences of this felicitous combination of properties in the
next chapter.

EXERCISES
Unless otherwise stated, (M, d ) denotes an arbitrary metric space.

> 12. Let A be a subset of an arbitrary metric space (M, d ). If (A, d) is complete,
show that A is closed in M.

13. Show that R endowed with the metric o(x, y) = |arctan x — arctan y| is not
complete. How about if we try t(x, y) = | x> — y*|?
14. If we define

1 1
d(m,n): |; - ;;

for m, n € N, show that d is equivalent to the usual metric on N but that (N, d ) is
not complete.

15. Prove or disprove: If M is complete and f : (M,d ) — (N, p) is continuous,
then f(M) is complete.

> 16. Prove that R" is complete under any of the norms || - ||, || - |2, or ||  lloo- [This
is interesting because completeness is not usually preserved by the mere equivalence
of metrics. Here we use the fact that all of the metrics involved are generated by
norms. Specifically, we need the norms in question to be equivalent as functions:
l-llo <Il-ll2<ll-l <1l - |- As we will see later, any two norms on R" are
comparable in this way.]

17. Given metric spaces M and N, show that M x N is complete if and only if
both M and N are complete.

> 18. Fill in the details of the proofs that £, and £, are complete.

19. Prove that cq is complete by showing that ¢y is closed in €. [Hint: If (f,) is a
sequence in co converging to f € €, note that | f(k)| < | f(k) — fa(k)| + | fa(k)I.
Now choose n so that the | f(k) — f,(k)| is small independent of k.]

20. If (x,)and (y,)are Cauchy in (M, d ), show that (d(x,, ya )):O=l is Cauchy in R.
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21. If (M, d ) is complete, prove that two Cauchy sequences (x,) and (y,) have the
same limit if (and only if ) d(x,, y,) = O.

22. Let D be a dense subset of a metric space M, and suppose that every Cauchy
sequence from D converges to some point of M. Prove that M is complete.

23. Prove that M is complete if and only if every sequence (x,) in M satisfying
d(xn, Xp4+1) < 27", for all n, converges to a point of M.

24. Prove that the Hilbert cube H*® (Exercise 3.10) is complete.

25. True or false? If f : R — R is continuous and if (x,) is Cauchy, then ( f(x,))
is Cauchy. Examples? How about if we insist that f be strictly increasing? Show that
the answer is “true” if f is Lipschitz.
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Our next result underlines the fact that complete spaces have a lot in common

with R.

Theorem 7.11. Foranymetric space (M, d), the following statements are equiva-
lent:
(1) (M, d) is complete.
(i1) (The Nested Set Theorem) Let F\ D F;, D F3 D .-- be a decreas-
ing sequence of nonempty closed sets in M with diam(F,) — 0. Then,
Naey Fa # @ (in fact, it contains exactly one point).
(iii) (The Bolzano—Weierstrass Theorem) Every infinite, totally bounded subset
of M has a limit point in M.

PROOF. (i) = (ii): (Compare this with the proof of the nested interval theorem,
Theorem 1.5.) Given (F;) as in (i1), choose x, € F, for each n. Then, since the
F, decrease, {x; : k > n} C F, for each n, and hence diam{x; : k > n} - 0
as n — oo. That is, (x,) is Cauchy. Since M is complete, we have x, — x for
some x € M. But the F, are closed, and so we must have x € F, for all n. Thus,
N2y Fa# O

(11)) = (ii1): Let A be an infinite, totally bounded subset of M. Recall that we
have shown that A contains a Cauchy sequence (x,) comprised of distinct points
(xn # xm forn # m). Now, setting A, = {xx : k> n),weget A DA} DA D---,
each A, is nonempty (eveninfinite), and diam(A,) — 0. That s, (ii) almost applies.
But, clearly, A, O A, # @ for each n, and diam (A,) = diam(A,) — 0 as
n — oo. Thus there exists an x € (oo, A, # @. Now x, € A, implies that
d(x,,x) < diam (A,) — 0. That is, x, = x and so x is a limit point of A (see
Exercise 4.33).

(i11) = (i): Let (x,) be Cauchy in (M, d ). We just need to show that (x,) has a
convergent subsequence. Now, by Lemma 7.3, the set A = {x, : n > 1} is totally
bounded. If A happens to be finite, we are done. (Why?) Otherwise, (iii) tells us
that A has a limit point x € M. It follows that some subsequence of (x,) converges
to x. (Why?) O
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In particular, note that Theorem 7.11 holds for M = R. In this case, each of the three
statements in Theorem 7.11 is equivalent to the least upper bound axiom. That is, we
might have instead assumed one of these three as an axiom for R and then deduced the
existence of least upper bounds as a corollary. What’s more, the fact that monotone,
bounded sequences converge in R is also equivalent to the least upper bound axiom.
(See the discussion following Theorem 1.5.) In R, then, completeness takes on multiple
personalities, with each new persona directly related to the order properties of the real
numbers.

EXERCISES
Each of the following exercises is set in a metric space M with metric d.

> 26. Justas with the nested interval theorem, itis essential that the sets F, usedin the
nested set theorem be both closed and bounded. Why? Is the condition diam( F,,) — 0
really necessary? Explain.

> 27. Note that the version of the Bolzano—Weierstrass theorem given in Theo-
rem 7.11 replaces boundedness with total boundedness. Is this really necessary?
Explain.
28. Suppose that every countable, closed subset of M is complete. Prove that M is
complete.
29. Prove that M is complete if and only if, for each r > 0, the closed ball {y €
M :d(x, y) < r}is complete.

30. If (M. d) is complete, prove that every open subset G of M is homeomorphic
to a complete metric space. [Hint: Let F = M \ G and consider the metric o(x, y) =
d(x.y) + |(d(x, F))™' = d(y. F))"'|on G ]

In any normed vector space, the extra algebraic structure makes completeness some-
what easier to test. That this is so can be seen through a clever observation due to Stefan
Banach. In fact, Banach made so many clever observations about completeness that we
now refer to a complete normed vector space as a Banach space.

Here’s the setup: Given a sequence (x,) in a normed vector space X, the series
Y™ | x, is said to converge in X if the sequence of partial sums 3_"__ x, converges to
some vector x € X, thatis, if ||x — ZL, xn|ll = 0as N — oo. In this case we write, as
usual, x = Y 7 x, and we say that }_>° | x, is summable to x. In other words, } > | x,
is the name that we give to the limit of the partial sums.

Now, just as in R, sequences and series are interchangeable: Each series is really
a sequence of partial sums and, conversely, each sequence is the sequence of partial
sums for some series. In particular, notice that x, = x, + }:Lz(xi — xj_1). The se-
quence (x,) and the series ) _.-,(x; — x;_;) live or die together; both converge or both
diverge. With this tool at our disposal (and Banach’s help, of course). it is not hard to
see that the question of completeness for a normed space can be settled by a simple

test:
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Theorem 7.12. A normed vector space X is complete if and only if every abso-
lutely summable series in X is summable. That is, X is complete if and only if

> 22 | Xn converges in X whenever 3 oo | |Ix,|l < oo.

PROOF. First suppose that X is complete, and let (x,) be a sequence in X for
which Y27 ||lx,|l < oo. If we write s, = Y ., x, for the sequence of partial
sums, then, for mm > n, the triangle inequality yields

m
< ) lxll.

k=n+1

m

>

k=n+1

“Sm -5l =

Since the partial sums of ) .-, ||lx,| form a convergent (and hence Cauchy) se-
quence, we have that } )" | |lxx| = Oasm, n — oo. Thus, (s,) is also a Cauchy
sequence and, as such, converges in X.

Next suppose that absolutely summable series in X are summable, and let (x,)
be a Cauchy sequence in X. As always, it is enough to find a subsequence of
(x,) that converges. To this end, choose a subsequence (x,,) for which ||x,,,, —
xn, I < 27X for all k. (How?) Then, in particular, } =, lXn., — X |l cOnverges.
Consequently, the series Y- | (x,,., —Xn,) converges in X. As we remarked earlier,
this means that the sequence x,_,, = xn, + Y _;—,(Xpn,., — Xn,) converges in X. O

There is never too much of a good thing: Note that Theorem 7.12 gives us yet another
characterization of completeness in R. The familiar fact that every absolutely summable
series of real numbers is summable is actually equivalent to the least upper bound axiom.

EXERCISES

31. If ) 72, x, is a convergent series in a normed vector space X, show that
v < 2 et Ixall

IIZn=1x" || - n=1 I=nll*

32. Use Theorem 7.12 to prove that £, is complete.

33. Let s denote the vector space of all finitely nonzero real sequences; that is,

x = (x,) € s if x, = 0 for all but finitely many n. Show that s is not complete under
the sup norm || x|loc = sup, |xa].

34. Prove that a normed vector space X is complete if and only if every sequence
(x,) in X satisfying || x, — x,411/l < 27", for all n, converges to a point of X.

35. Prove that a normed vector space X is complete if and only if its closed unit
ball B = {x € X : ||x|| < 1} is complete.

Fixed Points

Completeness is a useful property to have around if you are interested in solving equa-
tions. How so? Well, think about the sorts of tricks that we use in R. How, for example,
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would you compute +/2 “by hand”? You would most likely start by finding an approxi-
mate solution to the equation x? = 2 and then look for ways to improve your estimate.

Most numerical techniques give, in fact, a sequence of “better and better” approxi-
mate solutions, where “better and better” typically means that the error in approximation
gets smaller. The completeness of R affords us such luxuries; we can effectively pro-
claim the existence of solutions without necessarily finding them! Once we have a
Cauchy sequence of approximate solutions, completeness will finish the job.

The same holds true in any complete space. We can effectively solve certain “ab-
stract” equations by simply displaying a Cauchy sequence of approximate solutions.
One such technique, called the method of successive approximations, is used in the
standard proof of existence for solutions to differential equations and is generally cred-
ited to Picard in 1890. (But the technique itself goes back at least to Liouville, who
first published it in 1838, and it may have even been known to Cauchy.) We will see an
example of this method shortly.

The modern metric space version of the method of successive approximations was
explicitly stated in Banach’s thesis in 1922. In this setting it is most often referred to as
Banach'’s contraction mapping principle. A map f : M — M on a metric space (M, d)
is called a contraction (or, better still, a strict contraction) if there is some constant o
with 0 < a < | such thatd(f(x), f(y)) < ad(x, y)is satisfied for all x, y € M. That is,
a contraction shrinks the distance between pairs of points by a factor strictly less than
1. Please note that any contraction is automatically continuous (since it is Lipschitz).

Banach’s approach seeks to solve an “abstract” equation of the form f(x) = x (this
is more general than it might appear). That is, we look for a fixed point for f. If f is
a contraction defined on a complete metric space, we can even prescribe a sequence of
approximate solutions:

Theorem 7.13. Let (M, d ) be a complete metric space, and let f : M — M be a
(strict) contraction. Then, f has a unique fixed point. Moreover, given any point
X0 € M, the sequence of functional iterates ( f " (xq)) always converges to the fixed

point for f.

[The notation f" means the composition of f with itself n times: fo fo---o f. For
example, f2(x) = f(f(x)), f3(x) = f(f2(x)), and so on. The sequence of functional
iterates (f "(x)) is called the orbit of x under f.]

PROOF. Let xo be any point in M, and consider the sequence (f "(xo)).

If (f "(x0)) converges, we are done. Indeed, if x = lim,_, o f "(xp), then, since
f is continuous, we have f(x) = lim,—o f(f"(x0)) = limpooe f"*'(x0) =
lim,_. o f"(x0) = x. And this x is unique, for if y is also a fixed point for f, then
d(x,y) =d(f(x), f(y)) < ad(x, y), which forces d(x, y) = 0.

So our goal is clear: We need to show that (f "(x¢)) is a Cauchy sequence. But:

d(f"*'(x0), f"(x0)) < ad(f"(x0), f" ' (x0))
< a?d (f"'(x0), f" *(x0))

< a"d(f(xp), xg) = Ca".
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And so for m > n the triangle inequality yields
d(f™' o) f"(x0)) < D _d(f**xo) frixo) =C ) b (7.1
k=n k=n

Butsince0 <o < 1,wehave ) | af - 0Oasm,n — oo.(Why?) Thus, (f"(xo))
is Cauchy. O

Note that the proof of Theorem 7.13 even gives us a rough estimate for the error in
approximation. If we pick an initial “guess” xo for the fixed point x, then, by letting
m — 00 in equation (7.1), we get

an

l—a

d(f " (x0), ) < d(f(x0), X0) )_ &* = d(f(xo). Xo)
k=n

Example 7.14

Suppose that f : [a,b] — [a, b]is continuous on [a, b ], differentiable on (a, b),
and has | f'(x)] < a < | forall a < x < b. Then it follows from the mean value
theorem that | f(x) — f(y)| < a|x — y| for all x, y € [a, b] and, hence, that f has
a unique fixed point. See Figures 7.1 and 7.2.

The case 0< f’<1.

yox y=f(x)

v

fag e /
JACOVE '

The case -1 < f’<0.

y=x

Figure
7.1

Figure
7.2
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EXERCISES

36. The function f(x) = x? has two obvious fixed points: py = 0 and p, = 1.
Show that there is a 0 < § < 1 such that | f(x) — po| < |x — po| whenever
|lx — pol < 8,x # po.Conclude that f "(x) — po whenever |x — po| < 8,x # po.
This means that p is an attracting fixed point for f; every orbit that starts out near
0 converges to 0. In contrast, find a § > 0 such that if |[x — p;| < 8§, x # p,, then
| f(x) — p1| > |x — pi|. This means that p, is a repelling fixed point for f; orbits
that start out near 1 are pushed away from 1. In fact, given any x # 1, we have
frx) A L

37. Suppose that f : (a, b) — (a, b) has a fixed point p in (a, b) and that f is
differentiable at p. If | f '(p)| < 1, prove that p is an attracting fixed point for f. If
| f'(p)| > 1, prove that p is a repelling fixed point for f.

38.

(a) Let f(x) = arctan x. Show that f '(0) = | and that 0 is an attracting fixed point
for f.

(b) Let g(x) = x> + x. Show that g’(0) = 1 and that O is a repelling fixed point
for g.

(c) Let A(x) = x2 + 1/4. Show that 4'(1/2) = 1 and that 1/2 is a fixed point for
h that is neither attracting nor repelling.

39. The cubic x*> —x — 1 has a unique real root xo with 1 < xo < 2. Find it! [Hint:
Iterating the function f(x) = x> — 1 won’t work! Why?]

Example 7.15

We’ll show how Theorem 7.13 can be used to find an estimate for, say, v/5. That
is, we’ll solve the equation F(x) = x> —5 = 0. Now itisclearthat I < /5 < 2, so
let’s consider F as a map on the interval [ 1, 2]. And since the equation F(x) =0
isn’t quite appropriate, let’s consider the equivalent equation f(x) = x, where
f(x) = x — AF(x) for some suitably chosen A € R. The claim is that it’s possible
tofind A > Osuchthat (i) f : [1,2] = [1,2),and (i) |f'(x)] < « < 1 for
1 < x < 2.Infact, abit of experimentation will convince youthatany0 < A < 1/6
will do. Let’s try A = 1/8. Table 7.1 displays a few iterations of the scheme
Xn+1 = f(xn) = xp — (x;:' — 5)/8, starting with xo = 1.5. The last value is accurate

Table 7.1

Xn f(xn)
1.5 1.703125
1.703125 1.7106070518
1.7106070518 1.7099147854
1.7099147854 1.7099818467
1.7099818467 1.7099753773
1.7099753773 1.7099760016

1.7099760016

1.70997594 14
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to at least six places. Roughly speaking, each iteration increases the accuracy by
one decimal place. Not bad.

EXERCISE

40. Extend the result in Example 7.15 as follows: Suppose that F : [a,b] = R
is continuous on [ a, b ], differentiable in (a, b), and satisfies F(a) < 0, F(b) > 0,
and 0 < K| < F'(x) < Kj;. Show that there is a unique solution to the equation
F(x) = 0. [Hint: Consider the equation f(x) = x, where f(x) = x — AF(x) for
some suitably chosen A.]

Under suitable conditions on f, the same technique can be applied to the problem
of existence and uniqueness of the solution to the initial value problem:

y'= f(x,y). y(0) = yo.

For example, if f is continuous in some rectangle containing (0, yo) in its interior, and
if f is Lipschitz in its second variable, | f(x, y) — f(x, z)| < K|y — z|, for some constant
K, then a unique solution exists — at least in some small neighborhood of x = 0. This
fact was first observed by Lipschitz himself (hence the name Lipschitz condition), but
Lipschitz did not have metric spaces at his disposal. Most modern proofs use some
form of Banach’s contraction mapping principle (often in the form of the method of
successive approximations).

We will not give the full details of the proof here, but we will at least show how
Banach’s theorem enters the picture. For this we will want to rephrase the problem as
a fixed-point problem on some complete metric space. First notice that by integrating
both sides of the differential equation we get

y(x) =yo+ / [, y(1)dt (x > 0).
0

That is, we need a fixed point for the map ¢ — F(g), where

(F(«)))(x)=)'o+/ f(t, o)) d:.

0

For simplicity, let’s assume that f is defined and continuous on all of R? (and still
Lipschitz in its second variable). Then the integral on the right-hand side of this formula
is well defined for any continuous function ¢. Let’s consider F as a map on C[0, § ],
where § > 0 will be specified shortly. Next we’ll check that F is a Lipschitz map on
C[0,6]. Forany 0 < x <4, note that

I(F(9)) (x) — (F(¥)) (x)| =

f f(l»w(t))dt—f f(t,w(t))dt‘
0 0
5/0 | f(t. o)) — f(1, ¥ (1)) dt

<K / o) = w0l dt
0
< Kx - max |p(t) — ¢ (1)

O<t<x

< Kbl — ¥llo-
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It follows that || F(¢) — F(¥)|leo < K& |l¢ — ¥|lo. Thus, F is a contraction on C[0, ]

provided that § is chosen to satisfy K§ < 1 and, in this case, F has a unique fixed point
in C[0,48].

Example 7.16

Consider the initial value problem y' = 2x(1 + y), y(0) = 0. By integrating both
sides of the differential equation, we see that we need a function ¢ satisfying
@(x) = [; 21(1+ (1)) dt = (F(p))(x). The method of successive approximations
amounts to taking an initial “guess” at the solution, say ¢y = 0, and iterating F.
Thus, ¢1(x) = f; 2t(1 + 0)dr = x2. Next, ga(x) = [ 21(1 + 13)dt = x? + x*/2.
Another iteration would yield ¢3(x) = x? + x*/2 + x%/6. And so on. Finally,
induction yields

This solution is valid on all of R (and agrees, naturally, with the solution obtained
by separation of variables).

EXERCISES

41. Let M be complete and let f : M — M be continuous. If f* is a strict con-
traction for some integer k > 1, show that f has a unique fixed point.

42. Define T : C[0,1] - C[0,1]by (T(f))(x) = [, f(t)dt. Show that T is
not a strict contraction while T2 is. What is the fixed point of T'?

43. Show that each of the hypotheses of the contraction mapping principle is nec-
essary by finding examples of a space M and amap f : M — M having no fixed
point where:

(a) M is incomplete (but f is still a strict contraction).

(b) f satisfiesonly d(f(x), f(y)) < d(x, y)forall x # y (but M is still complete).

Completions

Completeness is a central theme in this book; it will return frequently. It may comfort
you to know that every metric space can be “completed.” In effect, this means that by
tacking on a few “missing” limit points we can make an incomplete space complete.
While the approach that we will take may not suggest anything so simple as adding a
few points here and there, it is nevertheless the picture to bear in mind. In time, all will
be made clear!

First, a definition. A metric space (M . J) is called a completion for (M, d) if

(i) (M, d) is complete, and
(i1) (M, d) is isometric to a dense subset of (M J).
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If M is already complete, then certainly M = M works. Except for this easy case,
there is no obvious reason why completions should exist at all.

Formally, condition (ii) means that there issome mapi : M — M such thatd(x, y) =
d(i(x),i(y)) for all x, y € M, and such that i(M) is a dense subset of M. Informally,
condition (ii) says that we may regard M as an actual subset of M (in which case i is
just the inclusion map from M into M ), that d | m= d (i.e., the relative metric that
M inherits as a subset of M is just d ), and that M is dense in M.

The requirement that M is dense in M is added to insure uniqueness (more on this
in a moment), but it is actually easy to come by. The real work comes in finding any
complete space (N, p) that will accept M, isometrically, as a subset, for then we simply
take M = cly M. Notice that M is a closed subset of a complete space and hence is
complete, and that M is clearly dense in M.

Given a metric space M, we need to construct a complete space that is “big enough”
to contain M isometrically. One way to accomplish this is to consider the collection
of all bounded, real-valued functions on M. (This is roughly analogous to using the
power set of M when looking for a set that is bigger than M.) Here’s how we’ll do it:
Given any set M, we will define ¢.,,(M) to be the collection of all bounded, real-valued
functions f : M — R, and we will define a norm on £,,(M) in the obvious way:

Il flloo = sup | f(x)I.
xeM
This notation is consistent with that used for ¢, since, after all, a bounded sequence of
real numbers is nothing other than a bounded function on N. That is, €,, = €o(N).

The fact that || - || is @ norm on £,,(M) uses the same proof that we used for €.
And the fact that £,,(M) is complete under this norm again uses the same proof that
we used for €,. (See Exercises 18 and 44 and Exercise 3.21.) All of the fighting takes
place in R and has little to do with the sets M or N. It might help if you think of the
“M” in €,,(M) as simply an index set. Any index set with the same cardinality as M
would suit our purposes just as well.

To find a completion for M, then, it suffices to show that (M, d ) embeds isometrically
into £,(M). Thus, each point x € M will have to correspond to some real-valued
function on M. An obvious choice might be to associate each x with the function
t — d(x, t). Now this function is not necessarily bounded, but it is essentially the right
choice. We just have a few details to tidy up.

Lemma 7.17. Let (M, d) be any metric space. Then, M is isometric to a subset
of €oo(M).

PROOF. Fix any pointa € M. Toeach x € M we associate an element f, € £,,(M)
by setting

fx(t) = d(x,t) —d(a.t), teM.

Note that f, is bounded since | f,(¢)| = |d(x,t) — d(a,t)| < d(x,a), a number
that does not depend on ¢. That is, || f;lloo < d(x, a). All that remains is to check
that the correspondence x — f; is actually an isometry. But || f; — f,llo =
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SUp,ep ld(x, 1) — d(y.t)| < d(x,y), from the triangle inequality, and |d(x,t) —
d(y.t)l =d(x,y)whent =xort =y. Thus, || fi — fill =d(x,y). O

Lemma 7.17 shows that M is identical to the subset { f, : x € M} of £,,(M). We may
define a completion of M by taking M to be the closure of | fe:x € M}in €. (M). Seem
a bit complicated? Would it surprise you to learn that this completion is essentially the
only one available? Well, prepare yourself!

Theorem 7.18. If M|, and M3 are completions of M, then M, and M, are isomet-
ric.

PROOF. For simplicity of notation, let’s suppose that M is actually a subset of M,
and M, (and dense in each, of course). This will make for fewer arrows to chase
in the diagram below. The claim is that the identity on M “lifts” to an isometry f
from M, onto M.

M L M,
U U
I

M— M

Here’s how. We will define f : M, — M, through a series of observations.
First, given x € M), there is some sequence (x,) in M such that x, —» x in M,,
because M is dense in M,. In particular, (x,) is Cauchy in M,. But then (x,) is
also Cauchy in M,. (Why? Recall that (x,) C M C M,.) Hence x, — y in M,
for some y € M, because M; is complete. Now set f(x) = y. In other words, put
f(M,-lim x,) = Ma-lim I(x,).

We first check that f is well defined. If (x,) and (z,) are sequences in M, and
if both converge to x in M,, then both must also converge to y in M, since

dz(xm Zn) = dl(xno Zn) - d(xns Zn)_) Oo

where we’ve written d, for the metric in M, and d, for the metric in M> (recall
that both agree with d on pairs from M).

Now that we know that f is well defined, we also know that f|,, = I; that
is, f is an extension of the identity on M. This is more or less obvious, since, if
x € M, we have the constant sequence, x, = x for all n, at our disposal.

Next let’s check that f is onto. Given y € M3, there is some sequence (x,) in
M such that x, — y in M, (because M is dense in M,). But, just as before, this
means that x, — x in M, for some x. Clearly, y = f(x).

Finally, we check that f is an isometry. Given x, y € M,, choose sequences
(xn), (ya) iIn M such that x, - x in M, and y, — y in M,. Then, x, = f(x)in
M, and y, — f(y) in M;. Consequently,

di(x.y) = nl_i,ngc d(x,. yn) = d2(f(x). f(y)). (Why?) O

The proof of Theorem 7.18 allows us to make precise the notion of “adding on” a few
points to make M complete. The points that are “added on™ are limit points for entire
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collections of (nonconvergent) Cauchy sequences. Each point x in the completion M
corresponds to the collection of all Cauchy sequences in M that converge to x; given
one such Cauchy sequence (x,), any other Cauchy sequence (y,) in the same collection
must be “equivalent” to (x,) in the sense that d(x,, y,) — 0. In fact, this is the standard
construction; we define an equivalence relation on the class C of all Cauchy sequences in
M by declaring (x,) and (y,) to be equivalent whenever d(x,, y,) — 0. The completion
of M, then, is the set of equivalence classes of C under this relation.

In the next chapter we will use a technique that is similar to the one used in the
proof of Theorem 7.18 to construct extensions for maps other than isometries. The key
ingredients will still be a dense domain of definition and the preservation of Cauchy
sequences.

EXERCISES

Except where noted, M is an arbitrary metric space with metric d.
44. Give any set M, check that £,.(M) is a complete normed vector space.

45. If M and N are equivalent sets, show that £.,(M) and ¢,,(N) are isometric.
[Hint: If g : N — M is any map, then f > f o g defines a map from £,,(M) to
£50(N). How does this help?]

46. If A is a dense subset of a metric space (M, d ), show that (A, d)and (M, d)
have the same completion (isometrically). [Hint: If M is the completion for M, then
A isdense is M. Why?]

47. A function f : (M,d)— (N, p) is said to be uniformly continuous if f
is continuous and if, given € > O, there is always a single § > O such that
p(f(x), f(y)) < € forany x, y € M with d(x,y) < 4. That is, § is allowed
to depend on f and € but not on x or y. Prove that any Lipschitz map is uniformly
continuous.

48. Prove that a uniformly continuous map sends Cauchy sequences into Cauchy
sequences.

49. Suppose that f : Q — R is Lipschitz. Prove that f extends uniquely to a
continuous function g : R — R. [Hint: Given x € R, define g(x) = lim,_, o f(7n).
where (r,) is a sequence of rationals converging to x.]

50. Given a pointa € M and a subset A C M, show that each of the functions
x — d(x,a) and x — d(x, A) are uniformly continuous.

51. Twometric spaces (M, d ) and (N, p) are said to be uniformly homeomorphic
if there is a one-to-one and onto map f : M — N such that both f and f~! are
uniformly continuous. In this case we say that f is a uniform homeomorphism.
Prove that completeness is preserved by uniform homeomorphisms.

Just as we have solved one problem, we have raised another. We now know that
every metric space has a unique completion (at least if we agree to identify isometric
spaces). But suppose that the incomplete metric space that we start with carries some
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extra structure. Say that we need the completion of an incomplete normed vector space,
for example. Will we have to give up the vector space structure to gain completeness?
In other words, is the completion of a normed vector space still a normed vector space?
In still other words, could the completion be more trouble than its worth?

Luck is with us on this question; the completion of a normed vector space is indeed a
Banach space. The proof is not terribly hard, but it is rather tedious, with lots of details
to verify. The key steps, though, are easy to describe.

Given a normed vector space X and its completion X, we need to suitably define
both addition and scalar multiplication on X (and check that X is a vector space under
these), and we have to define a suitable norm on X. So, suppose that we are handed x,
y € X, and scalars «, 8 € R. How do we define ax + By? Well, choose sequences (x,),
(y») in X such that x, - x and y, — y in X, and define

ax + By = lim (ax, + Byn).

(This makes sense because (ax, + By,) is Cauchy in X.) After checking that this
definition tumns X into a vector space, there is only one reasonable choice for a norm
on X. We would set

x|l = d(x,0) = lim d(x,,0) = lim ||x,|
n— 00 n—00

and check that this is actually a norm on X. (If so, then it has to be complete - that is
already determined by d.) In this setting, X is a dense linear subspace of X.

Notes and Remarks

Fréchetintroduced complete metric spaces in his thesis, Fréchet [1906], while Hausdorff
coined the term totally bounded. But much of what is in this chapter has its roots in
Cantor’s work: The nested set theorem for R, a special case of Theorem 7.11(i1), is
generally credited to Cantor. The metric space version is due to Fréchet.

For more on the result in Exercise 30, see Kelley [1955]. Exercise 38 is taken
from Gulick [1992]). Examples 7.14 and 7.1S5, along with Exercise 40, are based on
the presentation in Kolmogorov and Fomin [1970]. Exercise 39 is adapted from an
entertaining article by Cannon and Elich [1993]. For more applications of functional
iteration and its relation to chaos and fractals, see Barnsley [1988], Devaney [1992], and
Edgar [1990]. For a historical survey of functional iteration, see D. F. Bailey [1989].

Picard’s theorem appears in Picard [1890]. Banach’s observation on completeness
for normed linear spaces (Theorem 7.12) and the contraction mapping principle (The-
orem 7.13) are from his thesis, Banach [1922]. You will find even more applications of
Banach’s contraction mapping theorem in Copson [1968], including proofs of the in-
verse and implicit function theorems. For an interesting application to “crinkly” curves,
see Katsuura [1991].

For a brief survey of some of fixed point theory’s “greatest hits,” see Shaskin [1991].
Fixed point theory remains a hot research area; for a look at some of the recent devel-
opments, see Goebel and Kirk [1990].
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It was Hausdorff who first showed that every metric space has a completion, and
his proof is based on what he calls the Cantor-Méray theorem (the description of the
irrationals in terms of Cauchy sequences of rationals). The proof given here is a hybrid;
Lemma 7.17 is based on a proof given in Kuratowski [1935] (but see also Fréchet [1928]
and Kaplansky [1977]) while Theorem 7.18 (and the subsequent remarks) follows the
lines of Hausdorff’s original proof (see, for example, Hausdorff [1937]). Note that the
function f, used in the proof of Lemma 7.17 is actually a continuous function on M —
we will use this observation later to show that (under certain circumstances) M embeds
isometrically into C(M), the space of continuous real-valued functions on M.

We will have much more to say about uniform continuity (Exercise 47) and uniform
homeomorphisms (Exercise 51) in the next chapter.




CHAPTER EIGHT

Compactness

Compact Metric Spaces

A metric space (M, d) is said to be compact if it is both complete and totally bounded.
As you might imagine, a compact space is the best of all possible worlds.

Examples 8.1

(@) A subset K of R is compact if and only if K is closed and bounded. This
fact is usually referred to as the Heine—Borel theorem. Hence, a closed bounded
interval [ a, b ] is compact. Also, the Cantor set A is compact. The interval (0, 1),
on the other hand, is not compact.

(b) A subset K of R" is compact if and only if K is closed and bounded. (Why?)

(c) Itis important that we not confuse the first two examples with the general case.
Recall that the set {e,:n > 1} is closed and bounded in ¢, but not totally
bounded - hence not compact. Taking this a step further, notice that the closed
ball {x:|lx|l < 1} in € is not compact, whereas any closed ball in R" is
compact.

(d) A subset of a discrete space is compact if and only if it is finite. (Why?)

Just as with completeness and total boundedness, we will want to give several equiva-
lent characterizations of compactness. In particular, since neither completeness nor total
boundedness is preserved by homeomorphisms, our newest definition does not appear
to be describing a topological property. Let's remedy this immediately by giving a
sequential characterization of compactness that will turn out to be invariant under
homeomorphisms.

Theorem 8.2. (M, d) is compact if and only if every sequence in M has a sub-
sequence that converges to a point in M.

PROOF.
[ every sequence in M has ]
totally bounded y sequence 1 as
a Cauchy subsequence
+ e { n } O
complete
| Cauchy sequences converge |
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It is easy to believe that compactness is a valuable property for an analyst to have
available. Convergent sequences are easy to come by in a compact space; no fussing
with difficult prerequisites here! If you happen on a nonconvergent sequence, just
extract a subsequence that does converge and use that one instead. You couldn’t ask for
more!

Given a compact space, it is easy to decide which of its subsets are compact:

Corollary 8.3. Let A be a subset of a metric space M. If A is compact, then A
is closed in M. If M is compact and A is closed, then A is compact.

PROOF. Suppose that A is compact, and let (x,,) be a sequence in A that converges
to a point x € M. Then, from Theorem 8.2, (x,,) has a subsequence that converges
in A, and hence we must have x € A. Thus, A is closed.

Next, suppose that M is compact and that A is closed in M. Given an arbitrary
sequence (x,) in A, Theorem 8.2 supplies a subsequence of (x,) that converges
to a point x € M. But since A is closed, we must have x € A. Thus, A is com-
pact. O

EXERCISES
Unless otherwise stated, (M, d) denotes a generic metric space.

> 1. If K is anonempty compact subset of R, show that sup K and inf K are elements
of K.

> 2. LetE = {x € Q:2 < x? < 3}, considered as a subset of Q (with its usual
metric). Show that E is closed and bounded but not compact.

3. If A is compact in M, prove that diam(A) is finite. Moreover, if A is nonempty,
show that there exist points x and y in A such that diam(A) = d(x, y).

4. If A and B are compact sets in M, show that A U B is compact.
5. True or false? M is compact if and only if every closed ball in M is compact.

6. If A is compact in M and B is compact in N, show that A x B is compact in
M x N (see Exercise 3.46).

7. If K is a compact subset of R2, show that K C [a, b] x [c. d ] for some pair
of compact intervals [a, b ] and [c, d ].

8. Prove that the set {x € R" : |lx||; = 1} is compact in R" under the Euclidean
norm.

9. Prove that (M, d ) is compact if and only if every infinite subset of M has a limit
point.
10. Show that the Heine—Borel theorem (closed, bounded sets in R are compact)

implies the Bolzano—Weierstrass theorem. Conclude that the Heine—-Borel theorem is
equivalent to the completeness of R.
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11. Prove that compactness is not a relative property. That is, if K is compact
in M, show that K is compact in any metric space that contains it (isometri-
cally).

12. Show thattheset A ={x € &, : |x,| < 1/n, n=1,2,...}iscompactin 5.
[Hint: First show that A is closed. Next, use the fact that } .- 1/n% < 00 to show
that A is “within €” of theset A N{x € €, : |x,| =0, n > N}.]

13. Given c, > O for all n, prove that the set {x € €, : |x,| < c,, n = 1} is

compact in £, if and only if Y o | ¢? < 0.

n=1%n
14. Show that the Hilbert cube H*® (Exercise 3.10) is compact. [Hint: First
show that H* is complete (Exercise 7.24). Now, given € > 0, choose N so that
Y 2 v 27" < € and argue that H™ is “within £” of the set {x € H® : |x,| = O for
n> NJ.]

15. If A is a totally bounded subset of a complete metric space M, show that A is
compact in M. For this reason, totally bounded sets are sometimes called precompact
or conditionally compact. In fact, any set with compact closure might be labeled
precompact.

16. Show that a metric space M is totally bounded if and only if its completion M
is compact.

> 17. If M is compact, show that M is also separable.

18. A collection (U,) of open sets is called an open base for M if every open set
in M can be written as a union of the U,. For example, the collection of all open
intervals in R with rational endpoints is an open base for R (and this is even a
countable collection). (Why?) Prove that M has a countable open base if and only if
M is separable. [Hint: If {x,} is a countable dense set in M, consider the collection
of open balls with rational radii centered at the x,.]

19. Prove that M is separable if and only if M is homeomorphic to a to-
tally bounded metric space (specifically, a subset of the Hilbert cube). [Hint: See
Exercise 4.49.]

To show that compactness is indeed a topological property, let’s show that the con-
tinuous image of a compact set is again compact:

Theorem 8.4. Let f : (M,d) — (N, p) be continuous. If K is compact in M,
then f(K) is compactin N.

PROOF. Let (y,) be a sequence in f(K). Then, y, = f(x,) for some sequence
(x,) in K. But, since K is compact, (x,) has a convergent subsequence, say,
x,, = X € K. Then, since f is continuous, y,, = f(x,) = f(x) € f(K). Thus,
f(K)is compact. O
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Theorem 8.4 gives us a wealth of useful information. In particular, it tells us that
real-valued continuous functions on compact spaces are quite well behaved:

Corollary 8.5. Let (M,d) be compact. If f : M — R is continuous, then f is
bounded. Moreover, f attains its maximum and minimum values.

PROOF. f(M) is compact in R; hence it is closed and bounded. Moreover,
sup f(M) and inf f(M) are actually elements of f(M). (Why?) That is, there
exist x, y € M such that f(x) < f(t) < f(y) forall t € M. (In this case we would

write f(x) = miney f(¢) and f(y) = max,ep f(2).) O

Corollary 8.6. If f : [a, b] = R is continuous, then the range of f is a compact
interval | c,d ) for some c,d € R.

Corollary 8.7. If M is a compact metric space, then || f|loo = max,ep | f(1)| de-
fines a norm on C(M), the vector space of continuous real-valued functions on M.

EXERCISES
Throughout, M denotes a metric space with metric d.

> 20. Let E be a noncompact subset of R. Find a continuous function f : E — R
that is (i) not bounded; (i1) bounded but has no maximum value.

21. Prove Corollary 8.6.
22. If M iscompactand f : M — N is continuous, prove that f is a closed map.

> 23. Suppose that M is compact and that f : M — N is continuous, one-to-one,
and onto. Prove that f is a homeomorphism.

24. Let f:[0,1]—>[0,1]x[0,1] be continuous and one-to-one. Show that f
cannot be onto. Moreover, show that the range of f is nowhere dense in [0, 1] x
[0, 1]. [Hint: The range of f is closed (why?); if it has nonempty interior, then it
contains a closed rectangle. Argue that this rectangle is the image of some subinterval
of ([0, 1].]

25. Let V be a normed vector space, and let x # y € V. Show that the map
f(t) = x +t(y — x) is a homeomorphism from [ 0, 1 ] into V. The range of f is the
line segment joining x and y; it is often written [ x, y ].

26. If f : R — R is both continuous and open, show that f is strictly monotone.
27. Given f : [a,b] — R, define G : [a,b) = R2by G(x) = (x, f(x))
(the range of G is the graph of f). Prove that the following are equivalent: (i) f
is continuous; (ii) G is continuous; (iii) the graph of f is a compact subset of R2.

[Hint: f is continuous if, whenever x, — x, there is a subsequence of (f(x,)) that
converges to f(x). Why?]
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28. Let f :[a,b] — [a, b] be continuous. Show that f has a fixed point. Try to
prove this without appealing to the intermediate value theorem. [Hint: Consider the
function g(x) = |x — f(x)|.]

29. Let M be a compact metric space and suppose that f : M — M satisfies
d(f(x), f(y)) < d(x, y) whenever x # y. Show that f has a fixed point. [Hint:
First note that f is continuous; next, consider g(x) = d(x, f(x)).]

Corollary 8.7 would seem to suggest that compactness is the analogue of “finite”
that we talked about at the end of Chapter Five. To better appreciate this, we will
need a slightly more esoteric characterization of compactness. A bit of preliminary
detail-checking will ease the transition.

Lemma 8.8. In a metric space M, the following are equivalent:

(@) IfG isany collection of open sets in M with | J{G : G € G} D M, then there
are finitely many sets G, ..., G, € Gwith | J|_, G; D M.

(b) If F is any collection of closed sets in M such that (\;_, F; # @ for all
choices of finitely many sets F,, ..., F, € F,then (\{F : F € F} # @.

The proof of Lemma 8.8 is left as an exercise; as you might guess, De Morgan’s
laws do all of the work. The first condition is usually paraphrased by saying, in less
than perfect English, “every open cover has a finite subcover.” The second condition
is abbreviated by saying “every collection of closed sets with the finite intersection
property has nonempty intersection.” These may at first seem to be unwieldy statements
to work with, but each is worth the trouble. Here’s why we care: Condition (a) implies
that M is totally bounded because, for any € > 0, the collection G = {B.(x) : x € M}
is an open cover for M. Condition (b) implies that M is complete because it easily implies
the nested set theorem (if F; D F> D --- are nonempty, then (i_, F; = F, # @). Put
the two together and we’ve got our new characterization of compactness.

Theorem 8.9. M is compact if and only if it satisfies either (hence both) 8.8 (a)
or 8.8 (b).

PROOF. As noted above, conditions 8.8 (a) and 8.8 (b) imply that M is totally
bounded and complete, hence compact. So we need to show that compactness
will imply, say, 8.8 (a). To this end, suppose that M is compact, and suppose that
G is an open cover for M that admits no finite subcover. We will work toward a
contradiction.

Now M is totally bounded, so M can be covered by finitely many closed sets
of diameter at most 1. It follows that at least one of these, call it A,, cannot be
covered by finitely many sets from G. Certainly A, # @ (since the empty set is
easy to cover!). Note that A; must be infinite.

Next, A, is totally bounded, so A, can be covered by finitely many closed sets
of diameter at most 1/2. At least one of these, call it A,, cannot be covered by
finitely many sets from G.
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Continuing, we get a decreasing sequence A} D A, D -+ D A, D -+, where
A, is closed, nonempty (infinite, actually), has diam A, < 1/n, and cannot be
covered by finitely many sets from G.

Now here’s the fly in the ointment! Let x € (2, A, (# @, because M is
complete). Then, x € G € G for some G (since G is an open cover) and so, since
G is open, x € B.(x) C G for some ¢ > 0. But for any n with 1/n < £ we would
then have x € A, C B.(x) C G. That is, A, is covered by a single set from G.
This is the contradiction that we were looking for. O

Just look at the tidy form that the nested set theorem takes on in a compact space:

Corollary 8.10. M is compact if and only if every decreasing sequence of
nonempty closed sets has nonempty intersection; that is, if and only if, whenever
F\ D F; D - --isa sequence of nonempty closed sets in M, we have (.-, F, # @.

PROOF. The forward implication is clear from Theorem 8.9. So, suppose that
every nested sequence of nonempty closed sets in M has nonempty intersection,
and let (x,) be a sequence in M. Then there is some point x in the nonempty set

Moz {xx : k > n}. (Why?) It follows that some subsequence of (x,) must converge
tox. O

Note that we no longer need to assume that the diameters of the sets F, tend to zero;
hence, (>, F, may contain more than one point.

Corollary 8.11. M is compact if and only if every countable open cover admits
a finite subcover. (Why?)

EXERCISES

Except where noted, M is an arbitrary metric space with metric d.
> 30. Prove Lemma 8.8.

31. Givenan arbitrary metric space M, show that adecreasing sequence of nonempty
compact sets in M has nonempty intersection.

32. Prove Corollary 8.11 by showing that the following two statements are equi-

valent.

(i) Every decreasing sequence of nonempty closed sets in M has nonempty inter-
section.

(ii) Every countable open cover of M admits a finite subcover; that is, if (G,) is a
sequence of open sets in M satisfying | J*, G, D M, then | J\_, G, D M for
some (finite) N.

33. Let(M, d)becompact. Suppose that ( F,) is a decreasing sequence of nonempty
closed setsin M,and that[") -, F, is contained in some openset G.Showthat F, C G
for all but finitely many n.
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34. Let A be a subset of a metric space M. Prove that A is closed in M if and only
if A N K is compact for every compact set K in M. [Hint: If (x,) converges to x,
then {x} U {x, : n > 1} is compact. (Why?)]

35. Let G be an open cover for M. We say that ¢ > 0 is a Lebesgue number
for G if each subset of M of diameter <¢ is contained in some G € G. If M is
compact, show that every open cover of M has a Lebesgue number. [Hint: If not,
there exists a set E, in M with diam(E,) < 1/n such that E, is not contained in
any G € G.]

36. Let F and K be disjoint, nonempty subsets of a metric space M with F
closed and K compact. Show that d(F, K) = inf{d(x,y) : x € F,y € K} > 0.
Show that this may fail if we assume only that F and K are disjoint closed
sets.

37. A real-valued function f on a metric space M is called lower semicontinuous
if, for each real a, the set {x € M : f(x) > a} is open in M. Prove that f is
lower semicontinuous if and only if f(x) < liminf,_, o f(x,) whenever x, — x
in M.

38. If M is compact, prove that every lower semicontinuous function on M is
bounded below and attains a minimum value.

39. A function f : M — R is called upper semicontinuous if — f is lower semi-
continuous. Formulate the analogues of Exercises 37 and 38 for upper semicontinuous
functions.

40. Let M be compactand let f : M — M satisfy d(f(x), f(y)) = d(x, y) forall
X, y € M. Show that f is onto. [Hint: If B.(x) N f(M) = @, consider the sequence
(f"(x)).]

41. Is compactness necessary in Exercise 40?7 That is, is it possible for a metric
space to be isometric to a proper subset of itself? Explain.

42. Let M be compact and let f : M — M satisfy d(f(x), f(y)) > d(x, y) for
all x, y € M. Prove that f is an isometry of M onto itself. [Hint: First, givenx € M,
consider x, = f"(x). By passing to a subsequence, if necessary, we may suppose
that (x,) converges. Argue that x, — x. Next, given x, y € M, show that we must
have d(f(x), f(y)) = d(x, y). Thus, f is an isometry into M. Finally, argue that f
has dense range.]

43. Let M be compact and suppose that f : M — M is one-to-one, onto, and
satisfies d(f(x), f(y)) < d(x, y) forall x, y € M. Prove that f is an isometry of
M onto itself. [Hint: Exercise 42.]

Uniform Continuity

As it happens, continuous functions on compact spaces turn out to be more than simply
continuous. To better appreciate this, let’s first consider an easy example:
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Example 8.12

The map f : (0, 1) > R given by f(x) = 1/x is continuous. But f does not map
nearby x to nearby f(x); for example, note that

1 1 ) | 1
ko e () )

What'’s going on?

We cannot overlook the fact that continuity is a pointwise phenomenon; that is,
f:M — N is continuous if it is continuous at each point x € M. And so, given € > 0,
the § that “works” for one x may not work so well for another. That is, § typically
depends on x too. A shorthand reminder will help explain the situation:

VxeM Ve>0 36(x,¢) >0 suchthat...
l 1)

we want to move this forward!

The question is, can we find a § that does not depend on x? If so, f is called uniformly
continuous, because a single § “works” uniformly for all x.

Examples 8.13

(a) A Lipschitz map f : R — R is uniformly continuous. If f satisfies | f(x) —
fO)| < K|x — y| for all x, y, then, given any &, the choice § = ¢/K always
“works.”

(b) Recall that |{/x — ./y| < +/Ix — y| holds for any x, y > 0. It follows that f(x) =
J/x is uniformly continuous on [0, 0o0), because § = £* “works” for any ¢ > 0.
Note, however, that f is not Lipschitz on [ 0, 00), because /x/x =1//x = o0
as x > 0t.

It’s time we gave a formal definition: We say that f : (M,d ) = (N, p) is uniformly
continuous if

for every € > 0 there is a § > 0 (which may depend on f and ¢)
such that p(f(x), f(y)) < € whenever x, y € M satisfy d(x, y) < 8.

We can easily change this to read: f is uniformly continuous if, given £ > 0, there
is aéd > 0 such that f (Bf(x)) C B?(f(x)) for any x € M. (Note that a uniformly
continuous map is continuous — but not conversely.) Here’s a picturesque rephrasing of
this definition:

f is uniformly continuous if (and only if), for every € > 0, thereisad > 0
such that diamy f(A) < € whenever A C M satisfies diamy(A) < §. (Why?)

It follows that a uniformly continuous map f sends Cauchy sequences into Cauchy
sequences. (Why?)
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EXERCISES

Except where noted, M is an arbitrary metric space with metric d.

> 44. Show that any Lipschitz map f : (M,d) — (N, p) is uniformly continuous.
In particular, any isometry is uniformly continuous.

45. Prove that every map f : N — R is uniformly continuous.

46. Show that |d(x, z) —d(y, z2)| < d(x,y) and conclude that the map x
d(x, 2) is uniformly continuous on M for each fixed z € M.

47. Given a nonempty subset A of M, show that |d(x, A) — d(y, A)| < d(x,y)
and conclude that the map x — d(x, A) is uniformly continuous on M.

> 48. Prove that a uniformly continuous map sends Cauchy sequences into Cauchy
sequences.

49. Show that the sum of uniformly continuous maps is uniformly continuous. Is
the product of uniformly continuous maps always uniformly continuous? Explain.

§0. If f is uniformly continuous on (0, 2) and on (1, 3), is f uniformly continuous
on (0, 3)?If f is uniformly continuouson [n, n+1 ] foreveryn € Z, is f necessarily
uniformly continuous on R? Explain.

§1. If f:(0, 1) = R is uniformly continuous, show that lim,_, ¢+ f(x) exists. Con-
clude that f is bounded on (0, 1).

52. Given f:R— R and a € R, define F(x) = [f(x)— f(a))/(x —a) for
x # a. Prove that f is differentiable at a if and only if F is uniformly continu-
ous in some punctured neighborhood of a.

5§3. Suppose that f : R — R is continuous and that f(x) — 0 as x — $00. Prove
that f is uniformly continuous.

> 54. Let E be a bounded, noncompact subset of R. Show that there is a continuous
function f : E — R that is not uniformly continuous.

> 5§5. Give an example of a bounded continuous map f : R — R that is not uni-
formly continuous. Can an unbounded continuous function f : R — R be uniformly
continuous? Explain.

§56. Prove that f:(M,d)— (N, p) is uniformly continuous if and only if
p(f(xn), f(yn)) — O for any pair of sequences (x,) and (y,) in M satisfying
d(x,, yo) = 0. [Hint: For the backward implication, assume that f is not uniformly
continuous and work toward a contradiction.]

> §7. Afunction f : R — Ris said to satisfy a Lipschitz condition of order a, where
a > 0, if there is a constant K < oo such that | f(x) — f(y)| < K|x — y|* for all
x, y. Prove that such a function is uniformly continuous.

> 58. Show that any function f : R — R having a bounded derivative is Lipschitz of
order 1. [Hint: Use the mean value theorem.]

§9. The Lipschitz condition is interesting only for @ < 1; show that a function
satisfying a Lipschitz condition of order @ > 1 is constant.
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60. Show that x* is uniformly continuous on (0, 00) if and only if 0 < a < 1.
[Hint: For 0 < a < 1, show that x* is Lipschitz of order . Next, if @ = 2, for
example, notice that «/n + 1 — /n = 0 asn — oo. How does this help?]

61. Two metric spaces (M, d ) and (N, p) are said to be uniformly homeomorphic
if there is a one-to-one and onto map f : M — N such that both f and f~' are
uniformly continuous. In this case we say that f is a uniform homeomorphism.
Prove that completeness is preserved by uniform homeomorphisms.

62. Two metrics d and p on a set M are said to be uniformly equivalent if the
identity map between (M, d ) and (M, p) is uniformly continuous in both directions
(i.e., if the identity map is a uniform homeomorphism). If there are constants 0 < c,
C < oosuchthatco(x, y) <d(x,y) < Cp(x, y)for every pair of points x,y € M,
prove that d and p are uniformly equivalent.

63. Letd(x, y) = ||x — y|l» be the usual (Euclidean) metric on R?, and define a
second metric p on R? by

Ix — yll2
172
(1+0x12) (1 + 1y02)
Show that d and p are equivalent but not uniformly equivalent.

p(x,y) = 7 -

64. Show that the metric p = d/(1 + d) is always uniformly equivalent to d, but

that there are examples in which the inequality co < d < C)p may fail to hold (for
all x, y).

It follows from our earlier observations that a uniformly continuous function maps
sets of small diameter into sets of small diameter. But even more is true:

Proposition 8.14. If f : M — N is uniformly continuous, then f maps totally
bounded sets into totally bounded sets.

PROOF. Let A C M be totally bounded and let ¢ > 0. Since f is uniformly
continuous, there is a § > 0 so that f (B{(x)) C Bf(f(x)) for any x € M.
Next, since A is totally bounded, A c |JI_, B/(x;) for some x,...,x, € M.
Combining these observations yields f(A) C |J;_, B°(f(x;)). Hence, f(A) is
totally bounded. O

We can push this further still. If the domain space M is compact, then every contin-
uous function on M is actually uniformly continuous:

Theorem 8.15. If M is a compact metric space, then every continuous map
f : M — N is uniformly continuous.

PROOF. Let ¢ > 0. For each x € M, let §, > 0 be chosen such that p( f(x), f(y))
< ¢ whenever y satisfies d(x, y) < §,. If we should be so lucky as to have
inf, 6, > 0, then we are done. (Why?) Otherwise, we want to reduce to finitely
many §, and take their minimum.
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Now the collection {B;,,2(x) : x € M} is an open cover for M and so there are
finitely many points x;, ..., xy € M suchthat M C Uf=, B, (x;), where n; = 4,,/2.
This is the reduction to finitely many §, that we needed. Next we take the smallest
one; set § = min{n,, ..., n} > 0. We claim that this § “works” for 2¢.

Let x and y be in M with d(x, y) < §. Now x € B, (x;) for some i, so

d(y,xi) <d(y,x)+d(x,x;) <8+n <2n =34,,.

Thus, since we already have d(x, x;) < n; < §,,, we get
p(f(x), f(¥) < p(f(x), f(x))+ p(f(xi), f(y) <e+e=2. O

Theorem 8.15 is an important result, and so it might be enlightening to discuss two
other proofs. The second (less direct) proof is based on Exercise 56.If f : M — N is
not uniformly continuous, then it follows from Exercise 56 that there are sequences (x,)
and (y,) in M and some ¢ > 0 such that d(x,, y,) = 0 while p(f(x,), f(y,)) > >0
for all n. (How?) If M is compact, though, we may assume that (x,) converges to a
point x € M, by passing to a subsequence if necessary. The corresponding subsequence
of (y,) must also converge to x. That is, by relabeling, we may suppose that x, = x
and y, — x. But then, assuming that we started with a continuous map f, we’d have
f(xp) = f(x)and f(y,) = f(x) and, in particular, o( f(x,), f(¥,)) = O, which is a
contradiction.

The third proof is “by picture.” Let’s first show thatif f : [a, b] — R is continuous,
then f is uniformly continuous. To begin, let ¢ > 0. We need to find a § > 0 such that
if a pair of points x, y € [a, b] satisfy | f(x) — f(y)| = &, then x and y also satisfy
|x — y| = 8. (Why?) In other words, we want to show that the function d(x, y) = |x — y|
is bounded away from O on the set E = {(x, y) € [a,b] x [a,b] : |f(x) — f(y)| > €}.

The square [a, b ] x [a, b]is pictured in Figure 8.1. The shaded regions form the set
E. Note that E cannot hit the diagonal y = x because € > 0. (Thatis,d(x, y) = |x—y| is
strictly positive on E.) The heart of the proof lies in the observation that £ is compact,
and so it must be strictly separated from the diagonal by some positive distance.

Now since f is continuous, it follows that E is a closed subset of [a,b] x [a,b]
(a compact metric space), and hence is compact. This is easy enough to check by using
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a sequential argument, but instead consider this: The function g(x, y) = | f(x) — f(¥)I
is a continuous function on [a, b] x [a,b], and so E = g~!([ £, 00)) is closed. Finally,
since the function d(x, y) = |x — y| is continuous (and strictly positive) on E, it follows
that 4 attains a minimum value § > O on E.

It is easy to modify this proof to work in the general case of a continuous function
f:(M,d) > (N, p)onacompact space M. Essentially repeat this proof, using d(x, y)
in place of |[x — y| and p(f(x), f(y)) in place of |f(x) — f(y)|. The proof that the
corresponding set E is a closed subset of the compact space M x M is the same. The
details are left as an exercise.

Uniform continuity is often useful for finding extensions of continuous functions.
Here is a variation on Theorem 7.18 that explains how this is done (you might want to
recall the proof of Theorem 7.18 before reading on).

Theorem 8.16. Let D be dense in M, let N be complete, and let f : D — N be
uniformly continuous. Then, f extends uniquely to a uniformly continuous map
F : M — N, defined on all of M. Moreover, if f is an isometry, then so is the
extension F.

PROOF. First notice that uniqueness is obvious, because D is dense. That is, any
two continuous functions g, h : M — N that agree on D must actually agree on
all of M. Existence is the tough part.

We define F : M — N as follows (this is nearly the same scheme that we
used in the proof of Theorem 7.18): Given x € M, there is a sequence (x,) in D
such that x, = x in M, since D is dense in M. Now (x,) is Cauchy in D, and
hence (f(x,)) is Cauchy in N, because f is uniformly continuous. Thus, since N
is complete, f(x,) = y forsome y € N.Set F(x) = y. Inbrief, if x = lim,_, o X,
where (x,) is in D, then set F(x) =lim,_ o f(x,)in N.

First let’s check that F is well defined. If (x,) and (z,) are two sequences in D
with x, - x and z, — x, then the sequence x,, zj, x2, 22, . .. also converges to
x. Thus, f(x)), f(z1), f(x2), f(z2), ... converges to some y € N (as above). But
then we must have f(x,) = y and f(z,) = y. (Why?)

The fact that F is an extension of f, that is, that F|p = f, is obvious because
f is continuous (besides, we get to use constant sequences).

Next we’ll check that F is uniformly continuous. (Watch the ¢’s and &’s care-
fully here!) Let ¢ > 0, and choose § > 0 so that po(f(x"), f(y')) < € whenever
x', y' € D with d(x’, y') < §. We claim that §/3 “works” for 3¢ and F. To see
this it will help matters if we first make an observation: Given x € M, there is
an x’ € D such that d(x, x') < §/3 and p(F(x), f(x')) < €. (Why? Because if
x, = x, where x, € D, then f(x,) > F(x).)

The rest is easy. Given x, y € M with d(x,y) < §/3, choose x’, y € D
(as above) such that d(x, x’) < §/3, d(y,y') < 8/3, p(F(x), f(x')) < €, and
p(F(y), f(¥)) < e.Butthend(x’, y') <d(x’, x)+d(x, y)+d(y, y') < §,and hence

p(F(x), F(y)) < p(F(x), f(X')+ p(f(x). FO)) + p(f(Y), F(y)

<e+€e+€&=3¢.
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Finally, note that if f is an isometry, then so is F. Given x, y € M, choose (x,)
and (y,) in D with x, = x and y, = y. Then

d(x,y) = ,.ll"; d(xn, yn) = lim p(f(xa), f(yn)) = p(F(x), F(y)). O

Corollary 8.17. Completions are unique (up to isometry). That is, if M, and M,
are completions of M, then M, and M, are isometric.

EXERCISES

Throughout, M denotes a generic metric space with metric d.

65. If f : (0,1) > Ris continuous, and if both f(0+) and f(1-) exist, show
that the function F defined by F(0) = f(0+), F(1) = f(1-),and F(x) = f(x)
for0 < x < 1 is uniformly continuous on [0, 1 ).

66. If f : (0,1) —> R is uniformly continuous, show that lim,_,¢+ f(x) exists.

Conclude that f is bounded on (0, 1).

67. Define f:€, = €, by f(x) = (x,/n)32,. Show that f is uniformly conti-

nuous.

68. Fix y € € and define g: £, — €, by g(x) = (x,yn)po,. Show that g is uni-

formly continuous.

69. Prove Theorem 8.15 by supplying the details to the “proof by picture” in the

general case.

70. Let K = {x € €. : limx, = 1}. Prove:

(a) K isaclosed (and hence complete) subset of €.

) IfT : £, =& € isgivenby T(x) = (0, x), x2,...) for x = (xy,x2,...)in
¢, that is, if T shifts the entries forward and puts O in the empty slot, then
T(K)CK.

(c) T is anisometry on K, but T has no fixed point in XK.

71. If Aisdensein M, show that A and M have the same completion (isometrically).

72. Let D be dense in M. Show that M is isometric to a subset of £,,(D). [Hint:

First embed D into £,(D) and then apply Theorem 8.16.] In particular, every
separable metric space is isometric to a subset of ... (But £ is not separable.

Why?)

Equivalent Metrics

As a last topic related to both compactness and uniform continuity, we discuss several
notions of equivalence for metrics (and norms). Throughout, we will suppose that d
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and p are two metrics on the same set M. We will write i : (M,d) — (M, p) as the
identity map and i ~! : (M, p) = (M, d) as its inverse (also the identity map, but in the
other direction).

We say that d and p are equivalent if both i and i~! are continuous (that is, if i is a
homeomorphism), and we say thatd and p are uniformly equivalent if i and i ~! are both
uniformly continuous (that is, if i is a uniform homeomorphism). Finally, we say that d
and p are strongly equivalent if both i and i ~! are Lipschitz. That s, d and p are strongly
equivalent if there exist constants 0 < ¢, C < oosuchthatco(x, y) < d(x, y) < Cp(x, y)
for all x, y € M. (Some authors would state this requirement by saying that i is a
lipeomorphism.) Actually, many authors take strong equivalence as their definition of
simple equivalence, but, as we shall see, there are some differences between the three
definitions. In any case, it is easy to see that

strongly equivalent = uniformly equivalent = equivalent.

In this section we will see that neither of these implications will reverse, in general,
without some additional hypothesis.

Example 8.18

Consider d(x,y) = |x — y| and p(x,y) = /Ix —y] on M = [0, 1). Then, d
and p are equivalent. (Recall Exercise 3.42. In fact, d and p are even uniformly
equivalent — why?) However, c /Ix — y| < |x — y| cannot hold for any ¢ > 0
(and all x, y). That is, d and p are not strongly equivalent. Here’s why: Replace
|x — y| by t and suppose thatc /1 < ¢ forsomec > 0andall0 < ¢ < 1. Then, by
dividing, we would have ¢ < {/t for all 0 < ¢ < 1, which is clearly impossible
(since v/t = Oast — 0%).

EXERCISES

73. Given any metric space (M, d ), show that the metric p = d/(1 + d) is always
uniformly equivalent to d but that there are cases in which the inequality d < Cp
may fail to hold.

74. Letd(x,y) = ||x — y||, be the usual (Euclidean) metric on R?, and define a
second metric o on R? by

Ix — yll2
(U + 1x02) (1 + 1yn2)'"?

p(x,y) =

Show that d and p are equivalent but not uniformly equivalent.

It is easy to imagine at least one case where equivalence and uniform equivalence
should coincide. If (M, d) is compact, then every continuous map on M is actually
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uniformly continuous, and so equivalence and uniform equivalence might very well be
one and the same. And so they are.

Proposition 8.19. Suppose that (M, d) is compact and that p is another metric
on M. Then d and p are equivalent if and only if d and p are uniformly equivalent.

PROOF. The identity map i : (M,d) — (M, p) is continuous and onto; hence
i is uniformly continuous and (M, p) is compact. Now, by applying the same
reasoning to i ~', it follows that i ~! is uniformly continuous. O

In spite of the fact that the three notions of equivalence are different, in general, we
will establish the rather surprising fact that all three coincide when applied to norms
on any vector space. To see this, we will first need to collect a few preliminary results
about linear maps between normed vector spaces, each of which is interesting in its
own right. In particular, for a linear map, we will show that continuity at a single point
automatically gives us uniform continuity (and even more).

For the next several results, we suppose that (V, || - ||) and (W, |||-|||) are normed
vector spaces and that T : V — W is a linear map. That is, T is a vector space
homeomorphism. This means that T “respects” vector space operations in the sense
that T(ax + By) = aT(x) + BT(y) for any x, y € V and any scalars ¢, 8 € R. In
particular, a linear map always satisfies 7(0) = 0.

Theorem 8.20. Let (V.|| - I|) and (W, |||-|ll) be normed vector spaces, and let
T : V —> W be alinear map. Then the following are equivalent:
(1) T is Lipschitz;
(11)) T is uniformly continuous;
(1i1) T is continuous (everywhere);
(iv) T is continuousatQ e V;
(v) there is a constant C < oo such that ||| T (x)|||< Cllx|| forall x € V.

PROOF. Clearly, (1) = (1) = (1i1)) = (iv). We need to show that (iv) = (v)
and that (v) = (i) (for example). The second of these is easier, so let’s start there.

(v) = (i): If condition (v) holds for a linear map T, then T is Lipschitz (with
constant C) because ||| T(x)—=T(Y)lll=IT(x —=y)|llI< Cllx — y| forany x, y € V.

(iv) = (v): Suppose that T is continuous at 0. Then we may choose aé > 0
so that||| T7(x)|ll=|Il T(x) — T(0) |l < 1 whenever |lx|| = ||x — O]l <é.

Given 0 # x € V, we scale by the factor §/||x|l to get || 8x/||x|| | = &. Hence,
Il 7 (8x/1x1)||| < 1. But T(8x/lixl)) = (8/llxl) T (x), because T is linear, and so
we get ||| T(x)|ll < (1/8)lix||. That is, C = 1/§ works in condition (v). (Since
condition (v) is trivial for x = 0, we only care about the case in whichx % 0.) O

A linear map satisfying condition (v) of Theorem 8.20 (i.e., a continuous linear map)
is often said to be bounded. The meaning of bounded in this context is slightly different
than usual; here it means that T maps bounded sets to bounded sets. This follows from
the fact that T is Lipschitz. Indeed, if||| T(x) ||| < Cl|x| for all x € V, then (as we saw
earlier)||| T(x) — T(y)|lI< Clix — y| for any x, v € V, and hence T maps the ball about
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x of radius r into the ball about T (x) of radius Cr. In symbols, T(B,(x)) C Bc,( T(x)).
More generally, T maps a set of diameter d into a set of diameter at most Cd. There is
no danger of confusion in our using the word bounded to mean something new here;
the ordinary usage of the word (as applied to functions) is uninteresting for linear maps.
A nonzero linear map always has an unbounded range. (Why?)

Given normed vector spaces (V, || - ||) and (W, ||| - lll), the collection of all bounded
linear maps T : V — W is itself a vector space under the usual pointwise operations
on functions. That is, if S, T : V — W are continuous, linear maps, and if a, 8 € R,
then the map oS + BT : V — W, defined by

(@S + BT)(x) =aS(x)+ BT (x), x €V,

is again linear and continuous. The collection of all continuous, linear maps from V
into W will be denoted by B(V, W), where B stands for “bounded.”

Theorem 8.20 provides a natural candidate foranormon B(V,W).If T : V - W
is continuous and linear, we define the norm of T to be the smallest constant C that
“works” in Theorem 8.20 (v). Thus, the norm of T is given by

Tx
IT| = inf(C :|lITx|||< Clix|| forall x € V} = sup il “l.
x#0 "XII
That is, || T || satisfies|||Tx|||< |IT|l llx|| for all x € V, and ||T|| is the smallest constant
satisfying this inequality for all x € V. The proof that this new expression, called the
operator norm, actually is a norm on B(V, W) is left as an exercise.

EXERCISES

75. Suppose that f : R — R satisfies f(x + y) = f(x) + f(y) for every x,
y € R.If f is continuous at a point xo € R, prove that there is some constanta € R
such that f(x) = ax forall x € R. That is, an additive function that is continuous at
even one point is linear — and hence continuous on all of R.

76. Fix y € R" and define alinear map L : R" — R by L(x) = (x, y). Show that
L is continuous and compute || L|| = sup, .o |L(x)|/l|x 2. [Hint: Cauchy-Schwarz!]

77. Fix k > 1 and define f : €, & R by f(x) = x;. Show that f is linear and
has | f]| = 1.

78. Define a linear map f : £, — €, by f(x) = (x,/n);2,.Is f bounded? If so,
what is || f||?

79. If S, TeB(V,W),showthat S+ T € B(V,W)andthat |S+T| <|S| +
IT ||. Using this, complete the proof that B(V, W) is a normed space under the
operator norm.

80. Show that the definite integral /( f) = fab f(t)dt is continuous from C[a, b ]
into R. Whatiis || 7]|?

81. Prove that the indefinite integral, defined by T(f)(x) = f: f(t)dt, is continu-
ous as a map from C[a, b ] into C[ a, b ). Estimate ||T||.

82. ForT € B(V, W), prove that ||T || = sup{lIiTx |l|: llx]| = 1}.
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83. If V is any normed vector space, show that B(V, R) is always complete. [Hint:
Use Banach’s characterization, Theorem 7.12.]

84. Prove that B(V, W) is complete whenever W is complete.

Theorem 8.20, besides being merely spectacular, does even more for us: It supplies
the proof that “equivalent” and “strongly equivalent” coincide for norms. (Recall that
two norms are said to be equivalent if the mefrics that they induce are equivalent. The
same goes for strongly equivalent.)

Corollary 8.21. Let || - || and |||: ||| be two norms on a vector space V. Then,
I - || and ||| - |||are equivalent if and only if there are constants 0 < ¢, C < 0o such
that c||x|| <|Iix|l<Cll x | for every x € V.

PROOF. The key here is that both the identity mapi : (V, |- ||) = (V, |l -|Il) and
its inverse i ~! are linear. Now, | - || and|||- ||| are equivalent if and only if both i
and i~' are continuous. By Theorem 8.20, i and i~' are continuous if and only
if there exist constants 0 < ¢, C < oo such that|||x||| < Clix|l and ||x|| < ¢~ Y|ix||
forall x e V. (Why?) O

Once again, if we bring compactness into the picture, we can say even more. We
will use the fact that closed balls in R" are compact to prove:

Theorem 8.22. Any two norms on a finite-dimensional vector space are equiva-
lent.

PROOF. Let V be an n-dimensional vector space with basis xi, ..., x,. We will
define a specific, convenient norm on V and prove that any other norm on V is
equivalent to ours. To do this, it will help if we first recall a simple fact from linear
algebra.

Algebraically, V is just R" in disguise. Each x € V can be uniquely writ-
ten as x = Y ;_, @;x;, for some scalars ay,...,a, € R. Thus we may think of
x as the n-tuple (ay, ..., a,) € R". That is, the basis-to-basis map x; — ¢; =
©,...,0,1,0,...,0) (the usual basis in R") is a vector space isomorphism be-
tween V and R".

Given this, we can easily define a norm on V by “borrowing” a norm from R”.
Specifically, let

= Zlail =

i=|

n n
E a; X; E a;e;
i=| i=]

foreachx = ) |_,a;x; € V. Since x,, ..., x, is a basis, this clearly defines a
normon V:

1

Ix =0 & =0 foralli < x=0.

Moreover, the basis-to-basis map is a linear isometry between (V, || - ||) and
R™, Il - ).
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Here is what we need out of all of this: The unit sphere S = {x € V : ||x| = 1}
is compact in (V, || - | ) because the corresponding set in R" is compact. (Why?)
Now we can start the proof of the theorem!

Suppose that |||-||| is any other norm on V. Then, for x = ) |_, a;x;, we have

n n
Y il <D leilllkxill
i=l i=1
n
< (max |||x,-|||) ) el
1<j<n =

= C||x|l, where C = max ||lxll.
I<j<n

That is, |llx||l|< C|lx|| for every x € V.

For the other inequality we will need to use our observation about the unit
sphere S. The inequality that we have just proved tells us that ||| - ||| is a continuous
function on (V, || - ||). Indeed, ||lix|ll - |llylll| <IIx — ylll < Clix — y|| for any
x, y € V. But then, |||-]|| is also continuous on S, and so ||| ||| must assume a
minimum value on S, say ¢ € R. That is, |||x]|| = ¢ whenever ||x|| = 1. Since
this minimum is actually attained, we must also have ¢ > 0. (Why?) Now we’re
cooking! Given 0 # x € V we have x/||x|| € S, and hence|||x/llx||||| = c. That
is,||lix|lI= clix|]. O

The fact that all norms on a finite-dimensional normed space are equivalent elevates
the merely spectacular to the simply phenomenal:

Corollary 8.23. Let V and W be normed vector spaces with V finite-dimensional.
Then, every linearmap T : V — W is continuous.

PROOF. Letx,,...,x,beabasisfor Vandlet| > ", a;x;|| = Y /_, lai|, as above.
We may assume that this is “the” norm on V, since, by Theorem 8.22, every norm
produces the same continuous functions on V.

Now if T : (V, | - I|) = (W, ]|Il-]l]) is linear, we get

(&l

z": a; T (x;)
=l

< ) leil I T
i=l

n

< (1'2?;‘,,“' T(x,-)m) D leil.

That is, ||| T(x)|l| < Clix|l, where C = max _ _<n||| T(x;)||l. By Theorem 8.20, T is
continuous. O ==

Corollary 8.23 allows us to clean up a detail left over from Chapter Five:

Corollary 8.24. Any two finite-dimensional normed vector spaces of the same
dimension are uniformly homeomorphic. In fact, we can even find a linear (and
hence Lipschitz) homeomorphism between them.
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Corollary 8.25. Every finite-dimensional normed vector space is complete.
(Why?)

Corollary 8.26. Afinite-dimensional linear subspace of any normed vector space
is always closed. (Why?)

EXERCISES
85. Fill in the missing details in the proof of Theorem 8.22.

86. If (V, || -]l)is an n-dimensional normed vector space, show that there is a norm
Il - |llon R” such that (R”", ||| - |ll) is linearly isometric to (V, || - || ).

87. Prove Corollary 8.24.
88. Prove Corollary 8.25.

89. Corollary 8.26 is of interest because an infinite-dimensional normed space may
have nonclosed subspaces. For example, show that {x € £, : x, = O for all but finitely
many n} is a proper dense linear subspace of £,.

O

Notes and Remarks

The classical definition of compactness, due to Fréchet, is the statement of Theorem 8.2:
Each sequence has a convergent subsequence. But early usages of the word “compact”
often referred to what we have called precompact sets — sets whose closures are compact.
In effect, then, the Bolzano—Weierstrass theorem characterizes the bounded sets as the
precompact subsets of R. Hausdorff first proved the theorem that we have taken as our
starting point: A space is compact if and only if it is complete and totally bounded.

The property described in Lemma 8.8 (a) is generally taken as the formal definition
of compactness for topological spaces, due to Alexandrov and Urysohn [1924] (who
used the word “bicompact” in describing such spaces). It has as its basis the so-called
Heine—Borel or Borel-Lebesgue theorems (a covering of a closed, bounded interval by
open sets has a finite subcover). Riesz [1908] added the finite intersection property to
the list for subsets of R", while the general case is due to Sierpiniski [1918)]. For more on
the early history of Theorem 8.9, see Dudley [1989], Manheim [1964], Temple [1981],
Willard [1970], and the award-winning article by Hildebrandt [1926] (reprinted in
Abbott [1978]). The property described in Theorem 8.2 is called sequential compact-
ness, while the property described in Corollary 8.11 is called countable compactness.
In a metric space, each of these coincides with the formal definition of compactness,
but this is not always the case in more general topological spaces.

Corollary 8.11 is due to Fréchet. For more on Exercise 27, see Apostol [1975], Buck
[1967], and Thurston [1989]. Exercises 29 and 4043 are taken from Kaplansky [1977].
For more on the results stated in Exercises 28 and 29, see D. F. Bailey [1989] (and its
bibliography), and Bennett and Fisher [1974]. Semicontinuity (Exercises 37-39) was
introduced by Baire [1899]. See Rad6 [1942] for more details.
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For a survey of applications of compactness in analysis, see Hewitt [1960]. For a
simplified treatment of the classical theorems presented in this chapter in the case of a
closed bounded interval [a, b ], see Botsko [1987]. Barnsley [1988] and Edgar [1990],
on the other hand, illustrate certain “modern” applications of compactness.

Exercise 70 is adapted from an exercise in Hoffman [1975]. It would seem that Heine
was the first to define uniform continuity for real-valued functions; he used it to prove
Theorem 8.15 for real-valued functions defined on a closed bounded interval [a, b ).
According to Dudley [1989], Heine gave a great deal of credit to unpublished lectures
of Weierstrass. The metric space definition is due to Fréchet and Hausdorff. The clever
“proof by picture” for Theorem 8.15 is taken from the article by D. M. Bloom [1989].
Several authors have considered the problem of characterizing those spaces for which
all continuous maps are uniformly continuous; see, for example, Beer [1988], Chaves
[1985], Hueber [1981], Levine [1960], and Snipes [1984].

The discussion of equivalence, strong equivalence, and uniform equivalence for
metrics is based in part on the presentation in Kuller [1969]. Maddox [1989] gives an
elementary computation of the norm of a linear map on C| a, b ] defined by an integral,
as in Exercises 80 and 81.

Analysis in infinite-dimensional normed vector spaces is vastly different from the
finite-dimensional case. To fully appreciate the extent of the difference is beyond our
means just now, but we can at least indicate a few reasons. For one, recall that S = {x €
£ : ||x]la = 1}, the unit sphere in ¢,, is not compact. (Remember the e,?) Thus, the
proofs of Theorem 8.22 and Corollary 8.23 fall apart in £,. But the same would be true of
any infinite-dimensional space. In fact, it tumms out that a normed linear space (V, ||| ) is
finite-dimensional if and only if its closed unit ball B = {x € V : ||x|| < 1} is compact.
Moreover, (V, || - ||) is infinite-dimensional if and only if there exists a discontinuous
linear map T : V — R if and only if V contains a proper dense subspace. On the other
hand, Corollary 8.24 can be at least partially salvaged: Anderson [1962] has shown
that all separable, infinite-dimensional Banach spaces are (mutually) homeomorphic.
We cannot hope for uniformly homeomorphic here since, for example, it is known that
¢, and €, are not uniformly homeomorphic for any 1 < p < g < oo. For much more

on this, see the note by Bessaga and Petczyrski [1987] in the English translation of
Banach’s book.




CHAPTER NINE

Category

Discontinuous Functions

We have had a lot to say so far about continuous functions, but what about discontinuous
functions? Is there anything meaningful we might say about them? In order that we
might ask more precise questions, let’s fix our notation. Throughout this section, we
will be concemed with a function f : R — R, and we will write D(f) for the set of
points at which f is discontinuous. The questions are: What can we say about D(f)?
What kind of set is it? Can any set be realized as the set of discontinuities of a function,
or does D( f) have some distinguishing characteristics? To get us started, let’s recall a
few examples.

Examples 9.1

(a) If f is monotone, then D(f) is countable. Conversely, any countable set is the
set of discontinuities for some monotone f (see Exercise 2.34).

(b) There are examples of functions f, g with D(f) = Q and D(g) = R. (What are
they?)

In particular, we might ask whether D(f) can be a proper, uncountable subset of R.
For example, is there an f with D(f) = R\ Q? or with D(f) = A? The answer to the
first question is: No, and to the second: Yes, but to understand this will require a bit of
machinery.

The first thing we need is a detailed description of D(f). For this we will simply
negate the definition of the statement “ f is continuous at a’”:

there exists an ¢ > 0 such that, given any § > 0,

a € D(f) = {wehavelf(x)—f(a)l > ¢ for some x with |x —a| < 4.

What this means is that, given any bounded, open interval / containing a, we always
have sup{|f(x) — f(y)l : x, y € 1} > e. (Why?) This supremum has a geometric
description (which is why we want to use it); indeed, notice that

sup |f(x) = f(y)| = diam f(/).

x.yel
We will write our description of D(f) in terms of this supremum, but first we will give
it a name. Given a bounded interval /, we define w( f; I), the oscillation of f on /, by
w(f; 1) =sup{lf(x)— f(y)| : x, y € I}. Note that 0 < w(f;I) < 2sup,¢; | f(x)]. Of
course, if f is unbounded on 7, we set w(f; 1) = oo.

128
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Also notice that w( f; I) decreases as I decreases; that is, if J C I, then w(f;J) <
o( f; I). Consequently, if f is bounded in some neighborhood of a, and if we consider
intervals that “shrink” to a, then the oscillations over those intervals will decrease to a
fixed (finite) number. These observations allow us to define the oscillation of f at a,
written wy(a), by

wy(a) = 1;3,‘2.. o(f;1) = ;.l_if3+ o(fi(@a—h,a+h))= ;.l_i.'g diam f (By(a)),

where the notation / 3 a is intended as a reminder that the infimum is over bounded
(open) intervals I containing a. If f is unbounded in every neighborhood of a, we
set ws(a) = 0o. We have insisted on open intervals in the definition of ws(a) to be
consistent with the characterization of discontinuity at a that we gave earlier.

The oscillation of f at a is rather like the “jump” in the graph of f at a (if any). For
example, if f is increasing, then ws(a) = f(a+)— f(a—).In any case, we always have
wg(a) > 0, and our earlier discussion tells us that a € D(f) if and only if ws(a) > 0.
That is, f is continuous at a if and only if ws(a) = 0. (Why?)

Now we are ready to give a more detailed description of D(f).

Theorem 9.2. If f : R —> R, then D(f) is the countable union of closed sets in R.

PROOF. First, let’s write D(f) as a countable union:

D(f) = {a : ws(a) > 0}
= {a : ws(a) > € for some ¢ > 0}

=Jla:op@=1/n)  (Why?)
n=|

Thus, we need to show that a set of the form {a : ws(a) > r} is closed, where
r > 0 is fixed. Equivalently, we might show that the set {a : ws(a) < r} is open,
and this is easy. If xo € {a : ws(a) < r}, thatis, if ws(xg) < r, then there is some
bounded open interval / containing xq such that w{( f; ) < r. (Why?) It follows
that I C {a : ws(a) < r),since wy(x) < w(f;I) <rforanyxel. O

EXERCISES
1. If f isincreasing, show that ws(a) = f(a+) — f(a—).
2. Prove that f is continuous at a if and only if ws(a) = 0.

3. Given f : R — R, show that g(x) = arctan f(x) satisfies D(g) = D(f).
Thus, in any discussion of D( f), we may assume that f is bounded.

> 4. Let f:[a,b] = R be continuous, and let ¢ > 0. Show that thereisann € N
suchthatw(f;[(k —1)/n, k/n]) <eforallk =1,...,n.

> S. If A is a subset of R and if x is in the interior of A, show that x is a point of
continuity for X4 (the characteristic function of A). Are there any other points of
continuity?
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6. Compute D(X 5). where A is the Cantor set. If E is the set of all endpoints in A
(see Exercise 2.23), compute D(Xa\g).

7. For which sets A is X4 upper semicontinuous? lower semicontinuous?

8. Given any bounded function f, show that the function ws(x) is upper semicon-
tinuous.

9. If E is a closed set in R, show that E = D(f) for some bounded function f.
[Hint: A sum of two characteristic functions will do the trick.]

10. Is every bounded continuous function on R uniformly continuous?

Our earlier questions about the nature of D(f) can now be rephrased: Which subsets
of R can be written as a countable union of closed sets? In particular, is R \ Q such a
set? Conversely, is every countable union of closed sets the set of discontinuities for
some bounded function? Before we answer these questions, it might be helpful to have
a name for countable unions of closed sets (and the like).

A countable union of closed sets is called an F, set. Thus, the set of discontinuities
D(f)is an F, set. We might want to turn things around by taking complements, and so
we also name a countable intersection of open sets; these are called G sets. The letter
F stands for fermé, or closed, while o stands for somme, or sum. The letter G stands
for Gebiet, or region — besides, it comes after F — while § stands for Durchschnitt, or
intersection. This is proof positive that both a Frenchman and a German had a say in
our notation!

The letters § and o represent operations performed on the underlying class of closed
sets F or on the class of open sets G. The result is often a new class of sets. For example,
note that we would get nothing new by considering F; sets because the intersection of
closed sets is again closed. In other words, F; = F.The same goes for G, sets. Butwe do
get something new by considering F,’s and G;’s. The set of rationals Q, for instance, is
an F, set, butitis obviously neither open nor closed. By taking complements, the set of
irrationals R \ QQ is a G; set. We can continue this process — any combination producing
something new is of interest — and consider, say, F,; sets (countable intersections of
F, sets), G, sets (countable unions of G; sets), and so on.

EXERCISES

11. Show that every open interval (and hence every nonempty open set) in R is a
countable union of closed intervals, and that every closed interval in R is a countable
intersection of open intervals.

12. More generally, in any metric space, show that every open set is an F, and that
every closed set is a G 5.

13. If Eisan F, setin R, is E = D(f) for some f? (The answer is yes, but this
is hard!)
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The Baire Category Theorem

Recall that we have rephrased our earlier question about sets of discontinuity to read:
Which subsets of R can be written as countable unions of closed sets? In particular,
we asked whether R \ Q was such a set. Obviously, we can turn things around and ask
whether Q is a countable intersection of open sets. Now any open set containing Q is
dense in R, so we might first ask whether the countable intersection of dense open sets
is still dense. The answer is yes:

The Baire Category Theorem for R 9.3. If (G,) is a sequence of dense, open
sets in R, then (.2, Gn # @. In fact, (., Gn is dense in R.

PROOF. Let xp € R, and let /y be any open interval containing xo. We will prove
both conclusions at once by showing that Io N (2, Ga) # 2.

Since G, is dense, we know that I N G, # @. But since G, is also open,
this means that we can find some open interval I, C Iy N G,. By shrinking 7, (if
necessary), we may suppose that diam(/;) < 1 and I, C Iy N G,.

Now use /; in place of I and G in place of G,. Since G is dense, we have
I,NG, # @. But G, is open, so there is some open interval /> with diam(/;) < 1/2
suchthat I, c I, NG, C IpN G, N G».

Repeat this using /> and G; in place of /; and G5, and so on. What we get is
a sequence of nested closed intervals, I, D I, D - .- with diam(l,) < 1/n and
I, C IopN (N, Gx)- Thus, by the nested interval theorem, /o N (=, G«) D
N2, I, # @. Consequently, (2, G, is nonempty and dense. O

Note that Baire’s theorem provides a new proof that R is uncountable. Indeed, if
R ={x, x2, ...}, theneach of the sets G, =R\ {x,} is open and dense (see Exercise 15);
but they also satisfy (,2, G» = @, which contradicts Baire’s theorem.

We can push this observation a bit further. A dense G; subset of R must also be
an uncountable set. Here’s why: If (G,) is a sequence of open dense sets in R and if
Mooy Gn = {x1, x2, ...}, then the sets G, = G, \ {xa} are still open and dense, but
N2, G» = @, contrary to Baire’s theorem. Thus, ()2, G, is uncountable. This is the
extra piece of information that we need to settle our original questions.

Corollary 9.4. Q cannot be written as the countable intersection of open subsets
of R.

Corollary 9.5. R\ Q # D(f) forany f : R = R.

By rephrasing Baire’s theorem, we will be able to see another reason behind these
last two corollaries.

Corollary 9.6. If R = | J.-, E,, where each E, is closed, then some E, contains
an open interval.

PROOF. Each of the sets G, =R \ E, is open in R and (-, G, = @. Thus, by
Baire’s theorem, some G, is not dense. That is, some G, misses an entire open
interval. In other words, some E, contains an interval. O
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Corollary 9.7. If R = |, En, thenthe closure of some E, contains aninterval;
that is, int(E,) # @ for some n. (Why?)

Corollary 9.8. If R\ Q = |J;_, En, then the closure of some E, contains an
interval.

How very different R \ Q and QQ are! The rationals are somehow very “sparse” while
the irrationals are quite “thick.” To appreciate this difference, and to generalize Baire’s
theorem to metric spaces, will require some new terminology. To begin, recall that a
subset E of a metric space M is called nowhere dense in M if E contains no nonempty
open set, that is, if the interior of E (in M) is empty. Judicious rewriting of this condition
might help. Note that E is nowhere dense if and only if E is nowhere dense (obviously),
and that E is nowhere dense if and only if the complement of E is dense (since every
open set has to hit (£ )°). Consequently, E is nowhere dense in M if and only if the
complement of E is an open, dense set in M.

Examples 9.9

(@) N and A are nowhere dense in R. Also, any singleton {x} is nowhere dense in
R. But this is not the general case; {x}° = {x} can, and does, happen — how?

(b) Finite unions of nowhere dense sets are again nowhere dense (see Exercise 4.56).
But a countable union of nowhere dense sets may fail to be nowhere dense. For
example, Q is not nowhere dense in R.

(c) We have no choice but to be fussy here; note that while N is nowhere dense in
R, it is not nowhere dense relative to N itself. In other words, we cannot ignore
the fact that we have defined the phrase *“FE is nowhere dense in M.” The closure
and the interior named in the definition refer to the closure and interior in M,
not in E.

(d) In an unfortunate fluke of language, “not nowhere dense” is not the same as
“dense.” Indeed, (0, 1) is not nowhere dense in R, and yet it certainly is not
dense in R. It may be easier to understand the difference if we recall that some
authors use the phrase everywhere dense in place of the single word dense. An
everywhere dense set is one that is dense in every open set (see Exercises 4.45
and 4.46). A nowhere dense set, on the other hand, is one that is not dense in
any open set (see Exercises 19 and 20, below). And so nowhere dense means
“not even a little bit dense”!

Given this terminology, we next define two categories, or types, of subsets of a metric
space M. A subset A of M is said to be of the first category in M (or, a first category
set relative to M) if A can be written as a countable union of sets, each of which is
nowhere dense in M. For example, it follows that Q is a first category set in R. Some
authors refer to first category sets as “meager” or “sparse” sets.

The second category consists of all those sets that fail to be in the first category.
That is, a subset B of M is said to be of the second category in M if B is not of the
first category. In other words, B is a second category set in M if, whenever we write
B = \U;2, En, some E, fails to be nowhere dense in M; that is, int(E,) # @ for some
n. (Look familiar?)
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Examples 9.10

(a) In the language of category, Corollary 9.7 says that R is a second category set
in itself. And we could restate Corollary 9.8 by saying that R \ Q is a second
category setin R. The two categories of subsets of R provide yet another measure
of “big” versus “small” A first category set in R, such as Q, is “small” while a
second category set in R, such as R\ Q, is “big.”

(b) Again we will want to be careful. The two categories of subsets of M depend
on the notion of nowhere dense sets, which in turn requires that we be precise
about the host space M. For example, N is of the first category in R, but it is of
the second category in itself. (Why?) In short, category is very relative.

Finally we can state the general theorem. The proof is exactly the same as the one

we gave for R; just repeat the proof of Theorem 9.3, using open balls instead of open
intervals (and the nested set theorem in place of the nested interval theorem).

The Baire Category Theorem 9.11. A complete metric space is of the second
category in itself. That is, if M is a complete metric space, and if we write M =
U:‘;, E,, then the closure of some E, contains an open ball. Equivalently, if (G,)
is a sequence of dense open sets in M, then (.., G, # @; in fact, (=, Gn is
dense in M.

Note that we cannot expect a dense G; subset of a general metric space to be
uncountable because M itself may be only countable. The fact that a dense G5 subset
of R is uncountable hinges on the observation that if G is open and dense in R, then so
is G \ {x} (see Exercise 19).

Baire’s theorem is often applied in existence proofs; after all, the conclusion is that
some set is nonempty. We will see several applications of this principle later in the
book. For now, let’s just highlight the key fact:

Corollary 9.12. Ina complete metric space, the complement of any first category
set is nonempty. In fact, it is even dense. (Why?)

EXERCISES
Except where noted, M is an arbitrary metric space with metric d.
> 14. Prove that A has an empty interior in M if and only if A€ is dense in M.

> 15. If G isopen and dense in R, show that the same is true of G \ {x} forany x € R.
Is this true in any metric space? Explain.

16. Show that {x} is nowhere dense in M if and only if x is not an isolated point of
M.

17. Prove that a complete metric space without any isolated points is uncountable.
In particular, this gives another proof that A is uncountable.

18. If A is either open or closed, show that bdry(A) is nowhere dense in M. Is the
same true of any set A ?
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19. Show that each of the following is equivalent to the statement that A is nowhere

dense in M:

(a) A contains no nonempty open set.

(b) Each nonempty open set in M contains a nonempty open subset that is disjoint
from A.

(c¢) Each nonempty open set in M contains an open ball that is disjoint from A .

20. If A is nowhere dense in M, and if G is a nonempty open set in M, prove that
A is nowhere dense in G.

21. If x, = xin R, show that the set {x} U {x, : n > 1} is nowhere dense in R.
Is the same true if R is replaced by an arbitrary metric space M ? Is every countable
set nowhere dense? Explain.

22. Let(r,) be an enumeration of Q. For each n, let I, be the open interval centered
atr, ofradius2™",andlet U = U:‘;I I,. Prove that U is a proper, open, dense subset
of R and that U* is nowhere dense in R.

23. Is there a dense, open set in R with uncountable complement? Explain.

24. Prove Corollary 9.7.
25. Prove Corollary 9.8. Deduce that the conclusion of Baire’s theorem holds for

R\ Q.
> 26. Prove Theorem 9.11.

27. Let M be a complete metric space. If M = | .., E,, where each E,, is closed,
show that D = U:__, int(E,) is dense in M. [Hint: “Estimate” M\ D.]

> 28. In a metric space M, show that any subset of a first category set is still
first category, and that a countable union of first category sets is again first
category.

> 29. Ina metric space M, prove that any superset of a second category set is itself a
second category set.

> 30. Show that N is first category in R but second category in itself.

> 31. Show that Q is first category in itself (thus, completeness is essential in Baire’s
theorem).

> 32. InR,show that any open interval (and hence any nonempty, open set) is a second
category set.

33. If M is complete, is every nonempty, open set a second category set?

34. Let M be complete,and let E be an F,, setin M. Prove that E is a first category
set in M if and only if E€ is dense in M.

35. Let f : R —» R. Show that f is discontinuous on a set of the first category in
R if and only if f is continuous at a dense set of points.

36. If M is complete, show that the complement of a first category set in M is a
dense set of the second category in M. In particular, a first category set in a complete
metric space must have empty interior.

37. Show that the complement of a first category set in R is uncountable.
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38. Is the complement of a first category set necessarily a second category set?
Likewise, is the complement of a second category set necessarily a first category set?
Explain.

39. When is a first category set an F, set? Equivalently, when is a set containing a
dense G; set itself a G; set?

40. Let f : R — R be a continuous function that is nonconstant on any inter-
val. If A is a second category set in R, show that f(A) is also second category.
[Hint: If B is closed and nowhere dense, show that f~'(B) is closed and nowhere
dense.]

41. Let M be a complete metric space. Prove that if (E,) is a sequence of closed
sets in M, each having empty interior, then U:‘;, E, has empty interior.

42. While completeness is essential in the proof of Baire’s theorem, the conclusion
may still hold for some incomplete spaces. Show that itholds in N if we use the metric
d(m,n) = |m — n|/mn, but that (N, d) is not complete. [Hint: d is equivalent to
the usual metric. See Exercise 7.14.]

43. If N is homeomorphic to a complete metric space M, show that the conclusion
of Baire’s theorem holds in N. [Hint: Homeomorphisms preserve dense open sets.
Why?]

44. If M is complete, show that the conclusion of Baire’s theorem holds for any
open subset of M. [Hint: See Exercise 7.30.]

45. Fixn > l,andlet f : [a, b] = R" be continuous and one-to-one. Show that
the range of f is nowhere dense in R". [Hint: The range of f is closed (why?); if it
has nonempty interior, then it contains a closed rectangle. Argue that this rectangle
is the image of some subinterval of [ a, b ].] Use this to show that R and R" are not
homeomorphic forn > 1.

46. Show that R? cannot be written as a countable union of lines.

47. Let P be the vector space of all polynomials supplied with the norm || p|| =
max{|a;| :i =0, ..., n}, where p(x) =ao+a;x +---+a,x" € P. Show that P
is not complete.

48. If W is a proper, closed, linear subspace of a normed vector space V, show that
W is nowhere dense in V. [Hint: If W O B,(x), then W D nB;(0) for every n.
Why?]

49. Let V be an infinite-dimensional normed vector space, and suppose that V =

Uf;l W,, where each W, is a finite-dimensional subspace of V. Prove that V is not
complete.

50. Let M be a separable metric space, and let S be a subset of M. A pointx € §
is said to be a point of first category relative to S if, for some neighborhood U of
x, the set U N § is of first category in M. If § is the set of points of first category
relative to S, show that S is of first category in M. [Hint: M has a countable open

base.]
O
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Notes and Remarks

Baire’s result (for R") appears in his thesis, Baire [1899]. An early (and less explicit)
version of the category theorem appeared in Osgood [1897]. See Hawkins [1970] and
Hobson [1927] for more details on Osgood’s contribution.

Exercise 22 is adapted from Wilansky [1953b]. Diamond and Gelles [1984, 1985]
discuss certain relations that exist among the various notions of “big” and ‘“small”
sets that we have encountered (and even more that we haven’t!). The result stated in
Exercise 50 is from Banach [1930], but see also Kuratowski [1966]. The bible for all
matters categorical is Oxtoby [1971].

As mentioned earlier in this chapter, Baire’s theorem has lots of applications. Here
is one example (with a few details to check). The characteristic function of the rationals
Xq is not the limit of a sequence of continuous functions. Suppose, to the contrary,
that there is a sequence (f,) of continuous functions such that X g(x) = lim f,(x) for
each x € R. Then, the set A, = {x : f,(x) > 1/2} is open for each n and, hence, so is
G, = U,f?__,, Ar = {x : fi(x) > 1/2 for some k > n}. But then, ﬂ,‘:":, G, ={x: fa(x) >
1/2 for infinitely many n} = Q (why?), and this contradicts Corollary 9.4. This example
illustrates a special case of a deep result, due to both Baire and Osgood, stating that any
function f : R — R that is the limit of a sequence of continuous functions must have a
point of continuity. Various incamations of the theorem are discussed in greater detail
in Goffman [1953a], Hobson [1927], and Munroe [1965]. Myerson [1991] discusses
the related problem of finding a sequence of continuous functions whose pointwise
limit is finite on Q and infinite on R \ Q. We will discuss several applications of Baire’s
theorem in Part Two, where we will give a proof of the Baire—-Osgood theorem and
further details on the set of discontinuities D(f) of a bounded function (especially
concerning Exercises 9 and 13).
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CHAPTER TEN

Sequences of Functions

Historical Background

Unarguably, modern analysis was formed during the resolution of an important contro-
versy (or, rather, controversies) concerning the representation of “arbitrary” functions.
This controversy has unfolded slowly over the last two centuries and was put to its final
rest only in our own time.

The story begins in 1746 with the famous vibrating string problem. Briefly, an elastic
string of length L has each end fastened to one of the endpoints of the interval [0, L ] on
the x-axis and is set into motion (as you might pluck a guitar string, for example). The
problem is to determine the position y = F(x, t) of the string at time ¢, given only its
initial position y = f(x) = F(x, 0) at time ¢ = 0 where, for simplicity, we assume that
the initial velocity F;(x,0) = 0. The function F(x,t) is the solution to d’ Alembert’s
wave equation: F,, = a’F,,, where a is a positive constant determined by certain
physical properties of the string. The initial data for the problem is F(x,0) = f(x),
Fi(x,0)=0,and f(0) =0= f(L).

The controversy, initially between d’ Alembert and Euler, centers around the nature
of the functions f that may be permitted as initial positions. D’ Alembert argued that
the initial position f must be “continuous” (in the sense that f must be given by a
single analytical expression or “formula”), while Euler insisted that f could be “dis-
continuous” (the initial position might be a series of straight line segments, as when
the string is plucked in two or more places at once, in other words, a composite of two
or more “formulas”).

Now it is not hard to find particular solutions to the wave equation. Indeed, note that
each of the functions F(x,t) = sin(kmx/L)cos(aknt/L), k = 1,2,3,..., is a solution
with corresponding initial position F(x,0) = sin(kmx/L). If we assume the validity
of term-by-term differentiation (that is, the “superposition” of solutions), this would
suggest that any sum of the form

F(x.t) = Zak sin(krx/L)cos(akmt/L) (10.1)
k=

is also a solution. In 1753, Daniel Bemoulli entered into the controversy by claiming
that equation (10.1) is the most general solution to the vibrating string problem. Euler
immediately took exception to Bermoulli’s solution for, if we accept equation (10.1) as
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the general solution, it follows that the initial position f must satisfy
(o ¢}
fx) =) asin(knx/L). (10.2)
k=I

In other words, Bernoulli’s solution suggests that the initial position f can always be
represented by a sine series of the form (10.2). As Euler pointed out, the sum in equa-
tion (10.2) is odd and periodic, whereas no such assumptions can be made on f. (Since
a “function” was understood to be a “formula,” it was believed that the behavior of a
function on an interval completely determined its behavior on the whole line.) Besides,
it was inconceivable that a “discontinuous” initial position could be written as the sum
of “continuous” functions. Bermoulli’s arguments, which were based largely on physical
principles, were unconvincing. His solution was rejected by most mathematicians of
the time, including Euler and d’ Alembert.

Controversy over the solution to the vibrating string problem would rage on for an-
other 20 years and would come to involve several mathematicians, including Lagrange
and Laplace.

The plot thickened in 1807, when Joseph Fourier resurrected Bemoulli’s assertion.
Fourier presented a paper on heat transfer in which he was able to solve for the steady-
state temperature T (x, y) of a rectangular metal plate with one edge placed on the
interval [— L, L ] on the x-axis, and where the initial temperature along this edge f(x) =
T (x, 0) is known but is again “arbitrary.” Fourier’s solution is based on the premise that
an arbitrary function f can be represented as a series of the form

+ (an cos(nmx/L) + b,sin(nx/L)).

ao

X) = —
f(x) 5
Moreover, if the interval in question is instead [0, L ], then it suffices to use only sines
(as in Bermoulli’s series) or only cosines in the representation.

If, for simplicity, we take L = =, then the Fourier series for f over the interval
[—7, ] is given by

f(x) = %0 + Z(a,, cosnx + b, sinnx). (10.3)

Fourier justified this equation in much the same way that Euler and Lagrange had
done before him; he argued that if the Fourier coefficients ay, a,, ..., b, b,, ... could
actually be determined, that is, if equation (10.3) could be solved, then it must be valid.
To determine b,,, for example, we simply multiply both sides of equation (10.3) by
sin mx and integrate over the interval [—x, 7 ] to obtain

/ f(x)sinmxdx

b § o0
= / [%O sinmx + Z (ancosnx sinmx + b,sinnx sin mx)] dx

- n=1
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n

aop T >
= -2—/ sinmx dx + Zan/ cosnx sinmx dx
-n n=1

-

(o ]
+ Zb,,/ sin nx sin mx dx
n=1

T
-
b/ ¢
= b, / sin? mx dx = b7,
-

since all of the remaining integrals are zero. A similar calculation shows that a,, =
(1/7) ffn f(x)cosmx dx. Thus, if we assume the existence of the various integrals
in this calculation, and if we assume that term-by-term integration of the series is
permitted, then equation (10.3) can be solved.

Fourier’s real innovation was not in his verification of equation (10.3) — in fact, his
calculations were considered to be clumsy and nonrigorous — but rather in its inter-
pretation. Fourier argued that the Fourier coefficients of an arbitrary (but presumably
bounded) function could always be determined by interpreting wb,,, for example, as
the area bounded by the graph of y = f(x)sinmx and the x-axis between x = —x and
x = n. In other words, he transformed the question of existence of the series represen-
tation into the geometrically obvious “fact” that the area under a curve can always be
computed.

But, as we will see later, it is not at all clear how to define the integral of an “arbitrary”
function. Moreover, term-by-term integration (that is, the interchange of limits) is not
so easy to justify — the question of convergence of the series enters the picture. For
these reasons, Fourier’s work was not well received and his ideas on trigonometric
series went unpublished until the appearance of his classic book, Théorie Analytique
de la Chaleur, in 1822.

In particular, Fourier’s methods allow for a discontinuous function to be written as a
sum of continuous functions (in the modern sense of the words; see Exercise 3), which
was an unthinkable consequence at the time. It was so unthinkable that Cauchy was
prompted to set the record straight in his famous Cours d’Analyse of 1821. Cauchy’s
refutation of Fourier’s results, often called Cauchy’s wrong theorem, states that a conver-
gent sum of continuous functions must again be a continuous function. (The problem,
as we will see, comes in the interpretation of the word “convergent.”) Nevertheless,
Fourier’s methods seemed to work. In fact, the general consensus at the time was that
both Cauchy and Fourier were right, although a few details would obviously have to
be straightened out; this was an uncomfortable point of view in the newly bormn age of
rigor.

As early as 1826, Abel noted that there were exceptions to Cauchy’s theorem and
attempted to find the “safe domain” of Cauchy’s results. But the latent contradiction
in Cauchy’s theorem was not fully revealed until 1847, when Seidel discovered the
hidden assumption in Cauchy’s proof and, in so doing, introduced the concept of
uniform convergence.

Although Fourier was never able to fully justify his less than rigorous arguments,
the questions raised by his work would inspire mathematicians for years to come. To
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quote a recent article by Gonzalez—Velasco:

- n/2

It was the success of Fourier’s work in applications that made necessary a redefi-
nition of the concept of function, the introduction of a definition of convergence,
a reexamination of the concept of integral, and the ideas of uniform continuity
and uniform convergence. It also provided motivation for the theory of sets, was
in the background of ideas leading to measure theory, and contained the germs
of the theory of distributions.

EXERCISES

1. Let f(x) and g(x) be any two distinct choices from the list 1, cosx,
sin x, cos 2x, sin2x, ..., cosnx, sinnx. Show that ffﬂ f(x)g(x)dx =0 while
JI f(x)dx #0.

2. Use the result in Exercise 1 to conclude that the functions 1, cos x, sin x, cos 2x,
sin2x, ..., cosnx, and sin nx are linearly independent.

3. Here is one of Fourier’s examples: Consider the “square wave” shown in
Figure 10.1. (By including the vertical segments in the graph, Fourier imagined this
as the graph of a continuous function.) Show that the Fourier series for this function is
givenby 3" (2n)~! sin 2nx. [Hint: Do a purely “formal” calculation of the Fourier
coefficients, choosing any function values you find convenient at the points 0, +m, . . .
(note that the series vanishes at each of these points). This same example points up
another source of controversy in Fourier’s work: Does term-by-term differentiation
of this series produce a series representing the derivative of the *“square wave™?]

—x/2 L.

4. Let f : R > Rbe twice continuously differentiable and 2 -periodic. It follows

that f’ and f” are both 2 -periodic and bounded. (Why?)

(a) Use integration by parts to show that the Fourier coefficients of f satisfy |a,| <
C/nand |b,| < C/n,forsome constant C and alln > 1, and hence thata,, — 0
and b, — 0.

(b) Repeat the calculation in (a) to show that |a,| < C/ n® and |b,| < C/n?, for
some constant C and all n > 1. Use this to conclude that the Fourier series for f
converges at each point of R. (It must, in fact, converge to f, but this is somewhat
harder to show.)
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Pointwise and Uniform Convergence

We began our study of metric spaces in Chapter Three under the premise that such
abstractions would contribute to our understanding of limits, derivatives, integrals, and
sums — in other words, calculus. And while we have seen a few instances of this, we
have yet to speak at any length about our very first example: The metric space C[0, 1 ].
As we saw in Chapter Five, this is a space that we need to master.

In the next few chapters we will focus our attentions on C[0, 1] and some of its
relatives. We will want to answer all of the same questions about C[0, 1] that we have
asked of every other metric space: What are its open sets? its compact sets? Is C[ 0, 1]
complete? Is it separable? And on and on. You name it, we want to know it.

The very first question we need to tackle is this: What does it mean for a sequence
of functions to converge? There are many reasonable answers to this question, and we
will talk about several before we are done, but only one will “do the right thing” in
C[0, 1]. For instance, given a sequence ( f,,) of real-valued functions definedon [0, 1 ],
we might consider the sequence of real numbers (f,(x))52, for each fixed x in [0, 1]
and ask whether this sequence always converges. Or we might simply consider (f,) as
a sequence of points in the metric space C[ 0, 1] and ask whether ( f,) converges in the
usual metric of C[0, 1]. Both alternatives have their place in analysis, and both have
their merits, but, for C[ 0, 1] at least, the second alternative is more appropriate.

To get a handle on this, we will want to examine both types of convergence in
a variety of settings. The first type of convergence, called pointwise convergence, is
somewhat easier to work with and, historically, is the older and more natural notion of
convergence. Let’s start there.

Examples 10.1

(a) Our first example takes us all the way back to Chapter One. Recall that for
each fixed x € R, the sequence ((l + (Jr/n))"):"=I converges to e* as n — 00.
Said in other words, the sequence of polynomials f,(x) = (1 + (x/n))" converge
pointwise to f(x) = ¢* on R. Now this particular sequence of functions is rather
well behaved; for example, recall from Exercise 1.18 that (1 + (x/n))" increases
to e*. And, by way of bringing some calculus into the discussion, notice that for
any fixed x we have

%[(Hg)"] _ (.+g)"" e = iex

(as n - o0) and also

1 n l n+l 1
[ (l+£) dx = ke [(l+—) —l] — e—1 =fe"dx.
0 n n+1 n 0

(b) For each n, let g, : [0,1] — R be the function whose graph is shown in
Figure 10.2 (g, is 0 outside the interval (0, 1/n]). Then, for each x € [0, 1],
the sequence g,(x) = 0 as n — oo. Indeed, g,(0) = 0 for any n, while if x > 0,
then g,(x) = 0 whenever n > 1/x. We say that g, = 0 pointwise on [0, 1].
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But notice that jO' gn = 1 / 0. What happened? Integration is supposed to be
continuous!

(c) Consider the sequence of functions A, : [0, 1] — R given by h,(x) = x"*!/

(d)

(e)

(n + 1). Again, h, — 0 pointwise on [0, 1]; in fact, |h,(x)| <1/(n+1) > Oas
n — oo forany x in [0, 1]. But now what about &, (x) = x"? Well, h, (1) = 1 for
any n, and if 0 < x < 1, then lim,_, » A} (x) = lim,_, , x" = 0; that is, (h;) tends
pointwise to the function k defined by k(x) =0for0 < x < land k(1) = 1. In
particular,

lim A (1) =1 3# 0 = (—d— lim h,,(x))
n—00 dx n—oo x=1
Isn’t this annoying? To make matters worse, notice that the limit function & isn’t
even continuous. What’s wrong?

The pointwise limit of a sequence of functions has come up several times in our
discussions of ¢,, €2, and £, under the alias “coordinatewise’ convergence. For
example, recall that in our proof that ¢; is complete we found a candidate for
the limit of a Cauchy sequence in £; by first computing the pointwise limit of
the sequence. That is, a sequence (f,) in £; is really a sequence of functions on

N, and so we may consider their pointwise limit f(k) = lim,_, o, fa(k) for k € N.
A similar device was used in Example 7.8, where we noted that the sequence
fm=0,...,1,0,...) € €x (Where the first n entries are 1 and the rest are 0)
converges pointwise on Nto f = (1, 1,...) (all 1) but that this pointwise limit
is not a limit in the metric of £,,. A more familiar example is provided by the
ubiquitous sequence (e,). We noted in Chapter Three that (e,) tends pointwise
to 0 on N but not in the metric of any of the spaces ¢,, €2, or £.. Indeed, as we
pointed out at the time, convergence in any of these spaces is “stronger” than
pointwise convergence in the sense that convergence in the norm of ¢, £;, or £
implies coordinatewise or pointwise convergence on N, but not conversely. (See
the discussion immediately preceding Exercise 3.40 and Exercise 3.40 itself for
a positive result in this vein.)

A similar line of reasoning applies to R" as well. In this case we might consider
an element of R" as a function on the set {1, ..., n} (as we did in our discussion
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of C(M), where M is a finite set, at the end of Chapter Five). In R", of course,
coordinatewise convergence of sequences coincides with convergence in any
norm. (Why?)

Our first three examples concerned the interchange of limits, as in lim,.o [ fn =
[ limy_, o f,. While the interchange of pointwise limits worked just fine in Exam-
ple 10.1 (a), it failed miserably in the next two examples. The interchange of limits
typically requires something more than just pointwise convergence. In any case, point-
wise convergence is evidently not the “right” mode of convergence for C[ 0, 1] because
we already know that integration acts continuously on C[ 0, 1 ] and so should commute
with a limit in the metric of C[0, 1]. Before we say more, let’s examine the formal
definition of pointwise convergence.

Let X be any set, let (¥, p) be a metric space, and let f and ( f,) be functions mapping
X into Y. We say that the sequence (f,) converges pointwise to f on X if, for each
x € X, the sequence (f,(x)) converges to f(x) in Y. That is,

(fa) converges pointwise to f on X if, foreach point x € X and foreach ¢ > 0, there
is an integer N > 1 (which depends on both x and ¢) such that p(f,(x), f(x)) < ¢
whenevern > N.

Please note that since we are interested only in the distance between function values,
pointwise convergence has very little to do with the domain space X; all we need is
a distance function on (and, hence, a notion of convergence in) the target space Y. In
discussing pointwise convergence, you may find it helpful to think of a sequence of
functions (f,) as simply a “table” of values, with n determining the “rows” and each
x € X determining a “column.” The values f)(x), as x ranges over X, are put in the
first row; the values f>(x), for x € X, are put in the second row; and so on. To say
that (f,) converges pointwise means that each “column” of values, taken one at a time,
converges (as n — 00).

Also notice that since the convergence of a sequence ( f,(x)) is tested at each fixed
X, one x at a time, the rate of convergence N = N(x, €) at one x may be vastly different
than at another x. In our “tabular” framework this means that nearby rows in the table
formed by a pointwise convergent sequence of functions might be very different when
compared over all x. All we can say with certainty is that the entries in a single column
eventually begin to look alike, provided that we read beyond some Nth row — and just
how far down the column we have to read before this happens may vary with each
column or x value. This point is well illustrated by several of our earlier examples; let’s
take another look:

Examples 10.2

(a) While the sequence f,(x) = (1 + (x/n))" converges pointwiseonR to f(x) = e*,
note that since each f, is a polynomial in x, each is necessarily unbounded for
large x. In particular, for n fixed, |(1 + (x/n))"| = oo as x —» —o00, while
e* = 0as x » —oo. Thus, for any fixed n, we have |f,(x) — f(x)] = oo
as x = —o00. A more delicate calculation (with n still fixed) will also show
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that | f,(x) — f(x)] = oo as x — oo. Just how large to take x before, say,
| fa(x) — f(x)| > 1, will vary with each n.

(b) Consider the sequence (g,) of Example 10.1 (b). Although g,(x) &> Oasn — oo
for each fixed x, there are plenty of x for which anindividual g,(x) is far from 0. In
particular, g,(1/2n) = 2n — oo. (Atx = (1/2n), we would need N > 1/x = 2n
to have gy(x) =0.)

(c) Next consider the sequence k,(x) = x" on [0, 1]. Pictured in Figure 10.3 are
the graphs of k, forn = 1, 2, 4, 6, and 16. As noted earlier, k,(1) = 1 for every
n, while k,(x) = O for x < 1. That is, (k,) converges pointwise to the function
k in Example 10.1 (c). But notice, too, that near x = 1 each k,(x) is necessarily
far from O. In fact, k,,(l/Q/i) = 1/2 for every n while Y2 > lasn — oo.

0 1

Now that we have had a chance to play around with an inappropriate mode of
convergence in C[0, 1], let’s see if we can do better. We already know a metric on
C[0, 1], and so we know what it means for a sequence ( f,) in C[0, 1] to converge to a
function f in the metric of C[ 0, 1]; it means that || f, — fllco = 0 as n = oo. That is,
SUPg<.<) | fa(x) — f(x)] & 0 as n — oo. If we expand this into an “¢, N ” statement,
we will be able to compare it with the definition of pointwise convergence:

fn = f in the norm of C[O0, 1] if, for every € > 0, there is some N (which may
depend on ¢) such that supy., <, | fa(x) — f(x)| <eforalln > N.

And now let’s remove that supremum:

fn — f in the norm of C[ 0, 1] if, for every ¢ > 0, there is some N (which may
depend on ¢) such that |f,(x) — f(x)] < eforall0 < x < 1andalln > N.

In other words, the inequality | f,(x) — f(x)| < € is to hold uniformly in x (for
large n).

Again appealing to our “tabular” analogy, the table for a sequence ( f,) that converges
in the norm of C[ 0, 1] has the property that all of the rows, beyond some Nth row, are
uniformly similar, independent of the columns. The key, of course, is the sup-norm;
we have insisted that the maximum pointwise difference between f, and f be made
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small. To put this in more familiar terms, recall that ( f,) converges to f in the metric of
C[0,1]if (f,)is eventually in B,(f) ={g € C[0,1]):|lf — gllo < €}, and that B.(f)
is the set of functions in C[0, 1] whose graphs are at a maximum vertical distance of ¢
from the graph of f. Another picture might help; see Figure 10.4.

(a) (b)

The shaded region in Figure 10.4 (a) is the set {(x, y) : |y — f(x)| < €}. A function
g € C[0, 1] is in B.(f) precisely when its graph lies within this region, as depicted in
Figure 10.4 (b).

Let’s recall our first few examples. For the sequence (g,) in Example 10.1 (b) we
have |ignllc = |81 — Ollc = 21 # 0. Thus, while (g,) does converge pointwise to 0 on
[0, 1], it does not converge to 0 in the metric of C[0, 1]. In fact, (g,) cannot converge to
any function in the metric of C[ 0, 1 ] since it is not a bounded sequence in C[ 0, 1 ]. For
the sequence (h,) in Example 10.1 (c) we have ||h,lloc = 1/(n+ 1) = 0, and hence (h,)
converges to 0 in the metric of C[0, 1 ]. Finally, the sequence (k,) of Example 10.2 (c)
does not converge to any function in C[ 0, 1 ] (the function & certainly is not a candidate
since it is not continuous). Why? Because (k,) is not a Cauchy sequence in C[0, 1]:
Indeed, llkn — kzalloo > [kn(1/¥2) = kan(1/¥2)| = (1/2) = (1/4) = 1/4.

Convergence in the metric of C[O0, 1] is called uniform convergence. It has little
to do with continuous functions and a lot to do with the sup-norm (which, for this
reason, is sometimes called the uniform norm). The formal definition should explain
everything.

Let X be any set, let (Y, p) be a metric space, and let f and ( f,) be functions mapping
X into Y. We say that the sequence (f,) converges uniformly to f on X if, for each
¢ > 0, there is some N > 1 (which may depend on ¢) such that p( f,(x), f(x)) < € for
allx e Xandalln > N.

To highlight the fact that p( f,(x), f(x)) is uniformly small for all x € X, we might
replace it by sup, .y p(fa(x), f(x)); that is, note that (f,) converges uniformly to f if
and only if, for each € > 0, there is some N such that sup, .y o(fa(x), f(x)) < € for all
n > N. (Why?) Said in still other words, ( f,) converges uniformly to f on X if and
only if sup, .y P(fa(x). f(x)) = 0 as n — oo. (Look familiar?)

Notice that a uniformly convergent sequence is also pointwise convergent (to the
same limit). In other words, uniform convergence is *“‘stronger” than pointwise conver-
gence. (Why?)

Figure
104
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In this notation we would say that the sequence (g,) of Example 10.1 (b) converges
pointwise to Oon [ 0, 1 ], but not uniformly; the sequence (h,) of Example 10.1 (c) con-
verges uniformly to O on [0, 1]; and the sequence (k,) of Example 10.2 (c) converges
pointwise to k on [0, 1], but not uniformly. Notice, too, that uniform convergence de-
pends on the underlying domain. Indeed, although (,) is not uniformly convergent on all
of [0, 1], it is uniformly convergent (to 0) on any interval of the form [ 0, b ], where 0 <
b < 1, because sup,, < |kn(x)| = supy, <, |x"| = b" — 0 as n — oo. Similarly, (g,)
converges uniformly to O on any interval of the form [a. 1 ], where 0 < a < 1. (Why?)

Examples 10.3
(a) Uniform convergence is meaningful on unbounded intervals, too. For example,
consider f,(x) = x/(1 + nx?)forx e Randn = 1,2,.... It is easy to see

that (f,) converges pointwise to 0 on R. To test whether the convergence is
actually uniform, we might try computing the maximum value of |f,| on R
(using familiar tools from calculus). Now f/(x) = (1 — nx?)/(1 + nx?)?, which
is 0 at x = *1/./n, and it follows from the first derivative test that f,(+
1//n) = £1/(24/n) are the maximum and minimum values of f,. That is,
sup, g | fa(x)| = 1/(24/n) - 0asn — oo, and so (f,) converges uniformly to 0
on R.

(b) Uniform convergence is also meaningful for unbounded functions. A somewhat
contrived example should be sufficient to see what is going on. If we set g,(x) =
x>+ /n)forx e Randn = 1,2, ..., then, clearly, (g,) converges uniformly to
g(x) = x3 on R. (Why?) In other words, the functions g, need not be bounded;
the important thing is that the difference g, — g must be bounded (and tend
uniformly to O of course).

(¢) For bounded, real-valued functions on N, uniform convergence is the same as
convergence in the metric of €. That is, if f, f, € €, then (f,) converges
uniformly to f on Nifand only if || f, — flloo > 0asn — oo.

(d) If we identify R" with the real-valued functions on the set {1,...,n}, then
uniform convergence on (1, ..., n} coincides with convergence in any norm on
R". (Why?)

By way of shorthand, we will occasionally (and sparingly) use the following notation.
We write f, — f on X, or f, LY f (with no additional quantiﬁers)kto mean that
(fa) converges pointwise to f on X. We write f,=3f on X, or f, =3 f, to mean
that (f,) converges uniformly to f on X. This notation is intended as a visual reminder
that uniform convergence is “stronger” than pointwise convergence. But, just to be
on the safe side, any additional quantifiers always take precedence; for example, the
statements “ f, — f uniformly on X’ and “ f, — f in (the metric of) C[0, 1]” should
be interpreted to mean that ( f,) converges uniformly to f. Obviously, we will have to
be careful to avoid any confusion caused by this variety of notations. A comparison of
the “abbreviated” definitions of pointwise versus uniform convergence pinpoints their
differences: f, A f means

Vx € X, Ve > 0, 93N > 1 such that p( f,(x), f(x)) <&, Vn> N,
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. X
while f, =3 f means

Ve > 0, 3N > 1 such that p(f,(x), f(x)) <€, Vxe€ X, Vn> N.

In other words, just as in the case of uniform continuity, the quantifier “Vx”’ has moved

forward (and so € and N no longer depend on x).

EXERCISES

5. Suppose that f, : [a,b] — R is an increasing function for each n, and that
f(x) =1lim,_ o fa(x) exists foreach x in [a, b ]. Is f increasing?

6. Let f, : [a,b] = R satisfy | f,(x)] < 1 for all x and n. Show that there is
a subsequence (f,,) such that lim,_, , f, (x) exists for each rational x in [a, b].
[Hint: This is a “diagonalization™ argument.]

7. Let(f,)and (g,) be real-valued functions on a set X, and suppose that ( f,) and
(gn) converge uniformly on X. Show that ( f, + g,) converges uniformly on X. Give
an example showing that ( f,g,) need not converge uniformly on X (although it will
converge pointwise, of course).

8. Let f, : R — R, and suppose that f, = 0 on every closed, bounded interval
[a, b]. Does it follow that f, = 0 on R? Explain.

9. For each of the following sequences, determine the pointwise limit on the
given interval (if it exists) and the intervals on which the convergence is uniform
(if any):

(@ fa(x)=x"on (-1,1];

() fa(x) =n%x(1 — x?)" on [0, 1];

(c) fa(x)=nx/(1 4+ nx) on [0, c0);

(d) fn(x) = nx/(1 +n*x?) on [0, 00);

(e) fa(x) =xe™™ on [0, 00);

(f) f.(x) =nxe ™ on [0, 00).

In each of the above examples, will term-by-term integration or differentiation lead
to a correct result?

10. Let f : R — IR be uniformly continuous, and define f,(x) = f (x + (1/n)).
Show that f, = f on R.

11. Suppose that f, = f on R, and that f : R — R is continuous. Show that
fa(x + (1/n)) = f(x) (pointwise) on R.

12. Prove that a sequence of functions f, : X — [, where X is any set, is
uniformly convergent if and only if it is uniformly Cauchy. That is, prove that there
exists some f : X — R such that f, = f on X if and only if, for each ¢ > 0, there
exists an N > 1 such that sup, .y | fa(x) — fm(x)| <& whenever m, n > N. [Hint:
Notice that if ( f,) is uniformly Cauchy, then it is also pointwise Cauchy. That is, if
SUp, ey | fn(x) — fm(x)] = O0asm, n — oo, then (f,(x)) is Cauchy in R for each
x € X.]
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13. Here is a “negative” test for uniform convergence: Suppose that (X, d) and
(Y, p) are metric spaces, that f, : X — Y is continuous for each n, and that ( f,)
converges pointwise to f on X. If there exists a sequence (x,) in X such that x, — x
in X but f,(x,) # f(x), show that ( f,) does not converge uniformly to f on X.

Interchanging Limits

As we have seen, pointwise convergence is not always enough to guarantee the inter-
change of limits. In this section we will see that uniform convergence, on the other

hand, does often allow for an interchange of limits.
As a first result along these lines, we will prove that the uniform limit of a sequence

b (13

of continuous functions is again continuous. (Compare this with Cauchy’s “wrong”
theorem.)

Theorem 10.4. Let (X,d) and (Y, p) be metric spaces, and let f and (f,) be
functions mapping X into Y. If (f,) converges uniformly to f on X, and if each
fn Is continuous at x € X, then f is also continuous at x.

PROOF. Let ¢ > 0. Since (f,) converges uniformly to f, we can find an m such
that p(f(y), fm(y)) < €/3 for all y € X (we only need one such m). Next, since
fm is continuous at x, there is a§ > 0 such that p( f,,(x), fm(y)) < £/3 whenever
d(x,y) < é. Thus, if d(x, y) < §, then

P(f(x), () < p(f(x), fm(x)) + p(fm(x). fm(¥)) + P(fm(y), f(¥))
<¢e/3+¢€/3+€/3=¢. O

To see that Theorem 10.4 is indeed a statement about the interchange of limits, let’s
rewrite its conclusion. If x,, = x in X, then

f) = lim f(x) = lim lm_f,(xm).

00 m—

since ( f,) converges pointwise to f and each f, is continuous at x. To say that f is also
continuous at x would mean that

f(X) = mlllonoo f(xm) = ml—l-rngo nl—lonc;lo fn(xm)-
Thus, in the presence of uniform convergence, we must have

lim lim f,(x,)= lim hm fa(Xm).

n—00 m— 00 m—-0o0on

In particular, Theorem 10.4 tells us that the space C[ a, b ] is closed under the taking
of uniform limits. That is, if (f,) is a sequence in C[a, b}, and if (f,) converges
uniformly to f on [a.b], then f € C[a,b]. This is very comforting since, as we
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have seen, convergence in the metric of C[a, b] coincides with uniform convergence.
Specifically,

fa=> finCla,b] = |fai—fllwe—=>0 << fa3fonla,b].

EXERCISES

> 14. Let f, : R = R be continuous for each n, and suppose that f, = f on each
closed, bounded interval [ a, b ]. Show that f is continuous on R.

15. Let(X, d)and(Y, p)be metric spaces,andlet f, f,: X = Y with f, = fon X.
Ifeach f, iscontinuousatx € X,andifx, — xin X,provethat lim f,(x,) = f(x).
n—»00

16. Let (X, d) and (Y, p) be metric spaces,and let f, f, : X — Y with f, 3 f

on X. Show that D(f) C Uf;, D(f,), where D(f) is the set of discontinuities

of f.

17. Supposethat f, f, : X = R.

(a) Show that the set on which (f,) converges pointwise to f is given by
Mret Umet Mhem (x 21 fa(x) — £ < (1/k)).

(b) What is the set on which ( f,(x)) is Cauchy? If X is a metric space, and if each
fn is continuous on X, what type of set is this?

> 18. Here is a partial converse to Theorem 10.4, called Dini’s theorem. Let X be a
compact metric space, and suppose that the sequence ( f,,) in C(X) increases pointwise
to a continuous function f € C(X); thatis, f,(x) < f,+1(x) for each n and x, and
fa(x) = f(x) for each x. Prove that the convergence is actually uniform. The same
is true if (f,) decreases pointwise to f. [Hint: First reduce to the case where (f,)
decreases pointwise to 0. Now, given € > 0, consider the (open) sets U, = {x € X :
fa(x) < €}).] Give an example showing that f € C(X) is necessary.

Our next two results supply an interchange of limits for integrals and derivatives.

Theorem 10.5. Suppose that f, : [a,b] — R is continuous for each n, and that
(f») converges uniformly to f on [a, b]. Then j;b fa(x)dx > fab f(x)dx.

PROOF. Note that since f € C[a, b], the integral of f is defined! Next,

b b b
/ fn(x)dx—/ f(x)dx s/ | fa(x) — f(x)ldx

<@b-alfa—fllo—0. O

Example 10.6

Suppose that the trigonometric series (ap/2) + Y_,..,(a, cos nx + b, sin nx) is uni-
formly convergent on the interval [—n, 7 ]. Then, according to Theorem 10.4,
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its sum g(x) is a continuous function on [,  ]. It now follows from Theo-
rem 10.5 that this series must, in fact, be the Fourier series for g(x). Indeed, for
anyk =1,2,3,..., we have

n b1 4 20
f g(x) sinkxdx = / [%9 + Z(a,, cosnx + b, sin nx)] sin kx dx
- - n=|\

ao 7 00 T
£} /;x sinkxdx+Za,,/_ cosnx sinkx dx

n=| n

o ¢}
+ Z b, f sin nx sinkx dx
n=1

n
-

=7tbk,

since Theorem 10.5 grants term-by-term integration. (Why?) A similar calculation
shows that ray = [”_ g(x) coskx dx. We will return to this issue in subsequent
chapters.

Now that we know how to exchange limits and integrals, the Fundamental Theorem
of Calculus will tell us how to exchange limits and derivatives. While our next result
may look “overspecified,” it’s really very useful.

Theorem 10.7. Suppose that (f,) is a sequence of real-valued functions, each
having a continuous derivative on [ a, b ], and suppose that the sequence of deriva-
tives (f,) converges uniformly to a function g on [a, b ). If (fa(x0)) converges at
any point xg in [a, b, then, in fact, (f,) converges uniformly to a differentiable
function f on [a,b). Moreover, f' = g. That is, (f,)) converges uniformly to f’
onla,b].

PROOF. Let’s first check that (f,) converges pointwise to some function f on
[a,b]. Let C = lim,_, o fa(x0). Then, for any x € [a, b] we have

fax) = fulxo) + [ fl>C+ f e

since f, =3 g. Thus, f, — f, where f(x)=C + f:; g. It follows that f(x)= f(a) +
[ g for any x in [a, b). The right-hand side of this expression is (continuously)
differentiable and, hence, sois f. Moreover, f'=g. Thatis, f, = f'on [a, b].

Finally, to show that (f,) converges uniformly to f, we just repeat our first
calculation:

| fa(x) = f(x)| =

fa(@) — f(a) +/ (fa = f')l

< If,.(a)—f(a)l+/ If, — fl

<Ifa@) = f@I+®-alf, = f'lloo = O.

The right-hand side tends to 0 independent of x; hence, |f,(x) — f(x)] > 0
uniformly inx. O
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EXERCISES

19. Suppose that (f,) is a scquence of functions in C[0, 1] and that f, = f on

[0, 1]. True or false? fo'—“/") fo— fo' f.

20. C™V[a, b] is the vector space of all functions f : [a, b] — R having a con-
tinuous first derivative on [ a, b ]. Show that C("[a, b ] is complete under the norm
"f"C‘” = MaXg<x<p If(X)I + MaX,<x<p If’(x)l

21. Use Dini’s theorem to conclude that the sequence (1 4 (x/n))" converges uni-

formly to e* on every compact interval in R. How does this explain the findings in
Example 10.1 (a)?

22. Recall that we have defined a metric on C(R) by setting d(f,g) =
Yoo 127"da(f, 8)/(1 + dn(f, 8)), where dn(f, 8) = max; <, | f(t) — g(1)| (see
Exercise 5.64). Prove that ( f,) converges to f in the metric of C(R) if and only if ( f,,)
converges uniformly to f on every compact subset of R. For this reason, convergence
in C(R) is sometimes called uniform convergence on compacta.

The Space of Bounded Functions

Given a set X, we write B(X) for the vector space of all bounded, real-valued functions
f : X - R, and we supply B(X) with the sup-norm || f|lc = sup,cx | f(x)|. That is,
B(X) is just €,.(X) with a new name. (The notation B(X) is somewhat more common-

place than ¢,,(X).) Thus, convergence in B(X) is the same as uniform convergence.
Specifically,

fa=>finBX) & |Ifi-flo—=>0 < fi3fonX.

Moreover, B(X) is complete under the sup-norm. The proof is exactly the same as
that for £,,(X), of course, which means that it is essentially the same as that for £.
(Compare the proof of the following lemma with the “three-step” procedure outlined
in Chapter Seven.)

Lemma 10.8. If (f,) is a Cauchy sequence in B(X), then (f,) converges uni-
formly to some f € B(X). Moreover, sup, || falloo < 00 and || falloo = Il flloo as
n — 00.

PROOF. The last two assertions follow from general principles: If (f,) is a
Cauchy sequence in B(X), then (f,) is also a bounded sequence in B(X); that
is, sup, || fnllo < 00. And if (f,) converges to f in the norm of B(X), then
I falloo = ll flloc @8 1 — 0. (Why?)

Now, if (f,) 1s Cauchy in B(X), then (f,) is also pointwise Cauchy; that is,
for each x € X we have | fn(x) — fu(X)| < |fm — falloo = 0 as m, n —> o0,
and so (f,(x)) is a Cauchy sequence in R for each x € X. Consequently, f(x) =
lim,_, » fa(x) exists for each x € X. But, as we have already noted, (f,) is a
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bounded sequence in B(X); thus, |f(x)| = lim,o o0 | fa(x)] < sup, | fallo = C,
and hence || f|loc < C, too. Thatis, f € B(X).
Finally, to see that ( f,) converges uniformly to f, let e > 0 and x € X. Then

| f(x) = fa(x)| = "]Lmoo | fm(x) = fa(x)] < &,

for all n sufficiently large, since | fu(x) — fo(x)| < | fm — fallo < € forallm, n
sufficiently large. And since this estimate is independent of x, we get || f — fulloo <
¢ for all n sufficiently large. O

A Cauchy sequence in B(X) is often said to be uniformly Cauchy, while a bounded
sequence in B(X) is often said to be uniformly bounded to emphasize the presence of
the uniform, or sup-norm.

The fact that B(X) is complete is even more meaningful in the case where X is a
metric space, for then we may also consider the space C(X) of continuous, real-valued
functions on X. Now continuous functions on X are not necessarily bounded; in other
words, C(X) is not, in general, a subspace of B(X). Thus we are led to consider the
vector space Cp(X) = C(X) N B(X), of all bounded, continuous, real-valued functions
on X. It follows from Theorem 10.4 that C,(X) is a closed subspace of B(X); hence
C»(X) is complete under the sup-norm. (Why?)

If X is a compact metric space, then Cp(X) = C(X) and, what’s more, we may
use the simpler expression || f]loc = max,ex | f(x)| in place of the sup-norm on C(X).
(Why?) In particular, C[a, b] is a complete normed vector space under the sup-norm
(i.e., under uniform convergence).

Now that we know that B(X) is a complete normed vector space, we may take advan-
tage of yet another observation from Chapter Seven, namely, Banach’s characterization
of completeness for normed spaces. The following special case of Theorem 7.12 is
often called the Weierstrass M -test.

Lemma 10.9. Let (g,) be a sequence in B(X) satisfying Z;‘;, I8nllec < 00. Then
Y > | gn convergesin B(X); thatis, Y . | 8. converges uniformly on X. Moreover,

I Z:.;| 8nlloo < Z:il 1&n ll co-

The usual notation in most advanced calculus books is to set M, = |gnlloo
= sup,x |8(x)| (for the Max of the nth term), and consequently to require that
Y > | M, <oo. Hence the name “M-test.”

Application 10.10. (Power Series) If the power series Y .. ,a,x" converges
for some xo # 0, then it converges uniformly (and absolutely) on every interval
|x| < R, where0 < R < |xq|. Hence, the sum represents a continuous function for
|x| < |xol. Moreover, term-by-term differentiation (in |x| < |xo|) or integration
(over [a,b] C (=]xol, |x0l)) leads to a correct result.

PROOF. First notice that if Y~ a,x§ converges, then the terms in the series are
bounded, say, |a,|lxo|" < C foralln.NextfixO < R < |xo|,andletr = R/|xo| < 1.
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x n
anxg (x_)
0

Thus, since Y oo, Cr* < oo, we have Y o a,x" converging uniformly (and
absolutely) on |x| < R by the M-test. The sum Y > a,x" is then continuous on
(—|xol. |x0|) because it is continuous on each interval [—R, R] for R < |xg|.

Term-by-term integration over [a,b] C (—|xol, |xo|) follows from Theorem
10.5 (applied to f,(x) = Y j_o arx*).

Finally, to show that the sum is differentiable, we appeal to Theorem 10.7 (again
applied to f,(x) = 3 _r_, axx¥). The proof relies on the same technique used above,
but now we make use of the fact that Y ;> nr"~! converges for0 < r < 1. It
follows that the series Y - na,x"~! converges uniformly (and absolutely) for
|x| < R, where R < |xol, and so it must converge to (d/dx) (3 _,_,anx"). O

Then, for |x| < R, we get

la,x"| = <Cr".

Application 10.11. (A Space-Filling Curve) We next construct a pair of con-
tinuous functions x(t) and y(t) on [0, 1] such that the curve t — (x(1), y(1)) fills
the unit square [0, 1] x [0, 1]. In fact, our construction will show that the curve
maps A onto [0,1] x [0, 1].

PROOF. To begin, we define amap f : R — [0, 1] as follows: Let f(¢) = O for
O0<tr<l1/3,let f(t)=3t—1for1/3 <t <2/3,andlet f(t)=1for2/3 <t <.
Note that if r € A, then f(¢) is the first digit in the terary decimal expansion of
t. We next extend f to all of R by taking f to be even and periodic, of period 2,

as shown in Figure 10.5.

-1 1 2 3

The basis of our construction lies in the observation that the function g(¢) =
Y re027%7! £ (3*t) agrees with the Cantor function for r € A. That is, g(s) is
another extension of the Cantor function to [0, 1] (indeed, to all of R). To see
that this is so, let ¢t = 0.(2a¢)(2a;)(2a3) - - - (base 3), where each g, isOor 1,be a
point in A. Then, since f is periodic with period 2, we have

f3*) = £(0.2ar)2ar+1)(2ax+2) - - - (base 3)) (Why?)
=0 if aa=0, since 0.0b,bs--- (base 3) € [0,1/3]
=1 if g =1, since 0.2b,b3--- (base 3) € [2/3,1].

That is, f(3%t) = a; for t € A and hence

00

g(t) = Z 2—k_'ak = 0.apa)a, - - - (base 2).
k=0




Figure
10.6
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Now we are ready to define our curve; set x(1) = Y ;2,27%"! f (3%*¢) and
y(t) = Y poo 27! £(3%*+*!1). By the M-test, x and y are continuous on all of R
and, clearly, each maps R into [0, 1]. (Why?)

To see that (x(t). y(t)) fills the square, let xq, yo € [0, 1] and write their base 2
decimal expansions just so:

xo = 0.apaza, - - - (base 2) and yo = 0.ajasas - - - (base 2).

Now set 1o = 0.(2ap)(2a;)(2a3)(2a3) - - - (base 3) € A. Then x(#p) = xo and y(fp) =
yo since f(3*ty) = a; for each k. Thus the curve maps A onto [0, 1] x [0,1]. O

The M-test can be used to give yet another description of the Cantor function, this one
more in the spirit of our “middle thirds” construction (see Chapter Two). Specifically, we
will simultaneously build the nth level Cantor set (we called this set 7, in Chapter Two)
and an nth level polygonal approximation f, : [0, 1] — [0, 1] to the Cantor function
f. (A polygonal function is a continuous function whose graph consists of finitely
many straight line segments. Thus, a polygonal function is completely determined by
its values at the finitely many “nodes” x,, ..., x; corresponding to the finitely many
“vertices” of its graph.)

1~

t
2 1
3

To define the first approximation f;, set f1(0) = 0, f,(1/3) = 1/2 = £1(2/3), and
fi(1) = 1, and then extend f; to all of [0, 1] by “connecting the dots.” That is, f
is a polygonal function on [0, 1 ] with “nodes” at the endpoints 0, 1/3, 2/3, and 1 of
I, =[0,1/3]U[2/3,1], as shown in Figure 10.6. Note that f; is constant on the first
“discarded” interval J, = (1/3, 2/3).

The second polygonal approximation f> is obtained by adding a few more nodes
to the definition of f); namely, let f, agree with f, at each of the points 0, 1/3, 2/3,
and 1, and now include f>(1/9) = 1/4 = f2(2/9), and f2(7/9) = 3/4 = f2(8/9),
as shown in Figure 10.6. Again, f, has nodes at the endpoints of /» = [0,1/9] U
[2/9,1/31U[2/3,7/91U[8/9.1], and f; is constant on each subinterval of J, =
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(1/9,2/9) U (1/3,2/3) U (7/9, 8/9). Note that the graph of f, contains two *“‘scaled-
down” copies of the graph of f;.

Can you see how we will define f3? We will add eight more nodes to the definition
of f», corresponding to the eight new endpoints introduced in /3, and we will take f3 to
be constant on each of the subintervals of J; (using 1/8, 3/8, 5/8, and 7/8 as the four
new values), so that f; agrees with f; on J, and agrees with f; on J,. If you draw the
graph of f3, you will see four “miniature” copies of the graph of f, (or two copies of
the graph of f;).

If we continue this process, we will get a sequence of increasing, continuous, polygo-
nal functions ( f,) on [0, 1 ] such that f, is constant on each subinterval of J, and linear
on each subinterval of /,. In particular, each f, is designed to agree with the Cantor
function f on J,. Using induction (based on the graphs on f; and f; and *“scaling”), it is
not hard to see that || 41— falloc < 27"~! forany n. Thus, the series fi+ oo | (fa+1—fn)
converges uniformly to an increasing continuous function g on [ 0, 1 ] (in other words,
f» = g). But then g must agree with the Cantor function fon|J,_, J, =[0,1]\ A, a
dense subset of [0, 1]. Consequently, g = f.

Next, let’s resolve an issue left over from Chapter Nine, namely, the converse to
Theorem 9.2: Every F, subset of R can be realized as the set of discontinuities of some
(bounded) function f : R - R.

Application 10.12. (Discontinuous Functions) Let F be a nonempty F, subset
of R. Then, F = D(f) for some bounded function f : R - R.

PROOF. Write F = |J-, F,, where each F, is a closed set in R. Since finite
unions of closed sets are again closed, we may assume that F, C F,;, for each
n. Now, for each n, let G, = Q N F;?, the rationals in the interior of F,, and let
fa = Xg, — Xg, = Xfg\g,- Then, f, is clearly continuous at each point in the
complement of F,, and f, is discontinuous on F, since the oscillation of f, is 1
at each point of F,. (Why?) Thus, D(f,) = F,.

Next, let f =) 2 47" f,. It follows from the M-test (and Theorem 10.4) that
f is a bounded function on R that is continuous on the complement of F. To
see that f is discontinuous at each point of F, let x € F and choose n such that
x € F, \ F,-,. Then x € F; for all k > n and, hence, the oscillation of f at x is
atleast4™" -3, 4% =4""(2/3)>0. O

As a final application of the M-test, we construct a continuous nondifferentiable
function. The first published example of such a function was given by Weierstrass, who
showed that the function f(x) = Y o2, a" cos(b"x), where 0 < a < 1 and b is an odd
integer satisfying ab > 1 + 3 /2, fails to have a finite derivative at any point. The
following is a simplified version of Weierstrass’s example.

Application 10.13. (Nowhere Differentiable Functions) Given x € R, let
g(x) denote the distance from x to the nearest integer, and define f(x) =
Y 2 027"8(2"x). Then, f is a bounded (uniformly) continuous function on R
that fails to have a finite derivative at any point of R.
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PROOF. The graph of g(x) is pictured in Figure 10.7. Note that g has period 1
while g(2"x) has period 27". In particular, if x is a dyadic rational, x = i27", for
some integers i and n > 1, then 2*x is an integer for all k > n, and so g(2*x) = 0
for all kK > n.

1 g(x)
A/\/\/
o 2

By the M-test, f is a bounded continuous function on R. (Since f is periodic
with period 1, note that f is actually uniformly continuous.) Now, if f has a finite
(two-sided) derivative at some (fixed) x € R, then

f(vn) - f(un)

v" —un

- f'(x)

for any (u,) and (v,) with u, < x < v,, u, < v,, and v, — u, = 0. (Why?) To
show that f is nondifferentiable, then, we will show that this limit fails to exist
for a suitable choice of (u,) and (v,).

Givenn > 1, let u,, and v, be the pair of successive dyadic rationals satisfying
U, <x <vpandv, — u, =27". Then

f(vn) - f(un) _ = g(zkvn) - 8(2k“n)
kz;; .

vn - un 2kvn - 2kun

But 2fu, = 2¥-"2"u, = 2*~"i and 2*v, = 2*¥~"(i + 1), for some integer i. Since
2k-n < 172 for k < n, this means that 2*u, and 2*v, both lie in the same “half-
period” for g and hence that g is linear on the interval [2%u,,, 2¥v,]. Thus each of
the difference quotients in the sum on the right is £1; that is,

n-1
d, = f(n) — fun) _ Z:tl-
k=0

Un — Up

Hence, the sequence of difference quotients (d,) cannot converge to a finite limit
because successive terms always differ by atleast 1. O

EXERCISES

> 23. Show that B(X) is an algebra of functions; that is, if f, g € B(X), then so is
fgand || fglloo < Il flloo Iglloo- Moreover, if f, — f and g, — g in B(X), show
that f,g, — fg in B(X). (Thus, multiplication is continuous in B(X). Compare this
with Exercise 7.)
24. B(X) is also a lattice: If f, g € B(X), show that the functions f v g =
max{f, g} and f A g = min{f, g} (defined pointwise, just as in Chapter Five) are
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also in B(X) and satisfy |f V gllo < max{|| fllec. lgllc} and | f A gllc <
max({|| f lleo, lglloo}-
25. Show that B[ 0, 1] is not separable. [Hint: This is analogous to the proof that

€ is not separable. Consider the collection of characteristic functions of the intervals
[0, x]for0 < x < 1.]

26. If Y °° |as| < 0o, prove that ) .- a,sinnx and Y .., a, cOs nx are uni-
formly convergent on R.

27. Show that Z:‘;, x2/(1 + x2)" converges for all |x| < 1, but that the conver-
gence is not uniform. [Hint: Find the sum!]

28. Let f, : R — R be continuous, and suppose that ( f,,) converges uniformly on
Q. Show that ( f,,) actually converges uniformly on all of R. [Hint: Show that ( f,,) is
uniformly Cauchy.]

29,
(a) For which values of x does Z:i, ne~"* converge? On which intervals is the
convergence uniform?

(b) Conclude that f,z zi‘;, ne "*dx =e/(e* — 1).
30. Prove that Z:‘;, x/[n*(1 + nx?)] converges uniformly on every bounded in-
terval in R provided that @ > 1/2. Is the convergence uniform on all of R?

31. Show thatlim,_; Y o nx?/(n’* +x2) =) "2 n/(n*+1).
32.
(@) If Y > |a,| < 0o, show that ) - a,e™"* is uniformly convergent on [ 0, 00).

(b) If we assume only that (a,) is bounded, show that Z;“;, a,e~"* is uniformly
convergent on [ §, 00) for every § > 0.

33. Define I(x) = 0 for x < 0and I(x) = 1 for x > 0. Given sequences (x,)
and (c,) in R, with 322 | |ca| < 00, show that f(x) = Y oo, cal(x — x,) defines
a bounded function on R that is continuous except, possibly, at the x,,.

34. Let0 < g, € Cla,b]. If Y -2 g, converges pointwise to a continuous

function on [a, b ], show that ) - . g, converges uniformly on [a, b ].

35. For whicha € R is Z:":l xn®e~"* a continuous function on (0, 00)? on
[0, 00)?

36. Show that both Z:‘_’__, x"(1 — x) and zf,’il(—l)"x"(l — X) are convergent on
[0, 1], but only one converges uniformly. Which one? Why?

37. Wheredoes Y .-, x"/(1 + x™) converge? On which intervals does it converge
uniformly?

38. Let (f,) be a sequence of continuous functions on (0, 00) with | f,(x)| < n for
every x > O and n > 1, and such that lim,_, », f,(x) = O for each n. Show that
f(x) = Z:‘;l 27" fa(x) defines a continuous function on (0, 00) that also satisfies
lim,, f(x) =0.

39. Show that C(R) is complete. [Hint: Use the fact that C[—n, n ] is complete for
each n. See Exercise 22.]




160 Sequences of Functions

40. For any metric space X, show that X is isometric to a subset of C,(X). [Hint:
Mimic the proof of Lemma 7.17, showing that X embeds into £,(X) = B(X).]
Conclude that X has a completion.

Notes and Remarks

For more on the history of the vibrating string problem, see Carslaw [1930], Hob-
son [1927, Volume II], Kline [1972], Langer [1947], Rogosinki [1950], Van Vleck
[1914], and the excerpt “Riemann on Fourier series and the Riemann integral” in
Birkhoff [1973] (wherein you will also find three excerpts from Fourier’s work); the
excerpt is from Riemann [1902], in which Riemann develops his concept of the integral
to address the problem of representing continuous functions by trigonometric series.
For a detailed solution of the vibrating string problem see Folland [1992] or Tolstov
[1962].

For a brief history of Fourier analysis, see the articles by Coppel [1969], Gibson
[1893], Jackson [1920], Jeffery [1956]), and Langer [1947]. For more recent com-
mentary see Grattan-Guinness [1970], Halmos’s “Progress Report” on Fourier series,
Halmos [1978], the follow-up article by Bochner [1979], and Zygmund [1976]. For
more information on Fourier himself see the biographies by Grattan-Guinness [1972]
and Herivel [1975], the article by Gonzalez-Velasco [1992] (which is the source of the
quote at the beginning of the chapter), and Koémer [1988]. In addition to containing
entertaining historical tidbits, Kémer’s book is an excellent introduction to Fourier
analysis. For an enlightening discussion of the impact of Cauchy's famous “wrong”
theorem and its connection with Fourier’s work, see Lakatos [ 1976].

For more details on Exercise 4 (and related issues), see Jackson [1926, 1934a, 1941],
Rogosinski [1950], and Simon [1969]. The first general convergence result for Fourier
series is generally attributed to Jordan [1881].

Pointwise convergence is “as old as the hills,” and it is at least as old as calculus
itself. Uniform convergence was first introduced by Seidel [1847], and in the same
year by George Stokes [1848]; see Hardy [1918], Hawkins [1970], and Lakatos [1976).
Once the notion of uniform convergence was recognized as the proper tool for the
preservation of continuity in the limit, Weierstrass and his students began a “witch
hunt” for the uses of Cauchy’s theorem during the previous 50 years, in an attempt to
set the record straight. The age of rigor would come to full maturity under Weierstrass’s
guidance. For more about Weierstrass himself, see Polubarinova-Kochina [1966].

The example of a space-filling curve given in Application 10.11 is due to Schoenberg,
by way of Lebesgue, and first appeared in Schoenberg [1938). Curiously, Schoenberg’s
curve turns out to be nowhere differentiable, whereas Lebesgue’s (the one that we dis-
cussed in Chapter Six) is differentiable almost everywhere. For more on this see Schoen-
berg [1982] or Sagan [1986, 1992]). The Schoenberg-Lebesgue example is typical of
a wider class of space-filling curves; in particular, the curve (x(¢), y(¢)) is space-filling
whenever x and y are stochastically independent. See Holbrook [1991].

The construction in Application 10.12 is based on the presentation in Oxtoby [1971].
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Both Weierstrass and Riemann spoke of continuous, nowhere differentiable functions
in their lectures as early as 1861 (and other examples of such functions are now known
to have existed prior to 1861), but the first published example is due to Weierstrass, an
example that finally appeared in du Bois—Reymond [1875]. See also Weierstrass [1895,
Vol. 2, pp. 71-76]. For more about Riemann’s examples, see Hardy [1916], Hawkins
[1970], Neuenschwander [1978], Segal [1978], and A. Smith [1972].

The example of a continuous, nowhere differentiable function constructed in Ap-
plication 10.13 is generally credited to van der Waerden [1930]. The particulars of the
present construction are taken from Billingsley [1982], but see also Boas [1960].

A great deal has been written about nondifferentiable functions in general and
Weierstrass’s example in particular. A short but thorough historical account is given in
Hobson [1927, Volume II], but see also Hardy [1916]. A longer account, which includes
some discussion of space-filling curves, is given in Singh [1969].

Exercise 40 pinpoints our interest in Cp(X) and B(X): They are “universal” metric
spaces. In order to “know” all metric spaces, it is enough to know just the spaces Cy(X).
We will have more to say about this point of view in the next chapter. For now, simply
notice that C,(X) determines X in the sense that the bounded, continuous, real-valued
functions on X determine the closed sets in X (see Chapter Five). For detailed proofs
of the results in Exercises 40, see Kaplansky [1977].




CHAPTER ELEVEN

The Space of Continuous Functions

The Weierstrass Theorem

While we now know something about convergence in C(X), there are many more things
that we would like to know about C(X). We will find the task unmanageable, however,
unless we place some restrictions on the metric space X. If we focus our attention on the
case when X is compact, for example, we will be afforded plenty of extra machinery:
In this case, C(X) is not only a vector space, an algebra, and a lattice (where algebraic
operations are defined pointwise), but also a complete normed space under the sup-
norm. With all of these tools to work with, we will be able to accomplish quite a bit.
And at least a few of our results will apply equally well to the space Cy(X) of bounded
continuous functions on a general metric space X. For the remainder of this chapter,
then, unless otherwise specified, X will denote a compact metric space.

We will concentrate on two questions in particular, and each of these will lead to
some interesting applications:

e Is C(X) separable? More importantly, are there any “useful” dense subspaces, or
even dense subalgebras, or sublattices of C(X)?
o What are the compact subsets of C(X)? And are such sets “useful”?

Either question is tough to answer in full generality, but the first one has a very satis-
factory and easy to understand answer for C|[ a, b]. Since C[ a, b ] is such an important
space for our purposes, besides being the obvious place to start, we will spend much
of our efforts on just this case. An initial simplification will help (see Exercise 5.63).

Lemma 11.1. There is a linear isometry from C[ 0, 1] onto C| a, b] that maps
polynomials to polynomials.

PROOF. Defineo : [a,b] = [0,1]byo(x) = (x —a)/(b—a) fora < x <b.
Then o is a homeomorphism, and the map 7,(f) = f o o defines a linear
isometry from C[0, 1] onto C[a, b). Indeed, T, is clearly linear. It is one-to-
one and onto because it has an obvious inverse, namely, T,-1(h) = hoo ™!, where
o~ '(t)=a+t(b —a) for 0 <t < 1. Finally, it is an isometry because o is onto:
MaxX,<x<p | f(0(x))| = max,eq(a.5) | f(t)| = maxo<,<i | f(2).

Moreover, T, is both a lattice isomorphism and an algebra isomorphism. That
is, Ty (f) < T, (g) if andonly if f < g,and T, (fg) = T, (f) T, (g). In particular, note

162
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that T, maps polynomials to polynomials: If p(f)= Y ;_, axt* is a polynomial in
t, then p(o(x)) =) r—0Qk [(x —a)/(b - a)]k is a polynomial inx. O

The proof of Lemma 11.1 tells us that C[a,b] and C[O0, 1] are, for our purposes,
identical. The point here is that we need only concern ourselves with a single choice
of the interval [a,b], and [0, 1] is often most convenient. Virtually any result that
we might obtain about C[0, 1] will readily transfer to C[a, b]. To begin, we will
show that C[a, b] is separable by showing that C[0, 1] is separable. We will give two
proofs of this result, the first of which is a “proof by picture” while the second is more
analytical.

Theorem 11.2. C[O0, 1] is separable.

PROOF. Let f € C[0, 1], and let ¢ > 0. We first approximate f by a polygonal
function, as shown in Figure 11.1. Since f is uniformly continuous, we can find a
sufficiently large n so that | f(x) — f(y)| < € whenever |x — y| < 1/n. This means
that the polygonal function g defined by g(k/n) = f(k/n), fork =0,...,n, and
g linear on each interval (k/n, (k + 1)/n) satisfies | f — glloo < £. (Why?)

y = f(x) «//

y=gu)—//

Next we modify our approximating function: Let 4 be another polygonal func-
tion that also has nodes at k/n for k = 0, ..., n, but with h(k/n) rational and
satisfying |h(k/n) — g(k/n)| < € for each k. Then, ||g — h|l» < € and, conse-
quently, || f — hllo < 2¢.

We'’re done! The set of all polygonal functions taking only rational values at
the nodes (k/n);_,, for some n, is countable. (See Exercise 1) O

EXERCISES

> 1. Foreachn,let Q, bethe setof all polygonal functions that have nodes atx = k/n,
k =0,...,n, and that take on only rational values at these points. Check that Q,

is a countable set, and hence that the union of the Q,’s is a countable dense set in
C[0,1].

2. Leta =x; < x3 < --- < x, = b be distinct points in [a, b ], and let S,
be the set of all polygonal functions having nodes at the x;. Show that S, is an
n-dimensional subspace of C[a, b ] spanned by the “angles™ ¢, (x) = |x — x| +

Figure
11.1
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(x —xg),fork = 1,...,n — 1, and the constant function ¢o(x) = 1. Specifically.
show that each h € S, can be uniquely written as h(x) = Y r—; cxx(x). [Hint: The
system of equations hA(x;) = co + 2 Zf;,' cilxk, —x;) k=1,..., n. can be solved

for the ¢;. Why? How does this help?]

3. Prove that every polygonal function is Lipschitz. Thus, the Lipschitz functions
are dense in C[a, b ).

Our second proof that C[a. b ] is separable uses a much more convenient dense set
(at least for our purposes).

The Weierstrass Approximation Theorem 11.3. Given f € C[a,b]and¢e > 0,
there is a polynomial p such that || f — pll~ < €. Hence, there is a sequence of
polynomials (p,) such that p, = f on[a,b].

The Weierstrass theorem leads to a second proof that C[a, b] is separable. Indeed,
given a polynomial p and any £ > 0, we can find another polynomial g with rational
coefficients such that |p — glloc < € on [a, b]. (How?) Since the set of polynomials
with rational coefficients is a countable set, this implies that C[a, b] is separable.

Of course, following Lemma 11.1, we need only establish the Weierstrass theorem for
C[ 0, 1]. (Recall that our identification of C[a, b ] with C[ 0, 1] preserves polynomials.)
The proof that we will give in this case is quite explicit; we will actually display a
sequence of polynomials that converges uniformly to a given f € C[ 0, 1]. Specifically,
given f € C[O0, 1], we define the sequence (B,,( f )):°=| of Bernstein polynomials for

f by

(Ba(N)x)=)_ f (5) : (Z)x*(l -x)*, 0=<x=<L
k=0

Please note that B,(f) is a polynomial of degree at most n. Also, it is easy to see that

(Ba(f))(0) = £(0) and (B (f))(1) = f(1). In general, (B,(f))(x) is an average of the
numbers f(k/n), k =0.....n (more on this later).
We will prove Weierstrass’s theorem by proving:

S. N. Bernstein’s Theorem 11.4. B,(f)= f on[0. 1) for each f in C[0, 1.

The proof of Bernstein’s theorem is easy once we catalogue a few facts about the
polynomials B,(f). For later reference, let’s agree to write

folx) =1, filx) = x, and fz(.t):xz,

Among other things, the following lemma establishes Bernstein’s theorem for these
three polynomials. Curiously, these few special cases will imply the general result.

Lemma 11.5.
(l) Bn(fO) = fO and Bn(fl) = fl-

I
(i) B.(f2) = (l - ;)fz + %fn, and hence B,(f2) = f>.
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n 2 _
(111) ;(% —x) (Z)x"(l —x)"k = x(ln *) < 41n' if0<x <l

(iv) Givend > 0and0 < x < 1, let F denote the set of k in {0, .. ..n} for which

|(k/n)— x| > §. Then
n k n—k 1
x (1 —x) < —.
2 () ns?

PROOF. The fact that B,( fo) = fo follows from the binomial formula:

Z (n)x"(l -x)F=x+0-0)]"=1

i \K
To see that B,(f)) = fi, first notice that for k > 1 we have

E(n)_ (n—D! _(n—l)
n\k) *k-D'n-k' \k-1/)
Consequently,

% E ny\ « _ \n—k _ . n—1 k=1.1 _ \n—k
Da(ira-ort a3 (00 )t a-n
n-1 _ ' '
=x) (" j l)x’(l —x)" V7 =,

Next, to compute B,( f2), we rewrite twice:
2
E n ___E(n—l =n—l.k-l(n—l +_l_(n—l)‘ ifk > 1
n k n\k -1 n n—1\k-1 n\k -1
1 n—2 1 /n—-1
=({1-- - if k .
(l n)(k—2)+n(k—l)' ik =2

2 n
) (i)eta-or

__lnn_zk_n-klnn—lk_n—k
—(l n);(k—Z)x(l X) +n (k_l)x(l x)

1 1
n n

which establishes (ii) since ||B,(f2) — fallc = (1/0) fi — f2lloo = 0as n — o0.
To prove (iii) we combine the observations in (i) and (ii) and simplify. Since
((k/n) — x)* = (k/n)?* — 2x(k/n) + x2, we get

“\ (k ? 1 1
Z (— —x) (n)x"(l —x)" k= (l — —)xz 4+ —x —2x2 4+ x2
n k n n
1 1

k=0

for0 < x <.
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Finally, to prove (iv), let 0 < x < 1 and note that 1 < ((k/n)—x)?/8%fork € F.

Hence,
n\ & n—-k 1 (k )2(n) k n—k
x(1 —x) < — - —x x(1 —x)
; (k) 82 &\n k
n 2
<5 i) (-

from (iii). O

A

~ 4né?’
Now we are ready for the proof of Bernstein's theorem:
PROOF. Let f € C[0, 1] and let € > 0. Then, since f is uniformly continuous,
there is a § > 0 such that | f(x) — f(y)| < &/2 whenever |x — y| < §. Now we

use Lemma 11.5 to estimate || f — B,(f)ll. First notice that since the numbers
(z)x*(1 — x)"~* are nonnegative and sum to 1, we have

HOEDY (:)f (S) (-t

k=0

(-1 (5)) (D)o -0

k=0

< Z f&x)—f (%) (:)x"(l —x)" k.
k=0

Now fix n (to be specified in a moment). Given 0 < x < |, let F denote the set of
kin {0, ..., n} for which |(k/n) — x| > §. Then | f(x) — f(k/n)| < e/2 fork ¢ F,
while | f(x) — f(k/n)| < 2| fllo for k € F. Thus,

| f(x) = (Ba(f)) )|

<= (:)x"(l — x4+ 2 flloo Y (:)x"(l — Xy

k¢F keF

< % 142l flloo- 7. from Lemma 115 (iv),

<&, provided that n > || f [lo/€82.

Since this choice of n does not depend on x, we get that || B,(f) — fllo < €
whenevern > || flloo/€82. O

There is a probabilistic interpretation of Bernstein’s result. To see this, fix an x in
[0, 1], and consider a “game” with probability of success equal to x and, hence, prob-
ability of failure equal to 1 — x. For instance, a coin might be weighted so as to come
up heads with probability x and tails with probability 1 — x. Then, the probability of
exactly k successes in n independent trials of the game is given by (;)x*(1 — x)"~*. This
is one of the terms in the so-called binomial distribution. The first part of Lemma 11.5
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says that this is, indeed, a probability distribution since Y ;_ (})x*(1 —x)"* =1, and
that the mean of this distribution is }_j_o k(})x*(1 — x)"~* = nx. The second part of
Lemma 11.5 computes its variance as Y ;_q(k — nx)*(})x*(1 — x)"* = nx(1 — x).
The last part of Lemma 11.5 is (Chebyshev’s version of) Bernoulli's law of large
numbers; it says that, for large n, most of the weight of the distribution is concentrated
near the mean. Those terms for which |k — nx| is large do not contribute much to the
distribution. In other words, if n is large, the most likely outcome of n trials is to have
roughly nx successes. Thus, the average number of successes in a large number of
trials is a good estimate for the actual probability of success.

The binomial distribution in the case n = 12 and x = 1/3 is depicted in Figure 11.2.
Note that the most likely outcome is k = nx = 4 successes; the probabilities of k = 10,
11, or 12 successes are so small that they do not even register on the graph.

) S k
o 1 2 3 4 5 6 7 8 9 10 11 12

To phrase Bemnstein’s theorem in this language, consider f € C[0, 1] as the “payoff™
for the game; if there are k successes in n trials, we win (or lose) an amount equal to
f(k/n). What are our expected winnings, given that the probability of success on any
one trial is x? It is exactly (B.(f))(x)! For n large, then, we would expect our winnings
to be approximately f(x). The law of large numbers and the uniform continuity of f
are responsible for the fact that this approximation is uniform (it depends on f and n,
but not on x).

We will see in the next chapter that Theorem 11.3 will generalize to C(X), where X
is compact. On the other hand, the “easy” proof given for Theorem 11.2 would be hard
to mimic in a more general setting. The major difference between the two results is that
the polynomials form a subalgebra of C[ a, b ] while the polygonal functions form only
a subspace. The fact that the Weierstrass theorem admits an algebraic interpretation
along these lines will prove very useful in the next chapter.

The Weierstrass theorem affords us some small insight into the moment problem.
The problem, loosely stated, is this: Consider a thin metal rod placed along the interval
[a, b] on the x-axis, and suppose that we know the density of the rod at each point
x as a function f(x) in C[a,b]. The question is: Does the sequence of moments
MUn = fa" x" f(x)dx (about the y-axis) uniquely determine f? If we knew the sequence
of numbers (u,), could we actually reconstruct f? The answer, as it happens, is yes,
but it is a bit beyond our means at this point. We can, however, say this much: The
solution, if it exists, has to be unique. That is, if two functions f and g in C[a, b] have
the same moment sequence, then f and g must be identical. Thanks to the linearity of
the integral, it is enough to establish the following:

Figure
11.2
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Application11.6. If f € Cla.b), andif [* x" f(x)dx =0foreachn =0, 1,2, . ...
then f = 0.

PROOF. From the Weierstrass theorem, there is a sequence of polynomials (p,)
such that p, =3 f on [a, b ). Hence, f - p, = f% on[a, b]), and so

b b
/ fix)dx = lin;g/ f(x) pa(x)dx.
But since jab x" f(x)dx =0 for each n (and since the integral is linear), it follows

that fab f(x) p.(x)dx = 0 for each n. That is, fabfz(x)dx = 0. Since f is
continuous, this means that f = 0. (Why?) O

EXERCISES

4. Give a detailed proof of the assertion that the Weierstrass theorem for general
[a, b ] follows from the resulton [ 0, 1 ] (by using Lemma 11.1).

S. Show that |B,(f)| < B,(] fl), and that B,(f) > 0 whenever f > 0. Conclude
that || B,(f )l < | flloo-
6. If f € B[O. 1], show that B,(f)(x) = f(x) at each point of continuity of f.

> 7. If pis apolynomial and € > 0, prove that there is a polynomial g with rational
coefficients such that |[p — glloc <€o0n [0, 1].

8. Prove that C(R) is separable.

> 9. Let P, denote the set of polynomials of degree at most n, considered as a subset
of C[a, b]). Clearly, P, is a subspace of C[a, b] of dimension n + 1. Also, P, is
closed in C[a, b]. (Why?) How do you know that P, the union of all of the P,, is
not all of C[a, b ]? That is, why are there necessarily nonpolynomial elements in
Cla,b])?

10. Let (x;) be a sequence of numbers in (0, 1) such that lim,_, (1/n) Z:’=| xf
exists for every k = 0,1, 2, .... Show that lim,_...(1/n)}_"_, f(x;) exists for
every f € C[0, 1].

11. Several proofs of the Weierstrass theorem are based on a special case that

can be checked independently: There is a sequence of polynomials (P,) that

converges uniformly to |x| on [—1,1]. Here is an outline of an elementary

proof:

(a) Define (P,) recursively by P, (x) = P,(x)+ [x — P,(x)?] /2, where Py(x) =
0. Clearly, each P, is a polynomial.

(b) Check that 0 < P,(x) < P,y 1(x) < /x for0 < x < 1. Use Dini’s theorem
(Exercise 10.18) to conclude that P,(x) = +/x on [0, 1].

(c) P,(x?)is also a polynomial, and P,(x2) =3 x| on [—1, 1].

Since a polygonal function can be written in the form ZLl ailx —x;|+bx+d,

it follows that every polygonal function can be uniformly approximated by

polynomials. The Weierstrass theorem now follows from the proof of Theorem 11.2.
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> 12. Let p, be a polynomial of degree m,, and suppose that p, =3 f on [a, b],
where f is not a polynomial. Show that m,, — oo.

13. Show that the set of all polynomials P is a first category set in C[a, b].

14. Let f € C[a, b]be continuously differentiable, and let £ > 0. Show that there
is a polynomial p such that || f — plleo < € and || f' — p'll0 < €. Conclude that
CMa, b is separable.

15. Construct a sequence of polynomials that converge uniformly on [0, 1] but
whose derivatives fail to converge uniformly.

16. Prove that there is a sequence of polynomials (p,) such that p, — 0 pointwise
on [0, 1], but such that _/'0l pa(x)dx — 3.

17. Suppose that f:[ 1, 00) — R is continuous and that lim,_,», f(x) exists. For
¢ > 0, show that there is a polynomial p such that | f(x) — p(1/x)| < ¢ for all
x> 1.

18. Find B,(f) for f(x) = x3. [Hint: k2 = (k — 1)(k — 2) + 3(k — 1) + 1.] Note
that the same calculation can be used to show that if f € P, then B,(f) € P,, for
anyn > m.

19. Here is an altemnate approach to Exercise 14: If f is continuously differentiable
on[O0, 1],show that B, 1(f) = f'on[0, 1].[Hint: The mean value theorem and a
bit of rewriting allow for the comparison of B, (f) and B,(f’). If we set p, «(x) =
(2)x*(1 — x)"*, show that p/, ., , = (n + 1)(Pnk-1 = Pai)]

Lip,a denotes the set of functions f € C[O0, 1] that are Lipschitz of order @ with
constant K on [0, 1], where 0 < @ < 1and 0 < K < oo. Thatis, f € Lipy«
if | f(x) — f(y)] < K|x — y|*forall x, y € [0, ]]. (See Exercises 8.57-8.60 for
more details.) We write Lip a for the set of f that are in Lip, a for some K; that is,
Lipa = |Jx_, Lipxe.

20. Show that Lipy« is closed in C[0, 1]. In fact, if a sequence (f,) in Lip,«

converges pointwise to f on [0, 1], show that f € Lipya. Is Lip,a a subspace of
C(0,1]?

21. Show that Lip « is a subspace of C[ 0, 1 ]. Is Lip a a subalgebra of C[0, 1]?

22. Show that every polynomial is in Lip 1, but that \/x, for example, is
not.

23. Show that x* € Lip «. For which 8 > 0 is x? € Lipa?

24. Prove that Lipl is not closed in C[ 0, 1]. In fact, Lip 1 is both dense and of first
category in C[0, 1]. [Hint: For ¢ > O, find f ¢ Lip,1 with || f]loc < €. That is,
show that Lip, 1 is nowhere dense.]

25. Prove that the set P of all polynomials is both dense and of first category in
cMro, 1.

26. Foreach f € Lipa, define N, (f) = Sup, ., [ | f(x) = f(») / |lx — y|* ]
(a) Show that N, defines a seminorm on Lip «.

(b) Show that || f ||Lipa = Il f loc + No(f) defines a complete norm on Lip a.
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Trigonometric Polynomials

In a follow-up to the paper in which Weierstrass established his famous theorem on ap-
proximation by algebraic polynomials, he proved an analogous result on approximation
by trigonometric polynomials. In this section we will outline Lebesgue’s elementary
proof of Weierstrass’s result.

To begin, a trigonometric polynomial (or, briefly, a trig polynomial) is a finite linear
combination of the functions cos kx and sinkx for k = 0, ..., n, that is, a function of
the form

T(x)=ap+ Z(ak cos kx + by sin kx), (11.1)
k=1

where, for our purposes, the a; and b, are real numbers. The degree of a trig polynomial,
as you might expect, is the order of its highest nonzero coefficient; thus, the trig polyno-
mial T displayed above has degree exactly n if at least one of a, or b, is different from 0.

Our first project is to justify the use of the word “polynomial” here by showing that
a trigonometric polynomial is actually an algebraic polynomial (of the same degree) in
cos x and sinx.

Lemma 11.7. cosnx and sin(n + 1)x/sinx can be written as polynomials of
degree exactly n in cos x for any integer n > 1.

PROOF. By using the recurrence formula,
coskx + cos(k — 2)x = 2cos(k — 1)xcosx,

it is easy to check that cos2x = 2cos’x — 1, cos3x = 4cos®x — 3cosx, and
cos4x = 8cos*x — 8cos?x + 1. More generally, it follows by induction that
cos nx is a polynomial of degree n in cos x with leading coefficient 2"~!. Using
this fact and the identity

sin(k + 1)x — sin(k — 1)x = 2 cos kx sin x,

it follows (again by induction) that sin(n + 1)x can be written as sin x times a
polynomial of degree n in cos x with leading coefficient 2". O

EXERCISES

> 27. LetT be a trig polynomial. Prove:
(a) If T is an odd function, then T can be written using only cosines.
(b) If T is an even function, then T can be written using only sines.

28. Show that there is an algebraic polynomial p(t) of degree exactly 2k such that
sin®* x = p(cos x).

> 29. Given a trig polynomial 7T (x) of degree n, show that there is an algebraic
polynomial p(t,s) of degree exactly n (in two variables) such that T(x) =
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p(cos x, sin x). [Hint: p(¢, s) can be chosen to be of the form g(¢) + r(¢)s for some
polynomials q and r.] If T is an even function, then there is an algebraic polynomial
p(t) of degree exactly n such that T(x) = p(cos x).

Conversely, every algebraic polynomial in cos x and sin x is also a trig polynomial
(of the same degree). One way to see this is by induction:

30.

(a) Show that an algebraic polynomial in cos x and sin x can always be written using
only functions of the form cos” x and cos™ x sin x.

(b) Use induction to show that cos” x is a trig polynomial of degree exactly n; in
particular, cos” x can be written as Y _,_, by cos kx, where b, = 2~"*!_ [Hint:
2cosacos B = cos(a + B) + cos(a — B).]

(c) Show that cos™ x sin x is a trig polynomial of degree exactly m + 1.

Our insights on trig polynomials will shed some light on the Fourier series rep-
resentation of a continuous function.

31. Let f:R— R be continuous and 2sm-periodic, and suppose that all of
the Fourier coefficients for f vanish; that is, [ f(x)cosnxdx = 0 and
f_"” f(x)sinnxdx = O forall n = 0,1,2,.... This exercise outlines a proof,
due to Lebesgue, that f = 0.

(@) If f(xo) = ¢ > O for some point xp, then there exists 0 < § < & such that
f(x) > c/2 for all x with [x — x| < 6.

(b) The functions T,,(x) = [1 4+ cos(x — xp) —cosd )", m =1, 2,3,..., satisfy
Tn(x) = 1 for [x — xo| <4 and |T,,(x)| < | elsewhere in the interval [ xo — 7,
xo + 7 ]. In fact, the sequence (7,,) converges uniformly to O on the intervals
[xo—m,xo—8)and [xo+ &', xo + w ] forany § < &' < .

(c) By first taking &’ sufficiently close to § and then choosing m sufficiently
large, show that f;"_“": f(x) Tu(x)dx > éc/2 > 0.

(d) By showing that T, is a trig polynomial of degree m, conclude from our assump-
tions on f that [”_ f(x) T,,(x) dx = 0, a contradiction.

The trig polynomials belong to the set of all 2x-periodic continuous functions
f : R — R, a space that we will denote by C?*. If we write 7, to denote the collection
of trig polynomials of degree at most n, then 7, is a subspace (and even a subalgebra)
of C>*.

A bit of linear algebra will now permit us to summarize our results quite succinctly
(giving an alternate proof to Exercise 29 while we’re at it). First, the 2n + 1 functions
in the set

A= {1, cosx, cos2x, ..., cosnx, sinx, sin2x, ..., sinnx)

are linearly independent; the easiest way to see this is to notice that we may define an
inner product on C** under which these functions are orthogonal. Specifically,

(f.g)=/ f(x)g(x)dx =0, (f,f)=/ f(x)*dx #£0
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for any pair of functions f # g € A. (See Exercises 10.2 and 10.3 or Exercise 33,
below. We will pursue this observation in greater detail later in the book.) Second, we
have shown that each element of A lives in the space spanned by the 2n + 1 functions
in the set

B={1, cosx, cos’x, ..., cos"x, sinx, cosxsinx, ..., cos" ! xsinx).
That is,
7, = span. A C spanB.
By comparing dimensions, we have

2n + 1 = dim 7, = dim(span .A) < dim(spanB) < 2n + 1,

and hence we must have span A = span B. The point here is that 7, is a finite-dimensional
subspace of C?* of dimension 2n + 1, and we may use either one of these sets of
functions as a basis for 7,.

EXERCISES

32. Show that the product of two trig polynomials is again a trig polynomial. Con-
sequently, the collection of all trig polynomials is both a subspace and a subalgebra
of C?7,

33.

(a) Check that the functions 1, cos x,sinx, ..., cos nx, sin nx are orthogonal. That
is;rshow that [ ” . J& = 0 for any pair of functions f # g from this list, and that
[”. f* #0forany f from the list.

(b) Conclude that the functions 1, cos x, sinx, ..., cos nx, sin nx are linearly inde-
pendent (over either R or C). [Hint: Show that the coefficients in equation (11.1)
can be uniquely determined.]

34. Show that the functions e’** = cos kx + i sinkx, k = —n, ..., n, are linearly
independent (again, over either R or C). [Hint: The integral of a complex-valued
function f = u + i v, where u and v are real-valued, is defined as f f = f u+i f v.]

An alternate approach here is to note that every trig polynomial is actually an al-
gebraic polynomial with complex coefficients in z = e'* = cosx + isinx and z =
e~** = cosx — isinx, that is, a linear combination of complex exponentials of the
form

n

Z cre'**, (11.2)

k=—n

where the ¢, are allowed to be complex numbers. We will call this form a complex trig
polynomial (of degree n) and distinguish it from our original form by referring to that
as a real trig polynomial.
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Using DeMoivre’s formula (cosx + i sinx)" = cosnx + i sinnx, we can give an
alternate proof of Lemma 11.7. Indeed, notice that

cosnx = Re[(cos x + i sinx)"]

= Re Z (:)i" sin* x cos"* x]

| k=0

[n/2) n
= Z ( )(coszx — ¥ cos" * x,
~ 2k

x = cos? x — 1. The coefficient of cos” x on the right-hand

S ()=150)-=

k=0 k=0

where we have written i? sin?

side is then

(All of the binomial coefficients together sum to (1 + 1)* = 2", but the even or odd
terms, taken separately, sum to exactly half this amount since (1 + (—1))" =0.)
Similarly,

sin(n + 1)x = Im :(cosx +i sinx)"*']

T n+1
1
=Im Z (n : )(i sin x)* cos"*! ¥ x]

| k=0

[(n+1)/2])-1

n+ 1 .

= E ( )(cos2 x — 1)*cos" % xsinx,
£~ 2k + 1

where we have written (i sin x)**! = i(cos® x — 1)* sin x. The coefficient of cos” x sin x
on the right-hand side is

[(n+1)/2]-1 n+1
Z: (n+l)=lz(n+l>=2n.
2%+1) T 24\ &

k=0

Obviously, every real trig polynomial can be written as a complex trig polynomial,
since cosnx = (1/2)(e'™* + e~'"*) and sinnx = (1/2i)(e'™ — e~'"*), but notice that,
in general, we must use complex coefficients c; to represent real trig polynomials.
Conversely, every complex trig polynomial can be written as a linear combination of
sines and cosines but, again, typically with complex coefficients.

The point here is that only certain complex trig polynomials represent real-valued
functions. Indeed, the real trig polynomials correspond to the real parts of the complex
trig polynomials. To see this, notice that equation (11.2) represents areal-valued function
if and only if

n _ n n
§ : Cke:kx — § : cke"’”‘ — § : C—,_keckx;
k=-n

k=-—n k=—n
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that is, ¢, = ¢ for each k. In particular, co must be real, and hence

E ce’™ = co + 2:(c,‘e"ur + c_re ')

k=-—n

=co+ }_:(cke"'”r + Cre k)
k=1

= co+ Z [(Ck + Cx)coskx +i(cy — Ek)sinkx]
k=1

=co+ Z [2Re(ck) cos kx — 2Im(cy) sinkx ]
k=1

which is of the form (11.1) with a; and b; real.
Conversely, given any real trig polynomial (11.1), we have

aop + Z (ax cos kx + by sinkx )
k=1

—00+2[( k-'bk) ikx+(ak';’bk)e—ikx]'

which is of the form (11.2) with ¢, = ¢_; for each k.

The real trig polynomials of degree n are the real linear span of the functions
1,cosx,sinx, ..., cosnx, sinnx, and hence form a vector space of dimension 2n + 1
over R. The complex trig polynomials of degree n are the complex linear span of
1,cosx,sinx,...,cosnx, sinnx, and so form a vector space of dimension 2n + 1 over
C, or of dimension 2(2n + 1) over R. Obviously, if we want to restrict our attention to
real-valued functions, we want only “half” of the complex trig polynomials.

Now we are ready to talk about approximating a continuous function by a trig
polynomial. (Henceforth, “trig polynomial”” means “real trig polynomial.”) Since each
trig polynomial is periodic with period 27, though, we would only expect to approximate
functions that were likewise periodic with period 2. In fact, it is easy to see that even
the pointwise limit of a sequence of periodic functions is again periodic, and so the
same will be true for uniform limits.

Each f € C** is completely determined by its values on, say, [—x, ], and so we
can norm C?* by setting || f lloo = MaXxj<x | f(x)|. Please note that each element of C**
is necessarily uniformly continuous on R. (Why?)

Weierstrass’s Second Theorem 11.8. Given f € C* and ¢ > 0, there is a
trig polynomial T such that ||f — Tl < €. Hence, there is a sequence of trig
polynomials (T,) such that T, =3 f on R.

We will show that Weierstrass’s second theorem follows from his first (Theo-
rem 11.3). To begin, we need a simple lemma.

Lemma 11.9. Given an even function f € C* and € > 0, there is an even trig
polynomial T suchthat |f — T ||l < €.
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PROOF. The simple trick here is to note that g(y) = f(arccos y) defines a continu-
ous function for —1 < y < 1. Thus, by Theorem 11.3, there is an algebraic
polynomial p such that max,, <, | f(arccos y) — p(y)| < &¢. But then, T(x) =
p(cos x) is an even trig polynomial, and, clearly, maxg<;<x | f(x) — p(cos x)| < e.
Since f is even, it follows that || f — T||l.c <&. O

The rest of the proof of Weierstrass'’s second theorem consists of several clever
applications of Lemma 11.9.

PROOF. Given f € C?*, note that both of the functions

fx)+ f(=x), and [f(x) = f(=x))sinx

are even. Thus, from Lemma 11.9, there are even trig polynomials T, and T; such
that

f@+ f(—x)=Ti(x)+di(x) and [f(x)— f(—x)]sinx =Tr(x)+d2(x),

where ||d, [lc < ¢/4and ||d2llc < £/4. By multiplying the first equation by sin? x,
the second by sin x, and adding the results, we get

f(x)sin®x = Ty(x) + ds(x), (11.3)

where T3 is a trig polynomial and ||d3|lc < £/2. But since this is true for any
f € C?¥, it must also hold for the function f (x — m/2); in other words, we
also have f (x — n/2)sin’> x = Ty4(x) + ds(x), where Ty is a trig polynomial and
ldsllooc < €/2. Thus, after replacing x by x + /2, we have

f(x)cos? x = Ts(x) + ds(x), (11.4)

where T is a trig polynomial and ||ds|l, < £/2. Finally, adding equations (11.3)
and (11.4),

f(x) = Te(x) + ds(x),
where Ty is a trig polynomial and ||dsllc < €. Thatiis, | f — Tello < €. O

To round off our discussion of Weierstrass’s second theorem, we next show that
Theorem 11.8 implies Theorem 11.3. By Lemma 11.1, it is enough to show that Theorem
11.3 holds in, say, C[—1, 1]. But, given f € C[—1, 1], note that f(cosx) € C[O, « ].
In fact, f(cos x) defines an even function in C?*. Thus, by Theorem 11.8, there is a trig
polynomial T such that | f(cos x) — T(x)| < ¢ forall x € R. Then, since f(cos x) is even,
it follows that | f(cos x)— T(—x)| < e forall x € R, too. Hence, the even trig polynomial
g(x) = [T(x)+ T(—x)]/2 likewise satisfies | f(cos x) — g(x)| < ¢ forall x € R. (Why?)
Finally, from Exercise 29, there is an algebraic polynomial p such that g(x) = p(cos x).
That is, | f(cos x) — p(cos x)| < € for all x € R, and hence | f(t) — p(t)| < ¢ for all
te([—1,1].

The conclusion here is that Weierstrass’s two theorems are logically equivalent. This
observation may seem pointless; after all, we used Theorem 11.3 to prove Theorem
11.8. But there are many independent proofs of Weierstrass’s two theorems. The real
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point here is that it is necessary only to prove one of the two; the other will follow from
elementary arguments. We will find plenty of applications of Weierstrass’s approxima-
tion theorems in Part Three.

EXERCISES
35. Prove that C>™ is complete.
36. Prove that C2" is separable.

37. Let f be Riemann integrable on [—x, 7 ], and let € > 0. Prove:

(a) There is a function g € C[—m, 7 ] satisfying [”_ | f(x) — g(x)ldx < ¢.

(b) There is a continuous, 2 -periodic function h € C*" satisfying ffn | f(x) —
h(x)|dx < e.

(c) There is a trig polynomial T with ffﬂ |f(x) = T(x)|dx < e.

38. Show that each element of C>” is uniquely determined by its Fourier series. That
is, show thatif f € C*",andif /" f(x)cosnxdx=0,and [7 f(x)sinnxdx=0
foralln =0,1,2,...,then f = 0. [Hint: For an easy proof, modify the argument
used in Application 11.6.]

39. Let f € C?*.If the Fourier series for f is uniformly convergent on R, prove
that it must, in fact, converge to f. [Hint: Combine the arguments of Example 10.6
and the previous exercise.]

40. If f:R — R is twice continuously differentiable and 2 -periodic, prove that
the Fourier series for f converges uniformly to f. [Hint: See Exercise 10.4.]

Infinitely Differentiable Functions

The value in approximating by algebraic or trigonometric polynomials should be obvi-
ous: Polynomials are well behaved. Either type of polynomial is not only continuous,
but differentiable. In fact, either sort of polynomial has continuous derivatives of all
orders; in other words, they are infinitely differentiable. Thus, while the typical function
in C[ 0, 1] or C** may not be differentiable at any point, it is nevertheless close to one
that is infinitely differentiable. Our goal in this section is to show how this result extends
to C(R). The Weierstrass theorem will do most of the work for us; all that is lacking
is a method for constructing infinitely differentiable functions with certain prescribed
properties.

The class of infinitely differentiable functions f : R — R is denoted by C*°(R). That
is, f € C*(R) if and only if f has continuous derivatives of all orders on R. Obviously,
C*(R) is both a subspace and a subalgebra of C(R).

Lemma 11.10. Thereisan f € C®°(R) suchthat f(x) =0forx <0and f(x) > 0
forx > 0.
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PROOF. Define f by f(x) = 0forx <0and f(x) =e~!/* forx > 0. Itis clear
that f is infinitely differentiable everywhere except, possibly, at x = 0. Notice
that f’(x) = x~2¢7"*and f"(x) = (x~* —2x73)e~"/* for x > 0. Using induction,
it is easy to see that f®(x) = py(x~!)f(x) for x > 0, where p; is a polynomial
of degree at most 2k. Of course, f®'(x) = 0 for x < 0 and any k.

To see that f is continuous at 0, first note thatif y > 0,thene* = "2 ) y"/n! >
y"/m!foranym=0,1,2,.... Thus, for x > 0,

0< fx)=e'* = (e'/“)_I <m'x™,

form =0, 1, 2,....In particular, f(x) = 0as x — 0. Likewise, f(x)/x — 0 as
x — 0. That is, f '’ exists and is continuous at x = 0, and f '(0) = 0.

Suppose that we have shown that f*) exists and is continuous at 0. Then, of
course, f*¥(0) = 0. Thus, f®(x)/x = x~ ! p(x~") f(x). And since p; has degree
at most 2k, and since | f(x)| < (2k + 2)' x*+2 it follows that f®(x)/x — 0 as
x — 0. That is, f*+1(0) exists and equals 0. A similar argument shows that
fEDx) = pryi(x)f(x) —> 0as x — 0; that is, f**1 is continuous at 0. By
induction, f® exists and is continuous at 0 for all k. O

The function f constructed in Lemma 11.10 is an important example. All of the
derivatives of f vanish at 0, but f is not identically 0. Thus, the Taylor series expansion
for f about 0 does not converge to f. In fact, no convergent power series 3 .., anx”
can represent f in any neighborhood of 0.

Given f, it is easy to construct all sorts of C* functions:

Lemma 11.11. Thereisa g € C*(R) such that g(x) = 0for|x| > land g(x) > 0
for |x| < 1.

PROOF. Let g(x) = f(x 4+ 1)f(1 — x), where f is the function constructed in
Lemma 11.10. O

Lemma 11.12. There is an h € C>*(R) such that

(1) h(x)=0for|x|>1,0< h(x) <1 for|x| < 1, and h(0) = I,

(11) Givenn € Zandn < x <n+1, we have h(x —n)+h(x —n—1) = 1, while
h(x — k) = O for any integer k <nork > n + 1.

PROOF. Let g be the function constructed in Lemma 11.11, and consider the
function G(x) = )_, .z g(x — n). This series is actually a finite sum in a small
neighborhood about any point x € R. Indeed, if n € Z is chosen so that n — 1
< x < n + 1, then at most three terms, namely g(x — n + 1), g(x — n), and
g(x — n — 1), are nonzero (and at least one is strictly positive). That is, G(x) =
gx—-—n+1)+gx—-—n)+gx—n—-1)onn—-—1<x <n+1(and G(x) =
gx—n)+g(x—n-1)ifn < x < n+1).Consequently, the series converges to an
infinitely differentiable function G(x) and, moreover, G(x) > 0 for any x. Finally,
if we set h(x) = g(x)/G(x), then it is easy to check that i has the properties stated
in the lemma. O
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Now let’s bring the Weierstrass theorem back into the picture.

Theorem 11.13. Given f € C(R)and € > 0, there is a function ¢ € C®(R) such
that | f(x) — ¢(x)| < € for all x € R. Hence, there is a sequence (¢,) in C°(R)
such that ¢, = f on R

PROOF. Foreachn € Z, Theorem 11.3 supplies a polynomial p, such that | f(x)—
pa(x)| < eforalln—1 < x < n+ 1. Now define ¢ by ¢(x) = )_, .7 Pa(x)h(x —n),
where A is the function constructed in Lemma 11.12. This series is actually a finite
sum over any bounded interval, so ¢ € C*(R). And, from Lemma 11.12 (ii), if
n <x <n+1,then

@(x) = pa(xX)h(x — n) + ppy1(X)h(x —n —1).
Thus, forn < x <n + 1, we get

1f(x) = 9(x)] = |h(x = n)[f(x) = pa(x)] + h(x — n = 1)[f(x) = pps1(®)]|
< h(x = n)|f(x) — pa(x)| + h(x = n — D] f(x) = pas1(x)]

<§€,

sincech>0andh(x —n)+h(x—n—-1)=1. O

EXERCISES

41. Given a < b, modify the construction in Lemma 11.11 to find a function
¢ € C®(R) with ¢(x) = 0 for x ¢ (a, b) and ¢(x) > O for x € (a, b).

42. Given a < b, show that there is an Yy € C®(R) such that Yy(x) = O for
x<a0<yY(x) <lfora <x < b, and Yy(x) = 1 for x > b. [Hint: Consider
Y(x) =c [°__ ¢, where g is as in Exercise 41.]

43. Givena < b and € > 0, show that there is a function ¢ € C*°(RR) such that
p(x)=0forx ¢ [a—e,b+€),p(x)=1forx € [a,b],and 0 < ¢(x) < ]
otherwise.

> 44. Let h be the function constructed in Lemma 11.12. Given any integern € Z
and any positive integer k € N, show that Z:':: h(x —i)=1forn <x <n+k.

Equicontinuity

We next turn our attention to the second question raised at the beginning of the chapter:
Given a compact metric space X, what are the compact subsets of C(X)? Since C(X) is
complete, we know that this is the same as asking: What are the torally bounded subsets
of C(X)? (Because the compact sets in C(X) are just the closures of the totally bounded
sets.) If we recall the Bolzano—Weierstrass characterization of total boundedness, we
can rephrase the question yet again to read: When does a (uniformly) bounded sequence
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in C(X) have a (uniformly) convergent subsequence? We will see in this section that
this last question is asking for the missing ingredient in the formula

pointwise convergence +| ??? [ = uniform convergence.

To begin, let’s make a few easy observations. Recall that, throughout this chapter, unless
otherwise specified, X denotes a compact metric space.

Examples 11.14

(a) If (f») is a uniformly convergent sequence in C(X), and if f, =3 f on X, then
the set { f} U {f, : n > 1} is compact in C(X). (Why?)

(b) A collection of real-valued functions F on (a set) X is said to be uniformly
bounded if the set {f(x) : x € X, f € F) is bounded (in R), that is, if
SUP e SUPyex | f(X)] = sup x|l fllo < 00. In other words, uniformly bounded
means bounded in the metric of B(X) (or C(X)). Clearly, any uniformly conver-
gent sequence in B(X) is uniformly bounded.

The point to Example 11.14 (a) is that we already know some easy compact subsets of
C(X),and Example 11.14 (b) is reminding us that boundedness is a necessary condition
for compactness (or total boundedness). But, as you might suspect, a totally bounded
set should be something more than merely bounded. The extra ingredient here is called
equicontinuity.

Let F be a collection of real-valued continuous functions on a metric space X. If,
given € > 0, a single § can always be chosen to “work” (in the - definition of conti-
nuity) simultaneously for every f € F and every x € X, then F is called equicontinu-
ous (or, sometimes, uniformly equicontinuous). That is, F is equicontinuous if, given
e > 0, there is a § > 0 such that whenever x, y € X satisfy d(x, y) < §, we then have
| f(x) = f(y)| < e forall f € F. In short, an equicontinuous collection of functions is
“uniformly uniformly continuous.”

Examples 11.15

(a) Clearly, any finite subset of C(X) is equicontinuous. (Why?) Also note that any
subset of an equicontinuous set of functions is again equicontinuous.

(b) Given 0 < K < o0oand 0 < o < I, recall that Lip,a is the collection of all
f € C[0, 1] that satisfy | f(x) — f(y)| < K|x — y|* forx, y € [0, 1]. It is easy
to see that Lip .« is equicontinuous. (Why?) But Lip ,«a is not totally bounded,
since it is not bounded in C[0, 1] (it always contains the constant functions).

EXERCISES

45. A collection of real-valued functions F on (a set) X is said to be pointwise
bounded if, for each x € X, the set { f(x) : f € F} is bounded (in R), that is, if
sup s | f(x)| < oo foreach x € X. If (f,) is a pointwise convergent sequence of
real-valued functions, show that ( f,,) is also pointwise bounded.
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46. Prove that a uniformly bounded collection of functions is also pointwise
bounded. Give an example of a collection of functions that is pointwise bounded
but not uniformly bounded.

47. If a sequence (f,) in B[a, b] is pointwise bounded, show that some sub-
sequence of (f,) converges pointwise on the set of rationals in [a, b]. [Hint:
Diagonalize!]

48. Let X be a compact metric space. Prove that an equicontinuous subset of C(X)
is pointwise bounded if and only if it is uniformly bounded.

49. A collection F of real-valued continuous functions on a metric space X is said
to be equicontinuous at a point x € X if, foreache > 0, thereis asingle § > 0 that
“works” at x forevery f € F.Thatis, F is equicontinuous at x if, given & > 0, there
isaé > 0, which may depend on x, such that whenever y € X satisfies d(x, y) <
then | f(x) — f(y)| < eforall f € F.If X is a compact metric space, prove that a
subset of C(X) is equicontinuous if and only if it is equicontinuous at each point of
X.

50. Show that a bounded subset of C!"’[ a, b] is equicontinuous.

> S51. Let X be a compact metric space, and let (f,) be a sequence in C(X). If (f,)
is uniformly convergent, show that (f,) is both uniformly bounded and equicon-
tinuous.

> 52. Let X be a compact metric space, and let (f,) be an equicontinuous sequence
in C(X). If (f,) is pointwise convergent, prove that, in fact, (f,) is uniformly
convergent.

53. Let X be a compact metric space, and let (f,) be a sequence in C(X). If
(fa) decreases pointwise to 0, show that ( f,,) is equicontinuous. [Hint: Exercise 49.]
Combine this observation with the result in Exercise 52 to give another proof of Dini’s
theorem (Exercise 10.18).

54. Let X be a compact metric space, and let (f,) be an equicontinuous sequence
in C(X). Show that C = {x € X : (f,(x)) converges} is a closed set in X.

§5. If (f,) is an equicontinuous sequence in C[a, b], and if (f,(x)) converges at
each rational in [a, b ], prove that (f,) is uniformly convergent on [a, b ). [Hint:
Exercises 54 and 52.]

56. (Arzela—-Ascoli, utility grade): If (f,) is an equicontinuous, pointwise bounded
sequence in C[ a, b ], then some subsequence of ( f,) converges uniformly on [a, b ].
[Hint: Exercises 47 and 55.]

Lemma 11.16. If F is a totally bounded subset of C(X), then F is uniformly
bounded and equicontinuous.

PROOF. Since a totally bounded set is necessarily also (uniformly) bounded, we
only have to prove that F is equicontinuous. So, let € > 0.
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Since F is totally bounded, it has a finite ¢/3-net; that is, there exist f, ...,
f» € F such that each f € F satisfies | f — filloo < €/3 for some i. Since the
set { fi, ..., f,} 1s equicontinuous, there is a § > 0 such that | f;(x) — fi(y)| < &/3
whenever d(x, y) < §. We now claim that this same § “works” for every f € F.
Indeed, given f € F, first choose i such that || f — fill.o < &/3. Then, given x
and y with d(x, y) < 8, we have

| f(x) = fOD < |f(x) = fi(x) + | fi(x) = filwl + 1 fi(y) = fOD)I
<€ef3+¢e/3+¢€/3=c¢.

Thus, F is equicontinuous. O

Corollary 11.17. If (f,) is a uniformly convergent sequence in C(X), then (f,)
is uniformly bounded and equicontinuous.

Lemma 11.16 essentially characterizes the compact subsets of C(X).

The Arzela-Ascoli Theorem 11.18. Ler X be a compact metric space, and let
F be a subset of C(X). Then F is compact if and only if F is closed, uniformly
bounded, and equicontinuous.

PROOF. The forward implication follows from Lemma 11.16; that is, a compact
subset of C(X) is necessarily closed, uniformly bounded, and equicontinuous. We
need to prove the backward implication. So, suppose that F is closed, uniformly
bounded, and equicontinuous, and let ( f,) be a sequence in F. We need to show
that (f,,) has a uniformly convergent subsequence.

First note that (f,) is equicontinuous. (Why?) Thus, given £ > 0, there is a
3 > O such that if d(x, y) < §, then | f,(x) — fa(y)| < €/3 for all n.

Next, since X is totally bounded, X has a finite §-net; there exist x;, ..., xx € X
such that each x € X satisfies d(x, x;) < & for some i. Now, since (f,) is also
uniformly bounded (why?), each of the sequences ( f,,(x,-)):i‘ is bounded (in R)
fori = 1, ..., k. Thus, by passing to a subsequence of the f, (and relabeling),
we may suppose that ( f,,(x,-));”;l converges for eachi = 1,...,k. (How?) In
particular, we can find some N such that | f,(x;) — fa(x;)| < €¢/3 foranym,n > N
andanyi=1,...,k.

And now we are done! Given x € X, first find i such that d(x, x;) < é, and
then, whenever m, n > N, we will have

| fm(x) = fa (Ol < | fmn(x) = fn(xi)l + | fm(xi) = fa(xi)| + | fa(xi) = fa (X))
<e/3+e/3+€/3=¢.

That is, (f,) is uniformly Cauchy, since our choice of N does not depend on
x. Since F is closed in C(X), it follows that (f,) converges uniformly to some
fe¥F O

Compare the following result to Exercise 56.
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Corollary 11.19. Letr X be acompact metric space. If ( f,,) is a uniformly bounded,
equicontinuous sequence in C(X), then some subsequence of ( f,) converges uni-
formly on X.

EXERCISES

57. Suppose that f, : [a,b] — R is a sequence of differentiable functions satis-
fying | f,(x)| < 1 for all n and x. Prove that some subsequence of ( f,) is uniformly
convergent.

58. For K and « fixed, show that { f € Lip,a : f(0) = 0} is a compact subset of

C[0,1].
59. For each n, show that {f € Lipl : || fllLipx < n} is a compact subset of
C[ 0, 1]. Use this to give another proof that C[ 0, 1 ] is separable. [Hint: See Exer-

cises 24 and 26.]

60. If (f,) is an equicontinuous sequence in C"’[a, b}, is it necessarily true that
the sequence of derivatives ( f,) is uniformly bounded? Explain.

61. For the sake of a characterization that is easier to test, it is convenient to weaken
one of the hypotheses in the Arzela—Ascoli theorem. Given a compact metric space X
and a subset F of C(X), prove that F is compact if and only if F is closed, pointwise
bounded, and equicontinuous. [Hint: Just repeat the proof of Theorem 11.18!]

62. Let X be a compact metric space, and let F be a subset of C(X).

(a) If F is pointwise bounded, prove that the closure of 7 in C(X) is also pointwise
bounded.

(b) If F is uniformly bounded, prove that the closure of F in C(X) is also uniformly
bounded.

(c) True or false? If F is equicontinuous, then the closure of F in C(X) is also
equicontinuous.

63. Define T : Cla,b] = Cla,b] by (Tf)x) = f: f. Show that T maps
bounded sets into equicontinuous (and hence compact) sets. (Hint: T f is Lipschitz
with constant || f || oo.]

64. Let (f,) be a sequence in C[a, b] with || fallo < 1 for all n and define
F,(x) = j: fa(t)dt. Show that some subsequence of (F,) is uniformly con-
vergent.

6S. Let K(x, t) be a continuous function on the square [a,b ] x [a, b].

(a) Given f € C[a,b], show that g(x) = j;b f () K(x, t)dt defines a continuous
function g € C[a, b].

(b) Define T : Cla,b] = Cla,b] by (Tf)(x) = j;b f(@)K(x,t)dt. Show
that T maps bounded sets into equicontinuous sets. In particular, T is conti-
nuous.

66. Suppose that F : R> — R is continuous and Lipschitz in its second variable:
|F(r,s)— F(r,0)] < Kl|s — 1.
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(@) If f € C[a,b], show that g(x) = j; * F(t, f(t))dt defines a continuous func-
tion g € C[a, b ). [Hint: F is bounded on rectangles.]

(b) Define T : C[a.b] = Cla,b]by (Tf)x) = [ F(t, f(t))dt. Show that T
is continuous. [Hint: T is not linear, but it is Lipschitz.] Consequently, T achieves
a minimum on any compact set in C[a, b ].

(¢) Show that T maps bounded sets into equicontinuous sets. [Hint: Estimate the
Lipschitz constant of T f.]

Continuity and Category

In Chapter Ten we gave examples showing that the pointwise limit of a sequence of
continuous functions need not be everywhere continuous. And, in general, we know that
some extra ingredient is needed to ensure such a strong conclusion. But is it possible
that the pointwise limit of a sequence of continuous functions could be everywhere
discontinuous? For example, is it possible to express Xg as the pointwise limit of a
sequence of continuous functions on R?

As it happens, the pointwise limit of a sequence of continuous functions on R must
have lots of points of continuity.

The Baire-Osgood Theorem 11.20. Ler f, : R = R be continuous for each n,
and suppose that f(x) = lim,_, o fa.(x) exists (as a real number) for each x € R.
Then D(f) is a first category set in R. In particular, f is continuous at a dense
set of points in R.

PROOF. From Theorem 9.2 we know that D(f) = |J.-,{x : @s(x) > 1/n} is the
countable union of closed sets. Thus, it suffices to show, for any ¢ > 0, that the
closed set F = {x : ws(x) > Se} is nowhere dense. The proof of this fact may
seem rather indirect, but have patience!

Consider the sets E,, = ﬂuz" (x : | fi(x)— fj(x)] < €). Since (f,) is pointwise
convergent, we know that | J -, E, = R. Notice, too, that each E, is a closed set
(because the f; are continuous).

Given any closed interval /, we want to show that / ¢ F, for then it will
follow that F contains no open intervals either (that is, F has an empty interior).
We will take a first step in this direction by applying the Baire category theorem
tol = U,f":,(E,, N I). Since I is complete, and since each E, is closed, it follows
that, for some n, the set E, N I contains an entire open interval J. We are going
toshow that J C F° = {x : ws(x) < S¢},and hence that ] ¢ F.

Since J C E,, we have | fi(x) — fj(x)| < eforall x € J and all i, j > n. Thus,
| f(x)— fa(x)] < €forall x € J.(Why?) Next we use the fact that f, is continuous:
For each xo € J there is an open interval I,, C J, containing xgp, such that
| fa(x) = fa(x0)| < e forall x € I,,. But then it follows from the triangle inequality
that | f(x) — fa(x0)] < 2¢ for all x € I,, and, finally, that | f(x) — f(y)| < 4¢ for
all x, y € I,,. That is, we have shown that ws(xo) < o(f; I;,) < 4¢, and hence
thatxo ¢ F. O
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Corollary 11.21. Let f : R — R. Then, D(f) is a first category set in R if and
only if f is continuous at a dense set of points.

PROOF. An F, subset of R is a first category set if and only if its complement is
dense. O

Examples 11.22

(a) X g cannot be written as the limit of a sequence of continuous functions. (Why?)
: . 2n
However, we do have Xg(x) = limm—, o lim,_, o (cOsm! 7 x)
() If f : R —» R is everywhere differentiable, then f' must have a point of
continuity, since f’ is then the limit of a sequence of continuous functions:

fx)=lim, oon[f(x+(1/n) = f(x)].

Since the subject of derivatives has come up in conjunction with the Baire category
theorem, now is probably a good time to discuss Banach’s proof of the existence of
continuous nowhere differentiable functions. Rather than pursue the “hard” technical-
ities that we saw in Chapter Ten, we will take this as an excuse to demonstrate some of
the advantages of the “soft” approach.

To begin, let F denote the set of all functions in C[ 0, 1] having a finite derivative at
some point of [ 0, 1 ]. Banach’s wonderfully clever observation is that F is a first category
set in (the complete space) C[ 0, 1]. Since this means that the complement of F is dense
in C[0, 1], it would be fair to say that “most” continuous functions on [0, 1] fail to
have a finite derivative at even a single point. Isn’t this curious? Without displaying
a single concrete example, Banach’s observation shows that nondifferentiability is the
rule, rather than the exception, for elements of C[O0, 1].

For each n > 2, consider the set E, consisting of those f € C[0, 1] such that, for
some 0 < x <1-(1/n), we have |f(x +h) — f(x)] <nhforall0 <h <1 -x.In
particular, any f € C[O0, 1] having a right-hand derivative at most n in magnitude at
even one pointin [0, 1 — (1/n)]isin E,. The set E = U;"_’__z E, consists of all of those
f € C[0, 1] that have bounded right-hand difference quotients at some x in [0, 1). In
particular, any f € C[0, 1] having a finite right-hand derivative at even one point in
[0, 1) is in E. We will show that E is a first category set in C[0, 1] by showing that
each E, is closed and nowhere dense in C[ 0, 1].

First, let’s show that the complement of E, is dense in C[0, 1]. Once we have
established that E, is closed, this will prove that E, is nowhere dense. Given ¢ > 0,
we need to show that an arbitrary g € C[0, 1] is within € of some f ¢ E,. Since the
polygonal functions are dense in C[O0, 1], it is enough to consider the case where g
is polygonal. But now our job is easy: We just argue that we can find a “sawtooth”
function f, having right-hand derivatives bigger than n in magnitude, that is within ¢
of g, as shown in Figure 11.3.

Next, let’s check that E, is closed. Suppose that ( f) is a sequence from E,, and that
(fi) converges uniformly tosome f in C[0, 1 ]. We need to show that f € E,. Now there
is a corresponding sequence (x;) withO < x; < 1—(1/n)suchthat| fy(xy+h)— f(x)| <
nh for all 0 < h < 1 — x;. By passing to a subsequence, if necessary (and relabeling),
we may suppose that x;, — x, where 0 < x < 1—(1/n). We will take the corresponding
subsequence of ( fi), too (likewise relabeled). Thus, fiy =3 f and x, — x.
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(a) (b)

If0 <h <1-x,then0 < h < 1—x, forall k sufficiently large. Thus, if k sufficiently
large, we have

1 f(x+h)— fOl < 1 f(x+h)— flxe +h)| + | f(xe +h) — filxe + h)|
+ 1 fe(xe + h) — fiex)l + | felxe) — fFx)l + | f () — f(x)I
SIfx+h)— f+h)|+I1f — fillo
+nh+ I f — fillo + | f(xk) — f(X)I.

Now, since f is continuous and f; =3 f, we just let k — oo in our last estimate to arrive
at|f(x +h)— f(x)| <nh.Thatis, f € E,.

Notes and Remarks

Weierstrass’s first theorem, on approximation by algebraic polynomials (Theo-
rem 11.3), appeared in Weierstrass [1885, pp. 633—639]. His second theorem, on
approximation by trigonometric polynomials (Theorem 11.8), appeared immediately
after the first, in a paper under the same title, in Weierstrass [1885, pp. 789-805]. See
Weierstrass [1886] for a French translation.

A great deal has been written about Weierstrass’s approximation theorems and related
questions. For a brief historical overview, see Shields [1987a] and Hedrick [1927]. More
detailed discussions are given in Jackson [1920] and Fisher [1978]. For a short account
of Weierstrass's life, see Polubarinova-Kochina [1966].

Three highly readable sources for detailed information on the approximation of
functions are Natanson [1964], Cheney [1966], and Rivlin [1981].

The observation that the polygonal functions are dense in C[a, b] (Theorem 11.2)
is due to Lebesgue, as is the fact that this observation can be used to give an elementary
proof of Weierstrass’s first theorem (see Exercises 2 and 11). So is the elementary
proof that Weierstrass’s two theorems are, in fact, equivalent (the proof of Theorem
11.8 and the subsequent discussion). All this and more can be found in Lebesgue’s first
published paper, Lebesgue [1898]. The details, as given here, are based largely on the
presentation in de la Vallée Poussin [1919].
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Sergei Bernstein’s proof of the Weierstrass theorem (Theorem 11.4) is from
S. N. Bernstein [1912]. The curious fact that the proof of Bernstein’s theorem rests on
checking just three special cases, the polynomials fo(x) = 1, fi(x) = x,and f,(x) = x?,
leads to a beautiful result of Korovkin on monotone (or positive) linear operators on
Cla,b). (Alinearmap T : C[a.b] = Cla,b]is monotone if T(f) < T(g) whenever
f < g.) Korovkin’s theorem states that if any sequence (7,) of monotone linear maps
on ([ a, b] satisfies T,(f) = f in each of the three cases f = fo, f = fi,and f = f3,
then 7,(f) = f for every f € Cla, b]. Since the operators B,(f) are linear and posi-
tive (see Exercise 5), Bernstein’s theorem is a special case of Korovkin’s result. There
is also a version of Korovkin’s theorem for monotone linear maps on C?*, in which
case the “Korovkin set” {1, x, x2} now becomes {1, cos x, sin x}. For more details, see
Cheney [1966], or Korovkin [1960]. For more recent developments along these lines,
see Donner [1982].

Exercise 16 is taken from my classroom notes from W. B. Johnson’s course in real
analysis at The Ohio State University in 1974-75. The spaces Lipa, for0 < o < 1,in
Exercises 20-24, 26 are sometimes referred to as the Holder continuous functions.

The section on trigonometric polynomials, along with the proof of the equivalence
of Weierstrass's first and second theorems, is based in part on the presentations found in
de la Vallée Poussin [1919] and Natanson [1964] (and, to some extent, Jackson [1941]
and Rogosinski [1950]) but, as already mentioned, is heavily influenced by Lebesgue’s
original presentation; see also Lebesgue [1906].

Several enlightening proofs of the Weierstrass theorems (especially, deductions of
the first theorem from the second) can be found in Jackson [1941]. In one particularly
direct approach, Jackson points out that if f is a polygonal function in C?", then the
Fourier coefficients for f satisfy |ax|, |bx| < C/k>. (Compare this with the resultin Exer-
cise 40.) It follows (see Exercise 39) that each 2sx-periodic polygonal function is the
uniform limit of its Fourier series. Since the polygonal functions are clearly dense in
C?~, this observation gives a quick proof of Weierstrass’s second theorem.

The constructions in Lemmas 11.10 and 11.11, along with Exercise 42, are based
on the presentation in Beals [1973]. Lemma 11.12, Theorem 11.13, and Exercise 44
are based on the presentation in Pursell [1967].

The Italian mathematicians Ascoli and Arzela were both interested in extending
Cantor’s set theory to sets whose elements were functions, sometimes referred to as
“curves” or “lines,” especially in regard to “functions of lines,” or functions of func-
tions, if you will. In particular, Arzela examined the problems of finding necessary
and sufficient conditions for the integrability of the pointwise limit of a sequence of
integrable functions, of finding the correct mode of convergence that would preserve
integrability, and of the validity of term-by-term integration of series.

Ascoli defined the notion of equicontinuity (at a point), and Arzela used the concept
at about the same time. It would seem that Ascoli proved the sufficiency of this new
condition for compactness in Ascoli [1883] while Arzela proved the necessity in Arzela
[1889] (for C[ O, 1] in either case). But Arzela is generally credited for the first clear
statement of Theorem 11.18 for C[ 0, 1] in Arzela [1895]. The metric space version
is (once again) due to Fréchet; see Fréchet [1906]. For more details, see Dunford and
Schwartz [1958] and Hawkins [1970]. Exercise 59 is based on a result in Dudley [ 1989].
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A slightly different version of Theorem 11.20, concerning the set of points of uni-
form convergence of a pointwise convergent sequence of functions, was established
in Osgood [1897]. For more on Osgood’s approach, see Hobson [1927, Vol. II]. As
stated here, Theorem 11.20 is part of Baire’s thesis, Baire [ 1899]. The proof given here,
along with Corollary 11.21 and Example 11.22, are taken from Oxtoby [1971]. For a
discussion of related issues, see Hewitt [1960], Goffman [1960], and Myerson [1991].

Banach’s clever application of the Baire category theorem to prove the existence
of continuous nowhere differentiable functions is from Banach [1931]. The proof pre-
sented here is taken from Oxtoby [1971] (but see also Boas [1960]). Applications of
the Baire category theorem to existence proofs are numerous; both Oxtoby and Boas
provide several other curious examples. Two particular examples, though, are sim-
ply too curious to avoid mention. Compare “Most monotone functions are singular,”
Zamfirescu [1981] and “Most monotone functions are not singular,” Cater [1982].
Katsuura [1991] offers an intriguing application of Banach’s contraction mapping the-
orem to address the existence of nowhere differentiable functions.




CHAPTER TWELVE

The Stone—Welerstrass Theorem

Algebras and Lattices

We continue with our study of B(X), the space of bounded real-valued functions on a
set X. As we have seen, B(X) is a Banach space when supplied with the norm || f |l =
sup, . x | f(x)|. Moreover, convergence in B(X) is the same as uniform convergence. Of
course, if X is a metric space, we will also be interested in C(X), the space of continuous
real-valued functions on X, and its cousin C,(X) = C(X) N B(X), the closed subspace
of bounded continuous functions in B(X). Finally, if X is acompact metric space, recall
that Cp(X) = C(X).

But now we want to add a few more ingredients to the recipe: It’s time we made use
of the algebraic and lattice structures of B(X). In this chapter we will make formal our
earlier informal discussions of algebras and lattices. In particular, we will see how this
additional structure leads to a generalization of the Weierstrass approximation theorem
in C(X), where X is a compact metric space.

To begin, an algebra is a vector space A on which there is defined a multiplication
(f.8)+— fg (from A x A into A) satisfying

(i) (fg)h= f(gh),forall f, g, h € A;
(i) f(g+h)=fg+ fh,(f+gh= fh+gh,forall f,g he A,
(ili) a(fg) = (af)g = f(ag), for all scalars @ and all f, g € A.

The algebra is called commutative if
(iv) fg=gf,forall f, g € A.
And we say that A has an identity element if there is a vector e € A such that
(V) fe=ef = f,forall f € A.
In the case where A is a normed vector space, we also require that the norm satisfy

(vi) llfglh<Nsulgl

(this simplifies things a bit), and in this case we refer to A as a normed algebra. If a
normed algebra is complete, we refer to it as a Banach algebra. Finally, a subset B of
an algebra A is called a subalgebra (of A) if B is itself an algebra (under the same
operations), that is, if B is a (vector) subspace of A that is closed under multiplication.

188
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Examples 12.1

(a) R, with the usual addition and multiplication, is a commutative Banach algebra
with identity.

(b) If we define multiplication of vectors “coordinatewise,” then R” is acommutative
Banach algebra with identity (the vector (1, ..., 1)) when equipped with the norm
Ixlloo = Max;<i<, |Xi|. We used this observation in Chapter Five.

(c) The collection M,(R) of all n x n real matrices, under the usual operations on
matrices, is a noncommutative algebra with identity.

(d) Under the usual pointwise multiplication of functions, B(X) is a commutative
Banach algebra with identity (the constant 1 function). The constant functions
in B(X) form a subalgebra isomorphic (in every sense of the word) to R.

(e) If X is a metric space, then C(X) is a commutative algebra with identity (the
constant 1 function) and C,(X) is a closed subalgebra of B(X).

(f) The polynomials form a dense subalgebra of C[ a, b ]. The trig polynomials form
a dense subalgebra of C?".

(g C™M[0, 1] and Lip 1 are dense subalgebras of C[0, 1].

(h) C*°(R) is a subalgebra of C(R).

(i) A function f : [a,b] — R is called a step function if there are finitely many
pointsa = fp < ) < --- < t, = b such that f is constant on each of the
open intervals (1;, t;+1). (And f is allowed to take on any arbitrary real values at
the 1;.) We will write S[a, b] for the collection of all step functions on [a, b].
Clearly, S[a, b] is a subset of B[ a, b] but, in fact, S[a, b] is also a subalgebra
of B(a,b]. (Why?)

EXERCISES

1. Let V be a normed vector space.

(a) Show that scalar multiplication, from R x V into V, is continuous; that is, if
a, —> a inR, and if x, > x in V, prove thata,x, = axin V.

(b) Show that vector addition, from V x V into V, is continuous; that is, if x, = x
and y, —» yin V,provethatx, + y, > x + yin V.

(c) If W is a subspace of V, conclude that Wisa subspace of V.

2. Let A be an algebra, and let B be a subset of A. Prove that B is a subalgebra of
A if and only if B is a (vector) subspace of A that is also closed under multiplication.

> 3. Let A be anormed algebra.

(@) Show that || fg —hk|l < IfIllg — kIl + kIl I f — Al for £, 8. h, k € A.

(b) Show that multiplication, from A x A into A, is continuous; that is, if f, — f
and g, — g in A, prove that f,g, — fgin A.

(c) If B is a subalgebra of A, conclude that Bisa subalgebra of A.

4. Show that the only subalgebras of R?2, other than {(0, 0)} and R?, are the sets
{(x,0): x e R}, {(0, x) : x € R} and {(x, x) : x € R}.

> §. Provethat S [a,b]is asubalgebraof B[ a, b ].
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6. If X is infinite, show that B(X) is not separable.

7. Prove that C"[a, b) is a Banach algebra when supplied with the norm
N fllco = Il flloo + Il f'lloo- (See Exercise 10.18.)

8. Prove that Lip« is a Banach algebra when supplied with the norm || fllLipe =
Il f oo + Na(f). (See Exercise 11.25.)

9. Let A be an algebra with identity e, and let f € A. Given a polynomial p (x) =
Y k—o akx* we (formally) define p (f) € Aby p(f) = Y ,_oarf*, where f* = e,
and we call p (f) a polynomial in f. Show that the set of all polynomials in f
forms a subalgebra of A. In fact, prove that the set of polynomials in f is the smallest
subalgebra of A containing e and f. For this reason we refer to the set of polynomials in
f as the subalgebra generated by e and f. Note that the set of (algebraic) polynomials
in C[a, b}, for instance, is the subalgebra of C[a, b] generated by the functions
e(x)=1and f(x) = x.

The Weierstrass approximation theorem tells us that the subalgebra of polynomials
inC[a, b]isdense in C[a, b ). Using this language, it is now possible to reformulate the
Weierstrass theorem in more general settings. In particular, our long-term goal in this
chapter is to prove Stone’s extension of the Weierstrass theorem, which characterizes
the dense subalgebras of C(X), where X is a compact metric space.

Our short-term goal will be to characterize S[ a, b ], the closure of the subalgebra of
step functions S[a. b] in the algebra of bounded functions B| a, b]. This will give us
at least one nontrivial, and ultimately useful, example for later reference. Please note
that it follows from Exercises 3 and 5 that S[a, b] is again a subalgebra of B[a. b]. To
begin, let’s check that S[a, b ] contains the continuous functions.

Lemma 12.2. C[a,b]) C S[a.b].

PROOF. Let f € Cla, b] and ¢ > 0. We need to find a step function g € S(a, b ]
such that || f — g|le < €.

Since f is uniformly continuous, there is a§ > O such that | f(x) — f(y)| < ¢
whenever |x — y| < §. Now take any partitiona =t < <--- <t, =bof[a, b]
for which ¢;,, — t; < & for all i, and define g by g(x) = f(1;) fort;, < x < t;4,.
and g(b) = f(b) (see Figure 12.1). Then, g € S[a,b] and |g(x) — f(x)| < ¢ for
allxin[a,b]. O
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EXERCISES

10. Show that S[a, b ] contains the monotone functions in B[a, b ]. [Hint: “Slice
up’ the range of a monotone function to find an approximating step function.]

11. Let f(x) =sin(1/x),for0 < x < 1,and f(0) = 0. Clearly, f € B[O, 1].
Show that f ¢ S[0, 1]. [Hint: f£(0+) doesn’t exist.]

12. Is XQn[a.b] € S| a, b]?Explain.

What do Exercise 10 and Lemma 12.2 have in common? Well, recall that monotone
functions have left- and right-hand limits at each point; that is, both f(x+) and f(x—)
exist if f is monotone. This turns out to be precisely what is needed to be in the closure
of the step functions.

Theorem 12.3. Let f € Bla,b). Then, f € S[a,b] if and only if f(x+) and
f(x—) exist at each x in [a, b] (but only f(a+) and f(b—), of course).

PROOF. First suppose that f € S[a,b], and let a < x < b. We will show that
f(x+) exists (the other case is similar).

Let ¢ > 0, and choose g € S[a, b] such that || f — gll« < €. Now, since g
is a step function, g(x+) exists; in fact, there is a § > 0 such that g is constant
on the interval (x, x + §). (Why?) But then, for any x < s, < x + §, we have
| £(s)—F(@) < 1f(s)—g(s)|+1g(s)—g()|+ |g(t) — f(1)| < 2¢, and this is enough
to imply that f(x+) exists. Indeed, if (r,) decreases to x, then this argument shows
that (f(z,)) is Cauchy (and hence converges).

Now suppose that f € B[a, b], that f(x+) and f(x—) exist for every x in
[a, b], and that ¢ > 0. For each x in [ a, b] there is a §(x, €) > 0 such that

x—8(x,€) <s,t <x)
or b = |f(s) — f(1)| <e.

xX<s,t<x+8(x,¢)]

The intervals {(x — 8(x, &), x + 4(x, e)) : X € [a,b]) form an open cover for
[a, b]. This means that we actually need only finitely many to do the job. After
reducing to finitely many such intervals, we list the endpoints and midpoints of
the intervals in their natural order; callthema =t <t <--- <1, = b:

X7 X2 Xs
_W_
4] h &3 t4y s te 17 I3 o

The important thing to notice here is that each interval (¢;, t;+) is a subinterval
of some (x — é(x, €), x) or of some (x, x + 8(x, €)). In either case we have | f(x) —
f(@®)| < € whenever s, t € (¢, t; +1).
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Now we are ready to define our step function g. Foreachi =0, ...,n - 1,
choose s; € (4, t;+1) and set g(x) = f(s;) forx € (4, t;+1). Finally, set g(#;) = f(#;)
foralli =0,...,n.Clearly, g € S[a,b]and || f — glloo <€. O

We will say that a function possessing finite left- and right-hand limits at each point is
quasicontinuous. Thus, S[a, b] is the algebra of quasicontinuous functionson [a, b].
A quasicontinuous function has only jump discontinuities. And, since a quasicontinuous
function is the uniform limit of a sequence of step functions on each compact interval
in R, it follows from Exercise 10.14 (or Theorem 10.4) that a quasicontinuous function
has at most countably many points of discontinuity.

EXERCISES
13. Fill in the missing details from the proof of Theorem 12.3.

14. If f € B[a, b] has only countably many points of discontinuity, does it follow
that f € S[a, b]?Explain.

As it happens, the closed subalgebras of B(X) inherit even more structure than one
might guess. To explain this, it will help if we first formalize the order properties of
B(X).

A lattice is a set L, together with a partial order <, in which every pair of elements
has both a least upper bound and a greatest lower bound (back in L). That is, given
f, 8 € L, there exist elements f Vv g (the least upper bound of f and g) and f A g (the
greatest lower bound of f and g) in L satisfying:

(1) Iff<handg <h,forsomeh € L,then f vg <h.
(ii)) Ifh< fandh <g,forsomeh € L,thenh < f A g.

As you might expect, a sublattice is a subset of a lattice that is a lattice in its own
right (under the same ordering).

A vector space that is also a lattice (under some given partial order) is called a vector
lattice. In a vector lattice we may decompose each element into its positive and negative
parts: f = f* — f~, where

ffr=fv0 and fT=-(fA0).

We may also define the absolute value of an element of a vector lattice using the formula
|fl = f* + f~. See Figure 12.2.

\f/\\ﬁ/\ i
N4 N\ VO
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The notions of a normed vector lattice and a Banach lattice should be clear if you
have read this far. In a normed lattice, we also require that the norm satisfy || f|| < lIgll
whenever | f| < |g|. (As in the case of normed algebras, this fact is used to show that
the lattice operations are continuous.)

Examples 12.4

(a) Given any set X, ordinary set inclusion is a partial order on P(X), the power set
of X; thatis, we define A < B if and only if A C B. Itis easy to see that P(X) is
also a lattice under this ordering, andthat AV B=AUBand AAB=ANB.
For this reason, A v B is sometimes read as “A join B,” and A A B is sometimes
read as “A meet B.”

(b) R”, under “coordinatewise” ordering of vectors (i.e., x < y if and only if x; < y;
for all i), is a Banach lattice when equipped with the norm || x ||oc = max,<;<s |Xil.

(c) B(X)is a Banach lattice under the usual pointwise ordering of functions: f < g
if and only if f(x) < g(x) for all x. In this case, (f V g)(x) = max{ f(x), g(x))
and (f A g)(x) = min{f(x), g(x)}. Notice, too, that | f|(x) = | f(x)|.

EXERCISES

15. Let L be alattice, and let S be a subset of L. Show that S is a sublattice of L if
andonly if f vV gand f A g arein S whenever f, g € S.

16. In a vector lattice L, show that —(f A g) = (—f) V (—g), and conclude that
fT=CENHVvo=(CNHT.
> 17. If f, g € B(X), prove that
@ f+g=fvg+fAargand |f—gl=fVg—fAg.
Mb) 2(fveg)=f+g+|f—gland AfAg)=f+g—I|f —gl
© f*Af~-=0and |fl=fV(=f)=f*V [~
d |fvegl=Iflvigl <max{llflle, |gllec} - 1, where 1 stands for the constant
1 function.
[Hint: These are all just statements about real numbers.]

> 18. Let A be a vector subspace of B(X). Show that A is a sublattice of B(X) if and
only if | f| € A whenever f € A. If X is a compact metric space, this gives an easy
proof that C(X) is a sublattice of B(X).

19. If f, g € B(X), show that || f V gllcc < max{|| fllec, [I&lloo}-

It follows from Exercise 18, for example, that S[ a, b] is a sublattice of B[a, b]. It
would be nice to know whether the same holds for S[ a, b ]. Our next result explains
the claim, made earlier in this section, that the closed subalgebras of B(X) inherit even
more structure than one might guess.

Theorem 12.5. Let A be a subalgebra of B(X). Then, A is both a subalgebra
and a sublattice of B(X).
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PROOF. It follows from Exercise 3 that A is a subalgebra of B(X). In particular,
A is a subspace of B(X). Thus, by Exercise 18, we need only show that | f| € A
whenever f € A.

Given f € A and ¢ > 0, we will show that there is an element g € A with
Il f] — gllo < € and, hence, that | f| € A = A.

Let M = || flloo, and consider the function |¢| on the interval [-M, M]. By the
Weierstrass approximation theorem (or by Exercise 11.11) there is a polynomial
p(t) = Y ;_oaxt* such that ||t| — p(r)| < € for all ¢ in [-M, M]. In particular,
notice that |ayg| = |p(0)| < e.

Now, since | f(x)| < M for all x € X, it follows that ||f(x)| — p(f(x))| < ¢ for
all x e X. But p(f(x)) = ap+a, f(x)+ -+ a,f"(x) = ap + g(x), where the
functiong = a) f+- - -+a, f" € A,because A is an algebra. Thus, || f(x)|—g(x)| <
[ fN= p(fx)|+|P(f(x))—g(x)| < e+lag| < 2¢forall x € X. In other words,
foreach € > 0 we can supply an element g € A suchthat || | f| — glloc < 2¢. Thus,
|fle A. O

Please note that the proof of Theorem 12.5 could be streamlined if we had also
assumed, as some authors do, that A contains the constant functions. The import of this
and other similar hypotheses will be made clear in the next section.

Corollary 12.6. Let X be a compact metric space, and let A be a subalgebra of
C(X). Then, A is both a subalgebra and a sublattice of C(X).

Note that, from Exercise 11.11, the proof of Theorem 12.5 can be written without
reference to the classical Weierstrass theorem. In particular, Corollary 12.6 can be
proved without reference to Theorem 11.3.

EXERCISES
> 20. Prove Corollary 12.6.

21. Show that the set of all even functions in C[—1. 1] is a proper closed subalgebra
of C[—1, 1].

22. Let X be a compact metric space, and a let xo € X. Show that the set A =
{f € C(X): f(xo) = 0} is a proper closed subalgebra of C(X).

The Stone—Weierstrass Theorem

Using our new terminology, we may restate the classical Weierstrass theorem to
read: If a subalgebra A of C|a, b] contains the functions e(x) = 1 and f(x) = x,
then A is dense in C[a,b). Any subalgebra of C[a,b] containing 1 and x actu-
ally contains all of the polynomials; thus our restatement of Weierstrass’s theorem
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amounts to the observation that any subalgebra containing a dense set is itself dense in
Cla,b].

Our goal in this section is to prove the analogue of this new version of the Weierstrass
theorem for subalgebras of C(X) where X is a compact metric space. In particular, we
will want to extract the essence of the functions 1 and x from this statement. That is,
we seek conditions on a subalgebra A of C(X) that will force A to be dense in C(X).
The key role played by 1 and x, in the case of C[a. b], is that a subalgebra containing
these two functions must actually contain a much larger set of functions. But since we
cannot be assured of anything remotely like polynomials living in the more general
C(X) spaces, we might want to change our point of view. What we really need is some
requirement on a subalgebra A of C(X) that will allow us to construct a wide variety
of functions in A. And, if A contains a sufficiently rich vanety of functions, it might
just be possible to show that A is dense.

Since the two replacement conditions we have in mind have nothing to with the
algebraic structure of C(X), we state them in some generality.

Let A be a collection of real-valued functions on some set X. We say that A separates
points in X if, given x # y € X, there is some f € A such that f(x) # f(y). We say
that A vanishes at no point of X if, given x € X, there is some f € A such that

f(x) #0.

Examples 12.7

(a) The single function f(x) = x clearly separates points in [ a, b ], and the function
e(x) = 1 obviously vanishes at no point in [a, b]. Any subalgebra A of C[a, b]
containing these two functions will likewise separate points and vanish at no
pointin [a, b].

(b) For any metric space X, the collection C(X) separates points in X and vanishes
at no point of X. Why?

(c) Theset E of even functions in C[—1, 1] fails to separate pointsin [—1, 1]; indeed,
f(x) = f(—x) for any even function. However, since the constant functions are
even, E vanishes at no point of [—1, 1]. From Exercise 21, E is a proper closed
subalgebra of C[—1, 1]. The set of odd functions will separate points (since
f(x) = x is odd), but the odd functions all vanish at 0. The set of odd functions
is a proper closed subspace of C[—1, 1], although not a subalgebra.

(d) The set of all functions f € C[—1, 1] for which f(0) = 0 is a proper closed
subalgebra of C[—1, 1]. In fact, this set is a maximal (in the sense of containment)
proper closed subalgebra of C[—1, 1]. We will see why shortly. Note, however,
that this set of functions does separate pointsin [—1, 1] (again, because it contains

f(x) =x).

As these few examples illustrate, neither of our new conditions, taken separately,
is sufficient to force a subalgebra of C(X) to be dense. But, as we will see, both
conditions together will do the job. To better appreciate the utility of these new con-
ditions, let’s isolate the key computational tool they permit within an algebra of func-
tions.
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Lemma 12.8. Ler A be an algebra of real-valued functions on some set X, and
suppose that A separates points in X and vanishes at no point of X. Then, given
x#y€Xanda, beR, wecan findan f € Awith f(x)=aand f(y)=0>.

PROOF. Since A separates points in X and vanishes at no point of X, we can
find g, h, k € A such that g(x) # g(y), h(x) # 0, and k(y) # 0. Thus, both
u = gh — g(y)h and v = gk — g(x)k are in A, since A is an algebra. Moreover, u
and v satisfy u(y) = 0 = v(x) and u(x) # 0 # v(y). Finally, the function

is in A and satisfies f(x) =a, f(y)=b. O

Note that we were forced to be somewhat fussy in the proof of Lemma 12.8; it
would not have been appropriate to write u = [g — g(y)]h, for example, since A need
not contain the constant function g(y) = g(y) - 1 and so need not contain the factor
g — g(y). To avoid just this sort of nuisance, some authors require that A contain the
constant functions in place of the (weaker) condition that A vanish at no point of X.

A second, slick proof of Lemma 12.8 is based on the observation that, for any pair
of distinct points x # y € X, the set A = {(g(x), g(y)) : g € A} is a subalgebra of R2.
(It is easy to list all of the subalgebras of R2; see Exercise 4.) If A separates points in
X, then A is apparently neither {(0, 0)} nor {(x, x) : x € R}. If A vanishes at no point,
then both {(x,0) : x € R} and {(0, x) : x € R} are excluded. Thus A = R2, which is
essentially the conclusion of Lemma 12.8.

Finally, we are ready for Stone’s version of the Weierstrass theorem. It should be
pointed out that the theorem, as stated, does not hold for algebras of complex-valued
functions over C. More on this later.

The Stone-Weierstrass Theorem, real scalars 12.9. Ler X be a compact metric
space, and let A be a subalgebra of C(X). If A separates points in X and vanishes
at no point of X, then A is dense in C(X).

PROOF. First notice that we may assume that A is closed (and prove that A =
C(X)). Indeed, if A satisfies the hypotheses of the theorem, then so does A. (Why?)
And if we are allowed to assume that A is closed, then, according to Corollary
12.6, we may also assume that A is a sublattice of C(X). We would be foolish to
do otherwise: Henceforth, A is a closed subalgebra and a sublattice of C(X). We
will break the remainder of the proof into two steps.

Step 1. Given f € C(X), x € X, and ¢ > 0, there is an element g, € A with
gx(x) = f(x)and g.(y) > f(y) —eforall y € X.

From our “computational” lemma, Lemma 12.8, we know that foreach y € X,
y # x, we can find an h, € A so that h,(x) = f(x) and hy(y) = f(y), as in Fig-
ure 12.3.
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Next, since h, — f is continuous and vanishes at both x and y, the set U, =
{t € X : hy(t) > f(t) — €} is open and contains both x and y. Thus, the sets
(Uy)y#: form an open cover for X. Since X is compact, finitely many U, suffice,
say X =U,, U---UU,,. Now set g, = max{h,,, ..., hy, }. Because A is a lattice,
we have g, € A. Note that g,(x) = f(x) since each h, agrees with f at x.
And g, > f — € since, given y # x, we have y € U,, for some i, and hence

hy,(y) > f(y) —e.
Step 2. Given f € C(X)and e > 0, thereisan h € A with || f — Al < €.

From Step 1, for each x € X we can find g, € A such that g,(x) = f(x) and
8:(y) > f(y)—¢€forall y € X, as in Figure 12.4. Now we reverse the process

L ).
\ 4 \ 4

used in Step 1: For each x, the set V, = {y € X : g:(y) < f(y) + ¢} is open
and contains x. Again, since X is compact, X = V,, U--- U V,_. This time, set
h = min{g,,, ..., 8.} € A. As before, h(y) > f(y) — ¢ for all y since each g,,(y)
does so, and h(y) < f(y) + ¢ for all y since at least one g, (y) does so. O

If we are careful to avoid reference to the classical Weierstrass theorem in the proof
of the Stone-Weierstrass theorem (see the remarks following Corollary 12.6), then
Theorem 11.3 may be considered a corollary to Theorem 12.9 (recall Example 12.7 (a)).

Corollary 12.10. Given f € C[a,b] and ¢ > O, there is a polynomial p such
that | f — plleo < &.
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EXERCISES

23. If X and Y are compact, show that the subspace of C(X x Y) spanned by
the functions of the form f(x, y) = g(x)h(y), g € C(X), h € C(Y), is dense in
C(X x7Y).

24. Let K be a compact subset of R". Show that the set of all polynomials (in
n-variables) is dense in C(K).

25. Let X be a compact metric space containing at least two points, and let A be a

proper closed subalgebra of C(X). If A separates points in X, show that there is an
xo € X suchthat A = {f € C(X): f(xg) =0]}.

We used the classical Weierstrass theorem to prove that C[ a, b] is separable. Like-
wise, the Stone—Weierstrass theorem can be used to show that C(X) is separable where X
is a compact metric space. While we do not have anything quite so convenient as polyno-
mials at our disposal, we do, at least, have a familiar collection of functions to work with.

Given a metric space (X,d) and 0 < K < oo, we will write Lip,(X) to denote the
collection of all real-valued Lipschitz functions on X, with constant at most K; that is,
f X — Risin Lipg(X) if | f(x) — f(y)| < Kd(x, y) for all x, y € X. And we will
write Lip (X) to denote the set of functions that are in Lip, (X) for some K; in other
words, Lip (X) = | J% -, Lipg(X). It is easy to see that Lip (X) is a subspace of C(X); in
fact, if X is compact, then Lip (X) is even a subalgebra of C(X).

EXER