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Preface

The first three editions of H.L.Royden’s Real Analysis have contributed to the education of
generations of mathematical analysis students. This fourth edition of Real Analysis preserves
the goal and general structure of its venerable predecessors—to present the measure theory,
integration theory, and functional analysis that a modern analyst needs to know.

The book is divided the three parts: Part I treats Lebesgue measure and Lebesgue
integration for functions of a single real variable; Part II treats abstract spaces—topological
spaces, metric spaces, Banach spaces, and Hilbert spaces; Part III treats integration over
general measure spaces, together with the enrichments possessed by the general theory in
the presence of topological, algebraic, or dynamical structure.

The material in Parts II and III does not formally depend on Part 1. However, a careful
treatment of Part I provides the student with the opportunity to encounter new concepts in a
familiar setting, which provides a foundation and motivation for the more abstract concepts
developed in the second and third parts. Moreover, the Banach spaces created in Part I, the
L? spaces, are one of the most important classes of Banach spaces. The principal reason for
establishing the completeness of the L? spaces and the characterization of their dual spaces
is to be able to apply the standard tools of functional analysis in the study of functionals and
operators on these spaces. The creation of these tools is the goal of Part II.

NEW TO THE EDITION

o This edition contains 50% more exercises than the previous edition

o Fundamental results, including Egoroff’s Theorem and Urysohn’s Lemma are now
proven in the text.

¢ The Borel-Cantelli Lemma, Chebychev’s Inequality, rapidly Cauchy sequences, and
the continuity properties possessed both by measure and the integral are now formally
presented in the text along with several other concepts.

There are several changes to each part of the book that are also noteworthy:

Partl

o The concept of uniform integrability and the Vitali Convergence Theorem are now
presented and make the centerpiece of the proof of the fundamental theorem of
integral calculus for the Lebesgue integral

¢ A precise analysis of the properties of rapidly Cauchy sequences in the L?( E) spaces,
1 < p < 00, is now the basis of the proof of the completeness of these spaces

o Weak sequential compactness in the L?(E) spaces, 1 < p < 00, is now examined in
detail and used to prove the existence of minimizers for continuous convex functionals.

iii
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Part Il

o General structural properties of metric and topological spaces are now separated into
two brief chapters in which the principal theorems are proven.

e In the treatment of Banach spaces, beyond the basic results on bounded linear
operators, compactness for weak topologies induced by the duality between a Banach
space and its dual is now examined in detail.

o There is a new chapter on operators in Hilbert spaces, in which weak sequential com-
pactness is the basis of the proofs of the Hilbert-Schmidt theorem on the eigenvectors
of a compact symmetric operator and the characterization by Riesz and Schuader of
linear Fredholm operators of index zero acting in a Hilbert space.

Part Il

o General measure theory and general integration theory are developed, including the
completeness, and the representation of the dual spaces, of the LP(X, u) spaces for,
1 < p < oo. Weak sequential compactness is explored in these spaces, including the
proof of the Dunford-Pettis theorem that characterizes weak sequential compactness
in LY(X, p).

o The relationship between topology and measure is examined in order to characterize
the dual of C(X), for a compact Hausdorff space X. This leads, via compactness
arguments, to (i) a proof of von Neumann’s theorem on the existence of unique
invariant measures on a compact group and (ii) a proof of the existence, for a mapping
on a compact Hausdorf space, of a probability measure with respect to which the
mapping is ergodic.

The general theory of measure and integration was born in the early twentieth century. It
is now an indispensable ingredient in remarkably diverse areas of mathematics, including
probability theory, partial differential equations, functional analysis, harmonic analysis, and
dynamical systems. Indeed, it has become a unifying concept. Many different topics can
agreeably accompany a treatment of this theory. The companionship between integration
and functional analysis and, in particular, between integration and weak convergence, has
been fostered here: this is important, for instance, in the analysis of nonlinear partial
differential equations (see L.C. Evans’ book Weak Convergence Methods for Nonlinear
Partial Differential Equations [AMS, 1998]).

The bibliography lists a number of books that are not specifically referenced but should
be consulted for supplementary material and different viewpoints. In particular, two books
on the interesting history of mathematical analysis are listed.

SUGGESTIONS FOR COURSES: FIRST SEMESTER

In Chapter 1, all the background elementary analysis and topology of the real line needed
for Part Iis established. This initial chapter is meant to be a handy reference. Core material
comprises Chapters 2, 3, and 4, the first five sections of Chapter 6, Chapter 7, and the first
section of Chapter 8. Following this, selections can be made: Sections 8.2-8.4 are interesting
for students who will continue to study duality and compactness for normed linear spaces,
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while Section 5.3 contains two jewels of classical analysis, the characterization of Lebesgue
integrability and of Riemann integrability for bounded functions.

SUGGESTIONS FOR COURSES: SECOND SEMESTER

This course should be based on Part III. Initial core material comprises Section 17.1, Section
18.1-18.4, and Sections 19.1-19.3. The remaining sections in Chapter 17 may be covered at
the beginning or as they are needed later: Sections 17.3-17.5 before Chapter 20, and Section
17.2 before Chapter 21. Chapter 20 can then be covered. None of this material depends on
Part II. Then several selected topics can be chosen, dipping into Part II as needed.

o Suggestion 1: Prove the Baire Category Theorem and its corollary regarding the partial
continuity of the pointwise limit of a sequence of continuous functions (Theorem 7 of
Chapter 10), infer from the Riesz-Fischer Theorem that the Nikodym metric space is
complete (Theorem 23 of Chapter 18), prove the Vitali-Hahn-Saks Theorem and then
prove the Dunford-Pettis Theorem.

o Suggestion 2: Cover Chapter 21 (omitting Section 20.5) on Measure and Topology,
with the option of assuming the topological spaces are metrizable, so 20.1 can be
skipped.

o Suggestion 3: Prove Riesz’s Theorem regarding the closed unit ball of an infinite
dimensional normed linear space being noncompact with respect to the topology
induced by the norm. Use this as a motivation for regaining sequential compactness
with respect to weaker topologies, then use Helley’s Theorem to obtain weak sequential
compactness properties of the L?(X, u) spaces, 1 < p < oo, if LY(X, u) is separable
and, if Chapter 21 has already been covered, weak-x sequential compactness results
for Radon measures on the Borel o-algebra of a compact metric space.

SUGGESTIONS FOR COURSES: THIRD SEMESTER

I have used Part II, with some supplemental material, for a course on functional analysis,
for students who had taken the first two semesters; the material is tailored, of course, to that
chosen for the second semester. Chapter 16 on bounded linear operators on a Hilbert space
may be covered right after Chapter 13 on bounded linear operators on a Banach space, since
the results regarding weak sequential compactness are obtained directly from the existence
of an orthogonal complement for each closed subspace of a Hilbert space. Part II should be
interlaced with selections from Part III to provide applications of the abstract space theory
to integration. For instance, reflexivity and weak compactness can be considered in general
LP(X, n) spaces, using material from Chapter 19. The above suggestion 1 for the second
semester course can be taken in the third semester rather than the second, providing a truly
striking application of the Baire Category Theorem. The establishment, in Chapter 21, of the
representation of the dual of C(X), where X is a compact Hausdorff space, provides another
collection of spaces, spaces of signed Radon measures, to which the theorems of Helley,
Alaoglu, and Krein-Milman apply. By covering Chapter 22 on Invariant Measures, the
student will encounter applications of Alaoglu’s Theorem and the Krein-Milman Theorem
to prove the existence of Haar measure on a compact group and the existence of measures
with respect to which a mapping is ergodic (Theorem 14 of Chapter 22), and an application
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of Helley’s Theorem to establish the existence of invariant measures (the Bogoliubov-Krilov
Theorem).

I welcome comments at pmf@math.umd.edu. A list of errata and remarks will be
placed on www.math.umd.edu/~pmf{/Real Analysis.
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Preliminaries on Sets,
Mappings, and Relations

Contents
Unions and Intersectionsof Sets . . . .. ..................... 3
Equivalence Relations, the Axiom of Choice, and Zorn’s Lemma . . . . . . . 5

In these preliminaries we describe some notions regarding sets, mappings, and relations
that will be used throughout the book. Our purpose is descriptive and the arguments given
are directed toward plausibility and understanding rather than rigorous proof based on an
axiomatic basis for set theory. There is a system of axioms called the Zermelo-Frankel
Axioms for Sets upon which it is possible to formally establish properties of sets and thereby
properties of relations and functions. The interested reader may consult the introduction
and appendix to John Kelley’s book, General Topology [Kel75], Paul Halmos’s book, Naive
Set Theory [Hal98], and Thomas Jech’s book, Set Theory [Jec06].

UNIONS AND INTERSECTIONS OF SETS

Foraset A, the membership of the element x in A is denoted by x € A and the nonmembership
of x in A is denoted by x ¢ A. We often say a member of A belongs to A and call a member of
A a point in A. Frequently sets are denoted by braces, so that {x | statement about x} is the
set of all elements x for which the statement about x is true.

Two sets are the same provided they have the same members. Let A and B be sets. We
call A a subset of B provided each member of A is a member of B; we denote this by A C B
and also say that A is contained in B or B contains A. A subset A of B is called a proper
subset of B provided A # B. The union of A and B, denoted by A U B, is the set of all points
that belong either to A or to B; thatis, AU B={x|x € A or x € B}. The word or is used here
in the nonexclusive sense, so that points which belong to both A and B belong to AU B. The
intersection of A and B, denoted by A N B, is the set of all points that belong to both A and
B; thatis, AN B={x|x € A and x € B}. The complement of A in B, denoted by B~ A, is the
set of all points in B that are not in A; that is, B~ A = {x|x € B, x ¢ A}. If, in a particular
discussion, all of the sets are subsets of a reference set X, we often refer to X ~ A simply as
the complement of A.

The set that has no members is called the empty-set and denoted by @. A set that is not
equal to the empty-set is called nonempty. We refer to a set that has a single member as a
singleton set. Given a set X, the set of all subsets of X is denoted by P(X) or 2%; it is called
the power set of X.

In order to avoid the confusion that might arise when considering sets of sets, we
often use the words “collection” and “‘family” as synonyms for the word “set.” Let F be
a collection of sets. We define the union of F, denoted by Ur 7 F, to be the set of points

The Oxford English Dictionary devotes several hundred pages to the definition of the word “set.”
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that belong to at least one of the sets in F. We define the intersection of F, denoted by
Nrer F, tobe the set of points that belong to every setin F. The collection of sets F is said
to be disjoint provided the intersection of any two sets in  is empty. For a family F of sets,
the following identities are established by checking set inclusions.

De Morgan’s identities

X~[U F]: (N [X~F] and X~
FeF FeFr

N Fl=UIX~F]

FeF J FeF

that is, the complement of the union is the intersection of the complements, and the
complement of the intersection is the union of the complements.

For a set A, suppose that for each A €A, there is defined a set E,. Let F be the
collection of sets {E) | A€ A}. We write F = {E)},c 5 and refer to this as an indexing (or
parametrization) of 7 by the index set (or parameter set) A.

Mappings between sets

Given two sets A and B, by a mapping or function from A into B we mean a correspondence
that assigns to each member of A a member of B. In the case B is the set of real numbers
we always use the word “function.” Frequently we denote such a mapping by f: A— B,
and for each member x of A, we denote by f(x) the member of B to which x is assigned.
For a subset A" of A, we define f(A’) = {b|b= f(a) for some member a of A’}: f(A’) is
called the image of A’ under f. We call the set A the domain of the function f and f(A)
the image or range of f. If f( A) = B, the function f is said to be onto. If for each member b
of f(A) there is exactly one member a of A for which b= f(a), the function f is said to be
one-to-one. A mapping f: A— B that is both one-to-one and onto is said to be invertible;
we say that this mapping establishes a one-to-one correspondence between the sets A and B.
Given an invertible mapping f: A — B, for each point b in B, there is exactly one member a
of A for which f(a)=>b and it is denoted by f~!(b). This assignment defines the mapping
f~1: B— A, which is called the inverse of f. Two sets A and B are said to be equipotent
provided there is an invertible mapping from A onto B. Two sets which are equipotent are,
from the set-theoretic point of view, indistinguishable.

Given two mappings f: A— Band g: C— D for which f(A) C C then the composition
go f: A— Disdefined by [g o f](x) = g(f(x)) for each x € A. It is not difficult to see that
the composition of invertible mappings is invertible. For a set D, define the identity mapping
idp: D— D is defined by idp(x) = x for all x€ D. A mapping f: A—> B is invertible if and
only if there is a mapping g: B— A for which

gof=idsand fog=idp.

Even if the mapping f: A— B is not invertible, for a set E, we define f~1(E) to be
the set {a€ A| f(a) € E}; it is called the inverse image of E under f. We have the following
useful properties: for any two sets E; and E»,

FUEIVE) = fUENUF (B, (BN E) = f7U(E) N £ ()
and
FHEI~Ey) = fTH(Er)~ f7(B).
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Finally, for a mapping f: A— B and a subset A’ of its domain A, the restriction of f to A’,
denoted by f|,, is the mapping from A’ to B which assigns f(x) toeachxe€ A’

EQUIVALENCE RELATIONS, THE AXIOM OF CHOICE, AND ZORN'S LEMMA

Given two nonempty sets A and B, the Cartesian product of A with B, denoted by A X B, is
defined to be the collection of all ordered pairs (a, b) where a € A and b € B and we consider
(a, b) = (&, V') if and only if 2 = @’ and b = b'.2 For a nonempty set X, we call a subset R
of XX X arelation on X and write x Rx’ provided (x, x') belongs to R. The relation R is said
to be reflexive provided x R x, for all x € X; the relation R is said to be symmetric provided
x Rx' if ¥’ Rx; the relation R is said to be tramsitive provided whenever x Rx’ and x’ Rx”,
then x Rx".

Definition A relation R on a set X is called an equivalence relation provided it is reflexive,
symmetric, and transitive.

Given an equivalence relation R on a set X, for each x € X, the set R, = (x| x' € X, x Rx'}is
called the equivalence class of x (with respect to R). The collection of equivalence classes is
denoted by X/R. For example, given a set X, the relation of equipotence is an equivalence
relation on the collection 2% of all subsets of X. The equivalence class of a set with respect
to the relation equipotence is called the cardinality of the set.

Let R be an equivalence relation on a set X. Since R is symmetric and transitive,
R; = Ry if and only if x Rx’ and therefore the collection of equivalence classes is disjoint.
Since the relation R is reflexive, X is the union of the equivalence classes. Therefore X/R is
a disjoint collection of nonempty subsets of X whose union is X. Conversely, given a disjoint
collection F of nonempty subsets of X whose union is X, the relation of belonging to the
same set in F is an equivalence relation R on X for which 7 = X/R.

Given an equivalence relation on a set X, it is often necessary to choose a subset C
of X which consists of exactly one member from each equivalence class. Is it obvious that
there is such a set? Ernst Zermelo called attention to this question regarding the choice of
elements from collections of sets. Suppose, for instance, we define two real numbers to be
rationally equivalent provided their difference is a rational number. It is easy to check that
this is an equivalence relation on the set of real numbers. But it is not easy to identify a set
of real numbers that consists of exactly one member from each rational equivalence class.

Definition Let F be a nonempty family of nonempty sets. A choice function f on F is a
function f from F to Up ¢ £ F with the property that for each set F in F, f(F) is a member
of F.

Zermelo’s Axiom of Choice Let F be a nonempty collection of nonempty sets. Then there is
a choice function on F.

2In a formal treatment of set theory based on the Zermelo-Frankel Axioms, an ordered pair (a, b) is defined to
be the set {{a}, {a, b}} and a function with domain in A and image in B is defined to be a nonempty collection of
ordered pairs in A X B with the property that if the ordered pairs (a, b) and (a, ¥') belong to the function, then
b="b.
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Very roughly speaking, a choice function on a family of nonempty sets “chooses” a member
from each set in the family. We have adopted an informal, descriptive approach to set theory
and accordingly we will freely employ, without further ado, the Axiom of Choice.

Definition A relation R on a set nonempty X is called a partial ordering provided it is
reflexive, transitive, and, for x, x' in X,

ifxRx and X' Rx, thenx =x'.

A subset E of X is said to be totally ordered provided for x, x' in E, either xRx' or ¥ Rx. A
member x of X is said to be an upper bound for a subset E of X provided x'Rx for all X' € E,
and said to be maximal provided the only member x' of X for which x Rx' is x’ = x.

For a family F of sets and A, B€ F, define A R B provided A C B. This relation of
set inclusion is a partial ordering of F. Observe that a set F in F is an upper bound for a
subfamily 7’ of F provided every set in F” is a subset of F and a set F in F is maximal
provided it is not a proper subset of any set in F. Similarly, given a family F of sets and
A, B€ F define A R B provided B C A. This relation of set containment is a partial ordering
of . Observe that a set F in F is an upper bound for a subfamily F’ of F provided every
setin ' contains F and a set F in F is maximal provided it does not properly contain any
setin F.

Zorn’s Lemma Let X be a partially ordered set for which every totally ordered subset has an
upper bound. Then X has a maximal member.

We will use Zorn’s Lemma to prove some of our most important results, including the
Hahn-Banach Theorem, the Tychonoff Product Theorem, and the Krein-Milman Theorem.
Zorn’s Lemma is equivalent to Zermelo’s Axiom of Choice. For a proof of this equivalence
and related equivalences, see Kelley [Kel75], pp. 31-36.

We have defined the Cartesian product of two sets. It is useful to define the Carte-
sian product of a general parametrized collection of sets. For a collecton of sets {Ej},c 4
parametrized by the set A, the Cartesian product of {E)}, < 5, which we denote by IT, ¢ A E), is
defined to be the set of functions f from A to\U, ¢ o E, such that for each A € A, f(A) belongs
to E,. It is clear that the Axiom of Choice is equivalent to the assertion that the Cartesian
product of a nonempty family of nonempty sets is nonempty. Note that the Cartesian product
is defined for a parametrized family of sets and that two different parametrizations of the same
family will have different Cartesian products. This general definition of Cartesian product is
consistent with the definition given for two sets. Indeed, consider two nonempty sets A and B.
Define A = {A;, A2} where A;#A; and then define E), = Aand E), = B. The mapping that as-
signs to the function f € ITy ¢ , E) the ordered pair ( (A1), f(A2))is aninvertible mapping of
the Cartesian product IT) ¢ 5 E) onto the collection of ordered pairs A X B and therefore these
two sets are equipotent. For two sets E and A, define E) = E for all A € A. Then the Cartesian
product ITy ¢ A E) is equal to the set of all mappings from A to E.and is denoted by EA.
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We assume the reader has a familiarity with the properties of real numbers, sets of real
numbers, sequences of real numbers, and real-valued functions of a real variable, which are
usually treated in an undergraduate course in analysis. This familiarity will enable the reader
to assimilate the present chapter, which is devoted to rapidly but thoroughly establishing
those results which will be needed and referred to later. We assume that the set of real
numbers, which is denoted by R, satisfies three types of axioms. We state these axioms and
derive from them properties on the natural numbers, rational numbers, and countable sets.
With this as background, we establish properties of open and closed sets of real numbers;
convergent, monotone, and Cauchy sequences of real numbers; and continuous real-valued
functions of a real variable.

1.1 THE FIELD, POSITIVITY, AND COMPLETENESS AXIOMS
We assume as given the set R of real numbers such that for each pair of real numbers a and
b, there are defined real numbers a + b and ab called the sum and product, respectively, of
a and b for which the following Field Axioms, Positivity Axioms, and Completeness Axiom
are satisfied.
The field axioms
Commutativity of Addition: For all real numbers a and b,
a+b=b+a.

Associativity of Addition: For all real numbers a, b, and c,

(a+b)+c=a+(b+c).
The Additive Identity: There is a real number, denoted by 0, such that

0+a=a+0=a for all real numbers a.
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The Additive Inverse: For each real number q, there is a real number b such that
a+b=0.

Commutativity of Multiplication: For all real numbers a and b,

ab = ba.
Associativity of Multiplication: For all real numbers a, b, and c,

(ab)c = a(bc).
The Multiplicative Identity: There is a real number, denoted by 1, such that
la=al=a  for all real numbers a.

The Multiplicative Inverse: For each real number a # 0, there is a real number b such that

ab=1.
The Distributive Property: For all real numbers a, b, and c,

a(b+c)=ab+ac.

The Nontriviality Assumption:
1#0.

Any set that satisfies these axioms is called a field. It follows from the commutativity
of addition that the additive identity, 0, is unique, and we infer from the commutativity
of multiplication that the multiplicative unit, 1, also is unique. The additive inverse and
multiplicative inverse also are unique. We denote the additive inverse of a by —a and, if a#0,
its multiplicative inverse by a~! or 1/a. If we have a field, we can perform all the operations
of elementary algebra, including the solution of simultaneous linear equations. We use the
various consequences of these axioms without explicit mention.!

The positivity axioms

In the real numbers there is a natural notion of order: greater than, less than, and so on.
A convenient way to codify these properties is by specifying axioms satisfied by the set of
positive numbers. There is a set of real numbers, denoted by P, called the set of pesitive
numbers. It has the following two properties:

P1 If a and b are positive, then ab and a + b are also positive.
P2 For a real number q, exactly one of the following three alternatives is true:

ais positive, —a is positive, a=0.

1A systematic development of the consequences of the Field Axioms may be found in the first chapter of the
classic book A Survey of Modern Algebra by Garrett Birkhoff and Saunders MacLane [BM97].
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The Positivity Axioms lead in a natural way to an ordering of the real numbers: for real
numbers a and b, we define a > b to mean that a — b is positive, and a > b to mean that a > b
or a = b. We then define a < b to mean that b > g, and a < b to mean that b > a.

Using the Field Axioms and the Positivity Axioms, it is possible to formally establish
the familiar properties of inequalities (see Problem 2). Given real numbers a and b for which
a <b, we define (a, b) = {x|a < x < b}, and say a point in (a, b) lies between a and b. We
call a nonempty set I of real numbers an interval provided for any two points in I, all the
points that lie between these points also belong to 1. Of course, the set (a, b) is an interval,
as are the following sets:

[a,b]={x| a<x<b};[a, b)={x| a<x<b};(a bl={x| a<x=<b}. (1)

The completeness axiom

A nonempty set E of real numbers is said to be bounded above provided there is a real
number b such that x < bforallx € E : the number b is called an upper bound for E.
Similarly, we define what it means for a set to be bounded below and for a number to be a
lower bound for a set. A set that is bounded above need not have a largest member. But the
next axiom asserts that it does have a smallest upper bound.

The Completeness Axiom Let E be a nonempty set of real numbers that is bounded above.
Then among the set of upper bounds for E there is a smallest, or least, upper bound.

For a nonempty set E of real numbers that is bounded above, the least upper bound of
E, the existence of which is asserted by the Completeness Axiom, will be denoted by Lu.b. S.
The least upper bound of E is usually called the supremum of E and denoted by sup S. It
follows from the Completeness Axiom that every nonempty set E of real numbers that is
bounded below has a greatest lower bound; it is denoted by g.L.b. E and usually called the
infimum of E and denoted by inf E. A nonempty set of real numbers is said to be bounded
provided it is both bounded below and bounded above.

The triangle inequality

We define the absolute value of a real number x, x|, to be x if x > 0 and to be —x if x <0.
The following inequality, called the Triangle Inequality, is fundamental in mathematical
analysis: for any pair of real numbers a and b,

la+b| < lal +1b].

The extended real numbers

It is convenient to introduce the symbols co and —oo and write —oo < x < oo for all real
numbers x. We call the set R U+oo the extended real numbers. If a nonempty set E of
real numbers is not bounded above we define its supremum to be oc. It is also convenient
to define —oo to be the supremum of the empty-set. Therefore every set of real numbers
has a supremum that belongs to the extended real-numbers. Similarly, we can extend the
concept of infimum so every set of real numbers has an infimum that belongs to the extended
real numbers. We will define limits of sequences of real numbers and it is convenient to
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allow limits that are extended real numbers. Many properties of sequences of real numbers
that converge to real numbers, such as the limit of the sum is the sum of the limits and
the limit of the product is the product of the limit, continue to hold for limits that are +o0,
provided we make the following extension of the meaning of sum and product: 0o + 00 = o0,
—00—00 = —00 and, for each real number x, x+00 = 00 and x—00 = —00; if x>0, x-00 = 00
and x-(—00) = —oco while if x <0, x-00 = —oo and x- (—00) = 00. We define (—00, 00) = R.
For a, b € R, we define

(a,00) = {xeR| a<x}, (—00,b)={xeR| x<b}
and
[a,00) = {xeR| a<x}, (—00,b] = {xeR| x <b}.

Sets of the above form are unbounded intervals. We leave it as an exercise to infer from the
completeness of R that all unbounded intervals are of the above type and that all bounded
intervals are of the form listed in (1) together with intervals of the form (a, b).

PROBLEMS
1. Fora#0and b#0, show that (ab)~! = ¢~ 15~1.
2. Verify the following:
(i) For each real number a#0, a? > 0. In particular, 1 > 0 since 1#0 and 1 = 12.
(i) For each positive number g, its multiplicative inverse a~! also is positive.
(iii) If a > b, then
ac>bcif ¢>0andac <bcif c <0.

3. For a nonempty set of real numbers E, show that inf E = sup E if and only if E consists of a
single point.
4. Let a and b be real numbers.
(i) Show thatifab =0, thena=0o0rb=0.
(i) Verify that a> — > = (a - b)(a +b) and conclude from part (i) that if a> = b2, then
a=bora=—b.
(iii) Let ¢ be a positive real number. Define E = {x € R | x? < c.} Verify that E is nonempty
and bounded above. Define xo = sup E. Show that x3 = ¢. Use part (ii) to show that
there is a unique x > 0 for which x> = c. It is denoted by /c.

5. Let a, b, and ¢ be real numbers such that a # 0 and consider the quadratic equation
ax2+bx+c=0, xeR.

(i) Suppose b? — 4ac > 0. Use the Field Axioms and the preceding problem to complete the
square and thereby show that this equation has exactly two solutions given by

x_—b+vb2—4ac d —b— /b2 — 4ac

2 me 2
(i) Now suppose b — dac < 0. Show that the quadratic equation fails to have any solution.
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6. Use the Completeness Axiom to show that every nonempty set of real numbers that is
bounded below has an infimum and that

infE=—sup {—x| xeE}.

7. For real numbers a and b, verify the following:
(i) labl = lallbl.
(ii) la+bl <lal +bl.
(iii) For e >0,
|x—a| <eifandonlyifa—e < x < a +e.

1.2 THE NATURAL AND RATIONAL NUMBERS

Itis tempting to define the natural numbers to be the numbers 1, 2, 3, . .. and so on. However,
itis necessary to be more precise. A convenient way to do this is to first introduce the concept
of an inductive set.

Definition A set E of real numbers is said to be inductive provided it contains 1 and if the
number x belongs to E, the number x + 1 also belongs to E.

The whole set of real numbers R is inductive. From the inequality 1 > 0 we infer that
the sets {(xeR | x > 0} and {x e R | x > 1} are inductive. The set of natural numbers, denoted
by N, is defined to be the intersection of all inductive subsets of R. The set N is inductive.
To see this, observe that the number 1 belongs to N since 1 belongs to every inductive set.
Furthermore, if the number k belongs to N, then k belongs to every inductive set. Thus, k +1
belongs to every inductive set and therefore k + 1 belongs to N.

Principle of Mathematical Induction For each natural number n, let S(n) be some mathe-
matical assertion. Suppose S(1) is true. Also suppose that whenever k is a natural number for
which S(k) is true, then S(k + 1) is also true. Then S(n) is true for every natural number n.

Proof Define A = {keN | S(k)istrue}. The assumptions mean precisely that A is an
inductive set. Thus N C A. Therefore S(n) is true for every natural number . O

Theorem 1 Every nonempty set of natural numbers has a smallest member.

Proof Let E be a nonempty set of natural numbers. Since the set {x € R | x > 1} is inductive,
the natural numbers are bounded below by 1. Therefore E is bounded below by 1. As a
consequence of the Completeness Axiom, E has an infimum; define ¢ = inf E. Since ¢ + 1 1is
not a lower bound for E, there is an m € E for which m <c+1. We claim that m is the smallest
member of E. Otherwise, there is an n € E for which n < m. Since n€ E, ¢ < n. Thus ¢ <
n<m<c+1and therefore m —n <1. Therefore the natural number m belongs to the interval
(n, n+1). Aninduction argument shows that for every natural number n, (rn, n+1)NN = ¢
(see Problem 8). This contradiction confirms that m is the smallest member of E. O

Archimedean Property For each pair of positive real numbers a and b, there is a natural
number n for which na > b.
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Proof Define ¢ = b/a > 0. We argue by contradiction. If the theorem is false, then c is an
upper bound for the natural numbers. By the Completeness Axiom, the natural numbers
have a supremum; define ¢y = supN. Then ¢y — 1 is not an upper bound for the natural
numbers. Choose a natural number n such that n > ¢y — 1. Therefore n + 1 > ¢;. But the
natural numbers are inductive so that n + 1 is a natural number. Since n + 1 > ¢g, ¢p is not
an upper bound for the natural numbers. This contradiction completes the proof. O

We frequently use the Archimedean Property of R reformulated as follows; for each
positive real number ¢, there is a natural number n for which 1/n < €.

We define the set of integers, denoted by Z, to be the set of numbers consisting of the
natural numbers, their negatives, and the number 0. The set of rational numbers, denoted by
Q, is defined to be the set of quotients of integers, that is, numbers x of the form x = m/n,
where m and n are integers and n#0. A real number is called irrational if it is not rational. As
we argued in Problem 4, there is a unique positive number x for which x? = 2; it is denoted
by +/2. This number is not rational. Indeed, suppose p and q are natural numbers for which
(p/q)* = 2. Then p? = 24*. The prime factorization theorem? tells us that 2 divides p?
just twice as often as it divides p. Hence 2 divides p? an even number of times. Similarly, 2
divides 2¢7 an odd number of times. Thus p? # 24? and therefore +/2 is irrational.

Definition A set E of real numbers is said to be dense in R provided between any two real
numbers there lies a member of E.

Theorem 2 The rational numbers are dense in R.

Proof Let aand b be real numbers with a < b. First suppose that a > 0. By the Archimedean
Property of R, there is a natural number ¢ for which (1/g) < b — a. Again using the
Archimedean Property of R, the set of natural numbers S = {n € N|n/q > b} is nonempty.
According to Theorem 1, § has a smallest member p. Observe that 1/g <b—a <b and hence
p > 1. Therefore p — 1 is a natural number (see Problem 9) and so, by the minimality of the
choice of p, (p—1)/q <b. We also have

a=b-(b-a)<(p/q)-(1/9)=(p-1)/q.

Therefore the rational number r = (p — 1)/q lies between a and b. If a <0, by the
Archimedean property of R, there is a natural number n for which n > —a. We infer from
the first case considered that there is a rational number r that lies between n + a and n + b.
Therefore the natural number r — n lies between a and b. O

PROBLEMS

8. Use an induction argument to show that for each natural number n, the interval (n, n + 1)
fails to contain any natural number.

2 Archimedeas explicitly asserted that it was his fellow Greek, Eurathostenes, who identified the property that
we have here attributed to Archimedeas.

3This theorem asserts that each natural number may be uniquely expressed as the product of prime natural
numbers; see [BM97].
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9. Use an induction argument to show that if n > 1 is a natural number, then n — 1 also is a
natural number. Then use another induction argument to show that if m and » are natural
numbers with n > m, then n — m is a natural number.

10. Show that for any integer n, there is exactly one integer in the interval [1, n +1).
11. Show that any nonempty set of integers that is bounded above has a largest member.
12. Show that the irrational numbers are dense in R.

13. Show that each real number is the supremum of a set of rational numbers and also the
supremum of a set of irrational numbers.

14. Show that if r > 0, then, for each natural numbern, (1+r)* > 1+n-r.
15. Use induction arguments to prove that for every natural number n,
)

ijz _ n(n+1)(2n+1)

= 6
(id)
BB+ +n=(1+2+...+n)
(iif) .
14r+...+r"= 11—r"r ifr#1

1.3 COUNTABLE AND UNCOUNTABLE SETS

In the preliminaries we called two sets A and B equipotent provided there is a one-to-one
mapping f of A onto B. We refer to such an f as a one-to-one correspondence between
the sets A and B. Equipotence defines an equivalence relation among sets, that is, it is
reflexive, symmetric, and transitive (see Problem 20). It is convenient to denote the initial
segment of natural numbers {k € N|1 <k <n}by{(l,..., n}. The first observation regarding
equipotence is that for any natural numbers n and m, the set (1, ..., n +m} is not equipotent
to the set {1, ..., n}. This observation is often called the pigeonhole principle and may be
proved by an induction argument with respect to n (see Problem 21).

Definition A set E is said to be finite provided either it is empty or there is a natural number
n for which E is equipotent to {1, ...,n}. We say that E is countably infinite provided E is
equipotent to the set N of natural numbers. A set that is either finite or countably infinite is said
to be countable. A set that is not countable is called uncountable.

Observe that if a set is equipotent to a countable set, then it is countable. In the proof
of the following theorem we will use the pigeonhole principle and Theorem 1, which tells us
that every nonempty set of natural numbers has a smallest, or first, member.

Theorem 3 A subset of a countable set is countable. In particular, every set of natural numbers
is countable.

Proof Let Bbe a countable set and A a nonempty subset of B. First consider the case that Bis
finite. Let f be a one-to-one correspondence between {1, ..., n} and B. Define g(1) to be the
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first natural number j, 1 < j < n, for which f(j) belongs to A. If A = {f(g(1))} the proof is
complete since f o g is a one-to-one correspondence between {1} and A. Otherwise, define
g(2) to be the first natural number j, 1 < j < n, for which f(j) belongs to A~ (f(g(1))}.
The pigeonhole principle tells us that this inductive selection process terminates after at
most N selections, where N < n. Therefore f o g is a one-to-one correspondence between
{1,..., N}and A. Thus A is finite.

Now consider the case that Bis countably infinite. Let f be a one-to-one correspondence
between N and B. Define g(1) to be the first natural number j for which f(j) belongs to A.
Arguing as in the first case, we see that if this selection process terminates, then A is finite.
Otherwise, this selection process does not terminate and g is properly defined on all of N.
Itis clear that f o g is a one-to-one mapping with domain N and image contained in A. An
induction argument shows that g(j) > j for all j. For each x € A, there is some k for which
x = f(k). Hence x belongs to the set {f(g(1)), ..., f(g(k))}. Thus the image of f o g is A.
Therefore A is countably infinite. a

Corollary 4 The following sets are countably infinite:

n times
———
(i) For each natural numbers n, the Cartesian product NX --- XN,

(ii) The set of rational numbers Q.

Proof We prove (i) for n = 2 and leave the general case as an exercise in induction. Define
the mapping g from NXN to N by g(m, n) = (m 4 n)? + n. The mapping g is one-to-one.
Indeed, if g(m, n) = g(m', n'), then (m 4+n)? — (m’ +n')?> = 0’ — n and hence

m+n+m' +n'|-m+n—m'—n'| = |0 —n|

If n#n’, then the natural number m +n + m’ + n’ both divides and is greater than the natural
number |n’ — n|, which is impossible. Thus n = n’, and hence m = m’. Therefore N X N
is equipotent to g(N X N), a subset of the countable set N. We infer from the preceding
theorem that N X N is countable. To verify the countability of Q we first infer from the
prime factorization theorem that each positive rational number x may be written uniquely
as x = p/q where p and q are relatively prime natural numbers. Define the mapping g from
QtoNbyg(0)=0,g(p/q) = (p+q)*+qif x = p/g>0and p and g are relatively prime
natural numbers and g(x) = —g(—x) if x < 0. We leave it as an exercise to show that g is
one-to-one. Thus Q is equipotent to a subset of N and hence, by the preceding theorem, is
countable. We leave it as an exercise to use the pigeonhole principle to show that neither
N X N nor Q is finite. O

For a countably infinite set X, we say that {x, | n € N} is an enumeration of X provided
X={x,| neN} and x, #xp if n #m.

Theorem 5 A nonempty set is countable if and only if it is the image of a function whose
domain is a nonempty countable set.
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Proof Let A be a nonempty countable set and f be mapping of A onto B. We suppose
that A is countably infinite and leave the finite case as an exercise. By composing with a
one-to-one correspondence between A and N, we may suppose that A = N. Define two
points x, x’ in A to be equivalent provided f(x) = f(x'). This is an equivalence relation, that
is, it is reflexive, symmetric, and transitive. Let E be a subset of A consisting of one member
of each equivalence class. Then the restriction of f to E is a one-to-one correspondence
between E and B. But E is a subset of N and therefore, by Theorem 3, is countable. The set
B is equipotent to E and therefore B is countable. The converse assertion is clear; if B is a
nonempty countable set, then it is equipotent either to an initial segment of natural numbers
or to the natural numbers. O

Corollary 6 The union of a countable collection of countable sets is countable.

Proof Let A be a countable set and for each A € A, let E) be a countable set. We will show
that the union E = )¢y E) is countable. If E is empty, then it is countable. So we assume
E#{. We consider the case that A is countably infinite and leave the finite case as an exercise.
Let {A, |n €N} be an enumeration of A. Fix n € N. If E,, is finite and nonempty, choose
a natural number N(n) and a one-to-one mapping f, of {1,..., N(n)} onto E),; if E), is
countably infinite, choose a a one-to-one mapping f, of N onto E),. Define

E' = {(n, k) eNXNIE),is nonempty, and 1 < k < N(n) if E,,is also finite}.

Define the mapping f of E' to E by f(n, k) = f,(k). Then f is a mapping of E’ onto E.
However, E' is a subset of the countable set N X N and hence, by Theorem 3, is countable.
Theorem 5 tells us that E also is countable. |

We call an interval of real numbers degenerate if it is empty or contains a single
member.

Theorem 7 A nondegenerate interval of real numbers is uncountable.

Proof Let I be a nondegenerate interval of real numbers. Clearly I is not finite. We argue by
contradiction to show that I is uncountable. Suppose I is countably infinite. Let {x, |n € N}
be an enumeration of I. Let [a1, b1] be a nondegenerate closed, bounded subinterval of 1
which fails to contain x;. Then let [az, by] be a nondegenerate closed, bounded subinterval of
[a1, b1], which fails to contain x,. We inductively choose a countable collection {[a,, bn]}3;
of nondegenerate closed, bounded intervals, which is descending in the sense that, for
each n, [a,41, bpt1] C [an, b,] and such that for each n, x, ¢ [a,, b,]. The nonempty set
E = {a, |n €N} is bounded above by b;. The Completeness Axiom tells us that E has a
supremum. Define x* = sup E. Since x* is an upper bound for E, a, < x* for all n. On the
other hand, since {[a,, b,,]}f:°=1 is descending, for each n, b, is an upper bound for E. Hence,
for each n, x* < b,. Therefore x* belongs to [a,, b,] for each n. But x* belongs to [a1, b1] C 1
and therefore there is a natural number ng for which x* = x,,. We have a contradiction since
x* = Xy, does not belong to [a,, bs,]. Therefore I is uncountable. O
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PROBLEMS
16. Show that the set Z of integers is countable.
17. Show that a set A is countable if and only if there is a one-to-one mapping of A to N.
18. Use an induction argument to complete the proof of part (i) of Corollary 4.
19. Prove Corollary 6 in the case of a finite family of countable sets.

20. Let both f: A— B and g: B— C be one-to-one and onto. Show that the composition
go f: A— Band the inverse f~': B— A are also one-to-one and onto.

21. Use an induction argument to establish the pigeonhole principle.
22. Show that 2N, the collection of all sets of natural numbers, is uncountable.

23. Show that the Cartesian product of a finite collection of countable sets is countable. Use
the preceding problem to show that NN, the collection of all mappings of N into N, is not
countable.

24. Show that a nondegenerate interval of real numbers fails to be finite.

25. Show that any two nondegenerate intervals of real numbers are equipotent.

26. Is the set R X R equipotent to R?

1.4 OPEN SETS, CLOSED SETS, AND BOREL SETS OF REAL NUMBERS

Definition A set O of real numbers is called open provided for each x € O, there is ar >0 for
which the interval (x —r, x +r) is contained in ©.

For a < b, the interval (a, b) is an open set. Indeed, let x belong to (a, b). Define
r = min{b — x, x — a}. Observe that (x — r, x +r) is contained in (a, b). Thus (a, b) is an
open bounded interval and each bounded open interval is of this form. For a,b € R, we
defined

(a,00)={xeR| a<x},(-00,b)={xeR| x <b} and (—00,00) = R.

Observe that each of these sets is an open interval. Moreover, it is not difficult to see that
since each set of real numbers has an infimum and supremum in the set of extended real
numbers, each unbounded open interval is of the above form.

Proposition 8 The set of real numbers R and the empty-set @ are open; the intersection of any
finite collection of open sets is open; and the union of any collection of open sets is open.

Proof It is clear that R and @ are open and the union of any collection of open sets is
open. Let {O};_, be a finite collection of open subsets of R. If the intersection of this
collection is empty, then the intersection is the empty-set and therefore is open. Otherwise,
let x belong to N}_, Ok. For 1 < k < n, choose ry > 0 for which (x — rg, x +r¢) C Oy. Define
r=min{ry,...,r,}. Thenr >0and (x—r, x+r) C M%_O. Therefore M;_;Oy. is open. [

It is not true, however, that the intersection of any collection of open sets is open. For
example, for each natural number 7, let O, be the open interval (—1/n, 1/n). Then, by the
Archimedean Property of R, M3, O, = {0}, and {0} is not an open set.
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Proposition9 Every nonempty open set is the disjoint union of a countable collection of open
intervals.

Proof Let O be a nonempty open subset of R. Let x belong to O. There is a y > x for which
(x, y) COand a z < x for which (z, x) C O. Define the extended real numbrs a, and b, by

ax=inf {z| (z,x) CO} and by =sup {y| (x, y)CO}.
Then I, = (ay, by) is an open interval that contains x. We claim that
I;CObuta, ¢0, b ¢0. 2

Indeed, let w belong to I, say x < w < b,. By the definition of b,, there is a number
y > w such that (x, y) C O, and so w e O. Moreover, b, ¢ O, for if by € O, then for some
r >0 we have (by —r, by +r) C O. Thus (x, by +r) C O, contradicting the definition
of by. Similarly, a, ¢ O. Consider the collection of open intervals {I,},c0. Since each x in
O is a member of I, and each I, is contained in O, we have O = U, I». We infer
from (2) that {I,},co is disjoint. Thus O is the union of a disjoint collection of open
intervals. It remains to show that this collection is countable. By the density of the rationals,
Theorem 2, each of these open intervals contains a rational number. This establishes a
one-to-one correspondence between the collection of open intervals and a subset of the
rational numbers. We infer from Theorem 3 and Corollary 4 that any set of rational
numbers is countable. Therefore O is the union of a countable disjoint collection of open
intervals. O

Definition For a set E of real numbers, a real number x is called a point of closure of E
provided every open interval that contains x also contains a point in E. The collection of points
of closure of E is called the closure of E and denoted by E.

1t is clear that we always have E C E. If E contains all of its points of closure, that is,
E = E, then the set E is said to be closed.

Proposition 10 For a set of real numbers E, its closure E is closed. M oreover, E is the smallest
closed set that contains E in the sense that if F is closed and EC F,then EC F.

Proof The set E is closed provided it contains all its points of closure. Let x be a point of
closure of E. Consider an open interval I, which contains x. There is a point x’ € EN I. Since
« is a point of closure of E and the open interval I, contains x’, there is a point x” € E N I;.
Therefore every open interval that x also contains a point of E and hence x € E. So the set E
is closed. It is clear that if A C B, then A C B, and hence if F is closed and contains E, then
ECF=F. O

Propasition 11 A set of real numbers is open if and only if its complement in R is closed.

Proof First suppose E is an open subset of R. Let x be a point of closure of R~ E. Then x
cannot belong to E because otherwise there would be an open interval that contains x and
is contained in E and thus is disjoint from R ~ E. Therefore x belongs to R~ E and hence
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R~ E is closed. Now suppose R~ E is closed. Let x belong to E. Then there must be an
open interval that contains x that is contained in E, for otherwise every open interval that
contains x contains points in X ~ E and therefore x is a point of closure of R~ E. Since
R~ E is closed, x also belongs to R ~ E. This is a contradiction. O

Since R~ [R~ E] = E, it follows from the preceding proposition that a set is closed if
and only if its complement is open. Therefore, by De Morgan’s Identities, Proposition 8 may
be reformulated in terms of closed sets as follows.

Proposition 12 The empty-set  and R are closed; the union of any finite collection of closed
sets is closed; and the intersection of any collection of closed sets is closed.

A collection of sets {Ej}ea is said to be a cover of a set E provided E C Uaien E.
By a subcover of a cover of E we mean a subcollection of the cover that itself also is a cover
of E. If each set E, in a cover is open, we call {E,},cA an open cover of F. If the cover
{Ex}aeA contains only a finite number of sets, we call it a finite cover. This terminology is
inconsistent: In “open cover” the adjective “open” refers to the sets in the cover; in “finite
cover” the adjective “finite” refers to the collection and does not imply that the sets in the
collection are finite sets. Thus the term “open cover” is an abuse of language and should prop-
erly be “cover by open sets.” Unfortunately, the former terminology is well established in
mathematics.

The Heine—Borel Theorem Let F be a closed and bounded set of real numbers. Then every
open cover of F has a finite subcover.

Proof Let us first consider the case that F is the closed, bounded interval [a, b]. Let F
be an open cover of [a, b]. Define E to be the set of numbers x €[a, b] with the property
that the interval [a, x] can be covered by a finite number of the sets of . Since a € E, E is
nonempty. Since E is bounded above by b, by the completeness of R, E has a supremum;
define ¢ = sup E. Since ¢ belongs to [a, b], there is an O € F that contains c. Since O is open
there is an € > 0, such that the interval (¢ —¢, ¢ + €) is contained in 0. Now ¢ — ¢ is not an
upper bound for E, and so there must be an x € E with x > ¢ — €. Since x € E, there is a finite
collection {O,...,O;} of sets in F that covers [a, x]. Consequently, the finite collection
{01, ..., Ok, O} covers the interval [a, ¢ +¢). Thus ¢ = b, for otherwise ¢ < b and c is not an
upper bound for E. Thus [a, b] can be covered by a finite number of sets from F, proving
our special case.

Now let F be any closed and bounded set and F an open cover of F. Since F is
bounded, it is contained in some closed, bounded interval [a, b]. The preceding proposition
tells us that the set O = R~ F is open since F is closed. Let F* be the collection of open
sets obtained by adding O to F, that is, 7* = F U . Since F covers F, F* covers [a, b]. By
the case just considered, there is a finite subcollection of F* that covers [a, b] and hence F.
By removing O from this finite subcover of F, if O belongs to the finite subcover, we have a
finite collection of sets in F that covers F. O

We say that a countable collection of sets {E,}2°, is descending or nested provided
Eypy1 C E, for every natural number n. It is said to be ascending provided E, C E, 1 for

every natural number n.
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The Nested Set Theorem Let {F,}%°, be a descending countable collection of nonempty
closed sets of real numbers for which F| bounded. Then

o0
() F.#0.

n=1

Proof We argue by contradiction. Suppose the intersection is empty. Then for each real
number x, there is a natural number n for which x ¢ F,, that is, x € O, = R~ F,. Therefore

¢ 1 On = R. According to Proposition 4, since each F,, is closed, each O, is open. Therefore
(0.}, is an open cover of R and hence also of F. The Heine-Borel Theorem tells us
that there a natural number N for which F C Uf,vzl O,. Since {F,}*, is descending, the

n=1
collection of complements {0,}°2 ; is ascending. Therefore Uf:’=1 0, = Oy =R~ Fy.Hence
Fi CR~ Fy, which contradicts the assumption that Fy is a nonempty subset of F;. O

Definition Given a set X, a collection A of subsets of X is called a o-algebra (of subsets of X)
provided (i) the empty-set, 0, belongs to A; (ii) the complement in X of a set in A also belongs
to A; (iii) the union of a countable collection of sets in A also belongs to A.

Given a set X, the collection {@, X} is a g-algebra which has two members and is
contained in every o-algebra of subsets of X. At the other extreme is the collection of sets
2% which consists of all subsets of X and contains every o-algebra of subsets of X. For
any o-algebra A, we infer from De Morgan’s Identities that A is closed with respect to
the formation of intersections of countable collections of sets that belong to .4; moreover,
since the empty-set belongs to A, A is closed with respect to the formation of finite
unions and finite intersections of sets that belong to .A. We also observe that a o-algebra
is closed with respect to relative complements since if A; and A belong to A, so does
A; ~ Ay = A; N[X ~ Ay]. The proof of the following proposition follows directly from the
definition of o-algebra.

Proposition 13 Let F be a collection of subsets of a set X. Then the intersection A of all
o-algebras of subsets of X that contain F is a o-algebra that contains F. Moreover, it is the
smallest o-algebra of subsets of X that contains F in the sense that any o-algebra that contains
F also contains A.

Let {A,}22, be a countable collection of sets that belong to a o-algebra A. Since A
is closed with respect to the formation of countable intersections and unions, the following
two sets belong to A :

o] o] 00 00
limsup{4,}32; =N [ An} and liminf{4,}3%; = J |[) 4x |-
k=1 [n=k k=1 {n=k

The set limsup{A,}22, is the set of points that belong to A, for countably infinitely many
indices n while the set liminf{A,} is the set of points that belong to A, except for at most
finitely many indices n.

Although the union of any collection of open sets is open and the intersection of
any finite collection of open sets is open, as we have seen, the intersection of a countable
collection of open sets need not be open. In our development of Lebesgue measure and
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integration on the real line, we will see that the smallest o-algebra of sets of real numbers
that contains the open sets is a natural object of study.

Definition The collection B of Borel sets of real numbers is the smallest o-algebra of sets of
real numbers that contains all of the open sets of real numbers.

Every open set is a Borel set and since a o-algebra is closed with respect to the formation
of complements, we infer from Proposition 4 that every closed set is a Borel set. Therefore,
since each singleton set is closed, every countable set is a Borel set. A countable intersection
of open sets is called a G set. A countable union of closed sets is called an F, set. Since
a o-algebra is closed with respect to the formation of countable unions and countable
intersections, each Gs set and each F, set is a Borel set. Moreover, both the lim inf and
limsup of a countable collection of sets of real numbers, each of which is either open or
closed, is a Borel set.

PROBLEMS
27. Is the set of rational numbers open or closed?
28. What are the sets of real numbers that are both open and closed?
29. Find two sets A and Bsuch that AN B =@ and AN B#@.

30. A point x is called an accumulation point of a set E provided it is a point of closure of E ~ {x}.
(i) Show that the set E’ of accumulation points of E is a closed set.

(ii) ShowthatE=EUE'
31. A point x is called an isolated point of a set E provided there is an r > 0 for which
(x—r, x+r)NE = {x]. Show that if a set E consists of isolated points, then it is countable.

32. A point x is called an interior point of a set E if there is an r > 0 such that the open interval
-(x =, x+r) is contained in E. The set of interior points of E is called the interior of E
denoted by int E. Show that

(i) Eisopenifandonlyif E =int E.
(i) Eis denseifand only if int(R ~ E) = g.
33. Show that the Nested Set Theorem is false if F; is unbounded.

34. Show that the assertion of the Heine-Borel Theorem is equivalent to the Completeness
Axiom for the real numbers. Show that the assertion of the Nestéd Set Theorem is equivalent
to the Completeness Axiom for the real numbers.

35. Show that the collection of Borel sets is the smallest o-algebra that contains the closed sets.

36. Show that the collection of Borel sets is the smallest o-algebra that contains intervals of the
form [a, b), where a < b.

37. Show that each open set is an F; set.

1.5 SEQUENCES OF REAL NUMBERS

A sequence of real numbers is a real-valued function whose domain is the set of natu-
ral numbers. Rather than denoting a sequence with standard functional notation such as
f:N—R, itis customary to use subscripts, replace f(n) with a,, and denote a sequence
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by {a,}. A natural number n is called an index for the sequence, and the number a, cor-
responding to the index n is called the nth term of the sequence. Just as we say that a
real-valued function is bounded provided its image is a bounded set of real numbers, we
say a sequence {a,} is bounded provided there is some ¢ > 0 such that |a,| < c for all n.
A sequence is said to be increasing provided a, < a,, for all n, is said to be decreasing
provided {—a,} is inceasing, and said to be monotone provided it is either increasing or
decreasing.

Definition A sequence {a,} is said to converge to the number a provided for every € > 0,
there is an index N for which

ifn> N, then |a —a,| <e. 3)
We call a the limit of the sequence and denote the convergence of {a,} by writing

{an} > aor lim a, =a.
n-— oo

We leave the proof of the following proposition as an exercise.

Proposition 14 Let the sequence of real numbers {a,} converge to the real number a. Then
the limit is unique, the sequence is bounded, and, for a real number c,

ifa, <cforalln, thena <c.

Theorem 15 (the Monotone Convergence Criterion for Real Sequences) A monotone
sequence of real numbers converges if and only if it is bounded.

Proof Let {a,} be an increasing sequence. If this sequence converges, then, by the preceding
proposition, it is bounded. Now assume that {a,} is bounded. By the Completeness Axiom,
the set S = {a, |n € N} has a supremum: define a = sup S. We claim that {a,} — a. Indeed,
let € > 0. Since s is an upper bound for S, a, < a for all a. Since a — € is not an upper bound
for S, there is an index N for which ay > a — €. Since the sequence is increasing, a, >a — €
for alln > N. Thus if n > N, then |a — a,| < €. Therefore {a,} — a. The proof for the case
when the sequence is decreasing is the same. g

For a sequence {a,} and a strictly increasing sequence of natural numbers {n;}, we call
the sequence {a,,} whose kth term is a,, a subsequence of {ay,}.

Theorem 16 (the Bolzano-Weierstrass Theorem) Every bounded sequence of real numbers
has a convergent subsequence.

Proof Let {a,} be a bounded sequence of real numbers. Choose M > 0 such that |a,| < M
for all n. Let n be a natural number. Define E, = {a;| j > n}. Then E, C [-M, M] and E,, is
closed since it is the closure of a set. Therefore (E,} is a descending sequence of nonempty
closed bounded subsets of R. The Nested Set Theorem tells us that M2, E, # @; choose
ae N, E,. For each natural number &, a is a point of closure of {a;]j > k}. Hence, for
infinitely many indices j > n, a; belongs to (a—1/k, a+1/k). We may therefore inductively
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choose astrictly increasing sequence of natural numbers {n;} such that |a—aj, | <1/k for all k.
By the Archimedean Property of R, the subsequence {a, .} converges to a. O

Definition A sequence of real numbers {a,} is said to be Cauchy provided for each € > 0,
there is an index N for which

ifn,m > N, then |a, —a,| <e. 4)

Theorem 17 (the Cauchy Convergence Criterion for Real Sequences) A sequence of real
numbers converges if and only if it is Cauchy.

Proof First suppose that {a,} — a. Observe that for all natural numbers » and m,
an — am| = |(an — @) + (a —am)| < la, —al + lan — al. ©)

Let € > 0. Since {a,} — a, we may choose a natural number N such that if n > N, then
lan — a] < /2. We infer from (5) thatif n, m > N, then |a, — a,,| < €. Therefore the sequence
{an} is Cauchy. To prove the converse, let {a,} be a Cauchy sequence. We claim that it is
bounded. Indeed, for € = 1, choose N such thatif n,m > N, then lan — am| < 1. Thus

la,] = I(an '_aN)+aN| <la, —an|+lan| < 1+ lay|foralln > N.

Define M = 1 + max(jai], ..., ay|}. Then |a,| < M for all n. Thus {a,} is bounded. The
Bolzano-Weierstrass Theorem tells us there is a subsequence {a,, } which converges to a. We
claim that the whole sequence converges to a. Indeed, let € > 0. Since {a,} is Cauchy we may
choose a natural number N such that

ifn,m > N, then |a, — ay| <¢/2.

On the other hand, since {a,,} — a we may choose a natural number n; such that la —ap,|
<e¢/2and ny > N. Therefore

lan —al = |(an — an, ) + (an, —a)| <a, —an|+1a—a, | <eforalln>N. O

Theorem 18 (Linearity and Montonicity of Convergence of Real Sequences) Lef {a,} and
{bn} be convergent sequences of real numbers. Then for each pair of real numbers o and B,
the sequence (- a, + B - by} is convergent and

nlimoo[a “ap+B-by]=a- nlimooa,, +8- nlimwbn. 6)
Moreover,
ifa, <b, foralln, then lim a, < lim b,. ™
n—>oo n— oo

Proof Define
lim a, =aand lim b, =b.
n— oo n— oo

Observe that

[« @, +B-ba] ~[a-a+B-b]| <lal - la, —a| + |B] - |by — b for all n. 6))
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Let € > 0. Choose a natural number N such that
lan — al <€/[2+2|a|] and |b, — b| < ¢€/[2 +2||] for alln > N.
We infer from (8) that
lla-a,+B-bs]—[a-a+B-b] <eforalln > N.

Therefore (6) holds. To verify (7), set ¢, = b, — ay, for all n and ¢ = b — a, Then ¢, > 0 for
all n and, by linearity of convergence, {c,} — c. We must show ¢ > 0. Let ¢ > 0. There is an
N such that

—e<c—c,<eforalln> N.

In particular, 0 < cy <c¢ + €. Since ¢ > —e¢ for every positive number ¢, ¢ > 0. O

If a sequence {a,} has the property that for each real number c, there is an index N
such thatif n > N, then a, > ¢ we say that {a,} converges to infinity, call oo the limit of {a,}
and write lim,, _, » a, = 00. Similar definitions are made at —oo. With this extended concept
of convergence we may assert that any monotone sequence {a,} of real numbers, bounded
or unbounded, converges to an extended real number and therefore lim, -, », a, is properly
defined.

The extended concept of supremum and infimum of a set and of convergence for any
monotone sequence of real numbers allows us to make the following definition.

Definition Let {a,} be a sequence of real numbers. The limit superior of {a,)}, denoted by
lim sup{a,}, is defined by

limsup{a,} = lim_[sup {a | k=n}].
The limit inferior of {a,}, denoted by liminf{a,}, is defined by
liminf{a,} = "limoo [inf {ak | k> n}]

We leave the proof of the following proposition as an exercise.

Proposition 19 Let {a,} and {b,} be sequences of real numbers.
(1) limsupfa,} = £ € R if and only if for each € > 0, there are infinitely many indices n
for which a, > £ — € and only finitely many indices n for which a, > € + €.
(it) limsup(a,} = oo if and only if {a,} is not bounded above.
(iii)
limsup{a,} = — lim inf{—a,}.
(iv) A sequence of real numbers {a,} converges to an extended real number a if and only if
liminf{a,} = lim sup{a,} = a.

(v) Ifa, < b, foralln, then
limsup{a,} < liminf{b, }.
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For each sequence {a;} of real numbers, there corresponds a sequence of partial sums
{sn} defined by s, = 37 _, a for each index n. We say that the series 3 ; a; is summable to
the real number s provided {s,} — s and write s = 32 a;.

We leave the proof of the following proposition as an exercise.

Proposition 20 Let {a,} be a sequence of real numbers.

(i) The series 332, ay is summable if and only if for each € > 0, there is an index N for
which

n+m

2 a

k=n

< ¢ forn > N and any natural number m.

(ii) If the series 32, |ax| is summable, then 32, ay. also is summable.
(iii) If each term ay is nonnegative, then the series 332 ay. is summable if and only if the
sequence of partial sums is bounded.

PROBLEMS

38. We call an extended real number a cluster point of a sequence {a, } if a subsequence converges
to this extended real number. Show that liminf{a, } is the smallest cluster point of {a,} and
lim sup{ay} is the largest cluster point of {a, }.

39. Prove Proposition 19.

40. Show that a sequence {a,} is convergent to an extended real number if and only if there is
exactly one extended real number that is a cluster point of the sequence.

41. Show that liminfa, < limsupa,.
42. Prove that if, for all n, a, > 0 and b, > 0, then

limsup [ay - by] < (limsup a,) - (limsup b, ),

provided the product on the right is not of the form 0 - cc.

43. Show that every real sequence has a monotone subsequence. Use this to provide another
proof of the Bolzano-Weierstrass Theorem.

44. Let p be a natural number greater than 1, and x a real number, 0 < x < 1. Show that there is
a sequence {a,} of integers with 0 < a, < p for each n such that

a

P

and that this sequence is unique except when x is of the form g/ p", in which case there are
exactly two such sequences. Show that, conversely, if {a,} is any sequence of integers with
0 < ay < p, the series

xX=

Mg

n

X a,
n=1 pn

converges to a real number x with 0 < x < 1. If p = 10, this sequence is called the decimal
expansion of x. For p = 2 it is called the binary expansion; and for p = 3, the ternary
expansion.

45. Prove Proposition 20.
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46. Show that the assertion of the Bolzano-Weierstrass Theorem is equivalent to the Complete-
ness Axiom for the real numbers. Show that the assertion of the Monotone Convergence
Theorem is equivalent to the Completeness Axiom for the real numbers.

1.6 CONTINUOUS REAL-VALUED FUNCTIONS OF A REAL VARIABLE

Let f be a real-valued function defined on a set E of real numbers. We say that f is
continuous at the point x in E provided that for each € > 0, there is a § > 0 for which

ifx' € Eand |x' — x| <$§, then |f(x') — f(x)| <e.

The function f is said to be continuous (on E) provided it is continuous at each point in its
domain E. The function f is said to be Lipschitz provided there is a ¢ > 0 for which

1f(X)= f(x)| <c-|¥ —x|forallx,xeE.

It is clear that a Lipschitz functon is continuous. Indeed, for a number x € E and any € > 0,
8 = ¢/c responds to the € challenge regarding the criterion for the continuity of f at x. Not
all continuous functions are Lipschitz. For example, if f(x) = /x for 0 < x < 1, then f is
continuous on [0, 1] but is not Lipschitz.

We leave as an exercise the proof of the following characterization of continuity at a
point in terms of sequential convergence.

Proposition 21 A real-valued function f defined on a set E of real numbers is continuous
at the point x, € E if and only if whenever a sequence {x,} in E converges to x,, its image
sequence {f(x,)} converges to f(x).

We have the following characterization of continuity of a function on all of its domain.

Proposition 22 Let f be a real-valued function defined on a set E of real numbers. Then f is
continuous on E if and only if for each open set O,

f~H0) = ENU where U is an open set. ()

Proof First assume the inverse image under f of any open set is the intersection of the
domain with an open set. Let x belong to E. To show that f is continuous at x, let € > 0. The
interval I = ( f(x) —€, f(x)+ €)is an open set. Therefore there is an open set I/ such that

AN ={¥eE| f(x)—e< f(X)<f(x)+€}=ENU.

In particular, f(ENY) C I and x belongs to E NU. Since U is open there is a § > 0 such
that (x — 8, x+ 8) CU. Thusif x' € E and |x’ — x| <§, then | f(x') — f(x)| < e. Hence f is
continuous at x.

Suppose now that £ is continuous. Let © be an open set and x belong to f~1(©). Then
f(x) belongs to the open set O so that there is an € > 0, such that ( f(x) —¢, f(x)+€)CO.
Since f is continuous at x, there is a § > 0 such that if x’ belongs to E and |x’ — x| < §, then
1f(x') = f(x)| <e. Define I, = (x — 8,x+ 8). Then f(EN I,) CO. Define

U= \J L.

xef71(0)
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Since U is the union of open sets it is open. It has been constructed so that (9) holds. O

The Extreme Value Theorem A continuous real-valued function on a nonempty closed,
bounded set of real numbers takes a minimum and maximum value.

Proof Let f be a continuous real-valued function on the nonempty closed bounded set E of
real numbers. We first show that f is bounded on E, that is, there is a real number M such that

If(x)l<MforallxeE. (10)

Let x belong to E. Let 6 > 0 respond to the ¢ = 1 challenge regarding the criterion for
continuity of f at x. Define I, = (x — §, x + ). Therefore if x’ belongs to E N I, then
[f(x') = f(x)l <1landso |f(x')| <|f(x)|+ 1. The collection {I},  is an open cover of
E. The Heine-Borel Theorem tells us that there are a finite number of points {x1, ..., x,}
in E such that (I, };_; also covers E. Define M = 1 +max{| f(x1)l, ..., |f(xx)I}. We claim
that (10) holds for this choice of E. Indeed, let x belong to E. There is an index k such that
x belongs to I, and therefore | f(x)| <1+ |f(xx)| < M. To see that f takes a maximum
value on E, define m = sup f(E). If f failed to take the value m on E, then the function
x+—1/(f(x)—m), x € E is a continuous function on E which is unbounded. This contradicts
what we have just proved. Therefore f takes a maximum value of E. Since — f is continuous,
— f takes a maximum value, that is, f takes a minimum value on E. O

The Intermediate Value Theorem Let f be a continuous real-valued function on the closed,
bounded interval [a, b) for which f(a) <c < f(b). Then there is a point x in (a, b) at which
f(x)=c.

Proof We will define by induction a descending countable collection {[ay,, b,]}>2; of closed
intervals whose intersection consists of a single point x € (@, b) at which f(xg) = c. Define
a1 = a and by = b. Consider the midpoint m of [a1, b1]. If ¢ < f(m1), define a; = a; and
by = mq. If f(m1) > c, define a = m; and b, = by. Therefore f(a;) < ¢ < f(by) and
by — ay = [b1 — a1]/2. We inductively continue this bisection process to obtain a descending
collection {[a,, b,]}52; of closed intervals such that

f(an) <c < f(b,) and b, —a, = [b—a]/2""" for all n. (11)

According to the Nested Set Theorem, M22,[a,, b,] is nonempty. Let xp belong to
N2 [an, by]. Observe that

lan — x| < bp —ap = [b— a]/2"'1 for all n.

Therefore {a,} — xo. By the continuity of f at xq, {f(a,)}— f(x0). Since f(a,) < c for
all n, and the set (—o0, ] is closed, f(xg) < c. By a similar argument, f(xp) > c. Hence
f(x)=c O

Definition A real-valued function f defined on a set E of real numbers is said to be uniformly
continuous provided for each € > 0, there is a 8 > 0 such that for all x, ' in E,

iflx— x| <8, then |f(x) - f(x)| <e.
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Theorem 23 A continuous real-valued function on a closed, bounded set of real numbers is
uniformly continuous.

Proof Let f be a continuous real-valued function on a closed bounded set E of real
numbers. Let € > 0. For each x € E, there is a §, > 0 such that if x’ € E and |x’ — x| < 6, then
[f(x") = f(x)] <¢/2. Define I, to be the open interval (x — 8,/2, x + 8,/2). Then {I;},c £
is an open cover of E. According to the Heine-Borel Theorem, there is a finite subcollection
{Iy, ..., I,} which covers E. Define

1 .
6= imm{éxl,...,ﬁxn}.

We claim that this 6 > 0 responds to the ¢ > 0 challenge regarding the criterion for f to
be uniformly continuous on E. Indeed, let x and x" belong to E with |x — x| < 8. Since
{L, ..., Iy,} covers E, there is an index k for which |x — x| <85, /2. Since |x—x'| <& < 8,,/2,

I¥ = xil < I = x|+ |x = x| <84/2+8y,/2 =8y,

By the definition of 8,,, since |x — x| < 8y, and |x' — x| <8y, we have | f(x) — f(x)| <€/2
and | f(x') —. f(x )| < €/2. Therefore

IF(x) = FOD < 1f(x) = )l +1F(6) = f(m)l <e/2+€/2 =€ U

Definition A real-valued function f defined on a set E of real numbers is said to be increasing
provided f(x) < f(x') whenever x, x' belong to E and x < x', and decreasing provided — f
is increasing. It is called monotone if it is either increasing or decreasing.

Let f be a monotone real-valued function defined on an open interval I that contains
the point xo. We infer from the Monotone Convergence Theorem for Sequence for Real
Sequences that if {x,} is a sequence in I N (xg, 0o) which converges to xo, then the sequence
{f(xn)} converges to a real number and the limit is independent of the choice of sequence
{xn}. We denote the limit by f(x7 ). Similarly, we define f (x5 )- Then clearly f is continuous
at xo if and only if f(xg) = f(x0) = f(x{). If f fails to be continuous at xo, then the only
point of the image of f that lies between f(x}) and f(x7 ) is f(xo) and f is said to have a
jump discontinuity at xo. Thus, by the Intermediate Value Theorem, a monotone function
on an open interval is continuous if and only if its image is an interval (see Problem 55).

PROBLEMS

47. Let E be a closed set of real numbers and f a real-valued function that is defined and
continuous on E. Show that there is a function g defined and continuous on all of R such that
f(x) = g(x) for each x € E. (Hint: Take g to be linear on each of the intervals of which R~ E
is composed.)

48. Define the real-valued function f on R by setting
x if x irrational

f(x)= S )
psm}; if x = £ in lowest terms.

At what points is f continuous?
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49.

50.

51

52.

53.

54.

55.

57.

58.

59.

Chapter 1 The Real Numbers: Sets, Sequences, and Functions

Let f and g be continuous real-valued functions with a common domain E.
(i) Show that the sum, f + g, and product, fg, are also continuous functions.

(i) If h is a continuous function with image contained in E, show that the composition f o h
is continuous.

(iii) Let max{f, g} be the function defined by max(f, g}(x) = max{f(x), g(x)}, for x€ E.
Show that max{f, g} is continuous.

(iv) Show that | f| is continuous.

Show that a Lipschitz function is uniformly continuous but there are uniformly continuous
functions that are not Lipschitz.

A continuous function ¢ on [a, b] is called piecewise linear provided there is a partition
a=xp<x; <---<x, = bof [a, b] for which g is linear on each interval [x;, x;11]. Let f be a
continuous function on [a, b] and € a positive number. Show that there is a piecewise linear
function ¢ on [a, b] with | f(x) — ¢(x)| < € for all x € [a, b].

Show that a nonempty set E of real numbers is closed and bounded if and only if every
continuous real-valued function on E takes a maximum value.

Show that a set E of real numbers is closed and bounded if and only if every open cover of E
has a finite subcover. ’

Show that a nonempty set E of real numbers is an interval if and only if every continuous
real-valued function on E has an interval as its image.

Show that a monotone function on an open interval is continuous if and only if its image is an
interval.

. Let f be a real-valued function defined on R. Show that the set of points at which f is

continuous is a G set.

Let {f,} be a sequence of continuous functions defined on R. Show that the set of points x
at which the sequence {f,,(x)} converges to a real number is the intersection of a countable
collection of F; sets.

Let f be a continuous real-valued function on R. Show that the inverse image with respect to
f of an open set is open, of a closed set is closed, and of a Borel set is Borel.

A sequence { f,,} of real-valued functions defined on a set E is said to converge uniformly on
E to a function f if given € > 0, there is an N such that for all x € E and all n > N, we have
[fa(x) = f(x)| <e. Let {f,} be a sequence of continuous functions defined on a set E. Prove
that if { f,} converges uniformly to f on E, then f is continuous on E.

. Prove Proposition 21. Use this proposition and the Bolzano-Weierstrass Theorem to provide

another proof of the Extreme Value Theorem.
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2.1 INTRODUCTION

The Riemann integral of a bounded function over a closed, bounded interval is defined
using approximations of the function that are associated with partitions of its domain
into finite collections of subintervals. The generalization of the Riemann integral to the
Lebesgue integral will be achieved by using approximations of the function that are
associated with decompositions of its domain into finite collections of sets which we call
Lebesgue measurable. Each interval is Lebesgue measurable. The richness of the collection
of Lebesgue measurable sets provides better upper and lower approximations of a function,
and therefore of its integral, than are possible by just employing intervals. This leads to a
larger class of functions that are Lebesgue integrable over very general domains and an
integral that has better properties. For instance, under quite general circumstances we will
prove that if a sequence of functions converges pointwise to a limiting function, then the
integral of the limit function is the limit of the integrals of the approximating functions.
In this chapter we establish the basis for the forthcoming study of Lebesgue measurable
functions and the Lebesgue integral: the basis is the concept of measurable set and the
Lebesgue measure of such a set. )

The length £(I) of an interval I is defined to be the difference of the endpoints of I
if I is bounded, and oo if I is unbounded. Length is an example of a set function, that is, a
function that associates an extended real number to each set in a collection of sets. In the
case of length, the domain is the collection of all intervals. In this chapter we extend the set
function length to a large collection of sets of real numbers. For instance, the “length” of an
open set will be the sum of the lengths of the countable number of open intervals of which
it is composed. However, the collection of sets consisting of intervals and open sets is still
too limited for our purposes. We construct a collection of sets called Lebesgue measurable
sets, and a set function of this collection called Lebesgue measure which is denoted by m.
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The collection of Lebesgue measurable sets is a o-algebra! which contains all open sets and
all closed sets. The set function m possesses the following three properties.

The measure of an interval is its length Each nonempty interval I is Lebesgue mea-
surable and

m(I)=£(1).

Measure is translation invariant If E is Lebesgue measurable and y is any number, then
the translate of E by y, E+y = {x + y| x € E}, also is Lebesgue measurable and

m(E+y)=m(E).

Measure is countably additivity over countable disjoint unions of sets® If (E; )% is a
countable disjoint collection of Lebesgue measurable sets, then

m(Loj Ek) = § m(Eg).
k=1

k=1

It is not possible to construct a set function that possesses the above three properties
and is defined for all sets of real numbers (see page 48). In fact, there is not even a set function
defined for all sets of real numbers that possesses the first two properties and is finitely
additive (see Theorem 18). We respond to this limitation by constructing a set function on a
very rich class of sets that does possess the above three properties. The construction has two
stages.

We first construct a set function called outer—measure, which we denote by m*. It
is defined for any set, and thus, in particular, for any interval. The outer measure of an
interval is its length. Outer measure is translation invariant. However, outer measure is not
finitely additive. But it is countably subadditive in the sense that if {E;}3; is any countable
collection of sets, disjoint or not, then

m*(Loj Ek) < § m*(Ey).
k=1 k=1

The second stage in the construction is to determine what it means for a set to be Lebesgue
measurable and show that the collection of Lebesgue measurable sets is a o-algebra
containing the open and closed sets. We then restrict the set function m* to the collection
of Lebesgue measurable sets, denote it by m, and prove m is countably additive. We call m
Lebesgue measure.

1A collection of subsets of R is called a o-algebra provided it contains R and is closed with respect to the
formation of complements and countable unions; by De Morgan’s Identities, such a collection is also closed with
respect to the formation of countable intersections.

2For a collection of sets to be disjoint we mean what is sometimes called pairwise disjoint, that is, that each pair
of sets in the collection has empty intersection.
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PROBLEMS

In the first three problems, let m be a set function defined for all sets in a o-algebra A with values
in [0, 00]. Assume m is countably additive over countable disjoint collections of sets in A

1. Prove that if A and B are two sets in .A with A C B, then m(A) < m(B). This property is
called monotonicity.

2. Prove that if there is a set A in the collection .A for which m(A) < oo, then m(@) = 0.

3. Let {E¢}2; be a countable collection of sets in .A. Prove that m (U2 Ex) < 232 m( Ex).

4. A set function ¢, defined on all subsets of R, is defined as follows. Define ¢(E) to be oo if
E has infinitely many members and ¢(E) to be equal to the number of elements in E if E

is finite; define ¢(@) = 0. Show that c is a countably additive and translation invariant set
function. This set function is called the counting measure.

2.2 LEBESGUE OUTER MEASURE

Let I be a nonempty interval of real numbers. We define its length, £(I), to be oo if I is
unbounded and otherwise define its length to be the difference of its endpoints. For a set
A of real numbers, consider the countable collections {/;}2 ) of nonempty open, bounded
intervals that cover A, that is, collections for which A C (U2, I. For each such collection,
consider the sum of the lengths of the intervals in the collection. Since the lengths are positive
numbers, each sum is uniquely defined independently of the order of the terms. We define
the outer measure’ of A, m*(A), to be the infimum of all such sums, that is

<)

k=1

m*(A) = {2 (L)

It follows immediately from the definition of outer measure that m*(#) = 0. Moreover, since
any cover of a set B is also a cover of any subset of B, outer measure is monotone in the
sense that

if AC B, then m*(A) < m*(B).

Example A countable set has outer measure zero. Indeed, let C be a countable set
enumerated as C = {¢}3°,. Lete>0. For each natural number k, define I = (cc—¢/2*!, o+
€/2%*1). The countable collection of open intervals {Ij },;“;1 covers C. Therefore

oY

0<m*(C) < 26 L)=Y¢?=e

k=

—_

This inequality holds for each € > 0. Hence m*(E) = 0.

Proposition 1 The outer measure of an interval is its length.

3There is a general concept of outer measure, which will be considered in Part III. The set function m* is a
particular example of this general concept, which is properly identified as Lebesgue outer measure on the real line.
In Part I, we refer to m* simply as outer measure.
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Proof We begin with the case of a closed, bounded interval [a, b]. Let € > 0. Since the open
interval (a—¢, b+ €) contains [a, b] we have m*([a, b]) < £((a—¢, b+€)) = b—a+2e. This
holds for any € > 0. Therefore m*([a, b]) < b— a. It remains to show that m*([a, b]) > b—a.
But this is equivalent to showing that if {Ic}2, is any countable collection of open, bounded
intervals covering [a, b], then

Suwzb-a (1)
k=1

By the Heine-Borel Theorem,* any collection of open intervals covering [a, b] has a finite
subcollection that also covers [a, b]. Choose a natural number n for which {I}!_; covers
[a, b]. We will show that

S Uk)>b-a, @)
k=1

and therefore (1) holds. Since a belongs to Uj_; Ik, there must be one of the J;’s that contains
a. Select such an interval and denote it by (aj, by ). We have a; < a < b;. I b; > b, the
inequality (2) is established since

n
2[(Ik) >bi—a1>b—a.
k=1

Otherwise, b; €[a, b), and since b; ¢ (ay, by ), there is an interval in the collection 13/
which we label (ay, b ), distinct from (ay, by ), for which by € (az, by ); that is, ay < by < by.
If b, > b, the inequality (2) is established since

El(lk)2(b1—a1)+(b2—a2)=b2—(ag—bl)—al>b2—a1>b—a.
k=1

We continue this selection process until it terminates, as it must since there are only n
intervals in the collection {I;};_, . Thus we obtain a subcollection {(ax, by M, of {I)!_, for
which

m <a,
while
g <bforl<k<N-1,
and, since the selection process terminated,
by >b.
Thus

n N
> e(k) Zz,ll((di,bi))

k=1
= (bv —an) + (by-1—ay-1) +--+ + (b1 —a1)
=bN—-(aN—bN_1)—...—(az—bl)—al

>by—a1>b-a.

4See page 18.
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Thus the inequality (2) holds.

If I is any bounded interval, then given € > 0, there are two closed, bounded intervals
Ji and J; such that
JCICh

while
LI)—e<f(Jy) and £(h) <L(I)+e.

By the equality of outer measure and length for closed, bounded intervals and the mono-
tonicity of outer measure,

0I) = e< (1) = m*(§) <m*(I) <m*(h) = () < £(I) +e.

This holds for each € > 0. Therefore £(1) = m*(I).

If I is an unbounded interval, then for each natural number n, there is an interval J C I
with £(J) = n. Hence m*(I) > m*(J) = £(J) = n. This holds for each natural number .
Therefore m*(I) = oo. ' O

Proposition 2 Outer measure is translation invariant, that is, for any set A and number y,
m*(A+y) =m*(A).
Proof Observe that if {I;}°, is any countable collection of sets, then {;;};2; covers A if and

only if {I, + y};2, covers A + y. Moreover, if each Iy is an open interval, then each Iy +y is
an open interval of the same length and so

o0 o0
>oe(L) = (I +y).
k=1 k=1
The conclusion follows from these two observations. O

Proposition 3 OQuter measure is countably subadditive, that is, if {E}}{°, is any countable
collection of sets, disjoint or not, then

m*(Loj Ek> < i": m*(Ey).
k=1 k=1

Proof If one of the Ej’s has infinite outer measure, the inequality holds trivially. We
therefore suppose each of the Ej’s has finite outer measure. Let € > 0. For each natural
number k, there is a countable collection {I; ;}{°; of open, bounded intervals for which

00 00
E; QU I ; and 2 O(Iy,;) <m*(Ex) +€/2k.
i=1 i=1

Now {Ii ;}1<k.i<c0 is @ countable collection of open, bounded intervals that covers U, E:
the collection is countable since it is a countable collection of countable collections. Thus,
by the definition of outer measure,
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(Um) S thi)=3 4§f(lk.z’)}

1<k,i<oo k=1]i=1

00
= Em*(Ek) +e€
k=1

Since this holds for each € > 0, it also holds for € = 0. The proof is complete. O

If {Er};_; is any finite collection of sets, disjoint or not, then

m*(LnJ Ek) < 2”: m*(Ek).
k=1 k=1

This finite subadditivity property follows from countable subadditivity by taking E; =
for k > n.

PROBLEMS
5. By using properties of outer measure, prove that the interval [0, 1] is not countable.
6. Let A be the set of irrational numbers in the interval [0, 1]. Prove that m*(A) = 1.
7. A set of real numbers is said to be a G5 set provided it is the intersection of a countable
collection of open sets. Show that for any bounded set E, there is a G set G for which

ECG and m*(G) = m*(E).

8. Let B be the set of rational numbers in the interval [0, 1], and let {Ii};—, be a finite collection
of open intervals that covers B. Prove that 37 _, m*(I;) > 1.

9. Prove thatif m*(A) =0, thenm*(A U B) = m*(B).

10. Let A and B be bounded sets for which there is an @ >0 such that [a—b| > aforallac A, be B.
Prove that m*(A U B) = m*(A) + m*(B).

2.3 THE o-ALGEBRA OF LEBESGUE MEASURABLE SETS

Outer measure has four virtues: (i) it is defined for all sets of real numbers, (ii) the outer
measure of an interval is its length, (iii) outer measure is countably subadditive, and (iv)
outer measure is translation invariant. But outer measure fails to be countably additive. In

fact, it is not even finitely additive (see Theorem 18): there are disjoint sets A and B for
which

m*(AU B) < m*(A) +m*(B). 3)
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To ameliorate this fundamental defect we identify a o-algebra of sets, called the
Lebesgue measurable sets, which contains all intervals and all open sets and has the property
that the restriction of the set function outer measure to the collection of Lebesgue measurable
sets is countably additive. There are a number of ways to define what it means for a set to be
measurable.’ We follow an approach due to Constantine Carathéodory.

Definition A set E is said to be measurable provided for any set A%
m*(A) =m*(ANE)+m*(ANEC).
We immediately see one advantage possessed by measurable sets, namely, that the

strict inequality (3) cannot occur if one of the sets is measurable. Indeed, if, say, A is
measurable and B is any set disjoint from A, then

m*(AUB) =m*([AUB]N A)) +m*([AU B)|N AC) = m*(A) + m*(B).

Since, by Proposition 3, outer measure is finitely subadditive and A = [ANEJU[ANEC],
we always have
m*(A) <m*(ANE)+m*(ANEC).
Therefore E is measurable if and only if for each set A we have
m*(A) > m*(ANE) +m*(AN E°). @

This inequality trivially holds if m*( A) = oc. Thus it suffices to establish (4) for sets A that
have finite outer measure.

Observe that the definition of measurability is symmetric in E and EC, and therefore
a set is measurable if and only if its complement is measurable. Clearly the empty-set & and
the set R of all real numbers are measurable.

Proposition 4 Any set of outer measure zero is measurable. In particular, any countable set
is measurable.

Proof Let the set E have outer measure zero. Let A be any set. Since
ANECEand ANE€ C A4,
by the monotonicity of outer measure,
m*(ANE) <m*(E) =0and m*(ANEC) < m*(A).
Thus,
m*(A) > m*(ANE®) =0+m*(ANEC) =m*(AN E) + m*(AN E°),

and therefore E is measurable. O

5We should fully identify what we here call a measurable set as a Lebesgue measurable subset of the real line. A
more general concept of measurable set will be studied in Part III. However, there will be no confusion in the first
part of this book in simply using the adjective measurable.

6Recall that for a set E, by EC we denote the set {x € R|x ¢ E}, the complement of E in R. We also denote EC€ by
R~ E. More generally, for two sets A and B, we let A~ B denote {a€ A|x ¢ B} and call it the relative complement
of Bin A.
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Proposition S The union of a finite collection of measurable sets is measurable.

Proof As a first step in the proof, we show that the union of two measurable sets Eiand E,
is measurable. Let A be any set. First using the measurability of E1, then the measurability
of E,, we have

m*(A) =m*(ANEy) +m*(ANES)

=m*(ANE1)+m*([ANES|NE;)+m*([ANES]NES).
There are the following set identities:
[ANESINES = AN[E; UE°

and
[ANEJU[ANES N Ey] = AN[E, UE,).

We infer from these identities and the finite subadditivity of outer measure that

m*(A) =m*(ANE1) +m*([ANES]N Ey) + m*([AN ES] N ES)
=m*(ANE1) +m*([ANES]NE;) + m*(AN[EL U EC)

> m*(AN[E U Ey]) + m*(AN[E; U E°).
Thus E; U E; is measurable.

Now let {Ei};_; be any finite collection of measurable sets. We prove the measurability
of the union U} _, Ej, for general n, by induction. This is trivial for n = 1. Suppose it is true
for n — 1. Thus, since

n
U=
k=1

and we have established the measurability of the union of two measurable sets, the set
Uj-1 Ex is measurable. 0

k=1

n—1
U EkJ UE,,

Proposition 6 Let A be any set and {Ex};_, a finite disjoint collection of measurable sets.

Then
m* (A n

m*(L"J Ek) =3 m*(Ey).
k=1

k=1

UD S (AN B,
k=1

k=1
In particular,

Proof The proof proceeds by induction on n. It is clearly true for n = 1. Assume it is true
for n — 1. Since the collection {Ej }i= s disjoint,

n
A n[UEkJnE,,=AnE,,
k=1
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and

k=1 k=1

A n[OE%nEf:An[UE%.

Hence, by the measurability of E, and the induction assumption,

m*(Aﬂ

U E,,D —m*(ANE,) +m* (A n{"[fEk
k=1

k=1

|

n—1
=m*(ANE,)+ > m*(ANE)
k=1

=Y m*(ANEy).
2 .

A collection of subsets of R is called an algebra provided it contains R and is closed
with respect to the formation of complements and finite unions; by De Morgan’s Identities,
such a collection is also closed with respect to the formation of finite intersections. We infer
from Proposition 5, together with the measurability of the complement of a measurable set,
that the collection of measurable sets is an algebra. It is useful to observe that the union of
a countable collection of measurable sets is also the union of a countable disjoint collection
of measurable sets. Indeed, let {A¢}$2, be a countable collection of measurable sets. Define
A} = Ay and for each k > 2, define

k-1
A=A~ A
i=1

Since the collection of measurable sets is an algebra, {4}}52, is a disjoint collection of
measurable sets whose union is the same as that of {A;}72 .

Proposition 7 The union of a countable collection of measurable sets is measurable.

Proof Let E be the union of a countable collection of measurable sets. As we observed above,
there is a countable disjoint collection of measurable sets {E;}5°, for which E = 2, Ej.
Let A be any set. Let n be a natural number. Define F, = Uj_; Ex. Since F, is measurable
and FC D E,

m*(A) =m*(ANF,) +m*(ANFS) > m*(ANF,) +m*(ANE°).

By Proposition 6,

m*(ANF,) =Y m*(ANE).
k=1
Thus

m*(A) > i m*(AN E;) +m*(ANEC).
k=1
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The left-hand side of this inequality is independent of n. Therefore

o0

m*(4)> S m (AN Ey) +m*<An E°).

k=1

Hence, by the countable subadditivity of outer measure,
m*(A) > m*(ANE) +m*(An EC).

Thus E is measurable. O

A collection of subsets of R is called an o-algebra provided it contains R and is
closed with respect to the formation of complements and countable unions; by De Morgan’s
Identities, such a collection is also closed with respect to the formation of countable
intersections. The preceding proposition tells us that the collection of measurable sets is a
o-algebra.

Proposition 8 Every interval is measurable.

Proof As we observed above, the measurable sets are a o-algebra. Therefore to show that
every interval is measurable it suffices to show that every interval of the form (a, 00) is
measurable (see Problem 11). Consider such an interval. Let A be any set. We assume a does
not belong to A. Otherwise, replace A by A ~ (a), leaving the outer measure unchanged. We
must show that

m*(A1) +m*(Az) < m*(A), (5)

where
Ay =AN(~00,a)and Ay = AN (a, o).

By the definition of m*(A) as an infimum, to verify (5) it is necessary and sufficient to show
that for any countable collection {Ii}g2; of open, bounded intervals that covers A,

o0
m*(A1)+m*(A2)5 EC(Ik). (6)
k=1
Indeed, for such a covering, for each index k, define
L =LN(-o00,a)and [} = I N (a,00)
Then [ and I}/ are intervals and
L) =e(I) + e(L).

Since {£;}¢2,; and {1}, are countable collections of open, bounded intervals that cover A,
and A, respectively, by the definition of outer measure,

00 00

m*(Ar) < Y (L) and m*(A7) < 3 £(I).
k=1 k=1
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Therefore . .
m*(A1) +m*(A1) < 3 (L) + 3 (L)),
k=1 k=1
S ! 1
= k21[€(1k) +e(I)]
o0
=3 (L)
k=1
Thus (6) holds and the proof is complete. g

Every open set is the disjoint union of a countable collection of open intervals.” We
therefore infer from the two preceding propositions that every open set is measurable. Every
closed set is the complement of an open set and therefore every closed set is measurable.
Recall that a set of real numbers is said to be a G5 set provided it is the intersection of
a countable collection of open sets and said to be an F, set provided it is the union of a
countable collection of closed sets. We infer from Proposition 7 that every Gs set and every
F, set is measurable.

The intersection of all the g-algebras of subsets of R that contain the open sets is a
o-algebra called the Borel o-algebra; members of this collection are called Borel sets. The
Borel o-algebra is contained in every o-algebra that contains all open sets. Therefore, since
the measurable sets are a o-algebra containing all open sets, every Borel set is measurable.
We have established the following theorem.

Theorem 9 The collection M of measurable sets is a o-algebra that contains the o-algebra
B of Borel sets. Each interval, each open set, each closed set, each G5 set, and each F; set is
measurable.

Proposition 10 The translate of a measurable set is measurable.

Proof Let E be a measurable set. Let A be any set and y be a real number. By the
measurability of E and the translation invariance of outer measure,

m*(4) =m*(A-y) =m*([4 - Y] E) +m*([4 - )N E)

=m*(AN[E+)])+m*(AN[E+)]).
Therefore E + y is measurable. (]

PROBLEMS

11. Prove thatif a o-algebra of subsets of R contains intervals of the form (a, o), then it contains
all intervals.

12. Show that every interval is a Borel set.

See page 17.
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13. Show that (i) the translate of an F,, set is also F,, (ii) the translate of a G; set is also G5, and
(iii) the translate of a set of measure zero also has measure zero.

14. Show that if a set E has positive outer measure, then there is a bounded subset of E that also
has positive outer measure.

15. Show that if E has finite measure and € > 0, then E is the disjoint union of a finite number of
measurable sets, each of which has measure at most €.

2.4 OUTER AND INNER APPROXIMATION OF LEBESGUE MEASURABLE SETS

We now present two characterizations of measurability of a set, one based on inner approx-
imation by closed sets and the other on outer approximation by open sets, which provide
alternate angles of vision on measurability. These characterizations will be essential tools for
our forthcoming study of approximation properties of measurable and integrable functions.

Measurable sets possess the following excision property: If A is a measurable set of
finite outer measure that is contained in B, then

m*(B~A) =m*(B) —m*(A). @)
Indeed, by the measurability of A,
m*(B) =m*(BNA)+m*(BN AC) =m*(A) + m*(B~A),

and hence, since m*( A) < oo, we have (7).

Theorem 11 Let E be any set of real numbers. Then each of the following four assertions is
equivalent to the measurability of E.
(Outer Approximation by Open Sets and G Sets)

(i) For each € > 0, there is an open set O containing E for which m*(O~E) <.
(ii) Thereis a Gs set G containing E for which m*(G~ E) = 0.
(Inner Approximation by Closed Sets and F,, Sets)

(iii) For each € > 0, there is a closed set F contained in E for whichm*(E~F) <e.
(iv) Thereis an Fy; set F contained in E for whichm*(E~F) = 0.

Proof We establish the equivalence of the measurability of E with each of the two outer
approximation properties (i) and (ii). The remainder of the proof follows from De Morgan’s
Identities together with the observations that a set is measurable if and only if its complement
is measurable, is open if and only if its complement is closed, and is F,, if and only if its
complement is Gs.

Assume E is measurable. Let € > 0. First consider the case that m*(E) < oo. By the
definition of outer measure, there is a countable collection of open intervals {I;};2, which
covers E and for which o

> (I) <m*(E) +e.

k=1
Define O = U2, Ix. Then O is an open set containing E. By the definition of the outer
measure of O,

m*(0) < S () <m*(E) +e,
k=1



Section 2.4  Outer and Inner Approximation of Lebesgue Measurable Sets 41

so that
m*(0) —m*(E) <e.

However, E is measurable and has finite outer measure. Therefore, by the excision property
of measurable sets noted above,

m*(O~E)=m*(0)—m*(E) <e.

Now consider the case that m*( E) = oco. Then E may be expressed as the disjoint union of
a countable collection {E;};2; of measurable sets, each of which has finite outer measure.
By the finite measure case, for each index k, there is an open set Ok containing E for which
m*(Ox~ Ey) < ¢/2*. The set O = U, Oy is open, it contains E and

[e.¢] o]
0~E=U0k~EgU[(’)k~Ek].
k=1 k=1
Therefore
00 o0
m*(O~E)) < Y m*(Ox~E) < D ¢/2 =e.
k=1 k=1

Thus property (i) holds for E.

Now assume property (i) holds for E. For each natural number k, choose an open set
O that contains E and for which m*( Oy ~ E) <1/k. Define G = N2, Or. Then G is a G set
that contains E. Moreover, since for each k, G~ E C Oy ~ E, by the monotonicity of outer
measure,
m*(G~E) <m*(Ox~E)<1/k.

Therefore m*(G ~ E) = 0 and so (ii) holds. Now assume property (ii) holds for E. Since a
set of measure zero is measurable, as is a G4 set, and the measurable sets are an algebra, the
set

E=GN[G~E|°

is measurable. |

The following property of measurable sets of finite outer measure asserts that such sets
are “‘nearly” equal to the disjoint union of a finite number of open intervals.

Theorem 12 Let E be a measurable set of finite outer measure. Then for each € > 0, there is a
finite disjoint collection of open intervals (I;};_, for which if O = U;_; Ik, then®

m*(E~O0)+m*(O~E) <e.
Proof According to assertion (i) of Theorem 11, there is an open set I such that

ECUandm*(U~E)<¢/2. 8)

8For two sets A and B, the symmetric difference of A and B, whicki is denoted by AAB, is defined to be the set
[A~ B]U[B~ A]. With this notation the conclusion is that m*( EA Q) <e.
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Since E is measurable and has finite outer measure, we infer from the excision property
of outer measure that { also has finite outer measure. Every open set of real numbers
is the disjoint union of a countable collection of open intervals.” Let I/ be the union of
the countable disjoint collection of open intervals {It}2, - Each interval is measurable and
its outer measure is its length. Therefore, by Proposition 6 and the monotonicity of outer
measure, for each natural number n,

é L Iy) =m*(Ln) Ik) <m*(U) < o.

k=1 =1

The right-hand side of this inequality is independent of n. Therefore

Mg

£(Ix) < oo0.

=~
]
—_

Choose a natural number n for which
o0
2 e([k) < 6/ 2.
k=n+1
Define O = U;_; Ik Since O~ E C U ~ E, by the monotonicity of outer measure and (8),
m*(O~E) <m*(U~E) <e/2.

On the other hand, since E C U,

[e¢]
E~OCU~0= | I,

k=n+1
so that by the definition of outer measure,
&
m*(E~0)< Y (L) <¢/2.
k=n+1
Thus
m*(O~E)+m*(E~0)<e. 0O

Remark A comment regarding assertion (i) in Theorem 11 is in order. By the definition
of outer measure, for any bounded set E, regardless of whether or not it is measurable, and
any € > 0, there is an open set O such that E C O and m*(O) < m*(E) + € and therefore
m*(O0) — m*(E) < e. This does not imply that m*(O ~ E) < ¢, because the excision property

m*(O~E)=m*(0)—m*(E)

is false unless E is measurable (see Problem 19).

9See page 17.
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PROBLEMS

Complete the proof of Theorem 11 by showing that measurability is equivalent to (iii) and
also equivalent to (iv).

Show that a set E is measurable if and only if for each € > 0, there is a closed set F and open
set O for which FCEC O and m*(O~F) <e.

Let E have finite outer measure. Show that there is an F,, set F and a G5 set G such that

FCECGandm*(F)=m*(E) =m*(G).

Let E have finite outer measure. Show that if E is not measurable, then there is an open set
O containing E that has finite outer measure and for which

m*(O~E)>m*(0) —m*(E).

(Lebesgue) Let E have finite outer measure. Show that E is measurable if and only if for each
open, bounded interval (a, b),

b—a=m*((a b)NE)+m*((a, b)~E).

Use property (ii) of Theorem 11 as the primitive definition of a measurable set and prove
that the union of two measurable sets is measurable. Then do the same for property (iv).

For any set A, define m**(A) € [0, o] by
m**(A) = inf {m*(0) | O©2 4,0 open.}

How is this set function m** related to outer measure m*?
For any set A, define m***(A) €[0, oo] by

m**(A) =sup {m*(F)| FCA,F closed.}

How is this set function m*** related to outer measure m*?

2.5 COUNTABLE ADDITIVITY, CONTINUITY, AND THE BOREL-CANTELLI LEMMA

Definition The restriction of the set function outer measure to the class of measurable sets
is called Lebesgue measure. It is denoted by m, so that if E is a measurable set, its Lebesgue
measure, m( E), is defined by

m(E) =m*(E).

The following proposition is of fundamental importance.

Proposition 13 Lebesgue measure is countably additive, that is, if {E;}}2, is a countable
disjoint collection of measurable sets, then its union \Uy2 Ey also is measurable and

m(O Ek> = i m(Ey).
k=1 k=1
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Proof Proposition 7 tells us that U, E is measurable. According to Proposition 3, outer
measure is countably subadditive. Thus

m(fj Ek) < § m(Ek) . (9)
k=1

k=1

It remains to prove this inequality in the opposite directon. According to Proposition 6, for
each natural number n,

n n
m(U Ek) = 2 m(Eg).
k=1 k=1
Since g2 Ex contains | J;_; Ex, by the monotonicity of outer measure and the preceding
equality,
o0 n
m{UJ Ex| = >, m(Ey) for each n.
k=1 k=1
The left-hand side of this inequality is independent of n. Therefore
o0 e
m{JEx | = Y m(Ey). (10)
k=1 k=1
From the inequalities (9) and (10) it follows that these are equalities. O
According to Proposition 1, the outer measure of an interval is its length while
according to Proposition 2, outer measure is translation invariant. Therefore the preceding

proposition completes the proof of the following theorem, which has been the principal goal
of this chapter.

Theorem 14 The set function Lebesgue measure, defined on the a-algebra of Lebesgue
measurable sets, assigns length to any interval, is translation invariant, and is countable
additive.

A countable collection of sets {Ex}2, is said to be ascending provided for each &,
Ej C Ey41, and said to be descending provided for each k, E;,1 C Ej.

Theorem 15 (the Continuity of Measure) Lebesgue measure possesses the following conti-
nuity properties:

(1) If{Ax)2, is an ascending collection of measurable sets, then

m(t‘j Ak) =klim m(Ag). (11)
Pt -0

(i) If{Bi}2, is a descending collection of measurable sets and m(By) < oo, then

m(ﬁ Bk) = klim m(By). (12)
k=1 - 00
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Proof We first prove (i). If there is an index ko for which m(Ay,) = oo, then, by the
monotonicity of measure, m (32, Ax) = oo and m(Ax) = oo for all k > ko. Therefore (11)
holds since each side equals oo. It remains to consider the case that m(A;) < oo for all k.
Define Ay = @ and then define C; = Ay~ Ay_1 for each k > 1. By construction, since the
sequence {A;}?2 is ascending,

00 )
{Ci}i2, is disjoint and U Ay = U Cy.
k=1 k=1

By the countable additivity of m,

k=1

m(co) Ak> =m<O Ck) = im(Ak"’Ak-l)- (13)
k=1 k=1

Since {A}§2, is ascending, we infer from the excision property of measure that

élm(Ak ~Aj) = k%:l[m(Ak) —m(Ae_1)]
= limy s 00 3 [m(Ax) — m(Ap1)] (14)

k=1
= lim, - oo[m(An) — m(Ao)]-

Since m(Ag) = m(@) = 0, (11) follows from (13) and (14).

To prove (ii) we define Dy = By ~ By for each k. Since the sequence {Bi}2, is
descending, the sequence {D}{2, is ascending. By part (i),

m(fj Dk) = klim m(Dy).
k=1 o0

According to De Morgan’s Identities,

e ¢} e8] o0
\UDi=UJI[Bi~B]=B~() B
k=1 k=’1 k=1

On the other hand, by the excision property of measure, for each k, since m(By) < 0o,
m(Dy) = m(B1) — m(By). Therefore

k=1

(o]
m(m ~N Bk) = lim [m(By) — m(B,)]
Once more using excision we obtain the equality (12). O
For a measurable set E, we say that a property holds almost everywhere on E, or it

holds for almost all x € E, provided there is a subset Eg of E for which m(Eg) = 0 and the
property holds for all x € E ~ Ey.
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The Borel-Cantelli Lemma Let {E;}$°, be a countable collection of measurable sets for
which 322 m(Ey) < 0o. Then almost all x € R belong to at most finitely many of the E}’s.

Proof For each n, by the countable subadditivity of m,

m(L‘j Ek) < § m(Ey) < oo.
k=n k=n

Hence, by the continuity of measure,

(n[u

n=1 [k=n

) 00
) =nll>moom(kL=Jn Ey) Snlimoolgnm(Ek) =0.

Therefore almost all x € R fail to belong to [ b [U,‘C"’:n Ek] and therefore belong to at most
finitely many Ej’s. O

The set function Lebesgue measure inherits the properties possessed by Lebesgue
outer measure. For future reference we name some of these properties.
(Finite Additivity) For any finite disjoint collection {Ei};_, of measurable sets,

m(L”J Ek) = i m(Ek).
k=1

k=1
(Monotonicity) If A and B are measurable sets and A C B, then
m(A) <m(B).
(Excision) If, moreover, A C B and m(A) < oo, then
m(B~A)=m(B)—m(A),

sothatif m(A) =0, then
m(B~A)=m(B).

(Countable Monotonicity) For any countable collection {Ej J32, of measurable sets
that covers a measurable set E,

00

m(E) < > m(Ey).

k=1

Countable monotonicity is an amalgamation of the monotonicity and countable sub-
additivity properties of measure that is often invoked.

Remark In our forthcoming study of Lebesgue integration it will be apparent that it is the
countable additivity of Lebesgue measure that provides the Lebesgue integral with its decisive
advantage over the Riemann integral.
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PROBLEMS
24. Show that if E; and E, are measurable, then

m(E1UEy)+m(E;NEy) =m(E;) +m(E).

25. Show that the assumption that m(B;) < oo is necessary in part (ii) of the theorem regarding
continuity of measure.

26. Let {Ex}32, be a countable disjoint collection of measurable sets. Prove that for any set 4,

m*(Aan Ek> = im*(AnEk).

k=1 k=1

27. Let M’ be any o-algebra of subsets of R and m' a set function on M’ which takes values in
[0, oc], is countably additive, and such that m’ (@) = 0.

(i) Show that m’ is finitely additive, monotone, countably monotone, and possesses the
excision property.
(i) Show that m’ possesses the same continuity properties as Lebesgue measure.

28. Show that continuity of measure together with finite additivity of measure implies countable
additivity of measure.

2.6 NONMEASURABLE SETS

We have defined what it means for a set to be measurable and studied properties of the
collection of measurable sets. It is only natural to ask if, in fact, there are any sets that fail to
be measurable. The answer is not at all obvious.

We know that if a set E has outer measure zero, then it is measurable, and since any
subset of E also has outer measure zero, every subset of E is measurable. This is the best that
can be said regarding the inheritance of measurability through the relation of set inclusion:
we now show that if E is any set of real numbers with positive outer measure, then there are
subsets of E that fail to be measurable.

Lemma 16 Let E be a bounded measurable set of real numbers. Suppose there is a bounded,
countably infinite set of real numbers A for which the collection of translates of E, {A+ E}) ¢,
is disjoint. Then m(E) = 0.

Proof The translate of a measurable set is measurable. Thus, by the countable additivity of
measure over countable disjoint unions of measurable sets,

= > m(A+E). (15)

AeA

m[U (A+E)

AeA

Since both E and A are bounded sets, the set U, ¢  (A+ E) also is bounded and therefore has
finite measure. Thus the left-hand side of (15) is finite. However, since measure is translation
invariant, m(A+ E) = m(E) > 0 for each A€ A. Thus, since the set A is countably infinite
and the right-hand sum in (15) is finite, we must have m(E) = 0. O
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For any nonempty set E of real numbers, we define two points in E to be rationally
equivalent provided their difference belongs to Q, the set of rational numbers. It is easy to see
that this is an equivalence relation, that is, it is reflexive, symmetric, and transitive. We call it
the rational equivalence relation on E. For this relation, there is the disjoint decomposition
of E into the collection of equivalence classes. By a choice set for the rational equivalence
relation on E we mean a set Cg consisting of exactly one member of each equivalence class.
We infer from the Axiom of Choice! that there are such choice sets. A choice set C is
characterized by the following two properties:

(i) the difference of two points in C is not rational;
(ii) for each point x in E, there is a point ¢ in Cg for which x = ¢ + ¢, with g rational.

This first characteristic property of Cr may be conveniently reformulated as follows:
For any set AC Q, {A+Cg})e4 is disjoint. (16)

Theorem 17 (Vitali) Any set E of real numbers with positive outer measure contains a subset
that fails to be measurable.

Proof By the countable subadditivity of outer measure, we may suppose E is bounded. Let
Ck be any choice set for the rational equivalence relation on E. We claim that Cg is not
measurable. To verify this claim, we assume it is measurable and derive a contradiction.

Let Ag be any bounded, countably infinite set of rational numbers. Since Cg is
measurable, and, by (16), the collection of translates of Cx by members of Ay is disjoint, it
follows from Lemma 16 that m(Cg) = 0. Hence, again using the translation invariance and
the countable additivity of measure over countable disjoint unions of measurable sets,

m|lJA+Ce)| =3 m(A+Cg)=0.
AeAg A€y

To obtain a contradiction we make a special choice of Ag. Because E is bounded it is
contained in some interval [-b, b]. We choose

Ao = [-2b, 2b] N Q.

Then Ay is bounded, and is countably infinite since the rationals are countable and dense.!!
We claim that

EC U (+ce). @17
Ae[-2b,2b]NQ

Indeed, by the second characteristic property of C, if x belongs to E, there is a number ¢ in
the choice set Cg for which x = ¢ + ¢ with g rational. But x and ¢ belong to [—b, b], so that q
belongs to [—2b, 2b]. Thus the inclusion (17) holds. This is a contradiction because E, a set
of positive outer measure, is not a subset of a set of measure zero. The assumption that Cg
is measurable has led to a contradiction and thus it must fail to be measurable. |

10gee page 5.
gee pages 12 and 14.
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Theorem 18 There are disjoint sets of real numbers A and B for which
m*(AUB) <m*(A) +m*(B).

Proof We prove this by contradiction. Assume m*(A U B) = m*(A) + m*(B) for every
disjoint pair of sets A and B. Then, by the very definition of measurable set, every set must
be measurable. This contradicts the preceding theorem. O

PROBLEMS
29. (i) Show that rational equivalence defines an equivalence relation on any set.
(i) Explicitly find a choice set for the rational equivalence relation on Q.

(iii) Define two numbers to be irrationally equivalent provided their difference is irrational.
Is this an equivalence relation on R? Is this an equivalence relation on Q?

30. Show that any choice set for the rational equivalence relation on a set of positive outer
measure must be uncountably infinite.

31. Justify the assertion in the proof of Vitali’s Theorem that it suffices to consider the case that
E is bounded.

32. Does Lemma 16 remain true if A is allowed to be finite or to be uncountably infinite? Does it
remain true if A is allowed to be unbounded?

33. Let E be a nonmeasurable set of finite outer measure. Show that there is a G5 set G that

contains E for which
m*(E) = m*(G), while m*(G~ E) > 0.

2.7 THE CANTOR SET ANb THE CANTOR-LEBESGUE FUNCTION

We have shown that a countable set has measure zero and a Borel set is Lebesgue measurable.
These two assertions prompt the following two questions.

Question 1 If a set has measure zero, is it also countable?

Question 2 If a set is measurable, is it also Borel?

The answer to each of these questions is negative. In this section we construct a set
called the Cantor set and a function called the Cantor-Lebesgue function. By studying these
we answer the above two questions and later provide answers to other questions regarding
finer properties of functions.

Consider the closed, bounded interval I = [0, 1]. The first step in the construction of
the Cantor set is to subdivide I mto three mtervals of equal length 1/3 and remove the
interior of the middle interval, that is, we remove the interval (1/3, 2/3) from the interval
[0, 1] to obtain the closed set Cy, which is the union of two disjoint closed intervals, each of
length 1/3: ‘

¢y =0, 1/3]U[2/3, 1.

We now repeat this “open middle one-third removal” on each of the two intervals in Cy to
obtain a closed set Cy, which is the union of 22 closed intervals, each of length 1/32 :

¢, = [0, 1/9]U[2/9, 1/3]U[2/3, 7/9]U[8/9, 1].
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We now repeat this “open middle one-third removal” on each of the four intervals in C;
to obtain a closed set C3, which is the union of 23 closed intervals, each of length 1/ 33. We
continue this removal operation countably many times to obtain the countable collection of
sets {Cy}po ;. We define the Cantor set C by

o0
C= n Cy.
k=1

The collection {C}{2, possesses the following two properties:

(i) {Ci)2, is a descending sequence of closed sets;
(ii) For each k, Cy is the disjoint union of 2* closed intervals, each of length 1/3¢.

Proposition 19 The Cantor set C is a closed, uncountable set of measure zero.

Proof The intersection of any collection of closed sets is closed. Therefore C is closed. Each
closed set is measurable so that each C; and C itself is measurable.

Now each Cy is the disjoint union of 2¢ intervals, each of length 1/3%, so that by the
finite additivity of Lebesgue measure,

m(Ce) = (2/3)F.

By the monotonicity of measure, since m(C) < m(Cy) = (2/3), for all k, m(C) = 0. It
remains to show that C is uncountable. To do so we argue by contradiction. Suppose C is
countable. Let {c;}{°; be an enumeration of C. One of the two disjoint Cantor intervals
whose union is C; fails to contain the point c1; denote it by Fy. One of the two disjoint Cantor
intervals in C; whose union is Fj fails to contain the point cy; denote it by F,. Continuing in
this way, we construct a countable collection of sets { Fy 1521, which, for each k, possesses the
following three properties: (i) Fy is closed and Fyy1 C Fy; (ii) Fx C Cy; and (iii) ¢ ¢ F. From
(i) and the Nested Set Theorem!? we conclude that the intersection N2, Fi is nonempty.
Let the point x belong to this intersection. By property (ii),

[e¢] [o¢]
NFcNC=C,
k=1 k=1

and therefore the point x belongs to C. However, {c;}3, is an enumeration of C so that
x = ¢, for some index n. Thus ¢, = x € N2, Fx C F,,. This contradicts property (iii). Hence
C must be uncountable.

A real-valued function f that is defined on a set of real numbers is said to be
increasing provided f(u) < f(v) whenever u < v and said to be strictly increasing, provided
f(u) < f(v) whenever u <.

We now define the Cantor-Lebesgue function, a continuous, increasing function ¢
defined on [0, 1] which has the remarkable property that, despite the fact that ¢(1) > ¢(0),
its derivative exists and is zero on a set of measure 1. For each k, let Oy be the union of the
2% — 1 intervals which have been removed during the first k stages of the Cantor deletion
process. Thus C; = [0, 1]~ O;. Define O = U2 Ok. Then, by De Morgan’s Identities,
C =10, 1]~ 0. We begin by defining ¢ on O and then we define it on C.

12gee page 19.




Section 2.7  The Cantor Set and the Cantor-Lebesgue Function 51

Fix a natural number k. Define ¢ on Oy to be the increasing function on Ok which is
constant on each of its 2 — 1 open intervals and takes the 2 — 1 values

(125, 2/2%, 3/2, ..., [2F —1)/2%).

Thus, on the single interval removed at the first stage of the deletion process, the prescription
for ¢ is
o(x) =1/2if xe(1/3,2/3).

On the three intervals that are removed in the first two stages, the prescription for ¢ is
1/4 ifxe(1/9,2/9)
¢(x) =

2/4 ifxe(3/9, 6/9) = (1/3,2/3)
3/4 ifxe(7/9, 8/9)

We extend ¢ to all of [0, 1] by defining it on C as follows:
¢(0) = 0and ¢(x) =sup {e(t) | teONI0, x)}if xe C~{0}.

Proposition 20 The Cantor-Lebesgue function ¢ is an increasing continuous function that
maps [0, 1] onto [0, 1. Its derivative exists on the open set O, the complement in [0, 1] of the
Cantor set,

¢ =00nOwhilem(0) =1.
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The graph of the Cantor-Lebesgue function on O3 = [0, 1]~C3

Proof Since ¢ is increasing on O, its extension above to [0, 1] also is increasing. As for
continuity, ¢ certainly is continuous at each point in O since for each such point belongs to
an open interval on which it is constant. Now consider a point xy € C with xo #0, 1. Since the
point xo belongs to C it is not a member of the 2¢ — 1 intervals removed in the first k stages
of the removal process, whose union we denote by Oy. Therefore, if & is sufficiently large, xo
lies between two consecutive intervals in Oy: choose gy in the lower of these and by in the
upper one. The function ¢ was defined to increase by 1/2¢ across two consecutive intervals
in O. Therefore
ax < xo < by and o(by) — p(ar) = 1/25.
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Since k may be arbitrarily large, the function ¢ fails to have a jump discontinuity at x¢. For an
increasing function, a jump discontinuity is the only possible type of discontinuity. Therefore
@ is continuous at xo. If xq is an endpoint of [0, 1], a similar argument establishes continuity
at xg.

Since ¢ is constant on each of the intervals removed at any stage of the removal
process, its derivative exists and equals 0 at each point in ©. Since C has measure zero, its
complement in [0, 1], O, has measure 1. Finally, since ¢(0) = 0, ¢(1) = 1 and ¢ is increasing
and continuous, we infer from the Intermediate Value Theorem that ¢ maps [0, 1] onto
[0, 1].

Proposition 21 Let ¢ be the Cantor-Lebesgue function and define the function  on [0, 1] by
¥(x) = @(x) +x forall xe0, 1].

Then s is a strictly increasing continuous function that maps [0, 1] onto [0, 2],

(i) maps the Cantor set C onto a measurable set of positive measure and
(ii) maps a measurable set, a subset of the Cantor set, onto a nonmeasurable set.

Proof The function ¢ is continuous since it is the sum of two continuous functions and
is strictly increasing since it is the sum of an increasing and a strictly increasing function.
Moreover, since ¢(0) = 0and ¢(1) = 2, ¢([0, 1]) = [0, 2]. For © = [0, 1]~ C, we have the
disjoint decomposition

[0,1]=Cu0O
which i lifts to the disjoint decomposition
[0, 2] =y(O) Uy(C). (18)

A strictly increasing continuous function defined on an interval has a continuous inverse.
Therefore ¢(C) is closed and ¢(O) is open, so both are measurable. We will show that
m(¥(0)) =1 and therefore infer from (18) that m(y(C)) = 1 and thereby prove (i).

Let {Ix}p2; be an enumeration (in any manner) of the collection of intervals that are
removed in the Cantor removal process. Thus O = U?2, Ik Since ¢ is constant on each I,
¥ maps I; onto a translated copy of itself of the same length. Since ¥ is one-to-one, the
collection {i( 1)}, is disjoint. By the countable additivity of measure,

m($(0)) =§1e(¢(m) =§e(1k) =m(0).

Butm(C) = 0so that m(O) = 1. Therefore m((0)) = 1 and hence, by (18), m(y(C)) =1.
We have established (i).

To verify (ii) we note that Vitali’s Theorem tells us that ¢(C) contains a set W, which
is nonmeasurable. The set ~! (W) is measurable and has measure zero since it is a subset of
the Cantor set. The set ! (W) is a measurable subset of the Cantor set, which is mapped
by ¢ onto a nonmeasurable set.
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Proposition 22 There is a measurable set, a subset of the Cantor set, that is not a Borel set.

Proof The strictly increasing continuous. function ¢ defined on [0, 1] that is described in
the preceding proposition maps a measurable set A onto a nonmeasurable set. A strictly
increasing continuous function defined on an interval maps Borel sets onto Borel sets (see
Problem 47). Therefore the set A is not Borel since otherwise its image under ¢ would be
Borel and therefore would be measurable. a

PROBLEMS

34. Show that there is a continuous, strictly increasing function on the interval [0, 1] that maps a
set of positive measure onto a set of measure zero.

35. Let f be an increasing function on the open interval . For xq € I show that f is continuous
at xg if and only if there are sequences {a,} and {b,} in I such that for each n, a, < xo <by,
and limy, - o[ f(bn) — f(an)] = 0.

36. Show that if f is any increasing function on [0, 1] that agrees with the Cantor-Lebesgue
function ¢ on the complement of the Cantor set, then f = ¢ on all of [0, 1].

37. Let £ be a continuous function defined on E. Is it true that f~1( A) is always measurable if A
is measurable?

38. Let the function f: [a, ] - R be Lipschitz, that is, there is a constant ¢ > 0 such that for
all u,vela, b, |f(u) — f(v)| < clu — v|. Show that f maps a set of measure zero onto a
set of measure zero. Show that f maps an F, set onto an F, set. Conclude that f maps a
measurable set to a measurable set.

39. Let F be the subset of [0, 1] constructed in the same manner as the Cantor set except that
each of the intervals removed at the nth deletion stage has length @3~" with 0 < a < 1. Show
that F is a closed set, [0, 1]~ F dense in [0, 1], and m(F) = 1 — a. Such a set F is called a
generalized Cantor set.

40. Show that there is an open set of real numbers that, contrary to intuition, has a boundary
of positive measure. (Hint: Consider the complement of the generalized Cantor set of the
preceding problem.)

41. A nonempty subset X of R is called perfect provided it is closed and each neighborhood of
any point in X contains infinitely many points of X. Show that the Cantor set is perfect. (Hint:
The endpoints of all of the subintervals occurring in the Cantor construction belong to C.)

42. Prove that every perfect subset X of R is uncountable. (Hint: If X is countable, construct a
descending sequence of bounded, closed subsets of X whose intersection is empty.)

43. Use the preceding two problems to provide another proof of the uncountability of the Cantor
set.

44. A subset A of R is said to be nowhere dense in R provided that for every open set O has an
open subset that is disjoint from A. Show that the Cantor set is nowhere dense in R.

45. Show that a strictly increasing function that is defined on an interval has a continuous inverse.

46. Let f be a continuous function and B be a Borel set. Show that f~1( B) is a Borel set. (Hint:
The collection of sets E for which f~1( E) is Borel is a o-algebra containing the open sets.)

47. Use the preceding two problems to show that a continuous strictly increasing function that is
defined on an interval maps Borel sets to Borel sets.
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We devote this chapter to the study of measurable functions in order to lay the foundation
for the study of the Lebesgue integral, which we begin in the next chapter. All continuous
functions on a measurable domain are measurable, as are all monotone and step functions
on a closed, bounded interval. Linear combinations of measurable functions are measurable.
The pointwise limit of a sequence of measurable functions is measurable. We establish
results regarding the approximation of measurable functions by simple functions and by
continuous functions.

3.1 SUMS, PRODUCTS, AND COMPOSITIONS

All the functions considered in this chapter take values in the extended real numbers, that
is, the set R U {+00}. Recall that a property is said to hold almost everywhere (abbreviated
a.e.) on a measurable set E provided it holds on E ~ Ej, where Ej is a subset of E for which
m(Ep) =0.

Given two functions 4 and g defined on E, for notational brevity we often write “h < g
on E” to mean that k(x) < g(x) for all x € E. We say that a sequence of functions {f,} on E
is increasing provided f,, < f,.1 on E for each index n.

Proposition 1 Let the function f have a measurable domain E. Then the following statements
are equivalent:
(i) For each real number c, the set {x € E | f(x) > c} is measurable.
(ii) For each real number c, the set {x € E| f(x) > c} is measurable.
(iii) For each real number c, the set {x € E | f(x) < c} is measurable.
(iv) For each real number c, the set {x € E | f(x) < c} is measurable.

Each of these properties implies that for each extended real number c,
theset {xeE| f(x)=c} is measurable.
Proof Since the sets in (i) and (iv) are complementary in E, as are the sets in (ii) and (iii), and

the complement in E of a measurable subset of E is measurable, (i) and (iv) are equivalent,
as are (ii) and (iii).
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Now (i) implies (ii), since
o8]
{er| f(x)>c}=M{xeE| f(x)>c—1/k},
k:l

and the intersection of a countable collection of measurable sets is measurable. Similarly,
(ii) implies (i), since

{er| f(x)>c}=kc_jl{er| f(x) = c+1/k},

and the union of a countable collection of measurable sets is measurable.

Thus statements (i)—(iv) are equivalent. Now assume one, and hence all, of them hold.
If ¢ is a real number, {(x e E| f(x) =c} = (x€ E| f(x)) = ¢} N {xe E| f(x) < ¢}, 50 f1(c)
is measurable since it is the intersection of two measurable sets. On the other hand, if ¢ is
infinite, say ¢ = 0o,

{xeE| f(x)=oo}=ﬁ{er| f(x) >k}
=1

so f~1(o0) is measurable since it is the intersection of a countable collection of measurable
sets. O

Definition An extended real-valued function f defined on E is said to be Lebesgne measur-
able, or simply measurable, provided its domain E is measurable and it satisfies one of the
four statements of Proposition 1.

Proposition 2 Let the function f be defined on a measurable set E. Then f is measurable if
and only if for each open set O, the inverse image of O under f, f~1(0) = (x€ E| f(x) €O},
is measurable.

Proof If the inverse image of each open set is measurable, then since each interval (c, 00)
is open, the function f is measurable. Conversely, suppose f is measurable. Let O be open.
Then! we can express O as the union of a countable collection of open, bounded intervals
{Ii}2 where each I; may be expressed as By N Ay, where By = (—o0, by) and Ay = (ak, 0).
Since f is a measurable function, each f~!(By;) and f~!(A;) are measurable sets. On the
other hand, the measurable sets are a o-algebra and therefore f~!(©) is measurable since

o) =" lw

BknAk:|=ij_1(Bk)nf_1(Ak)- 0
k=1 k=1

The following proposition tells us that the most familiar functions from elementary
analysis, the continuous functions, are measurable.

Proposition 3 A real-valued function that is continuous on its measurable domain is
measurable.

1See page 17.
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Proof Let the function f be continuous on the measurable set E. Let O be open. Since f
is continuous, f~1(0) = ENU, where U is open? Thus f~1(0), being the intersection
of two measurable sets, is measurable. It follows from the preceding proposition that f is
measurable. O

A real-valued function that is either increasing or decreasing is said to be monotone.
We leave the proof of the next proposition as an exercise (see Problem 24).

Proposition 4 A monotone function that is defined on an interval is measurable.

Proposition S Let f be an extended real-valued function on E.

(i) If f is measurable on E and f = g a.e. on E, then g is measurable on E.

(ii) For a measurable subset D of E, f is measurable on E if and only if the restrictions of
f to D and E ~ D are measurable.

Proof First assume f is measurable. Define A = {x € E | f(x) # g(x)}. Observe that
{xeE| g(x)>c}={xeA| g(x) >c}U[{er | f(x)>c} ﬂ[E~A]]

Since f = g a.e.on E,m(A) = 0. Thus {xe A|g(x) > c} is measurable since it is a subset
of a set of measure zero. The set {x€ E| f(x) > c} is measurable since f is measurable
on E. Since both E and A are measurable and the measurable sets are an algebra, the set
{x€ E|g(x) > c} is measurable. To verify (ii), just observe that for any c,

{xeE| f(x)>c}={xeD| f(x)>c}U{xeE~D| f(x)>c}

and once more use the fact that the measurable sets are an algebra. O

The sum f + g of two measurable extended real-valued functions f and g is not
properly defined at points at which f and g take infinite values of opposite sign. Assume f
and g are finite a.e. on E. Define Ej to be the set of points in E at which both f and g are
finite. If the restriction of f + g to Ej is measurable, then, by the preceding proposition, any
extension of f 4 g, as an extended real-valued function, to all of E also is measurable. This
is the sense in which we consider it unambiguous to state that the sum of two measurable
functions that are finite a.e. is measurable. Similar remarks apply to products. The following
proposition tells us that standard algebraic operations performed on measurable functions
that are finite a.e. again lead to measurable functions

Theorem 6 Let f and g be measurable functions on E that are finite a.e. on E.
(Linearity) For any a and B,

af + Bg is measurable on E.

(Products)
f g is measurable on E.

2See page 25.
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Proof By the above remarks, we may assume f and g are finite on all of E. If @ = 0, then
the function af also is measurable. If a # 0, observe that for a number c,

{xeE | af(x)>c}={x€E| f(x)>c/a} fa>0
and

{xeE| af(x)>c}={xeE| f(x)<c/a} ifa<0.
Thus the measurability of f implies the measurability of a f. Therefore to establish linearity
it suffices to consider the case thata =B =1.

Forx€E, if f(x)+ g(x) <c,then f(x) <c— g(x) and so, by the density of the set of
rational numbers Q in R, there is a rational number ¢ for which

f(x) <g<c—g(x).

Hence

{x€E| f(x)+g(x)<c}=L%{er| g(x)<c—q}ﬂ{er| f(x)<gq}.
g€

The rational numbers are countable. Thus {x € E| f(x) + g(x) <} is measurable, since it is
the union of a countable collection of measurable sets. Hence f + g is measurable.

To prove that the product of measurable functions is measurable, first observe that

fe=Sl(r+eP - -]

Thus, since we have established linearity, to show that the product of two measurable
functions is measurable it suffices to show that the square of a measurable function is
measurable. For ¢ > 0,

(xeE| f2(x)>c}=xeE| f(x)>e}UxeE| f(x) <-vc)

while for ¢ <0,
(xeE| fA(x)>c}=E.

Thus 2 is measurable. O

Many of the properties of functions considered in elementary analysis, including con-
tinuity and differentiability, are preserved under the operation of composition of functions.
However, the composition of measurable functions may not be measurable.

Example There are two measurable real-valued functions, each defined on all of R, whose
composition fails to be measurable. By Lemma 21 of Chapter 2, there is a continuous, strictly
increasing function  defined on [0, 1] and a measurable subset A of [0, 1] for which ¢(A)
is nonmeasurable. Extend ¢ to a continuous, strictly increasing function that maps R onto
R. The function l/l_l is continuous and therefore is measurable. On the other hand, A is a
measurable set and so its characteristic function y4 is a measurable function. We claim that
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the composition f = x4 o~ is not measurable. Indeed, if I is any open interval containing
1but not 0, then its inverse image under f is the nonmeasurable set gs( A).

Despite the setback imposed by this example, there is the following useful proposition
regarding the preservation of measurability under composition (also see Problem 11).

Proposition 7 Let g be a measurable real-valued function defined on E and f a continuous
real-valued function defined on all of R. Then the composition f o g is a measurable function
on E.

Proof According to Proposition 2, a function is measurable if and only if the inverse image
of each open set is measurable. Let O be open. Then

(Fo8)™(0)=¢7'(£7(0)).

Since f is continuous and defined on an open set, the set U = f~'(©O) is open.> We infer
from the measurability of the function g that g~! (1) is measurable. Thus the inverse image
(f 0g)~!(0O) is measurable and so the composite function f o g is measurable. O

An immediate important consequence of the above composition result is that if f is
measurable with domain E, then | f| is measurable, and indeed

| £1? is measurable with the same domain E for each p > 0.
For a finite family { f;};_, of functions with common domain E, the function
max{fy,..., fu}
is defined on E by
max{fi, ..., fu}(x) = max{fi(x), ..., fo(x)} forx€ E.
The function min{f, ..., f,}is defined the same way.

Proposition 8 For a finite family { fi};_, of measurable functions with common domain E,
the functions max{fi, ..., f,}and min{fi, ..., f,}also are measurable.

Proof For any c, we have
{xeE| max{fi,..., fu}(x)>c}=\J{xeE| fi(x)>c}
k=1

so this set is measurable since it is the finite union of measurable sets. Thus the function
max{fi,..., f}is measurable. A similar argument shows that the function min{fj, ..., f,}
also is measurable. 0

3See page 25.
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For a function f defined on E, we have the associated functions | f|, f*,and f~ defined

on E by

I£1(x) = max{f(x), - f(x)}, f*(x)=max{f(x),0}, f~(x)=max{~f(x),0}.

If f is measurable on E, then, by the preceding proposition, so are the functions |f|, f¥,
and f~. This will be important when we study integration since the expression of f as the
difference of two nonnegative functions,

f=f+—f‘onE,

plays an important part in defining the Lebesgue integral.

10.

11.

PROBLEMS

. Suppose f and g are continuous functions on [a, b]. Show that if f = g a.e. on[a, b], then, in

fact, f = g on [a, b]. Is a similar assertion true if [a, b] is replaced by a general measurable
set E?

. Let D and E be measurable sets and f a function with domain D U E. We proved that f is

measurable on D U E if and only if its restrictions to D and E are measurable. Is the same
true if “measurable” is replaced by “continuous”?

. Suppose a function f has a measurable domain and is continuous except at a finite number

of points. Is f necessarily measurable?

. Suppose f is a real-valued function on R such that f~!(c) is measurable for each number c.

Is f necessarily measurable?

. Suppose the function f is defined on a measurable set E and has the property that

{x € E| f(x) > c} is measurable for each rational number c. Is f necessarily measurable?

. Let f be a function with measurable domain D. Show that f is measurable if and only if the

function g defined on R by g(x) = f(x) for x€ D and g(x) = 0 for x ¢ D is measurable.

. Let the function f be defined on a measurable set E. Show that f is measurable if and only

if for each Borel set A, f~1(A) is measurable. (Hint: The collection of sets A that have the
property that f~1( A) is measurable is a o-algebra.)

. (Borel measurability) A function f is said to be Borel measurable provided its domain E is a

Borel set and for each ¢, the set {x € E| f(x) > c} is a Borel set. Verify that Proposition 1 and
Theorem 6 remain valid if we replace “(Lebesgue) measurable set” by ““Borel set.” Show
that: (i) every Borel measurable function is Lebesgue measurable; (ii) if f is Borel measurable
and B is a Borel set, then f~1(B) is a Borel set; (iii) if f and g are Borel measurable, so is
f og; and (iv) if f is Borel measurable and g is Lebesgue measurable, then f o g is Lebesgue
measurable.

. Let {f,} be a sequence of measurable functions defined on a measurable set E. Define Ej to

be the set of points x in E at which {f,(x)} converges. Is the set Eq measurable?

Suppose f and g are real-valued functions defined on all of R, f is measurable, and g is
continuous. Is the composition f o g necessarily measurable?

Let f be a measurable function and g be a one-to-one function from R onto R which has a
Lipschitz inverse. Show that the composition f o g is measurable. (Hint: Examine Problem
38 in Chapter 2.)
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3.2 SEQUENTIAL POINTWISE LIMITS AND SIMPLE APPROXIMATION

For a sequence {f,} of functions with common domain E and a function f on E, there are
several distinct ways in which it is necessary to consider what it means to state that

“the sequence { f,} converges to f.”

In this chapter we consider the concepts of pointwise convergence and uniform convergence,
which are familiar from elementary analysis. In later chapters we consider many other modes
of convergence for a sequence of functions.

Definition For a sequence { f,} of functions with common domain E, a function f on E and
a subset A of E, we say that

(i) The sequence {f,} converges to f pointwise on A provided -
nll)moo fu(x) = f(x) forall x e A.

(ii) The sequence {f,} converges to f pointwise a.e. on A provided it converges to f
pointwise on A~ B, wherem(B) = 0.

(iii) The sequence {f,} converges to f uniformly on A provided for each € > 0, there is an
index N for which

|f = fal<eonAforalln>N.

When considering sequences of functions {f,} and their convergence to a function
f, we often implicitly assume that all of the functions have a common domain. We write
“{fa}— f pointwise on A” to indicate the sequence {f,} converges to f pointwise on A and
use similar notation for uniform convergence.

The pointwise limit of continuous functions may not be continuous. The pointwise
limit of Riemann integrable functions may not be Riemann integrable. The following
proposition is the first indication that the measureable functions have much better stability
properties.

Proposition9 Let { f,} be a sequence of measurable functions on E that converges pointwise
a.e.on E to the function f. Then f is measurable.

Proof Let E be a subset of E for which m(Ep) = 0 and {f,} converges to f pointwise on
E~ Ep. Since m( Eg) = 0, it follows from Proposition 5 that f is measurable if and only if its
restriction to E ~ Ey is measurable. Therefore, by possibly replacing E by E ~ Ey, we may
assume the sequence converges pointwise on all of E.

Fix a number c. We must show that {x € E | f(x) < c} is measurable. Observe that for
apoint x € E, since lim,, _, o0 fo(x) = f(x),

flx)<e
if and only if

there are natural numbers n and & for which f;(x) <c—1/nforall j > k.
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But for any natural numbers n and j, since the function f; is measurable, the set
{xe E| fj(x) <c—1/n}is measurable. Therefore, for any k, the intersection of the countably
collection of measureable sets

ﬁ{er| fi(x) <c—l/n}

j=k

also is measurable. Consequently, since the union of a countable collection of measurable
sets is measurable,

{xeE| f(x)<c}= U ﬁ{er| fi(x) <c—1/n}

1<k,n<o0 | j=k

is measurable. O

If A is any set, the characteristic function of A, y4, is the function on R defined by

(x) 1 ifxeA
XM=V 0  itxga

It is clear that the function y, is measurable if and only if the set A is measurable. Thus
the existence of a nonmeasurable set implies the existence of a nonmeasurable function.
Linear combinations of characteristic functions of measurable sets play a role in Lebesgue
integration similar to that played by step functions in Riemann integration, and so we name
these functions.

Definition A real-valued function ¢ defined on a measurable set E is called simple provided
it is measurable and takes only a finite number of values.

We emphasize that a simple function only takes real values. Linear combinations and
products of simple functions are simple since each of them takes on only a finite number of
values. If ¢ is simple, has domain E and takes the distinct values ¢, .. ., ¢, then

n
@= ¢k x5 onE, where E; = {x€E | ¢(x)=c}.
k=1
This particular expression of ¢ as a linear combination of characteristic functions is called
the canonical representation of the simple function ¢.

The Simple Approximation Lemma Let f be a measurable real-valued function on E.
Assume f is bounded on E, that is, there is an M > 0 for which |f| < M on E. Then for
each € > 0, there are simple functions ¢, and . defined on E which have the following
approximation properties:

o< f<¢Yeand0<y.— . <eonkE.
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Proof Let (¢, d) be an open, bounded interval that contains the image of E, f(E), and
c=p<y<..<ypp-1<y.=d

be a partition of the closed, bounded interval [c, d] such that y; — y,_; <efor1 <k <n.
Defne

Iy = [yx-1, yx) and E = f‘l(Ik)forl <k<n.

Since each Iy is an interval and the function f is measurable, each set Ej is measurable.
Define the simple functions ¢, and . on E by
n n
e = 2 Yi-1- XE, and e = D i - XE,-
k=1 k=1
Let x belong to E. Since f(E) C (c, d), there is a unique k,1 < k < n, for which
Yk-1 < f(x) < yx and therefore

0e(x) = ye-1 = f(x) <y = Pe(x).
But y; — yx_1 <e¢, and therefore ¢, and i have the required approximation properties. [

To the several characterizations of measurable functions that we already established,
we add the following one.

The Simple Approximation Theorem An extended real-valued function f on a measurable
set E is measurable if and only if there is a sequence {¢,} of simple functions on E which
converges pointwise on E to f and has the property that

lenl < |flon E for alln.

If f is nonnegative, we may choose {¢,} to be increasing.

Proof Since each simple function is measurable, Proposition 9 tells us that a function is
measurable if it is the pointwise limit of a sequence of simple functions. It remains to prove
the converse.

Assume f is measurable. We also assume f > 0 on E. The general case follows
by expressing f as the difference of nonnegative measurable functions (see Problem 23).
Let n be a natural number. Define E, = {xe E| f(x) < n.} Then E, is a measurable
set and the restriction of f to E, is a nonnegative bounded measurable function. By the
Simple Approximation Lemma, applied to the restriction of f to E, and with the choice of
€ = 1/n, we may select simple functions ¢, and ¢, defined on E, which have the following
approximation properties:

O<¢gpn<f<yponE,and0<y¢, -, <1l/nonk,.

Observe that
OS(PnffandOSf—(onf‘l/n‘¢n<l/n0nEn‘ (1)
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Extend o, to all of E by setting ¢, (x) = n if f(x) > n. The function ¢, is a simple function
defined on Eand 0 < ¢, < f on E. We claim that the sequence {¢,} converges to f pointwise
on E. Let x belong to E.

Case 1: Assume f(x) is finite. Choose a natural number N for which f(x) < N. Then
0< f(x)—¢@n(x)<1l/nforn>N,

and therefore lim, -, o ¥n(x) = f(x).
Case 2: Assume f(x) = 00. Then ¢, (x) = n for all n, so that lim, -, o @ (x) = f(x).
By replacing each ¢, with max{e, ..., ¢,} we have {¢,} increasing. O

PROBLEMS

12. Let f be a bounded measurable function on E. Show that there are sequences of simple
functions on E, {¢,} and {¢s,}, such that {¢,} is increasing and {,,} is decreasing and each of
these sequences converges to f uniformly on E.

13. A real-valued measurable function is said to be semisimple provided it takes only a countable
number of values. Let f be any measurable function on E. Show that there is a sequence of
semisimple functions { f,} on E that converges to f uniformly on E.

14. Let f be a measurable function on E that is finite a.e.on E and m( E) < oo. For each ¢ >0,
show that there is a measurable set F contained in E such that f is bounded on F and
m(E~F) <e.

15. Let f be ameasurable function on E that s finite a.e. on E and m( E) <oo. Show that for each
€> 0, there is a measurable set F contained in E and a sequence {¢,} of simple functions on
E such that {,} — f uniformly on F and m(E ~ F) < . (Hint: See the preceding problem.)

16. Let I be a closed, bounded interval and E a measurable subset of I. Let € > 0. Show that
there is a step function 4 on I and a measurable subset F of I for which
h=yxgonFandm(I~F)<e.

(Hint: Use Theorem 12 of Chapter 2.)

17. Let I be a closed, bounded interval and ¢ a simple function defined on I. Let € > 0. Show that

there is a step function h on I and a measurable subset F of I for which
h=yonFandm(I~F)<e.

(Hint: Use the fact that a simple function is a linear combination of characteristic functions
and the preceding problem.)

18. Let I be a closed, bounded interval and f a bounded measurable function defined on I. Let
€ > 0. Show that there is a step function & on I and a measurable subset F of I for which

lh—fl<eonFandm(I~F)<e.

19. Show that the sum and product of two simple functions are simple as are the max and
the min.
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20. Let A and B be any sets. Show that

XANB = XA - XB
XAUB = XA+ XB— XA -XB
xac=1-xa.

21. For a sequence {f,} of measurable functions with common domain E, show that each of the
following functions is measurable:

inf {f,}, sup {f»}, liminf {£,} and limsup {£,}.

22. (Dini’s Theorem) Let {f,} be an increasing sequence of continuous functions on [a, b]
which converges pointwise on [a, b] to the continuous function f on [a, b]. Show that the
convergence is uniform on [a, b]. (Hint: Let € > 0. For each natural number n, define
E, = {x€la, b]| f(x) — fa(x) <e€). (Show that {E,} is an open cover of [a, b] and use the
Heine-Borel Theorem.)

23. Express a measurable function as the difference of nonnegative measurable functions and
thereby prove the general Simple Approximation Theorem based on the special case of a
nonnegative measurable function.

24. Let I be an interval and f: I — R be increasing. Show that f is measurable by first showing
that, for each natural number n, the strictly increasing function x—> f(x )+ x/n is measurable,
and then taking pointwise limits.

3.3 LITTLEWOOD’S THREE PRINCIPLES, EGOROFF'S THEOREM,
AND LUSIN’S THEOREM

Speaking of the theory of functions of a real variable, J. E. Littlewood says,* “The extent
of knowledge required is nothing like so great as is sometimes supposed. There are three
principles, roughly expressible in the following terms: Every [measurable] set is nearly a
finite union of intervals; every [measurable] function is nearly continuous; every pointwise
convergent sequence of [measurable] functions is nearly uniformly convergent. Most of the
results of [the theory] are fairly intuitive applications of these ideas, and the student armed
with them should be equal to most occasions when real variable theory is called for. If one
of the principles would be the obvious means to settle the problem if it were ‘quite’ true, it
is natural to ask if the ‘nearly’ is near enough, and for a problem that is actually solvable it
generally is.”

Theorem 12 of Chapter 2 is one precise formulation of Littlewood’s first principle: It
tells us that given a measurable set E of finite measure, then for each € > 0, there is a finite
disjoint collection of open intervals whose union I/ is “nearly equal to” E in the sense that
m(E~U)+m(U~E)<e.

A precise realization of the last of Littlewood’s principle is the following surprising
theorem.

Egoroff’s Theorem Assume E has finite measure. Let {f,} be a sequence of measurable
functions on E that converges pointwise on E to the real-valued function f. Then for each
€ >0, there is a closed set F contained in E for which

{fu}— f uniformly on F and m(E~F) <.
“Littlewood [Lit41], page 23.
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To prove Egoroff’s Theorem it is convenient to first establish the following lemma.

Lemma 10 Under the assumptions of Egoroff’s Theorem, for each >0 and 8> 0, there is a
measurable subset A of E and an index N for which

|fo — fl<monAforalln> Nandm(E~A) <8.

Proof For each k, the function | f — fi| is properly defined, since f is real-valued, and it is
measurable, so that the set {x € E||f(x) — fi(x)| <7} is measurable. The intersection of a
countable collection of measurable sets is measurable. Therefore

E,={x€E| |f(x) - fi(x)| <nmforallk >n}

is a measurable set. Then {E,}3, is an ascending collection of measurable sets, and

E = U% E,, since {f,} converges pointwise to f on E. We infer from the continuity of

measure that

m(E) = nli’ngom(E,,).
Since m(E) < 0o, we may choose an index N for which m(Ey) >m(E) — €. Define A = E,
and observe that, by the excision property of measure, m(E~A) =m(E) —m(Ey) <e. 0

Proof of Egoroff’s Theorem For each natural number n, let A, be a measurable subset
of E and N(n) an index which satisfy the conclusion of the preceding lemma with & =
€/2"*! and = 1/n, that is,

m(E~A,) <e/2"*1 )

and
|fi = fI <1/non A, for all k > N(n). 3)

Define o
A= n A,.
=1
By De Morgan’s Identities, the countably subadditivity of measure and (2),
o0 o0 o0
m(E~A)=m[\JIE~A]) < D m(E~A,) <, ¢/2H =¢/2.
n=1 n=1 n=1

We claim that {f,} converges to f uniformly on A. Indeed, let € > 0. Choose an index ng
such that 1/ng < €. Then, by (3),

|fi — f1 <1/ngon A, fork > N(no).
However, A C A, and 1/ng < ¢ and therefore
|fe — f| <eon Afork > N(ng).

Thus {f,} converges to f uniformly on A and m(E~ A) <¢/2.

Finally, by Theorem 11 of Chapter 2, we may choose a closed set F contained in A for
which m(A~ F) <¢/2. Thus m(E~ F) < € and {f,} — f uniformly on F. O
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It is clear that Egoroff’s Theorem also holds if the convergence is pointwise a.e. and
the limit function is finite a.e.

We now present a precise version of Littlewood’s second principle in the case the
measurable function is simple and then use this special case to prove the general case of the
principle, Lusin’s Theorem.

Proposition 11 Let f be a simple function defined on E. Then for each € > 0, there is a
continuous function g on R and a closed set F contained in E for which

f=gonFandm(E~F)<e.

Proof Let aj,ay,...,a, be the finite number of distinct values taken by f, and let them
be taken on the sets Eq, Ey, ..., E,, respectively. The collection {Ex};_, is disjoint since
the a;’s are distinct. According to Theorem 11 of Chapter 2, we may choose closed sets
F, B, ..., F, such that for each index k,1 <k <n,

Fy CEyandm(Ey~ F) <¢/n.

Then F = U1 Fi, being the union of a finite collection of closed sets, is closed. Since
{Ex};_, is disjoint,

m(E~F) =m(0 [Ek~Fk]) = im(EkA«Fk) <e.
k=1

k=1

Define g on F to take the value a; on Fy for 1 < k < n. Since the collection {Filioy is
disjoint, g is properly defined. Moreover, g is continuous on F since for a point x € F;, there
is an open interval containing x which is disjoint from the closed set Ui Fr and hence on
the intersection of this interval with F the function g is constant. But g can be extended
from a continuous function on the closed set F to a continuous function on all of R (see
Problem 25). The continuous function g on R has the required approximation properties. [

Lusin’s Theorem Let f be a real-valued measurable function on E. Then for each € >0, there
is a continuous function g on R and a closed set F contained in E for which

f=gonFandm(E~F)<e.

Proof We consider the case that m(E) < 0o and leave the extension to m(E) = oo as
an exercise. According to the Simple Approximation Theorem, there is a sequence {f,}
of simple functions defined on E that converges to f pointwise on E. Let n be a natural
number. By the preceding proposition, with f replaced by f, and € replaced by €/2"+1 we
may choose a continuous function g, on R and a closed set F, contained in E for which

fo=gnonF,andm(E~F,) <e/2"*1.

According to Egoroff’s Theorem, there is a closed set Fy contained in E such that {f,}
converges to f uniformly on Fy and m(E ~ Fy) < /2. Define F = My Fr. Observe that,
by De Morgan’s Identities and the countable subadditivity of measure,
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n=1 n=1

m(E~F) = m([E~FO]qu[E~F,,]) <243 g =e

The set F is closed since it is the intersection of closed sets. Each f, is continuous on F
since F C F, and f, = g, on F,. Finally, {f,} converges to f uniformly on F since F C Fp.
However, the uniform limit of continuous functions is continuous, so the restriction of f to
F is continuous on F. Finally, there is a continuous function g defined on all of R whose
restriction to F equals f (see Problem 25). This function g has the required approximation
properties.

25.

26.

217.

28.

29.
30.

31.

PROBLEMS

Suppose f is a function that is continuous on a closed set F of real numbers. Show that
f has a continuous extension to all of R. This is a special case of the forthcoming Tietze
Extension Theorem. (Hint: Express R~ F as the union of a countable disjoint collection of
open intervals and define f to be linear on the closure of each of these intervals.)

For the function f and the set F in the statement of Lusin’s Theorem, show that the restriction
of f to F is a continuous function. Must there be any points at which f, considered as a
function on E, is continuous?

Show that the conclusion of Egoroff’s Theorem can fail if we drop the assumption that the
domain has finite measure.

Show that Egoroff’s Theorem continues to hold if the convergence is pointwise a.e. and f is
finite a.e.

Prove the extension of Lusin’s Theorem to the case that E has infinite measure.

Prove the extension of Lusin’s Theorem to the case that f is not necessarily real-valued, but
may be finite a.e.

Let {f,} be a sequence of measurable functions on E that converges to the real-valued f
pointwise on E. Show that E = U E, where for each index k, Ej is measurable, and {f,}
converges uniformly to f on each Ey if k> 1, and m(E;) = 0.
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We now turn to our main object of interest in Part I, the Lebesgue integral. We define this
integral in four stages. We first define the integral for simple functions over a set of finite
measure. Then for bounded measurable functions f over a set of finite measure, in terms of
integrals of upper and lower approximations of f by simple functions. We define the integral
of a general nonnegative measurable function f over E to be the supremum of the integrals
of lower approximations of f by bounded measurable functions that vanish outside a set of
finite measure; the integral of such a function is nonnegative, but may be infinite. Finally,
a general measurable function is said to be integrable over E provided |, glfl <oo. We
prove that linear combinations of integrable functions are integrable and that, on the class
of integrable functions, the Lebesgue integral is a monotone, linear functional. A principal
virtue of the Lebesgue integral, beyond the extent of the class of integrable functions, is
the availability of quite general criteria which guarantee that if a sequence of integrable
functions {f,} converge pointwise almost everywhere on E to f, then

n%ﬁfn=ﬁ[ng%fn]=ﬁf'
We refer to that as passage of the limit under the integral sign. Based on Egoroff’s
Theorem, a consequence of the countable additivity of Lebesgue measure, we prove
four theorems that provide criteria for justification of this passage: the Bounded Convergence
Theorem, the Monotone Convergence Theorem, the Lebesgue Dominated Convergence
Theorem, and the Vitali Convergence Theorem.

4.1 THE RIEMANN INTEGRAL

We recall a few definitions pertaining to the Riemann integral. Let f be a bounded real-
valued function defined on the closed, bounded interval [a, b]. Let P = {xg, x1, ..., x,) be a
partition of [a, b], that is,

a=xp<x1<...<x,=b.
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Define the lower and upper Darboux sums for f with respect to P, respectively, by |
L(f, P)= ﬁlmi (% = xi-1)
i=
and
| 0(s. P) =3 M- (s =)
i=
where,! for1 <i <n,

m,~=inf{f(x)| x,~_1<x<x,~} and M; = sup {f(x)| x,-_1<x<x,~}.

We then define the lower and upper Riemann integrals of f over [a, b], respectively, by
b
(R)/ f=sup {L(f, P)| Papartition of [a, b]}
Ja

and
(R)/bf=inf {U(f, P)| Papartition of [a, b]}.

Since f is assumed to be bounded and the interval [a, b] has finite length, the lower and
upper Riemann integrals are finite. The upper integral is always at least as large as the lower
integral, and if the two are equal we say that f is Riemann integrable over [a, b] and call
this common value the Riemann integral of f over [a, b]. We denote it by

(R)/abf

to temporarily distinguish it from the Lebesgue integral, which we consider in the next
section.

A real-valued function ¢ defined on [a, b] is called a step function provided there is a
partition P = {x, x1, . .., x»} of [a, b] and numbers ¢y, ..., ¢, such thatfor1 <i <n,

Y(x)=cifxig <x<ux.
Observe that .
L(y, P)= D ci(xi—xi-1) = U(y, P).

i=1

L1f we define
mi=inf {f(x) | xi_1 <x<x} and M; =sup {(x) | x_1 <x<xi},
so the infima and suprema are taken over closed subintervals, we arrive at the same value of the upper and lower
Riemann integral. .
2An elegant theorem of Henri Lebesgue, Theorem 8 of Chapter 5, tells us that a necessary and sufficient

condition for a bounded function f to be Riemann integrable over [a, b] is that the set of points in [a, b] at which
f fails to be continuous has Lebesgue measure zero.
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From this and the definition of the upper and lower Riemann integrals, we infer that a step
function ¢ is Riemann integrable and

b n
(R)/ = %Ci(xi - Xi-1).

Therefore, we may reformulate the definition of the lower and upper Riemann integrals as

follows:
b b
® [ f=sup{<R)f«>

(R)/:lbf=inf{<k)fabw

Example (Dirichlet’s Function) Define f on [0, 1] by setting f(x) = 1 if x is rational and
0 if x is irrational. Let P be any partition of [0, 1]. By the density of the rationals and the
irrationals,

¢ astep function and ¢ < f on [a, b]},

and

i a step function and ¢ > £ on [a, b]}.

L(f, P)=0andU(f, P)=1.
Thus

(R)L1f=0<1=(R)]Olf,

5o f is not Riemann integrable. The set of rational numbers in [0,1] is countable.? Let a4
be an enumeration of the rational numbers in [0, 1]. For a natural number #, define f, on
[0, 1] by setting f,(x) = 1, if x = gy for some g with 1 <k < n, and f(x) = 0 otherwise.
Then each f, is a step function, so it is Riemann integrable. Thus, {f,} is an increasing
sequence of Riemann integrable functions on [0, 1],

|f2l <1on]0, 1] for alln
and
{fa}— f pointwise on [0, 1].

However, the limit function f fails to be Riemann integrable on [0, 1].

PROBLEMS
1. Show that, in the above Dirichlet function example, { £} fails to converge to f uniformly on
[0, 1].
2. A partition P’ of [a, b] is called a refinement of a partition P provided each partition point
of P is also a partition point of P'. For a bounded function f on [a, b], show that under
refinement lower Darboux sums increase and upper Darboux sums decrease. -

3See page 12.
4See page 14.
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3. Use the preceding problem to show that for a bounded function on a closed, bounded interval,
each lower Darboux sum is no greater than each upper Darboux sum. From this conclude
that the lower Riemann integral is no greater than the upper Riemann integral.

4. Suppose the bounded function f on [a, b] is Riemann integrable over [a, b]. Show that there
is a sequence {P,} of partitions of [a, b] for which lim, . oo [U(f, Px) —L(f, P»)] =0.

5. Let f be a bounded function on [a, b]. Suppose there is a sequence {P,} of partitions of
[a, ] for which lim, _, oo [U(f, P,) — L(f, P,)] = 0. Show that f is Riemann integrable
over [a, b].

6. Use the preceding problem to show that since a continuous function f on a closed, bounded
interval [a, b] is uniformly continuous on [a, b], it is Riemann integrable over [a, b].

7. Let f be an increasing real-valued function on [0, 1]. For a natural number n, define P, to
be the partition of [0, 1] into » subintervals of length 1/n. Show that U( £, P,) — L(f, P) <
1/n[£(1) — £(0)]. Use Problem 5 to show that f is Riemann integrable over [0, 1].

8. Let {f,} be a sequence of bounded functions that converges uniformly to f on the closed,
bounded interval [a, b]. If each f, is Riemann integrable over [a, b], show that f also is
Riemann integrable over [a, b]. Is it true that

"limm‘/abfn=fabf?

4.2 THE LEBESGUE INTEGRAL OF A BOUNDED MEASURABLE FUNCTION
OVER A SET OF FINITE MEASURE

The Dirichlet function, which was examined in the preceding section, exhibits one of the
principal shortcomings of the Riemann integral: a uniformly bounded sequence of Riemann
integrable functions on a closed, bounded interval can converge pointwise to a function that
is not Riemann integrable. We will see that the Lebesgue integral does not suffer from this
shortcoming.

Henceforth we only consider the Lebesgue integral, unless explicitly mentioned oth-
erwise, and so we use the pure integral symbol to denote the Lebesgue integral. The
forthcoming Theorem 3 tells us that any bounded function that is Riemann integrable over
[a, b] s also Lebesgue integrable over [a, b] and the two integrals are equal.

Recall that a measurable real-valued function ¢ defined on a set E is said to be simple
provided it takes only a finite number of real values. If i takes the distinct values a1, ..., a,
on E, then, by the measurability of , its level sets ¢! (a;) are measurable and we have the
canonical representation of ¢ on E as

n
¥ =1 a;- x5 onE, where each E; = y " '(a;) = {x € E | ¥(x) =a;}. 1)
i=1
The canonical representation is characterized by the E;’s being disjoint and the a;’s being
distinct.

Definition For a simple function  defined on a set of finite measure E, we define the integral

of Y over E by
/ Y= za;-m(E,-),
E i=1
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where ys has the canonical representation given by (1).

Lemma 1 Let (E;}}_; be a finite disjoint collection of measurable subsets of a set of finite
measure E. For 1 <i < n, let a; be a real number.

n n
If‘P'—"Eai'XE,- on E, then ¢=Ea,~-m(E,~).
i=1 E i=1

Proof The collection {E;}!_, is disjoint but the above may not be the canonical representation

since the 4;’s may not be distinct. We must account for possible repetitions. Let {A1, .. ., An)
be the distinct values taken by ¢. For 1 < j < m, set A; = {x € E|¢(x) = A;}. By definition
of the integral in terms of canonical representations,

m
= Aj-m(4)).
E j=1

For 1 < j < m, let I; be the set of indices i in {1,...,n} for which 4; = A;. Then
{1,...,n} =U}.; I, and the union is disjoint. Moreover, by finite additivity of measure,

m(A;)= Y m(E;)foralll <j<m.

iEIj

Therefore

gai m(E,) = % [ E ai-m(Ei)

= i /\j[ > m(Ei)]

j=1|i€l; =1 |iel;
m

S mta= [ ;
j=1 E

One of our goals is to establish linearity and monotonicity properties for the general
Lebesgue integral. The following is the first result in this direction.

Proposition 2 (Linearity and Monotonicity of Integration) Let ¢ and ¢ be simple functions
defined on a set of finite measure E. Then for any o and B,

fE(a¢+ﬁ¢)=afE¢+ﬁfE¢.

ifo<yonkE, thenfcpsfq//.
E E

Moreover,

Proof Since both ¢ and ¢ take only a finite number of values on E, we may choose a finite
disjoint collection {E;})?_; of measurable subsets of E, the union of which is E, such that ¢

and ¢ are constant on each E;. For each i, 1 <i < n, let a; and b;, respectively, be the values
taken by ¢ and ¢ on E;. By the preceding lemma,

f ¢=ia,~m(E,~) and | ¢ = ibi -m(E;)
E =l E

i=1
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However, the simple function ag + By takes the constant value aa; + Bb; on E;. Thus, again
by the preceding lemma,

fE (ap+Bp) = 3 (aa: + Bbi) - m(Er)

=aEai'm(Ei)+BEbi";l(Ei)=af¢+3/ Y.
i=1 i=1 E E

To prove monotonicity, assume ¢ < ¢ on E. Define n = ¢ — ¢ on E. By linearity,

fE«I/-fE<P=fE(¢—<p)=fEn20,

since the nonnegative simple function 1 has a nonnegative integral. g

The linearity of integration over sets of finite measure of simple functions shows
that the restriction in the statement of Lemma 1 that the collection {E;}7_; be disjoint is
unnecessary.

A step function takes only a finite number of values and each interval is measurable.
Thus a step function is simple. Since the measure of a singleton set is zero and the measure
of an interval is its length, we infer from the linearity of Lebesgue integration for simple
functions defined on sets of finite measure that the Riemann integral over a closed, bounded
interval of a step function agrees with the Lebesgue integral.

Let f be a bounded real-valued function defined on a set of finite measure E. By
analogy with the Riemann integral, we define the lower and upper Lebesgue integral,
respectively, of f over E to be

sup{f<p} <psimpleand<p5fonE,}
E

and
inf{/ 1//\ x//simpleandfsllfonE.}
E

Since f is assumed to be bounded, by the monotonicity property of the integral for simple
functions, the lower and upper integrals are finite and the upper integral is always at least as
large as the lower integral.

Definition A bounded function f on a domain E of finite measure is said to be Lebesgue
integrable over E provided its upper and lower Lebesgue integrals over E are equal. The
common value of the upper and lower integrals is called the Lebesgue integral, or simply the
integral, of f over E and is denoted by [, f.

Theorem 3 Let f be a bounded function defined on the closed, bounded interval [a, b). If f is
Riemann integrable over [a, b], then it is Lebesgue integrable over [a, b] and the two integrals
are equal.
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Proof The assertion that f is Riemann integrable means that, setting I = [a, b],

sup {(R) /;«;: ‘ ¢ a step function, ¢ < f} = inf {(R) /Ix// } ¥ a step function, f < x//}

To prove that f is Lebesgue integrable we must show that

sup{/lq:I <psimple,¢p§f}=inf{f1¢’ x//simple,fsx//}.

However, each step function is a simple function and, as we have already observed, for
a step function, the Riemann integral and the Lebesgue integral are the same. Therefore
the first equality implies the second and also the equality of the Riemann and Lebesgue
integrals. g

We are now fully justified in using the symbol [, f, without any preliminary (R), to
denote the integral of a bounded function that is Lebesgue integrable over a set of finite

measure. In the case of an interval E = [a, b], we sometimes use the familiar notation fab f
to denote f[a b f and sometimes it is useful to use the classic Leibniz notation f: f(x)dx.

Example The set E of rational numbers in [0, 1] is a measurable set of measure zero. The
Dirichlet function f is the restriction to [0, 1] of the characteristic function of E, xyz. Thus
f is integrable over [0, 1] and

/ f:f 1.xg=1-m(E) =0.
P Joy

We have shown that f is not Riemann integrable over [0, 1].

Theorem 4 Let f be a bounded measurable function on a set of finite measure E. Then f is
integrable over E.

Proof Let n be a natural number. By the Simple Approximation Lemma, with € = 1/,
there are two simple functions ¢, and ¢, defined on E for which

en<f<yY,onkE,

and
0<¢p—¢s<1/nonkE.

By the monotonicity and linearity of the integral for simple functions,

OS/E%—[E¢n=fE[¢n—¢nlsl/n-m(E).
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However,

Osinf{fall‘ va/zsimple,a//zf}—sup{fcpl <psimple,cp5f}
E E

stx//n—fE<pnsl/n'm(E)~

This inequality holds for every natural number n and m(E) is finite. Therefore the upper
and lower Lebesgue integrals are equal and thus the function f is integrable over E. O

It turns out that the converse of the preceding theorem is true; a bounded function on
a set of finite measure is Lebesgue integrable if and only if it is measurable: we prove this
later (see the forthcoming Theorem 7 of Chapter 5). This shows, in particular, that not every
bounded function defined on a set of finite measure is Lebesgue integrable. In fact, for any
measurable set E of finite positive measure, the restriction to E of the characteristic function
of each nonmeasurable subset of E fails to be Lebesgue integrable over E.

Theorem 5 (Linearity and Monotonicity of Integration) Let f and g be bounded measurable
functions on a set of finite measure E. Then for any a and B,

/E(af+ﬁg)=afEf+ﬂng. @

Moreover,

iff<gonE, then/EfS/;g. 3

Proof A linear combination of measurable bounded functions is measurable and bounded.
Thus, by Theorem 4, a f + Bg is integrable over E. We first prove linearity for B = 0. If ¢ is
a simple function so is ay, and conversely (if a # 0). We established linearity of integration
for simple functions. Let a > 0. Since the Lebesgue integral is equal to the upper Lebesgue

integral,
/Eaf - ‘l’lgﬂf/l‘flll - [w/lz?]fzf E /] = afE ,

For a <0, since the Lebesgue integral is equal both to the upper Lebesgue integral and the
lower Lebesgue integral,

/;afz inf [ p=a sup [(p/a]=a/l;f.

zef Jg [e/a]<f7E

It remains to establish linearity in the case that @ = 8 = 1. Let ¢; and ¢; be simple functions
for which f <y and g < ¢, on E. Then ¢; + ¢ is a simple function and f+ g < ¢ +yo on
E. Hence, since [,(f + ¢) is equal to the upper Lebesgue integral of f + g over E, by the
linearity of integration for simple functions,

fE(f+g)SfE(ll'1+l//2)=fEl//1+/Ellf2-
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The greatest lower bound for the sums of integrals on the right-hand side, as ; and , vary
among simple functions for which f < ¢ and g < 5, equals [}, f + [, g. These inequalities
tell us that f,( f + g) is a lower bound for these same sums. Therefore,

fE(f+g)stf+ng.

It remains to prove this inequality in the opposite direction. Let ¢; and ¢; be simple functions
for which ¢; < f and ¢ < gon E. Then @1 + ¢ < f + gon E and ¢ + ¢; is simple. Hence,
since [( f + g) is equal to the lower Lebesgue integral of f + g over E, by the linearity of
integration for simple functions,

fE(f+g)2/E(¢1+¢z)=fE¢1+/E¢z~

The least upper bound bound for the sums of integrals on the right-hand side, as ¢; and
¢2 vary among simple functions for which ¢; < f and ¢, < g, equals [ f + [z & These
inequalities tell us that f,.( f + g) is an upper bound for these same sums. Therefore,

/E(f+g)ZfEf+/Eg.

This completes the proof of linearity of integration.
To prove monotonicity, assume f < g on E. Define h = g — f on E. By linearity,

/Eg‘/Ef=fE(g—f)=/Eh.

The function A is nonnegative and therefore ¢ < h on E, where =0 on E. Since the integral
of h equals its lower integral, [k > [; ¢ = 0. Therefore, [ f < [, & O

Corollary 6 Let f be a bounded measurable function on a set of finite measure E. Suppose A
and B are disjoint measurable subsets of E. Then

fAUBf=[Af+[Bf. @

Proof Both f - x4 and f - xp are bounded measurable functions on E. Since A and B are
disjoint,

f-xaws=f-xa+f xs
Furthermore, for any measurable subset E; of E (see Problem 10),

L1f=/;f‘XEl~

Therefore, by the linearity of integration,

/,ausf=fgf'“”3=/Ef‘XA+fEf~xB=fAf+fo. 0
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Corollary 7 Let f be a bounded measurable function on a set of finite measure E. Then

LstVL ©)

Proof The function | f| is measurable and bounded. Now

=-Iflsf=<IflonE.

By the linearity and monotonicity of integration,

—LmsﬂfSLVL

that is, (5) holds. O

Proposition 8 Let {f,} be a sequence of bounded measurable functions on a set of finite
measure E.

If {fu}— f uniformly on E, then nli)moo /1-5 fo= fE f.

Proof Since the convergence is uniform and each f, is bounded, the limit function f is
bounded. The function f is measurable since it is the pointwise limit of a sequence of
measurable functions. Let € > 0. Choose an index N for which

If = ful <€¢/m(E)on Eforalln > N. (6)

By the linearity and monotonicity of integration and the preceding corollary, for eachn > N,

{Lw—m

Therefore lim, , oo [ fn = /| e f O

[

S/};If—f,d <[e/m(E)]-m(E)=e.

This proposition is rather weak since frequently a sequence will be presented that
converges pointwise but not uniformly. It is important to understand when it is possible to
infer from

{fx} = f pointwise a.e. on E

i | [ n]= [ )= [ o

We refer to this equality as passage of the limit under the integral sign.’ Before proving our
first important result regarding this passage, we present an instructive example.

that

5This phrase is taken from I P. Natanson’s Theory of Functions of a Real Variable [Nat55].
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Example For each natural number n, define f, on [0, 1] to have the value 0if x > 2/n, have
(l/ n) =n, f(0) = 0 and to be linear on the intervals [0, 1/n] and [1/n, 2/n]. Observe that

fo fn = 1for each n. Define f=0on [0, 1]. Then

1 1
{f}— f pointwise on [0, 1], but limcxJ f fn# f f
n— 0 0

Thus, pointwise convergence alone is not sufficient to justify passage of the limit under the
integral sign.

The Bounded Convergence Theorem Let {f,} be a sequence of measurable functions on a
set of finite measure E. Suppose {f,} is uniformly pointwise bounded on E, that is, there is a
number M > 0 for which

|f2l < Mon E foralln.

If {f,}— f pointwise on E, then lim [f,, =/ f.
n— o0 E E

Proof The proof of this theorem furnishes a nice illustration of Littlewood’s Third Principle.
If the convergence is uniform, we have the easy proof of the preceding proposition. However,
Egoroff’s Theorem tells us, roughly, that pointwise convergence is “nearly’’ uniform.

The pointwise limit of a sequence of measurable functions is measurable. Therefore f
is measurable. Clearly | f| < M on E. Let A be any measurable subset of E and n a natural
number. By the linearity and additivity over domains of the integral,

fEfn—fEf=fE[fn-f]=fA[fn—f]+ [+ 0

Therefore, by Corollary 7 and the monotonicity of integration,

L[

To prove convergence of the integrals, let 0. Since m( E) <oo and f isreal-valued, Egoroff’s
Theorem tells us that there is a measurable subset A of E for which {f,} — f uniformly on A
and m(E ~ A) < ¢/4M. By uniform convergence, there is an index N for which

szlfn—fl+2M-m(E~A)~ M

€
— flI< ————onAf N.
[fu = fl 2 m(E) on Aforalln >

Therefore, for n > N, we infer from (7) and the monotonicity of integration that

/f" / (E)

Hence the sequence of integrals { f & fa} converges to [, f. O

m(A)+2M -m(E~A) <e.

Remark Prior to the proof of the Bounded Convergence Theorem, no use was made of the
countable additivity of Lebesgue measure on the real line. Only finite additivity was used, and
it was used just once, in the proof of Lemma 1. But for the proof of the Bounded Convergence
Theorem we used Egoroff’s Theorem. The proof of Egoroff’s Theorem needed the continuity
of Lebesgue measure, a consequence of countable additivity of Lebesgue measure.
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PROBLEMS
9. Let E have measure zero. Show that if f is a bounded function on E, then f is measurable
and [, f =0.
10. Let f be a bounded measurable function on a set of finite measure E. For a measurable
subset A of E, show that [, f = [, f- xa.
11. Does the Bounded Convergence Theorem hold for the Riemann integral?

12. Let f be a bounded measurable function on a set of finite measure E. Assume g is bounded
and f = ga.e. on E. Show that [ f = [ g.

13. Does the Bounded Convergence Theorem hold if m(E) < oo but we drop the assumption
that the sequence {| f,|} is uniformly bounded on E?

14. Show that Proposition 8 is a special case of the Bounded Convergence Theorem.
15. Verify the assertions in the last Remark of this section.

16. Let f be a nonnegative bounded measurable function on a set of finite measure E. Assume
[z f =0.Show that f =0a.. on E.

4.3 THE LEBESGUE INTEGRAL OF A MEASURABLE
NONNEGATIVE FUNCTION

A measurable function f on E is said to vanish outside a set of finite measure provided there
is a subset E of E for which m(Eg) < oo and f =0 on E ~ Ej. It is convenient to say that a
function that vanishes outside a set of finite measure has finite support and define its support
to be {xe E| f(x) #0).5 In the preceding section, we defined the integral of a bounded
measurable function f over a set of finite measure E. However, even if m(E) = oo, if f is
bounded and measurable on E but has finite support, we can define its integral over E by

o=

where Ej has finite measure and f =0 on E ~ E. This integral is properly defined, that is, it
is independent of the choice of set of finite measure Ej outside of which f vanishes. Thisis a
consequence of the additivity over domains property of integration for bounded measurable
functions over a set of finite measure.

Definition For f a nonnegative measurable function on E, we define the integral of f over

E by’ \

f f=sup { / h ‘ h bounded, measurable, of finite supportand0 <h < f on E} (8)
E E

OBut care is needed here. In the study of continuous real-valued functions on a topological space, the support of
a function is defined to be the closure of the set of points at which the function is nonzero.

"This is a definition of the integral of a nonnegative extended real-valued measurable function; it is not a
definition of what it means for such a function to be integrable. The integral is defined regardless of whether the
function is bounded or the domain has finite measure. Of course, the integral is nonnegative since it is defined to
be the supremum of a set of nonnegative numbers. But the integral may be equal to oo, as it is, for instance, for
a nonnegative measurable function that takes a positive constant value of a subset of E of infinite measure or the
value oo on a subset of E of positive measure.
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Chebychev’s Inequality Let f be a nonnegative measurable function on E. Then for any
A>0,

m{xeE | f(x)z)«}s%-/f. )
E
Proof Define E, = (xe E| f(x) > A}. First suppose m(E) ) = 0c. Let n be a natural number.

Define E) » = ExN[-n, n]and ¢, = A - XE, ,-~Then ¢, is a bounded measurable function
of finite support,

)«~m(E,\,,,)=/ Ypand0 <y, < fon E for all n.
E

We infer from the continuity of measure that

oo =A-m(E) =A- fim m(E) = lim [ < | 1.

Thus inequality (9) holds since both sides equal co. Now consider the case m(E)) < oo.
Define & = A- x,. Then h is a bounded measurable function of finite supportand 0 < & < f
on E. By the definition of the integral of f over E,

E E
Divide both sides of this inequality by A to obtain Chebychev’s Inequality. O

Proposition 9 Let f be a nonnegative measurable function on E. Then
f f=0ifandonlyif f =0aeonE. (10)
E

Proof First assume [, f = 0. Then, by Chebychev’s Inequality, for each natural num-
ber n, m{xeX| f(x) > 1/n} = 0. By the countable additivity of Lebesgue measure,
m{x€X| f(x) > 0} = 0. Conversely, suppose f = 0 a.e.on E. Let ¢ be a simple function
and / a bounded measurable function of finite support for which 0 < ¢ <& < f on E. Then
¢ =0a.e. on E and hence [ ¢ = 0. Since this holds for all such ¢, we infer that [, h = 0.
Since this holds for all such &, we infer that [, f = 0. O

Theorem 10 (Linearity and Monotonicity of Integration) Let f and g be nonnegative
measurable functions on E. Then for any a > 0 and 8 > 0,

fE(af+ﬁg)=af;f+Bng. 1)

Moreover,

iff<gonkE, then/;fstg. (12)
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Proof Fora>0,0 <h < fon Eifand onlyif 0 < ah < af on E. Therefore, by the linearity
of the integral of bounded functions of finite support, [, af = a [, f. Thus, to prove linearity
we need only consider the case a = 8 = 1. Let h and g be bounded measurable functions of
finite support for which0 <h < fand0 <k <gon E.Wehave0 <h+k < f+gonk,
and h + k also is a bounded measurable function of finite support. Thus, by the linearity of
integration for bounded measurable functions of finite support,

/;h+/Ek=j;(h+k)5L(f+8)-

The least upper bound for the sums of integrals on the left-hand side, as k and k vary
among bounded measurable functions of finite support for which # < f and k < g, equals
[& £+ [¢ g These inequalities tell us that [, ( f + g) is an upper bound for these same sums.

Therefore,
/EH/E“L(“”

It remains to prove this inequality in the opposite direction, that is,

fE(f+g)stf+ng.

By the definition of [;(f + g) as the supremum of [, £ as ¢ ranges over all bounded
measurable functions of finite support for which 0 < £ < f + g on E, to verify this inequality
it is necessary and sufficient to show that for any such function ¢,

‘/;ls_/Ef+/Eg. 13)

For such a function ¢, define the functions 4 and k on E by
h =min{f, £}andk=£—-honE.

Let x belong to E. If £(x) < f(x), then k(x) = 0 < g(x); if £(x) > f(x), then h(x) =
£(x)— f(x) < g(x). Therefore, h < g on E. Both h and k are bounded measurable functions
of finite support. We have

O<h<f,0<k<gand{=h+konE.

Hence, again using the linearity of integration for bounded measurable functions of finite
support and the definitions of [, f and [ g, we have

[i=[n+ <[+

Thus (13) holds and the proof of linearity is complete.

In view of the definition of /| g f as a supremum, to prove the monotonicity inequality
(12) it is necessary and sufficient to show that if / is a bounded measurable function of finite
support for which 0 < h < f on E, then

fEhstg. (14)
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Let h be such a function. Then h < g on E. Therefore, by the definition of f pgasa
supremum, | ch</ £ & This completes the proof of monotonicity. O

Theorem 11 (Additivity Over Domains of Integration) Let f be a nonnegative measurable
function on E. If A and B are disjoint measurable subsets of E, then

Juwt =1l

In particular, if E is a subset of E of measure zero, then

/Ef=/E~EO 7. )

Proof Additivity over domains of integration follows from linearity as it did for bounded
functions on sets of finite measure. The excision formula (15) follows from additivity over
domains and the observation that, by Proposition 9, the integral of a nonnegative function
over a set of measure zero is zero. |

The following lemma will enable us to establish several criteria to justify passage of the
limit under the integral sign.

Fatow’s Lemma Let { f,} be a sequence of nonnegative measurable functions on E.
If {f”}—> f pointwise a.e.on E, then / f< liminf/ fa- (16)
E E

Proof In view of (15), by possibly excising from E a set of measure zero, we assume the
pointwise convergence is on all of E. The function f is nonnegative and measurable since
it is the pointwise limit of a sequence of such functions. To verify the inequality in (16) it
is necessary and sufficient to show that if & is any bounded measurable function of finite
support for which0 < h < f on E, then

fEh sliminf/Ef,,. a7

Leth be such a function. Choose M > 0for which || < M on E. Define Ey = {x € E | h(x)#0}.
Then m(Ey) < 0o. Let n be a natural number. Define a function &, on E by

h, = min{h, f,} on E.
Observe that the function &, is measurable, that
0<h,<MonEyand h,=0o0n E~ E,.

Furthermore, for each x in E, since h(x) < f(x) and {£,(x)} = f(x), {ha(x)} > h{x). We
infer from the Bounded Convergence Theorem applied to the uniformly bounded sequence
of restrictions of i, to the set of finite measure E, and the vanishing of each h, on E ~ Ey, that

lim | h, = lim h,,=/ h=/h.
n—oo Jp n—o0Jp, E E
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However, for each n, h, < f, on E and therefore, by the definition of the integral of f, over
E, [phn < [ fo- Thus,

fh: lim h,,sliminf/ fa- O
E n— oo E E

The inequality in Fatou’s Lemma may be strict.

Example Let E = (0, 1] and for a natural number n, define f, = n - x(o,1/x)- Then {f,}
converges pointwise on E to f =0 on E. However,

f=0<1= lim fa-
J; i |

As another example of strict inequality in Fatou’s Lemma, let £ = R and for a natural
number n, define g, = X(.»+1)- Then {g,} converges pointwise on E to g=0 on E. However,

n— o0

/g=0<1= lim | g.
E E

However, the inequality in Fatou’s Lemma is an equality if the sequence {f,} is
increasing.

The Monotone Convergence Theorem Let {f,} be an increasing sequence of nonnegative
measurable functions on E.

If {fu} = f pointwise a.e.on E, then lim f fn =/ f.
n— oo E E

Proof According to Fatou’s Lemma,

fEfsliminffEfn.

However, for each index n, f, < f a.e. on E, and so, by the monotonicity of integration for
nonnegative measurable functions and (15), f; fu < f; f. Therefore

limsuprfns/Ef-

[[r=jim_ [ 5 0

Corollary 12 Let {u,,} be a sequence of nonnegative measurable functions on E.

Hence

00 o0
If f =, uy pointwise a.e.on E, then / = un
E T/

n=1

Proof Apply the Monotone Convergence Theorem with f, = ¥}_; u, for each index n,
and then use the linearity of integration for nonnegative measurable functions. O
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Definition A nonnegative measurable function f on a measurable set E is said to be integrable
over E provided
/ f<oo.
E

Proposition 13 Let the nonnegative function f be integrable over E. Then f is finite a.e.on E.

Proof Let n be a natural number. Chebychev’s Inequality and the monotonicity of measure
tell us that

m{xeE| f(x)=o00} <m{xeE| f(x)zn}S%fEf.
But [, f is finite and therefore m{x € E| f(x) = 00} = 0. O

Beppo Levi'sLemma Let { f,,} be an increasing sequence of nonnegative measurable functions
on E. If the sequence of integrals { [, f,} is bounded, then {f,} converges pointwise on E to a
measurable function f that is finite a.e.on E and

nl;mw[Efn=fEf<w.

Proof Every monotone sequence of extended real numbers converges to an extended real
number.® Since {fx} is an increasing sequence of extended real-valued functions on E, we
may define the extended real-valued nonnegative function f pointwise on E by

flx)= nll)moof,,(x) forallxeE.

According to the Monotone Convergence Theorem, { f g fo}— f e f Therefore, since the
sequence of real numbers {/, & fa} is bounded, its limit is finite and so || g f < o0o. We infer
from the preceding proposition that f is finite a.e.on E. O

PROBLEMS
17. Let E be a set of measure zero and define f = oo on E. Show that [, f =0.
18. Show that the integral of a bounded measurable function of finite support is properly defined.

19. For a number a, define f(x) = x*for0 <x <1, and f(0) = 0. Compute fol f-

20. Let {f,} be a sequence of nonnegative measurable functions that converges to f pointwise on
E.Let M > 0 be such that [, f, < M for all n. Show that [, f < M. Verify that this property
is equivalent to the statement of Fatou’s Lemma.

21. Let the function f be nonnegative and integrable over E and € > 0. Show there is a simple
function n on E that has finite support,0 <1 < fon E and [, |f — 5| <e. If E is a closed,
bounded interval, show there is a step function  on E that has finite support and [ | f —h| <e.

22. Let {f,} be a sequence of nonnegative measurable functions on R that converges pointwise
onR to f and f be integrable over R. Show that

if /l; f=lm /R fn, then /; f=lim /; f, for any measurable set E.

8See page 23.
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23. Let {a,} be a sequence of nonnegative real numbers. Define the function f on E =[1, o0) by
setting f(x) =ay ifn <x <n+1. Show that [ f =52, a,.

24. Let f be a nonnegative measurable function on E.

(i) Show there is an increasing sequence {¢,} of nonnegative simple functions on E, each of
finite support, which converges pointwise on E to f.

(i) Show that [, f = sup (/. ¢|¢ simple, of finite support and 0 < ¢ <, f on E}.

25. Let {f,} be a sequence of nonnegative measurable functions on E that converges pointwise
on E to f. Suppose f, < f on E for each n. Show that

Jim [ = 1

26. Show that the Monotone Convergence Theorem may not hold for decreasing sequences of
functions.

27. Prove the following generalization of Fatou’s Lemma: If { f,} is a sequence of nonnegative
measurable functions on E, then

fEﬁmmff,, < mnmffEf,,.

44 THE GENERAL LEBESGUE INTEGRAL
For an extended real-valued function f on E, we have defined the positive part f* and the
negative part f~ of f, respectively, by
fF(x) = max{f(x),0} and f~(x) = max{—f(x),0} for all x€ E.
Then f* and f~ are nonnegative functions on E,
f=f*-f onE

and

Ifl=f"+f onE.
Observe that f is measurable if and only if both f+ and £~ are measurable.

Proposition 14 Let f be a measurable function on E. Then f*and f~ are integrable over E
if and only if | f| is integrable over E.

Proof Assume f* and f~ are integrable nonnegative functions. By the linearity of integra-
tion for nonnegative functions, |f| = f* + f~ is integrable over E. Conversely, suppose
|f| is integrable over E. Since 0 < f+ < |f| and 0 < f~ < |f| on E, we infer from the
monotonicity of integration for nonnegative functions that both f* and f~ are integrable
over E.

Definition A measurable function f on E is said to be integrable over E provided |f] is
integrable over E. When this is so we define the integral of f over E by

Jor=lr=Lr
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Of course, for a nonnegative function f, since f = f* and f~ =0 on E, this definition
of integral coincides with the one just considered. By the linearity of integration for bounded
measurable functions of finite support, the above definition of integral also agrees with the
definition of integral for this class of functions.

Proposition 15 Let f be integrable over E. Then f is finite a.e.on E and
/ f=/ fifEgCEandm(Ey)=0. (18)
E E~Ey

Proof Proposition 13, tells us that | f| is finite a.e.on E. Thus f is finite a.e.on E. Moreover,
(18) follows by applying (15) to the positive and negative parts of f. |

The following criterion for integrability is the Lebesgue integral correspondent of the
comparison test for the convergence of series of real numbers.

Proposition 16 (the Integral Comparison Test) Let f be a measurable function on E.
Suppose there is a nonnegative function g that is integrable over E and dominates f in the
sense that

|fl<gonE.

A= [n

Proof By the monotonicity of integration for nonnegative functions, |f|, and hence f, is
integrable. By the triangle inequality for real numbers and the linearity of integration for

nonnegative functions,
fEf+—fEf-stf++fEf'=fE|f|. -

[1

We have arrived at our final stage of generality for the Lebesgue integral for functions
of a single real variable. Before proving the linearity property for integration, we need to
address, with respect to integration, a point already addressed with respect to measurability.
The point is that for two functions f and g which are integrable over E, the sum f + g is not
properly defined at points in E where f and g take infinite values of opposite sign. However,
by Proposition 15, if we define A to be the set of points in E at which both f and g are finite,
then m(E~ A) = 0. Once we show that f + g is integrable over A, we define

fE(f+g>=/A<f+g>.

We infer from (18) that [, ( f +¢) is equal to the integral over E of any extension of ( f +g)|4
to an extended real-valued function on all of E.

Then f is integrable over E and
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Theorem 17 (Linearity and Monotonicity of Integration) Let the functions f and g be
integrable over E. Then for any a and B, the function af + Bg is integrable over E and

/E(af+ﬂg)=afEf+Bng.

iff<gonkE, then/fsfg.
E E

Moreover,

Proof If & > 0, then [af]T = af* and [af]™ = af~, while if @ <0, [af]t = —af"
and [af]” = —af*. Therefore [, af = a [, f, since we established this for nonnegative
functions f and a > 0. So it suffices to establish linearity in the case @ = 8 = 1. By
the linearity of integration for nonnegative functions, |f| + |g| is integrable over E. Since
|f + 8l <|fl + gl on E, by the integral comparison test, f + g also is integrable over E.
Proposition 15 tells us that f and g are finite a.e.on E. According to the same proposition,
by possibly excising from E a set of measure zero, we may assume that f and g are finite on

E. To verify linearity is to show that
+ _ - _ + _ - +_ | o
[ir+a - [1r+4 UEf Lr|+|[e-[e } (19)

(f+8) = (f+8) =f+e=(ft-f)+(g" —g ) onE,
and therefore, since each of these six functions takes real values on E,

+

But

(F+8) +f +g =(f+8) +ft+g" nE.

We infer from linearity of integration for nonnegative functions that

/E(f+g)++fEf'+/Eg'=fE(f+g)“+/Ef++/Eg+.

Since f, g and f + g are integrable over E, each of these six integrals is finite. Rearrange
these integrals to obtain (19). This completes the proof of linearity.

To establish monotonicity we again argue as above that we may assume g and f are
finite on E. Define & = g — f on E. Then h is a properly defined nonnegative measurable
function on E. By linearity of integration for integrable functions and monotonicity of
integration for nonnegative functions,

ng—/Ef=/E(g—f)=/Eh20- O

Corollary 18 (Additivity Over Domains of Integration) Let f be integrable over E. Assume
A and B are disjoint measurable subsets of E. Then

Lo Ll
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Proof Observe that |f - ya| < |f| and | f - xg| < | f| on E. By the integral comparison test,
the measurable functions f - x4 and f - x5 are integrable over E. Since A and B are disjoint

f-xaus=f-xa+f-xponE. (21)

But for any measurable subset C of E (see Problem 28),

fcf=fEf‘Xc~

Thus (20) follows from (21) and the linearity of integration. O

The following generalization of the Bounded Convergence Theorem provides another
justification for passage of the limit under the integral sign.

The Lebesgue Dominated Convergence Theorem Let {f,} be a sequence of measurable
functions on E. Suppose there is a function g that is integrable over E and dominates { f,} on
E in the sense that | f,| < gon E for all n.

If {fu} = f pointwise a.e. on E, then f is integrable over E and nh'moo f fn= / f.
—XJE E

Proof Since |f,| < gon E and |f| < g a.e.on E and g is integrable over E, by the integral
comparison test, f and each f, also are integrable over E. We infer from Proposition 15
that, by possibly excising from E a countable collection of sets of measure zero and using the
countable additivity of Lebesgue measure, we may assume that f and each f,, is finite on E.
The function g — f and for each n, the function g — f,, are properly defined, nonnegative
and measurable. Moreover, the sequence {g — f,} converges pointwise a.e.on E to g — f.
Fatou’s Lemma tells us that

[ (e= ) stimint [ (3~ f).
E JE

Thus, by the linearity of integration for integrable functions,

ng-/sz=fE(g—f)sliminf/E(g—fn)=ng—ﬁms0pom

that is,
lim sup f fn = [ f.
E E
Similarly, considering the sequence {g + f,}, we obtain
[ 5 <timint [
E E

The proof is complete. O
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The following generalization of the Lebesgue Dominated Convergence Theorem, the
proof of which we leave as an exercise (see Problem 32), is often useful (see Problem 33).

Theorem 19 (General Lebesgue Dominated Convergence Theorem) Let {f,} be a sequence
of measurable functions on E that converges pointwise a.e. on E to f. Suppose there is a
sequence {g,} of nonnegative measurable functions on E that converges pointwise a.e.on E to
g and dominates { f,} on E in the sense that

| fal < gn on E for all n.

If lim g,,=/g<oo,then ﬁm[fn=[f.
n— o0 E E n— oo E E

Remark In Fatou’s Lemma and the Lebesgue Dominated Convergence Theorem, the
assumption of pointwise convergence a.e. on E rather than on all of E is not a decoration
pinned on to honor generality. It is necessary for future applications of these results. We
provide one illustration of this necessity. Suppose f is an increasing function on all of R. A
forthcoming theorem of Lebesgue (Lebesgue’s Theorem of Chapter 6) tells us that

i T = £() _

n— oo 1/n

f'(x) for almost all x. (22)

From this and Fatow’s Lemma we will show that for any closed, bounded interval [a, b],

b
/ £(x)dx < £(b) - £(a).

In general, given a nondegenerate closed, bounded interval [a, b] and a subset A of [a, b] that
has measure zero, there is an increasing function f on [a, b] for which the limit in (22) fails to
exist at each point in A (see Problem 10 of Chapter 6).

PROBLEMS
28. Let f be integrable over E and C a measurable subset of E. Show that Jcf=Jpfxc.

29. For a measurable function f on [1, co) which is bounded on bounded sets, define a, = I g

for each natural number n. Is it true that f is integrable over [1, co) if and oiily if the series

n1 @n converges? Is it true that f is integrable over [1, 0o) if and only if the series 3%, a,
converges absolutely?

30. Let g be a nonnegative integrable function over E and suppose (f;} is a sequence of
measurable functions on E such that for each n, | f,| < g a.c.on E. Show that

[liminff,,sliminf/ f,,slimsup[ f,,s/limsupf,,.
E E E E

31. Let f be a measurable function on E which can be expressed as f = g + h on E, where g is
finite and integrable over E and # is nonnegative on E. Define [ f = [, g+ [ h. Show that
this is properly defined in the sense that it is independent of the particular choice of finite
integrable function g and nonnegative function » whose sum is f.
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32.

33.

34.

35.

36.

Prove the General Lebesgue Dominated Convergence Theorem by following the proof of
the Lebesgue Dominated Convergence Theorem, but replacing the sequences {g — f,} and
{g + fu}, respectively, by {g, — f,} and {g, + fa}.

Let {f,} be a sequence of integrable functions on E for which f, — f a.c.on E and f is
integrable over E. Show that [, |f — fu| - 0 if and only if lim, _, o f5 | ful = f¢|f]. (Hint:
Use the General Lebesgue Dominated Convergence Theorem.)

Let f be a nonnegative measurable function on R. Show that

Jm [ g=[r

Let f be a real-valued function of two variables (x, y) that is defined on the square
0 ={(x,¥)]0 <x <1,0 < y <1} and is a measurable function of x for each fixed value
of y. Suppose for each fixed value of x, lim,_, ¢ f(x, y) = f(x) and that for all y, we have
|f(x, ¥)| < g(x), where g is integrable over [0, 1]. Show that

1 1
yh_l}]O/(; f(x, y)d,vc:fO f(x)dx.

Also show that if the function f(x, y) is continuous in y for each x, then

1
Mﬂ=£fuwwx

is a continuous function of y.

Let f be a real-valued function of two variables (x, y) that is defined on the square
Q ={(x, y)10 <x <1,0 < y <1} and is a measurable function of x for each fixed value of
y.For each (x, y) € Q let the partial derivative d f/dy exist. Suppose there is a function g that
is integrable over [0, 1] and such that

af
a—y(x, )

< g(x)forall (x, y)€Q.

Prove that
d flf(x )dx [laf( )dx for all y €[0, 1]
— . = —(x, X , 1],
dy |Jo Y o 9y y Y

4.5 COUNTABLE ADDITIVITY AND CONTINUITY OF INTEGRATION

The linearity and monotonicity properties of the Lebesgue integral, which we established
in the preceding section, are extensions of familiar properties of the Riemann integral. In
this brief section we establish two properties of the Lebesgue integral which have no coun-
terpart for the Riemann integral. The following countable additivity property for Lebesgue
integration is a companion of the countable additivity property for Lebesgue measure.

Theorem 20 (the Countable Additivity of Integration) Let f be integrable over E and
{En)}2, a disjoint countable collection of measurable subsets of E whose union is E. Then

[=3] 1 23)
E n=1"E,
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Proof Let n be a natural number. Define f, = f - y, where y,, is the characteristic function
of the measurable set Uk=1 E«. Then f, is a measurable function on E and

[fal < |flon E.

Observe that {f,}— f pointwise on E. Thus, by the Lebesgue Dominated Convergence

Theorem,
/E f= nl-l—)moo /; e

On the other hand, since {E, )22, is disjoint, it follows from the additivity over domains

property of the integral that for each n,

fEfn=k§:)1 1

ff=nlgmw/fn=”lgmm[2 f}=2 /. o
E E k=1"Y Ex n=1YE,

We leave it to the reader to use the countable additivity of integration to prove
the following result regarding the continuity of integration: use as a pattern the proof of
continuity of measure based on countable additivity of measure.

Theorem 21 (the Continuity of Integration) Let f be integrable over E.

(i) If{E,})32, is an ascending countable collection of measurable subsets of E, then
[ s=jm [ s 24
U, E, n—=o0Jp
(1) If(En}32, is a descending countable collection of measurable subsets of E, then

[

n=1 =N

n—>oo

= i . 25
1 me"f (25)

PROBLEMS
37. Let f be a integrable function on E. Show that for each € > 0, there is a natural number N
for which if n > N, then len f| <ewhere E, = {xe€E||x| > n}.

38. For each of the two functions f on [1, 0o) defined below, show that lim,, _, o f{ f exists while
f is not integrable over [1, co). Does this contradict the continuity of integration?

(i) Define f(x)=(-1)"/n,forn<x<n+1.
(i) Define f(x) = (sinx)/xforl < x <oo.

39. Prove the theorem regarding the continuity of integration.
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4.6 UNIFORM INTEGRABILITY: THE VITALI CONVERGENCE THEOREM

We conclude this first chapter on Lebesgue integration by establishing, for functions that are
integrable over a set of finite measure, a criterion for justifying passage of the limit under
the integral sign which is suggested by the following lemma and proposition.

Lemma 22 Let E be a set of finite measure and 8 > 0. Then E is the disjoint union of a finite
collection of sets, each of which has measure less than 6.

Proof By the continuity of measure,
nlimoom(E~ [-n, n]) =m(@) =0.

Choose a natural number ng for which m( E ~[—ny, ng]) < 8. By choosing a fine enough
partition of [—ny, ng), express EN[—ng, no] as the disjoint union of a finite collection of sets,
each of which has measure less than 6. O

Proposition 23 Let f be a measurable function on E. If f is integrable over E, then for each
€ >0, there is a 8 > 0 for which

if AC E is measurable and m(A) < 8, then f If] <e. (26)
A

Conversely, in the case m(E ) < 00, if for each € >0, there is a § > 0 for which (26) holds, then
f isintegrable over E.

Proof The theorem follows by establishing it separately for the positive and negative parts
of f. We therefore suppose f > 0 on E. First assume f is integrable over E. Let € > 0.
By the definition of the integral of a nonnegative integrable function, there is a measurable
bounded function f of finite support for which

05fesfonEandOS/Ef—/;fe<€/2'

Since f — fe > 0 on E, if A C E is measurable, then, by the linearity and additivity over
domains of the integral,

/;f—/Afe=/A[f—fe]S.fE[f—fe]=/Ef—fEfe<6/2-

But f, is bounded. Choose M > 0 for which 0 < fc < M on E,. Therefore, if A C E is
measurable, then

/f</fe+e/25_M-m(A)+e/2.
A A

Define 8 = ¢/2M. Then (26) holds for this choice of §. Conversely, suppose m(E) < oo and
for each € >0, there is a § > 0 for which (26) holds. Let 8y > 0 respond to the ¢ = 1 challenge.
Since m( E) < 0o, according to the preceding lemma, we may express E as the disjoint union
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of a finite collection of measurable subsets {E;}Y =1 €ach of which has measure less than .
Therefore

N
> | f<n.

k=1"E;

By the additivity over domains of integration it follows that if & is a nonnegative measurable
function of finite support and 0 < k < f on E, then |, g h < N.Therefore f is integrable. []

Deﬁmtlon A family F of measurable functions on E is said to be uniformly integrable
over’ E provided for each € > 0, there is a & > 0 such that foreach fe F,

if A C E is measurable and m(A) < 8, then f |fl <e. 27)
A

Example Let g be a nonnegative integrable function over E. Define
F={f| fismeasurableon E and |f| < gon E} .

Then F is uniformly integrable. This follows from Proposition 23, with f replaced by g, and
the observation that for any measurable subset A of E, by the monotonicity of integration,

if f belongs to F, then
[in1<[s
A A

Proposition24 Let ( fi};_; be a finite collection of functions, each of which is integrable over
E. Then {fi};_, is uniformly integrable.

Proof Lete>0.For1 < k < n, by Proposition 23, there is a 8; > 0 for which
if A C E is measurable and m(A) < §, then / il <e. (28)
A

Define § = min{dy, .. ., 8,}. This & responds to the € challenge regarding the criterion for the
collection {f; };_; to be uniformly integrable. O

Proposition 25 Assume E has ﬁﬁite measure. Let the sequence of functions { f,} be uniformly
integrable over E. If (f,} > f pointwise a.e.on E, then f is integrable over E.

Proof Let 8, > 0 respond to the € = 1 challenge in the uniform integrability criteria for the
sequence {fy,}. Since m(E) < 0o, by Lemma 22, we may express E as the disjoint union of a
finite collection of measurable subsets {E;}Y_; such that m(Ej) < & for 1 <k < N. For any
n, by the monotonicity and additivity over domains property of the integral,

N
f'fn'=2 |fal <N.
E k=1YE;

9What is here called “uniformly integrable” is sometimes called “equiintegrable.”
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We infer from Fatou’s Lemma that
[ 171 <timin [ 121 <.
E E
Thus | f| is integrable over E. O

The Vitali Convergence Theorem Let E be of finite measure. Suppose the sequence of
functions {f,} is uniformly integrable over E.

If {fu} = f pointwise a.e. on E, then f is integrable over E and lim [ fo= / f-
n—>oo E E

Proof Propositions 25 tells us that f is integrable over E and hence, by Proposition 15, is
finite a.e. on E. Therefore, using Proposition 15 once more, by possibly excising from E a set
of measure zero, we suppose the convergence is pointwise on all of E and f is real-valued.
We infer from the integral comparison test and the linearity, monotonicity, and additivity
over domains property of integration that, for any measurable subset A of E and any natural

number n,
Ln—ﬁﬂ{ﬁm—nl
sLm—ﬂ

=f~ﬂﬁ—ﬂ+ﬁm—ﬂ

sﬁw“h—ﬂ+AUM+AUL

Let € > 0. By the uniform integrability of {f,}, there is a § > 0 such that [, | f,| <¢/3 for any
measurable subset of E for which m(A) < 8. Therefore, by Fatou’s Lemma, we also have
[4 | f1 < ¢/3 for any measurable subset of A for which m(A) < 8. Since f is real-valued and
E has finite measure, Egoroff’s Theorem tells us that there is a measurable subset Ej of E
for which m(Ey) < 8 and {f,} — f uniformly on E ~ Ej. Choose a natural number N such
that | f, — f] <€/[3-m(E)] on E~ Eg for all n > N. Take A = E in the integral inequality
(29). Ifn = N, then

[r-[1

(29)

sﬁw%m—ﬂ+ﬁﬁm+ﬁﬁm

<¢/[3-m(E)]-m(E~Ep)+¢/3+¢/3<e.

This completes the proof. O
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The following theorem shows that the concept of uniform integrability is an essential
ingredient in the justification, for a sequence {k,} of nonnegative functions on a set of finite
measure that converges pointwise to i =0, of passage of the limit under the integral sign.

Theorem 26 Let E be of finite measure. Suppose {h,} is a sequence of nonnegative integrable
functions that converges pointwise a.e.on E to h=0. Then

li)moo hn = 0if and only if {h,} is uniformly integrable over E.
" E
Proof If {h,)} is uniformly integrable, then, by the Vitali Convergence Theorem, lim, _,

| ¢ hn = 0. Conversely, suppose lim, _, o | ghn = 0. Let e > 0. We may choose a natural
number N for which f g hn <eifn > N. Therefore, since each h, > Oon E,

if A C E is measurable and n > N, then f h, <e. (30)
A

According to Propositions 23 and 24, the finite collection {A, },1:’;11 is uniformly integrable
over E. Let 6 respond to the € challenge regarding the criterion for the uniform integrability
of {h, },':’;11. We infer from (30) that 6 also responds to the € challenge regarding the criterion
for the uniform integrability of {h,}3°,. O

PROBLEMS
40. Let f be integrable over R. Show that the function F defined by

F(x)=f fforallxeR
—00

is properly defined and continuous. Is it necessarily Lipschitz?
41. Show that Proposition 25 is false if £ = R.
42. Show that Theorem 26 is false without the assumption that the k,’s are nonnegative.

43. Let the sequences of functions {h,} and {g,} be uniformly integrable over E. Show that for
any « and B, the sequence of linear combinations {a f, + Bg»} also is uniformly integrable
over E.

44. Let f be integrable over R and € > 0. Establish the following three approximation properties.
(i) Thereis a simple function n on R which has finite support and [ | f — | < € (Hint: First
verify this if f is nonnegative.]
(i) There is a step function s on R which vanishes outside a closed, bounded interval and
Jx|f — sl <e. (Hint: Apply part (i) and Problem 18 of Chapter 3.)

(iii) There is a continuous function ¢ on R which vanishes outside a bounded set and
f R |f-gl<e

45. Let f be integrable'over E. Define f to be the extension of f to all of R obtained by setting
F=0outside of E. Show that f is integrable over Rand [, f = [ f. Use this and part (i) and
(iii) of the preceding problem to show that for € > 0, there is a simple function n on E and a
continuous function g on E for which |, glf—nl<eand /, plf—zgl<e
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46.

47.

48.

49.

50.

51.

52.

(Riemann-Lebesgue) Let f be integrable over (—o00, 00). Show that

n— 00

lim /00 f(x)cosnxdx=0.

(Hint: First show this for f is a step function that vanishes outside a closed, bounded interval
and then use the approximation property (ii) of Problem 44.)

Let f be integrable over (—oo0, 00).
(i) Show that for each ¢,

~ f(x)dx= f(x+1)dx.

—00 —00

(i) Let g be a bounded measurable function on R. Show that
. 00
i [ g(x)- [£(3) - f(x-+0)] =0.
t=0J_o

(Hint: First show this, using uniform continuity of f on R, if f is continuous and vanishes
outside a bounded set. Then use the approximation property (iii) of Problem 44.)

Let f be integrable over E and g be a bounded measurable function on E. Show that f - g is
integrable over E.

Let f be integrable over R. Show that the following four assertions are equivalent:

(i) f=0aeonR.

(i) fx f& = 0 for every bounded measurable function g on R.
(iii) [, f = 0 for every measurable set A.
(iv) f, f = 0for every open set O.

Let F be a family of functions, each of which is integrable over E. Show that F is uniformly
integrable over E if and only if for each € >0, there is a § > 0 such that for each f e F,

[

Let F be a family of functions, each of which is integrable over E. Show that F is uniformly
integrable over E if and only if for each € > 0, there is a § > 0 such that for all f € F,

if A C E is measurable and m(A) < 8, then <e.

ifUisopenand m(ENU) < 8, then / |fl <e.
EnU

(a) Let F be the family of functions f on [0, 1], each of which is integrable over [0, 1] and
has fj | f] < 1. Is F uniformly integrable over [0, 1]?

(b) Let F be the family of functions f on [0, 1], each of which is continuous on [0, 1] and
has || < 1on [0, 1]. Is F uniformly integrable over [0, 1]?

(c) Let F be the family of functions f on [0, 1], each of which is integrable over [0, 1] and
has | : | f1 < b—afor all [a, b] C [0, 1]. Is F uniformly integrable over [0, 1]?
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In this brief chapter, we first consider a generalization of the Vitali Convergence Theorem
to sequences of integrable functions on a set of infinite measure; for a pointwise convergent
sequence of integrable functions, tightness must be added to uniform integrablity in order
to justify passage of the limit under the integral sign. We then consider a mode of sequential
convergence for sequences of measurable functions called convergence in measure and
examine its relationship to pointwise convergence and convergence of integrals. Finally, we
prove that a bounded function is Lebesgue integrable over a set of finite measure if and
only if it is measurable, and that a bounded function is Riemann integrable over a closed,
bounded interval if and only if it is continuous at almost all points in its domain.

5.1 UNIFORM INTEGRABILITY AND TIGHTNESS: A GENERAL VITALI
CONVERGENCE THEOREM

The Vitali Convergence Theorem of the preceding chapter tells us that if m(E) < 0o, {f,} is
uniformly integrable over E and converges pointwise almost everywhere on E to f, then f
is integrable over E and passage of the limit under the integral sign is justified, that is,

lim_ [ [ fn] = [Jim s~ [ 1 M)

This theorem requires that E have finite measure. Indeed, for each natural number », define
Ja = X[n,nt1) and =0 on R. Then {f,} is uniformly integrable over R and converges
pointwise on R to f. However,

nl_i{noo[/Efn =1¢0=fEn@nmfn=fEf.

The following property of functions that are integrable over sets of infinite measure suggests
an additional property which should accompany uniform integrability in order to justify
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passage of the limit under the integral sign for sequences of functions on a domain of infinite
measure.

Proposition 1 Let f be integrable over E. Then for each € > 0, there is a set of finite measure
Ey for which
f Ifl <e.
E~Ey

Proof Let € > 0. The nonnegative function | f| is integrable over E. By the definition of the
integral of a nonnegative function, there is a bounded measurable function g on E, which
vanishes outside a subset E of E of finite measure, for which 0 < g < | f| and Jelfl-[e<e
Therefore, by the linearity and additivity over domains properties of integration,

/E~EO 'f'=fMllfl-glst[|f|—g]<e. o

Definition A family F of measurable functions on E is said to be tight over E provided for
each € > 0, there is a a subset E of E of finite measure for which

f |fl<eforall feF.
E~E0

We infer from Proposition 23 of the preceding chapter that if F is a family of functions
on E that is uniformly integrable and tight over E, then each function in F is integrable
over E.

The Vitali Convergence Theorem Let {f1} be a sequence of functions on E that is uniformly
integrable and tight over E. Suppose {f,}— f pointwise a.e. on E. Then f is integrable over

E and
Jim [ 5= 5

Proof Let ¢ > 0. By the tightness over E of the sequence {f,}, there is a measurable subset
Ey of E which has finite measure and

f | fal <e/4for alln.
E~Ey

We infer from Fatou’s Lemma that |, E~py 1S €/4. Therefore f is integrable over E ~ Ej.
Moreover, by the linearity and monotonicity of integration,

[ v

But E has finite measure and { £, } is uniformly integrable over Ey. Therefore, by the Vitali
Convergence Theorem for functions on domains of finite measure, f is integrable over Ey
and we may choose an index N for which

Lm-n

< f | fal +f |f] <e/2for all n. )
E~E E~E

<e¢f2foralln > N. 3)
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Therefore f is integrable over E and, by (2) and (3),

|f[fn—f]‘<eforallnzN.
E :

The proof is complete. O
We leave the proof of the following corollary as an exercise.

Corollary 2 Let {h,} be a sequence of nonnegative integrable functions on E. Suppose
{hn(x)}— O for almost all x in E. Then

nl_i’moo hy = 0if and only if {h,} is uniformly integrable and tight over E.
E

PROBLEMS
1. Prove Corollary 2.

2. Let {fi};_, be a finite family of functions, each of which is integrable over E. Show that
{fi};= is uniformly integrable and tight over E.

3. Let the sequences of functions {,} and {g,} be uniformly integrable and tight over E. Show
that for any @ and B, {af, + Bgx} also is uniformly integrable and tight over E.

4. Let { f,} be a sequence of measurable functions on E. Show that { f,} is uniformly integrable
and tight over E if and only if for each € > 0, there is a measurable subset Ej of E that has
finite measure and a 8 > 0 such that for each measurable subset A of E and index n,

ifm(ANEy) <8, then / | £l <e.
A

5. Let {f,} be a sequence of integrable functions on R. Show that {f,} is uniformly integrable
and tight over R if and only if for each € > 0, there are positive numbers r and & such that for
each open subset O of R and index n,

ifm(ON(-r,r))<§, then/ |fal <e.
0

5.2 CONVERGENCE IN MEASURE

We have considered sequences of functions that converge uniformly, that converge pointwise,
and that converge pointwise almost everywhere. To this list we add one more mode of
convergence that has useful relationships both to pointwise convergence almost everywhere
and to forthcoming criteria for justifying the passage of the limit under the integral sign.

Definition Let {f,} be a sequence of measurable functions on E and f a measurable function
on E for which f and -each f, is finite a.e. on E. The sequence {f,} is said to converge in
measure on E to f provided for each n > 0,

Jim m{xeE| |f,(x) = £(x)>n} =0.
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When we write {f,} - f in measure on E we are implicitly assuming that f and each
fn is measurable, and finite a.e. on E. Observe that if {f,} — f uniformly on E, and f is a
real-valued measurable function on E, then {f,} — f in measure on E since for > 0, the
set {x € E||fu(x) — f(x)| > n} is empty for n sufficiently large. However, we also have the
following much stronger result.

Proposition 3 Assume E has finite measure. Let {f,} be a sequence of measurable functions
on E that converges pointwise a.e. on E to f and f is finite a.e. on E. Then {f,}— f in
measure on E.

Proof First observe that f is measurable since it is the pointwise limit almost everywhere
of a sequence of measurable functions. Let n > 0. To prove convergence in measure we let
€ >0 and seek an index N such that

m{xeE| |fu(x) - f(x)|>n} <eforalln > N. )

Egoroff’s Theorem tells us that there is a measurable subset F of E with m(E ~ F) < e such
that { f,} - f uniformly on F. Thus there is an index N such that

|fo — fl<mon Fforalln > N.

Thus, forn > N, {xe E||f,(x) — f(x)|>n} C E~ F and so (4) holds for this choice of N.

The above proposition is false if E has infinite measure. The following example shows
that the converse of this proposition also is false.

Example Consider the sequence of subintervals of [0, 1], (I, o0 1» which has initial terms
listed as

(0. 1], [0, 1/2], [1/2, 1], [0, 1/3], [1/3, 2/3], [2/3, 1],
[0, 1/4],[1/4, 1/2]. [1/2, 3/41,[3/4, 1]....

For each index n, define f, to be the restriction to [0, 1] of the characteristic func-
tion of I,. Let f be the function that is identically zero on [0, 1]. We claim that
{fs}— f in measure. Indeed, observe that lim,, o, £(I,) = O since for each natural

number m,

ifn>1+~-+m=w

Thus, for 0 <n <1, since {x € E| | fu(x) — f(x)| > n} C I,

, then £(1,) <1/m.

0 snli)moom {XEE | [fa(x) = f(2)] >7I} = nl_ifnooe(ln) =0.

However, it is clear that there is no point x in [0, 1] at which {f, (x)} converges to f(x) since
for each point x in [0, 1], f,(x) = 1 for infinitely many indices n, while f(x) = 0.

Theorem 4 (Riesz) If {f,} — f in measure on E, then there is a subsequence {f,} that
converges pointwise a.e. on E to f.
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Proof By the definition of convergence in measure, there is a strictly increasing sequence of
natural numbers {n;} for which

m{xeE| |fj(x) = f(x)|>1/k} <1/2*for all j > ny.
For each index k, define
Ex={x€E| |fn — f(x)|>1/k}.
Then m(Ex) < 1/2* and therefore 3°, m(Ex) < co. The Borel-Cantelli Lemma tells

us that for almost all xe E, there is an index K(x) such that x¢ E; if k > K(x),
that is,

|fnk(x) = f(x)l < 1/kforall k > K(x).

Therefore
Jlim £, (x) = £(x). .
Corollary 5 Let {f,} be a sequence of nonnegative integrable functions on E. Then
Jim [ 7i=0 )
if and only if
{f2} = 0 in measure on E and {f,} is uniformly integrable and tight over E. ©6)

Proof First assume (5). Corollary 2 tells us that {f,} is uniformly integrable and tight over
E. To show that {f,} — 0 in measure on E, let n > 0. By Chebychev’s Inequality, for each
index n,

1
m{XEE| fn>n}5_’ffn-
n JE
Thus,
. 1 .
Osnlimoom{erl f,,>n}5;'~nlimoofEf,,=O.
Hence {f,} — 0 in measure on E.

To prove the converse, we argue by contradiction. Assume (6) holds but (5) fails to
hold. Then there is some €y > 0 and a subsequence { f,, } for which

/ S = €0 for all k.
E

However, by Theorem 4, a subsequence of {f,,} converges to f =0 pointwise almost
everywhere on E and this subsequence is uniformly integrable and tight so that, by the Vitali
Convergence Theorem, we arrive at a contradiction to the existence of the above €. This
completes the proof. d
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PROBLEMS

6. Let {f,} — f in measure on E and g be a measurable function on E that is finite a.e. on E.
Show that {f,} — g in measure on E if and only if f = ga.e. on E.

7. Let E have finite measure, {f,} — f in measure on E and g be a measurable function on
E that is finite a.e. on E. Prove that {f, - g} — f - g in measure, and use this to show that
{f2} - f? in measure. Infer from this that if {g,} — g in measure, then {f, - g} — f - g in
measure.

8. Show that Fatou’s Lemma, the Monotone Convergence Theorem, the Lebesgue Dominated
Convergence Theorem, and the Vitali Convergence Theorem remain vahd if “pointwise
convergence a.e.” is replaced by “convergence in measure.”

9. Show that Proposition 3 does not necessarily hold for sets E of infinite measure.

10. Show that linear combinations of sequences that converge in measure on a set of finite
measure also converge in measure.

11. Assume E has finite measure. Let {f,} be a sequence of measurable functions on E
and f a measurable on E for which f and each f, is finite a.e. on E. Prove that
{fu}— f in measure on E if and only if everysubsequence of {f,} has in turn a further
subsequence that converges to f pointwise a.e. on E.

12. Show that a sequence {a;} of real numbers converges to a real number if |a;41 — a;| < 1/2/
for all j by showing that the sequence {a;} must be Cauchy.

13. A sequence { f,} of measurable functions on E is said to be Cauchy in measure provided given
1> 0 and € > 0 there is an index N such that for all m,n > N,

m{x€E| |fu(x) = fu(x)I 2} <e.
Show that if { £} is Cauchy in measure, then there is a measurable function f on E to which
the sequence {f,} converges in measure. (Hint: Choose a strictly increasing sequence of
natural numbers {n ;} such that for each index j, if Ej = {x € E||fn;,, (x) — fn;(x)] > 1/27},
then m( E;) < 1/2/. Now use the Borel-Cantelli Lemma and the preceding problem.)
14. Assume m(E) < oc. For two measurable functions g and k on E, define
lg—hl
e[
p(s. h) T+l —hl
Show that { f,} — f in measure on E if and only if lim, _, o p( fn, f) =0.

5.3 CHARACTERIZATIONS OF RIEMANN AND LEBESGUE INTEGRABILITY

Lemma 6 Let {¢,} and (i} be sequences of functions, each of which is integrable over E,
such that {¢,} is increasing while (i} is decreasing on E. Let the function f on E have the
property that

on < f<Y,onEforalln.

I’
li m d‘ n ¢Pn| = 0 ’

then

{¢n}— f pointwise a.e. on E, {{,} — f pointwise a.e. on E, f is integrable over E,
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lim/,,:/ and lim ,,=/
n—->oo E¢ Ef n—)OOJ/;d‘ Ef

Proof For x in E, define
¢'(x) = lim gn(x)andy*(x) = lim yu(x).

The functions are ¢* and ¢* properly defined since monotone sequences of extended real-
valued numbers converge to an extended real number and they are measurable since each is
the pointwise limit of a sequence of measurable functions. We have the inequalities

on<¢* < f<y* <y, onEforalln. @)

By the monotonicity and linearity of the integral of nonnegative measurable functions,

OS‘L(lI’*—fP*)S‘/;(llt,.,—tp,,)fora]ln,
so that

0 *—o* lim n — ©n =0.

<[ =< tim [ (ha-0n)

Since y* — ¢* is a nonnegative measurable function and | £(¥* — ¢*) =0, Proposition 9 of
Chapter 4 tells us that y* = ¢* a.e. on E. But ¢* < f <¢* on E. Therefore

{¢n}— f and {¢,} — f pointwise a.e. on E.

Therefore f is measurable. Observe that since 0 < f — ¢; < 1 — ¢ on E and ¢ and ¢; are
integrable over E, we infer from the integral comparison test that f is integrable over E. We
infer from inequality (7) that for all n,

Osﬁw—ﬂfabw—nsﬁmw%)
05/;f—/;¢n=fE(f—¢n)5/;(¢n—¢n)

in, [ on= [ 1= i [ o :
n—)OOE E n—»ooE

Theorem 7 Let f be a bounded function on a set of finite measure E. Then f is Lebesgue
integrable over E if and only if it is measurable.

and therefore

Proof We have already shown that a bounded measurable function on a set of finite
measure is Lebesgue integrable (see page 74). It remains to prove the converse. Suppose f
is integrable. From the equality of the upper and lower Lebesgue integrals we conclude that
there are sequences of simple functions {¢,} and {i,} for which

¢n < f <ty onEforalln,
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and

Jim [ - or] =0

Since the maximum and minimum of a pair of simple functions are again simple, using
the monotonicity of integration and by possibly replacing ¢, by max<;<, ¢; and , by
min; ;, Y;, we may suppose {¢,} is increasing and {¢,} is decreasing. By the preceding
lemma, {¢,}— f pointwise almost everywhere on E. Therefore f is measurable since it is
the pointwise limit almost everywhere of a sequence of measurable functions. O

At the very beginning of our consideration of integration, we showed that if a bounded
function on the closed, bounded interval [a, b] is Riemann integrable over [a, b], then it is
Lebesgue integrable over [, b] and the integrals are equal. We may therefore infer from
the preceding theorem that if a bounded function on [a, b] is Riemann integrable, then it is
measurable. The following theorem is much more precise.

Theorem 8 (Lebesgue) Let f be a bounded function on the closed, bounded interval [a, b].
Then f is Riemann integrable over [a, b] if and only if the set of points in [a, b] at which f
fails to be continuous has measure zero.

Proof We first suppose f is Riemann integrable. We infer from the equality of the upper
and lower Riemann integrals over [a, b] that there are sequences of partitions {P,} and {P,}
of [a, b] for which

Jim [U(f, P) = L(f, )] =0,

where U(f, P,) and L(f, P,) upper and lower Darboux sums. Since, under refinement,
lower Darboux sums increase and upper Darboux sums decrease, by possibly replacing
each P, by a common refinement of Py, ..., P,, P{,..., P,, we may assume each P, is a
refinement of P, and P, = P,. For each index n, define ¢, to be the lower step function
associated with f with respect to P,, that is, which agrees with f at the partition points of P,
and which on each open interval determined by P, has constant value equal to the infimum
of f on that interval. We define the upper step function ¢, in a similar manner. By definition

of the Darboux sums,

b b
L(f,P,,):/ (p,,andU(f,P,,)=/ ¥, for all n.

Then {¢,} and {,} are sequences of integrable functions such that for each index n,
¢n < f <, on E. Moreover, the sequence {¢,} is increasing and {i,,} is decreasing, because
each P,y is a refinement of P,. Finally,

lim f[«/fn gl = lim [U(f, P2) = L(f, P)] = 0.

We infer from the preceding lemma that

{¢n}— f and {Y,} > f pointwise a.e on [a, b].
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The set E of points x at which either {i, (x)} or {¢,(x)} fail to converge to f(x) has measure
0. Let Eq be the union of E and the set of all the partition points in the P,’s. As the union
of a set of measure zero and a countable set, m(Ey) = 0. We claim that f is continuous at
each point in E ~ Ey. Indeed, let xq belong to E ~ Ey. To show that f is continuous at xp, let
€>0. Since {¢,(x0)} and {p,(x0)} converge to f(xg), we may choose a natural number ngy
for which

£(x0) = € < @ny(%0) < F(x0) < thny (x0) < F(x0) +e€. ®

Since x is not a partition point of P,,, we may choose 8 > 0 such that the open interval
(x0 — 8, xo + 8) is contained in the open interval I, determined by Py, which contains xo.
This containment implies that

if |x — xo| <8, then @ny(x0) < @ny(x) < f(x) < Wng(x) < thny(x).
From this inequality and inequality (8) we infer that
if |x —xo| <§, then |f(x) — f(x0)| <e.

Thus f is continuous at xg.

It remains to prove the converse. Assume f is continuous at almost all points in [a, b].
Let {P,} be any sequence of partitions of [a, b] for which!

nli)moo gap P, =0.

We claim that
Jm [U(f, Pa) = L(f, P.)] = 0. )

If this is verified, then from the following estimate for the lower and upper Riemann
integrals,

Tb b
05/ f—f f<[U(f, P,) = L(f, P,)] for all n,

we conclude that f is integrable over [a, b]. For each n, let ¢, and i, be the lower and upper
step functions associated with f over the partition P,. To prove (9) is to prove that

b
i [T~ onl =0, (10)
n— oo a

The Riemann integral of a step function equals its Lebesgue integral. Moreover, since the
function f is bounded on the bounded set [a, b}, the sequences {¢,} and {i,} are uniformly
bounded on [a, b]. Hence, by the Bounded Convergence Theorem, to verify (10) it suffices
to show that {p,}— f and {y,} - f pointwise on the set of points in (a, b) at which f is
continuous and which are not partition points of any partition P,. Let xo be such a point. We
show that

,im en(x0) = f(x0) and lim yn(x0) = f(x0). (11)

1The gap of a partition P is defined to be the maximum distance between consecutive points of the partition.
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Let € > 0. Let § > 0 be such that
f(x0) — €/2< f(x) < f(x0) + €/2if |x — xg| < 8. (12)

Choose an index N for which gap P, <8ifn > N.If n > N and I, is the open partition
interval determined by P,, which contains xq, then I, C (xo — 8, xo + 8). We infer from (12)
that

f(x0) —€/2 < @u(x0) < f(x0) < ¥n(x0) < f(x0) +€/2
and therefore

0 <yn(x0) — f(x0) <eand 0 < f(xp) — @n(x0) <eforalln > N.

Thus (11) holds and the proof is complete. O

PROBLEMS
15. Let f and g be bounded functions that are Riemann integrable over [a, b]. Show that the
product fg also is Riemann integrable over [a, b].
16. Let f be a bounded function on [a, b] whose set of discontinuities has measure zero. Show
that f is measurable. Then show that the same holds without the assumption of boundedness.
17. Let f be a function on [0, 1] that is continuous on (0, 1]. Show that it is possible for the
sequence { f[x n1] f} to converge and yet f is not Lebesgue integrable over [0, 1]. Can this
happen if f is nonnegative?
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The fundamental theorems of integral and differential calculus, with respect to the Riemann
integral, are the workhorses of calculus. In this chapter we formulate these two theorems for
the Lebesgue integral. For a function f on the closed, bounded interval [a, b], when is

ff’ = f(b) - f(a)? (i)

Assume f is continuous. Extend f to take the value f(b) on (b, b+ 1], and for0 <h <1,
define the divided difference function Diff, f and average value function Avy, f on [a, b] by

X+h
Diffy, f(x) = w and Av, f(x) = %/ * f(t)dtforall xin [a, b].

A change of variables and cancellation provides the discrete formulation of (i) for the
Riemann integral:

b
f Diffy f = Avp f(b) — Av, f(a).

The limit of the right-hand side as # — 0% equals f(b) — f(a). We prove a striking theorem
of Henri Lebesgue which tells us that a monotone function on (a, b) has a finite derivative
almost everywhere. We then define what it means for a function to be absolutely continuous
and prove that if f is absolutely continuous, then f is the difference of monotone functions
and the collection of divided differences, {Diffy, f}o<n<1, is uniformly integrable. Therefore,
by the Vitali Convergence Theorem, (i) follows for f absolutely continuous by taking the
limit as h — 07 in its discrete formulation. If f is monotone and (i) holds, we prove that f
must be absolutely continuous. From the integral form of the fundamental theorem, (i), we
obtain the differential form, namely, if f is Lebesgue integrable over [a, b], then

d

o [f: f] = f(x) for almost all x in [a, b]. (i1)
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6.1 CONTINUITY OF MONOTONE FUNCTIONS

Recall that a function is defined to be monotone if it is either increasing or decreasing.
Monotone functions play a decisive role in resolving the question posed in the preamble.
There are two reasons for this. First, a'theorem of Lebesgue (page 112) asserts that a
monotone function on an open interval is differentiable almost everywhere. Second, a
theorem of Jordan (page 117) tells us that a very general family of functions on a closed,
bounded interval, those of bounded variation, which includes Lipschitz functions, may be
expressed as the difference of monotone functions and therefore they also are differentiable
almost everywhere on the interior of their domain. In this brief preliminary section we
consider continuity properties of monotone functions.

Theorem 1 Let f be a monotone function on the open interval (a, b). Then f is continuous
except possibly at a countable number of points in (a, b).

Proof Assume f is increasing. Furthermore, assume (a, b) is bounded and f is increasing
on the closed interval [a, b]. Otherwise, express (a, b) as the union of an ascending sequence
of open, bounded intervals, the closures of which are contained in (4, b), and take the union
of the discontinuities in each of this countable collection of intervals. For each xo € (a, b), f
has a limit from the left and from the right at xo. Define

f(xa)=x1imx_f(x)=sup {f(x)l a<x<x},

Fxg) = lim f(x)=inf {§(x)| x0 <x<b}.

Since f isincreasing, f(xy ) < f(xg ). The function f fails to be continuous at xo if and only
if f(x5) < f(xg), in which case we define the open “jump” interval J(xo) by

J(x0) =1 f(xg) <y < f(x3)}-

Each jump interval is contained in the bounded interval [f(a), f(b)] and the collection
of jump intervals is disjoint. Therefore, for each natural number n, there are only a finite
number of jump intervals of length greater than 1/n. Thus the set of points of discontinuity
of f is the union of a countable collection of finite sets and therefore is countable. O

Proposition 2 Let C be a countable subset of the open interval (a, b). Then there is an
increasing function on (a, b) that is continuous only at points in (a, b) ~C.

Proof If C is finite the proof is clear. Assume C is countably infinite. Let {g,};2; be an
enumeration of C. Define the function f on (a, b) by setting !

1
fx)= Y E;foralla<x<b.

{n1gn<x}

1We use the convention that a sum over the empty-set is zero.
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Since a geometric series with a ratio less than 1 converges, f is properly defined. Moreover,

ifa<u <v<b, then f(v)— f(u) = 2 —}- (6))

nlusgn<n) 2"

Thus f is increasing. Let xo = g; belong to C. Then, by (1),

flxo) = f(x) = Zlkforallx < xg.

Therefore f fails to be continuous at xp. Now let xg belong to (a, b) ~ C. Let n be a natural
number. There is an open interval I containing x( for which g, does not belong to I for
1 < k < n. We infer from (1) that |f(x) — f(x0)| <1/2" for all x € I. Therefore f is
continuous at x. O

PROBLEMS

1. Let C be a countable subset of the nondegenerate closed, bounded interval [a, b]. Show that
there is an increasing function on [a, b] that is continuous only at points in [a, b] ~ C.

2. Show that there is a strictly increasing function on [0, 1] that is continuous only at the
irrational numbers in [0, 1].

3. Let f be a monotone function on a subset E of R. Show that f is continuous except possibly
at a countable number of points in E.

4. Let E be asubset of R and C a countable subset of E. Is there a monotone function on E that
is continuous only at points in E~ C?

6.2 DIFFERENTIABILITY OF MONOTONE FUNCTIONS: LEBESGUE'S THEOREM
A closed, bounded interval [c, d] is said to be nondegenerate provided ¢ < d.
Definition A collection F of closed, bounded, nondegenerate intervals is said to cover a set

E in the sense of Vitali provided for each point x in E and € > 0, there is an interval I in F
that contains x and has £(I) <e.

The Vitali Covering Lemma Let E be a set of finite outer measure and F a collection of
closed, bounded intervals that covers E in the sense of Vitali. Then for each € >0, there is a
finite disjoint subcollection {Ii};_; of F for which

m*
k=1

e~ Ik] <e @

Proof Since m*( E) < oo, there is an open set O containing E for which m(O) < oo. Because
F is a Vitali covering of E, we may assume that each interval in F is contained in O. By the
countable additivity and monotonicity of measure,

o0
if ()2, C F is disjoint, then > £(I) < m(0) < 0. 3)
k=1
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Moreover, since each I is closed and F is a Vitali covering of E,

(o]
if (i CF,then E~ | JLC U Iwhere]-',,:{le]-‘
k=l IeF,

n
INnUk= ﬂ}. “
k=1
If there is a finite disjoint subcollection of F that covers E, the proof is complete. Otherwise,
we inductively choose a disjoint countable subcollection {I;}$2, of F which has the following
property:
n o9
E’VUI]‘Q_ U S* Iy for all n, S
k=1 k=n+1

where, for a closed, bounded interval I, 5 « I denotes the closed interval that has the same
midpoint as I and 5 times its length. To begin this selection, let I; be any interval in F.
Suppose n is a natural number and the finite disjoint subcollection {;};_; of F has been
chosen. Since E ~ Uj_; Iy # 8, the collection F, defined in (4) is nonempty. Moreover, the
supremum, sy, of the lengths of the intervals in F, is finite since m () is an upper bound for
these lengths. Choose I, 11 to be an interval in F, for which £(1,,1) > s,/2. This inductively
defines (I 152, a countable disjoint subcollection of F such that for each n,

n
E(Inp1) > L(1)/2if Ie Fand IN|J Lk = 0. (6)
k=1

We infer from (3) that {€([;)} — 0. Fix a natural number . To verify the inclusion (5), let
x belong to E~ \UJ}_; I. We infer from (4) that there is an I € F which contains x and is
disjoint from (Jj_; Ix. Now I must have nonempty intersection with some I, for otherwise,
by (6), £(Ix) > £(I)/2 for all k, which contradicts the convergence of {£(1;)} to 0. Let N be
the first natural number for which I N Iy #@. Then N > n. Since I N U,’f;ll I = @, we infer
from (6) that £(Iy) > £(I)/2. Since x belongs to I and I N Iy # @, the distance from x to the
midpoint of Iy is at most £(7) +1/2 - £(Iy) and hence, since £(1) <2 - £(Iy), the distance
from x to the midpoint of Iy is less than 5/2 - £(Iy). This means that x belongs to 5 * Iy.
Thus,

o0
xe5xIvC |J 5*L.
k=n+1

We have established the inclusion (5).

Lete > 0. We infer from (3) that here is a natural number » for which 322, £(I;)
< ¢/5. This choice of n, together with the inclusion (5) and the monotonicity and countable
additivity of measure, establishes (2). (]

For a real-valued function f and an interior point x of its domain, the upper derivative
of f atx, Df(x) and the lower derivative of f at x, Df(x) are defined as follows:

f(x+t)—f(x)},
t

’

Bf(x) = h]i_l;no |:Sllp 0<jt|<h

Df(x)= Jim [infoqqsh w} )
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Wehave Df(x) > Df(x).1f Df(x)equals Df(x) andis finite, we say that f is differentiable
at x and define f'(x) to be the common value of the upper and lower derivatives.

The Mean Value Theorem of calculus tells us that if a function f is continuous on the
closed, bounded interval [c, d] and differentiable on its interior (¢, d) with f/ > e on (c, d),
then

a-(d-c) <[f(d) - ()]

The proof of the following generalization of this inequality, inequality (7), is a nice illustration
of the fruitful interplay between the Vitali Covering Lemma and monotonicity properties of
functions. .

Lemma 3 Let f be an increasing function on the closed, bounded interval [a, b]. Then, for
eacha >0,
1
m*{x€(a, b)| Df(x) = a} <~ [f(b) = f(a)] ™)
and

m*{xe(a, b) | Df(x) = o0} =0. 8)

Proof Let a > 0. Define E, = {x€(a, b) | Df(x) > a}. Choose & € (0, a). Let F be the
collection of closed, bounded intervals [c, d] contained in (a, b) for which f(d) — f(c) >
o(d —c). Since Df > a on E,, F is a Vitali covering of E,. The Vitali Covering Lemma
tells us that there is a finite disjoint subcollection {[cx, di]};_; of F for which

<e.

n
| Ea~ \Jlex, di]
k=1

Since Eq CU;_y[ck, di]U{Ea~ Uj_;[cx, dk]}, by the finite subadditivity of outer measure,
the preceding inequality and the choice of the intervals [cy, dy],

m*(Eq) <2(dk—ck E[f(dk) fle)]+e )

k=1

However, the function f is increasing on [a, b] and {[ct, di]};_, is a disjoint collection of
subintervals of [a, b]. Therefore

Z[f(dk) ~ f(e] < £(b) - £(a).
Thus for each € > 0, and each o € (0, a),
m*(Ea) < = -[/(b) - fla)] +e
This proves (7). For each natural number n, {x  (a, b)| D f(x) = 00} C E,, and therefore

m*{x € (a, b) | Df(x) = 00} <m*(Ey) < ; (f(b) = f(a)).
This proves (8). O
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Lebesgue’s Theorem If the function f is monotone on the open interval (a, b), then it is
differentiable almost everywhere on (a, b).

Proof Assume f is increasing, Furthermore, assume ("a, b) is bounded. Otherwise, express
(a, b) as the union of an ascending sequence of open, bounded intervals and use the
continuity of Lebesgue measure. The set of points x in (a, b) at which Df(x) > Df(x) is
the union of the sets

Eqp={x&(a, b)|Df(x)>a>p>Df(x)}

where a and B are rational numbers. Hence, since this is a countable collection, by the
countable subadditivity of outer measure, it suffices to prove that each E, g has outer
measure zero. Fix rationals a, 8 with @ > B and set E = E, g. Let € > 0. Choose an open set
O for which

ECOC(a, b) and m(O) <m*(E) +e. (10)

Let F be the collection of closed, bounded intervals [c, d] contained in O for which
f(d)—f(c)<B(d—c).Since Df <BonE, F isa Vitali covering of E. The Vitali Covering
Lemma tells us that there is a finite disjoint subcollection {[ck, di]};_; of F for which

m* !:EN O[Ck’ dk]] <e. (11)
k=1

By the choice of the intervals [cx, d], the inclusion of the union of the disjoint collection
intervals {[c¢, d¢]};_, in O and (10),

]g[f(dn — fle)]<B ki_lwk —ck>] <B-m(0)<B-[W*(E)+d.  (12)

For1 < k < n, we infer from the preceding lemma, applied to the restriction of f to [c, di],
that

m (BN (o, &) < 21 (@) - f(a0))

Therefore, by (11),
n 1 n
m*(E) < 3, m*(EN (ck, dk)) + € < — | Zlfd) = fle] | +e (13)
k=1 k=1
We infer from (12) and (13) that
m*(E) < g -m*(E)+i— -€+eforalle>0.
Therefore, since 0 < m*(E) < o0 and B/a <1, m*(E) = 0. O

Lebesgue’s Theorem is the best possible in the sense that if E is a set of measure zero
contained in the open interval (g, b), there is an increasing function on (a, b) that fails to
be differentiable at each point in E (see Problem 10).



Section 6.2  Differentiability of Monotone Functions: Lebesgue’s Theorem 113

Remark Frigyes Riesz and Béla Sz.-Nagy* remark that Lebesgue’s Theorem is “one of the
most striking and most important in real variable theory.” Indeed, in 1872 Karl Weierstrass
presented mathematics with a continuous function on an open interval which failed to be
differentiable at any point.> Further pathology was revealed and there followed a period of
uncertainty regarding the spread of pathology in mathematical analysis. Lebesgue’s Theorem,
which was published in 1904, and its consequences, which we pursue in Section 5, helped
restore confidence in the harmony of mathematics analysis.

Let f be integrable over the closed, bounded interval [a, b]. Extend f to take the value
f(b)on (b, b+1]. For0<h <1, define the divided difference function Diff; f and average
value function Av;, f of [a, b] by

— x+h
Diff;,f(x):Mand Avy, f(x)=%-/ fforallx € [a, b].
X
By a change of variables in the integral and cancellation, foralla <u <v < b,
v
[ Dith £ = A 1) - A 7). 14)
u

Corollary 4 Let f be an increasing function on the closed, bounded interval [a, b]. Then f' is
integrable over [a, b] and

/: £ < £(b) - f(a). (15)

Proof Since f is increasing on [a, b + 1], it is measurable (see Problem 22) and therefore
the divided difference functions are also measurable. Lebesgue’s Theorem tells us that
f is differentiable almost everywhere on (a, b). Therefore {Diff;,, f} is a sequence of
nonnegative measurable functions that converges pointwise almost everywhere on [a, b]
to f’. According to Fatou’s Lemma,

b
[ <tmas

b
[ it f} (16)
a
By the change of variable formula (14), for each natural number n, since f is increasing,

b 1 b+1/n 1 +1/n 1 +1/n
f Diffl/,,f=1/—n-fb f—l/—n-f f=f) - [ < £(6) - fla).

n J,
Thus ,
iimsup | [ ity f] < 1) - (@) )
n—>o00 |Jg
The inequality (15) follows from the inequalities (16) and (17). O

2See page 5 of their book Functional Analysis [RSN90].
3A simpler example of such a function, due to Bartel van der Waerden, is examined in Chapter 8 of Patrick
Fitzpatrick’s Advanced Calculus [Fit09].
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Remark The integral in (15) is independent of the values taken by f at the endpoints. On
the other hand, the right-hand side of this equality holds for the extension of any increasing
extension of f on the open, bounded interval (a, b) to its closure [a, b]. Therefore a tighter
form of equality (15) is

b
f< sp fx)- inf f(x). (18)
a x€(a,b) x€(a,b)

The right-hand side of this inequality equals f(b) — f(a) if and only if f is continuous at
the endpoints. However, even if f is increasing and continuous on [a, b}, inequality (15)
may be strict. It is strict for the Cantor-Lebesgue function ¢ on [0, 1] since (1) — ¢(0) =1
while ¢' vanishes almost everywhere on (0, 1). We show that for an increasing function f on
[a, b], (15) is an equality if and only if the function is absolutely continuous on [a, b] (see the
forthcoming Corollary 12).

Remark For a continuous function f on a closed, bounded interval [a, b] that is differentiable
on the open interval (a, b), in the absence of a monotonicity assumption on f we cannot infer
that its derivative f’ is integrable over [a, b]. We leave it as an exercise to show that for f
defined on [0, 1] by

_ x*sin(1/x2) for0<x<1
f(")‘{o forx =0,

f" is not integrable over [0, 1)

PROBLEMS

5. Show that the Vitali Covering Lemma does not extend to the case in which the covering
collection has degenerate closed intervals.

6. Show that the Vitali Covering Lemma does extend to the case in which the covering collection
consists of nondegenerate general intervals.

7. Let f be continuous on R. Is there an open interval on which f is monotone?

8. Let I and J be closed, bounded intervals and y > 0 be such that £(1) >y - £(J). Assume
INJ+#@. Show thatif y > 1/2, then J C 5 x I, where 5 * I denotes the interval with the same
center as [ and five times its length. Is the same true if 0 <y < 1/2?

9. Show that a set E of real numbers has measure zero if and only if there is a countable
collection of open intervals {/;}2; for which each point in E belongs to infinitely many of the
I'sand T2 £( 1) < oo.

10. (Riesz-Nagy) Let E be a set of measure zero contained in the open intgrval (a, b). According
to the preceding problein, there is a countable collection of open intervals contained in (a, b),

{(cx, di)}g2,, for which each point in E belongs to infinitely many intervals in the collection
and 3 (dy — ¢ ) < 00. Define
o0
f(x)="2 &((cx, dk) N (—00, x)) for all xin (a, b).
k=1 ’

Show that f is increasing and fails to be differentiable at each point in E.



11.

12.
13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

Section 6.2  Differentiability of Monotone Functions: Lebesgue’s Theorem 115

For real numbers & < B and y > 0, show that if g is integrable over [a + v, B+ 7], then

B Bt+y
f se+ndr=[ g

a a+y

Prove this change of variables formula by successively considering simple functions, bounded
measurable functions, nonnegative integrable functions, and general integrable functions.
Use it to prove (14).

Compute the upper and lower derivatives of the characteristic function of the rationals.

Let E be a set of finite outer measure and F a collection of closed, bounded intervals that
cover E in the sense of Vitali. Show that there is a countable disjoint collection {I;}72; of
intervals in F for which

o
m* E"VUIk =0.
k=1

Use the Vitali Covering Lemma to show that the union of any collection (countable or
uncountable) of closed, bounded nondegenerate intervals is measurable.

Define f on R by

x sin(1/x) ifx#0
fm:{o if x = 0.

Find the upper and lower derivatives of f at x =0.
Let g be integrable over [a, b]. Define the antiderivative of g to be the function f defined on

[a, b] by
f(x)= /.ngora]lxe[a, b).

Show that f is differentiable almost everywhere on (a, b).

Let f be an increasing bounded function on the open, bounded interval (a, b). Verify (15).

Show that if f is defined on (4, b) and ¢ € (a, b) is a local minimizer for f,then Df(c) <0 <
Df(c).

Let f be continuous on [a, b] with Df > 0 on (a, b). Show that f is increasing on [a, b]. (Hint:
First show this for a function g for which Dg > € > 0 on (a, b). Apply this to the function
g(x) = f(x) +ex)

Let f and g be real-valued functions on (a, b). Show that

Df+Dg<D(f+g)<D(f+g)<Df+Dgon(a, b).

Let f be defined on [a, b] and g a continuous function on [a, B] that is differentiable at
v€(a, B) with g(y) = c € (a, b). Verify the following.
(i) Ig'(y)>0,thenD(fog)(y)=Df(c) &(7).

(ii) If¢'(y) = 0and the upper and lower derivatives of f at c are finite, then D( fog)(y) = 0.

Show that a strictly increasing function that is defined on an interval is measurable and then
use this to show that a monotone function that is defined on an interval is measurable.
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. 23. Show that a continuous function f on [, b] is Lipschitz if its upper and lower derivatives are
bounded on (a, b).

24. Show that for f defined in the last remark of this section, f' is not integrable over [0, 1].

6.3 FUNCTIONS OF BOUNDED VARIATION: JORDAN’S THEOREM

Lebesgue’s Theorem tells us that a monotone function on an open interval is differentiable
almost everywhere. Therefore the difference of two increasing functions on an open interval
also is differentiable almost everywhere. We now provide a characterization of the class
of functions on a closed, bounded interval that may be expressed as the difference of
increasing functions, which shows that this class is surprisingly large: it includes, for instance,
all Lipschitz functions.

Let f be a real-valued function defined on the closed, bounded interval [a, b] and
P = {xg, ..., x¢} be a partition of [a, b]. Define the variation of f with respect to P by

k
V(f, P) =2 1f(xi) = f(xiz1)l,
i=1
and the total variation of f on [a, b] by
TV(f)=sup {V(f, P)| P a partition of [a, b]}.

For a subinterval [c, d] of [a, b], TV( fi, 41) denotes the total variation of the restriction of
ftofc, d].

Definition A real-valued function f on the closed, bounded interval [a, b] is said to be of
bounded variation on [a, b] provided

TV(f) <.

Example Let f be an increasing function on [a, ). Then f is of bounded variation on [a, b]
and

TV(f)= f(b) - f(a).
Indeed, for any partition P = {xq, ..., x} of [a, b],

k k
V(f, P)= Ei 1f(xi) = f(xic1) | = El[f(xi) = f(xi-1)] = £(b) - f(a).
Example Let f be a Lipschitz function on [a, b]. Then f is of bounded variation of [a, 3],
and TV(f) <c- (b—a), where )
[f(u) = f(v)| <clu—v|forallu,vin [a, b].

Indeed, for a partition P = {xo, ..., x} of [a, b],

k

k
V(f, P)= %'f("i) —fric)l e Yxi-xia]=c-[b-a].

i=1
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Thus, ¢ - [b — a] is an upper bound of the set of all variations of f with respect to a partition
of [a, b] and hence TV(f) <c-[b—a].

Example Define the function f on [0, 1] by

£(x) ={ ; cos(m/2x) j::;s 1

Then f is continuous on [0, 1]. But £ is not of bounded variation on [0, 1]. Indeed, for
a natural number n, consider the partition P, = {0, 1/2n, 1/[2n-1], ..., 1/3, 1/2, 1} of
[0, 1]. Then

V(f, P.)=1+1/24+...+1/n.

Hence f is not of bounded variation on [0, 1], since the harmonic series diverges.

Observe that if ¢ belongs to (a, b), P is a partition of [a, b], and P’ is the refinement of
P obtained by adjoining c to P, then, by the triangle inequality, V( f, P) < V(f, P’). Thus,
in the definition of the total variation of a function on [a, b], the supremum can be taken
over partitions of [a, ] that contain the point c. Now a partition P of [a, b] that contains the
point ¢ induces, and is induced by, partitions P; and P; of [a, c] and [c, b], respectively, and
for such partitions

V(f[a,b]v P)= V(f[a,c]’ P1)+V(f[(‘,b]’ PZ)' (19)
Take the supremum among such partitions to conclude that
TV( f[a, b]) = TV(f[a,c]) + TV(f[c,b])' i (20)

We infer from this that if f is of bounded variation on [a, b], then
TV(fia ) = TV(fiau) = TV(fiu, ) = Oforalla <u<v<b. 1)

Therefore the function x+— TV( fi, ), Which we call the total variation function for f, isa
real-valued increasing function on [a, b]. Moreover, for a < u <v < b, if we take the crudest
partition P = {u, v} of [u, v], we have

f(w) = f(¥) 1) = f(0)l = V(fiu,0)s P) < TV(fu,o) = TV(fia, o)) = TV (fla.u1)-

Thus
f(v) +TV(f[a,,,]) > f(u)+ TV(f[a,u])foralla <u<v<bh. (22)

We have established the following lemma.

Lemma 5 Let the function f be of bounded variation on the closed, bounded interval [a, b].
Then f has the following explicit expression as the difference of two increasing functions on
[a, B]:

F(x) =[F(x) + TV(fia,21)] = TV(fiu, x)) for all x € [a, b]. (23)

Jordan’s Theorem A function f is of bounded variation on the closed, bounded interval
[a, b] if and only if it is the difference of two increasing functions on [a, b].
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Proof Let f be of bounded variation on [a, b]. The preceding lemma provides an explicit
representation of f as the difference of increasing functions. To prove the converse, let
f =g —hon|a, b], where g and k are increasing functions on [a, b]. For any partition
P={xp,...,x} of [a,b],

V(FL P)= 3 17(8) - Flon)l
= 3 llg(s) = g(oi-0)] + BCxit) — h()l
= 3 le(x) = g5l + 3 (1) = )

= 2[6(s) gl + S 1h() - hGz1)
= [&(b) - g(@)] + [h(b) ~ h(a)].

Thus, the set of variations of f with respect to partitions of [a, b] is bounded above by
[s(5) — g(a)] + [1(b) — h(a)] and therefore f is of bounded variation of [a, b]. O

We call the expression of a function of bounded variation f as the difference of
increasing functions a Jordan decomposition of f.

Corollary 6 If the function f is of bounded variation on the closed, bounded interval [a, b},
then it is differentiable almost everywhere on the open interval (a, b) and f' is integrable over
[a, b].

Proof According to Jordan’s Theorem, f is the difference of two increasing functions on
[a, b]. Thus Lebesgue’s Theorem tells us that f is the difference of two functions which are
differentiable almost everywhere on (a, b). Therefore f is differentiable almost everywhere
on (a, b). The integrability of f’ follows from Corollary 4. O

PROBLEMS

25. Suppose f is continuous on [0, 1]. Must there be a nondegenerate closed subinterval [a, 5]
of [0, 1] for which the restriction of f to [a, b] is of bounded variation?

26. Let f be the Dirichlet function, the characteristic function of the rationals in [0, 1]. Is f of
bounded variation on [0, 1]?

27. Define f(x) = sinx on [0, 2x]. Find two increasing functions 4 and g for which f = h — g on
[0, 27].

28. Let f be astep function on [a, b]. Find a formula for its total variation.
29. (a) Define
22 cos(1/x%) ifx#0,xe[-1,1
flay= 2 eosUPE) ix20xel1 1)
0 ifx=0.

Is f of bounded variation on [~1, 1]?
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(b) Define

_J 2 cos(1/x) ifx#0,xe[-1,1]
g(x)‘{ 0 ifx=0.

Is g of bounded variation on [-1, 1]?
30. Show that the linear combination of two functions of bounded variation is also of bounded
variation. Is the product of two such functions also of bounded variation?

31. Let P be a partition of [a, b] that is a refinement of the partition P’. For a real-valued function
f on[a, b], show that V(f, P') < V(f, P).

32. Assume f is of bounded variation on [a, b]. Show that there is a sequence of partitions {P,}
of [a, b] for which the sequence {TV( f, P, )} is increasing and converges to TV( f).

33. Let {f,} be a sequence of real-valued functions on [a, b] that converges pointwise on [a, b] to
the real-valued function f. Show that

TV(f) <liminf TV(fy).

34. Let f and g be of bounded variation on [a, b]. Show that

TV(f+¢) <TV(f)+TV(g) and TV(af) = |aTV(f).
35. For a and B positive numbers, define the function f on [0, 1] by

_ | x*sin(1/xP) for0<x<1
(=) _{ 0 forx=0.

Show that if @ > B8, then f is of bounded variation on [0, 1], by showing that f’ is integrable
over [0, 1]. Then show that if a < B, then f is not of bounded variation on [0, 1].
36. Let f fail to be of bounded variation on [0, 1]. Show that there is a point xo in [0, 1] such that

f fails to be of bounded variation on each nondegenerate closed subinterval of [0, 1] that
contains xj.

6.4 ABSOLUTELY CONTINUOUS FUNCTIONS

Definition A real-valued function f on a closed, bounded interval [a, b] is said to be
absolutely continuous on [a, b] provided for each € > 0, there is a & > 0 such that for every
finite disjoint collection {(a, by )};_, of open intervals in (a, b),

if i[bk —ay] <8, then i | f(br) = f(ak)| <e.
k=1

k=1

The criterion for absolute continuity in the case the finite collection of intervals consists
of a single interval is the criterion for the uniform continuity of f on [a, b]. Thus absolutely
continuous functions are continuous. The converse is false, even for increasing functions.
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Example The Cantor-Lebesgue function ¢ is increasing and continuous on [0, 1], but it
is not absolutely continuous (see also Problems 40 and 48). Indeed, to see that ¢ is not
absolutely continuous, let r be a natural number. At the n-th stage of the construction of
the Cantor set, a disjoint collection {[ck, dk]}1<k<o» of 2" subintervals of [0, 1] have been
constructed that cover the Cantor set, each of which has length (1/3)". The Cantor-Lebesgue
function is constant on each of the intervals that comprise the complement in [0, 1] of this
collection of intervals. Therefore, since ¢ is increasing and (1) — ¢(0) =1,

2 [dy — cx] = (2/3)" while 2 [e(dk) — o(ck)] =1

1<k<2" 1<k<2"

There is no response to the ¢ = 1 challenge regarding the criterion for ¢ to be absolutely
continuous. -

Clearly linear combinations of absolutely continuous functions are absolutely continu-
ous. However, the composition of absolutely continuous functions may fail to be absolutely
continuous (see Problems 43, 44, and 45).

Proposition 7 If the function f is Lipschitz on a closed, bounded interval [a, b], then it is
absolutely continuous on [a, b).

Proof Let ¢ > 0 be a Lipschitz constant for f on [a, b], that is,
[f(u) = f(v)| <clu—v|forallu,ve[a, b

Then, regarding the criterion for the absolute continuity of f, itis clear that = ¢/c responds
to any € > 0 challenge.

There are absolutely continuous functions that fail to be Lipschitz: the function f on
[0, 1], defined by f(x) = 4/x for 0 < x < 1, is absolutely continuous but not Lipschitz (see
Problem 37).

Theorem 8 Let the function f be absolutely continuous on the closed, bounded interval
[a, b). Then f is the difference of increasing absolutely continuous functions and, in particular,
is of bounded variation.

Proof We first prove that f is of bounded variation. Indeed, let 8 respond to the € = 1
challenge regarding the criterion for the absolute continuity of f. Let P be a partition of
[, b] into N closed intervals {[ck, di]}_,, each of length less than . Then, by the definition
of & in relation to the absolute continuity of £, it is clear that TV( fi, 4,]) <1,forl <k <n.
The additivity formula (19) extends to finite sums. Hence

N
V() =k21TV(f[ck,dk]) <N.

Therefore f is of bounded variation. In view of (23) and the absolute continuity of sums
of absolutely continuous functions, to show that f is the difference of increasing absolutely
continuous functions it suffices to show that the total variation function for f is absolutely
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continuous. Let € > 0. Choose 8 as a response to the ¢/2 challenge regarding the criterion
for the absolute continuity of f on [a, b]. Let {(cx, di)}?_, be a disjoint collection of open
subintervals of (a, b) for which 3}_;[di — cx] < 8. For 1 < k < n, let P, be a partition of
[ck, di]. By the choice of & in relation to the absolute continuity of f on [a, b],

n
2 TV(f[ck.dk]’ Pk) < 6/2
k=1
Take the supremum as, for 1 < k <n, P, vary among partitions of [ck, dy], to obtain
n
2 TV(f[ck,dk]) <e¢/2<e.
k=1

We infer from (21) that, for 1 <k <n, TV(fis, 41) = TV(fia,4,]) = TV (fa,.])- Hence

n n
it 3 de - e <8, then 3 |TV(fio.a1) = TV(fina))| <€ (24)
k=1 k=1
Therefore the total variation function for f is absolutely continuous on [a, b]. a

Theorem 9 Let the function f be continuous on the closed, bounded interval [a, b]. Then
f is absolutely continuous on [a, b if and only if the family of divided difference functions
{Diffy, flo<n<1 is uniformly integrable over [a, b).

Proof. First assume {Diffy, f}o<n<1 is uniformly integrable over [a, b]. Let € > 0. Choose
& > 0 for which

f | Diffy f| <e/2ifm(E)<8and0<h <1.
E I
We claim that & responds to the € challenge regarding the criterion for f to be absolutely

continuous. Indeed, let {(c, di)};_; be a disjoint collection of open subintervals of (a, b)
for which 37 _[dy — cx] <8.For0<h <1land1 <k <n, by (14),

dy
Avy, f(di) — Avy, f(ck) =/ Diff,, f.

€k

Therefore
n n rdk .
3 1Av (d) - Avi f(e) < 3 [ it 11 = [ it 1,
k=1 k=1"cx E
where E = \U]_; (¢, di ) has measure less than 8. Thus, by the choice of §,

n
> [ AV f(di) — Ay f(cx)l <e/2forall 0<h <1.
k=1

Since f is continuous, take the limit as # — 0% to obtain

il F(de) = Fle)l < /2 <.
k=
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Hence f is absolutely continuous.

To prove the converse, suppose f is absolutely continuous. The preceding theorem tells
us that f is the difference of increasing absolutely continuous functions. We may therefore
assume that f is increasing, so that the divided difference functions are nonnegative. To
verify the uniformly integrability of (Diff, f}o<n<i, let € > 0. We must show that there is a
& > 0 such that for each measurable subset E of (a, b),

/Diffhf<eifm(E)<6and0<h§1. (25)
E

According to Theorem 11 of Chapter 2, a measurable set E is contained in a G set G
for which m(G ~ E) = 0. But every G; set is the intersection of a descending sequence of
open sets. Moreover, every open set is the disjoint union of a countable collection of open
intervals, and therefore every open set is the union of an ascending sequence of open sets,
each of which is the union of a finite disjoint collection of open intervals. Therefore, by the
continuity of integration, to verify (25) it suffices to find a 8 > 0 such that for {(cx, di)};_; a
disjoint collection of open subintervals of (a, b),

n
[Diﬂhf<e/2ifm(E) <8, where E = |J(cx, di), and0<h <1. (26)
E k=1

Choose 8 > 0 as the response to the ¢/2 challenge regarding the criterion for the absolute
continuity of f on [a, b + 1]. By a change of variables for the Riemann integral and
cancellation,

v 1 h
f Diff, f = E.f g(t)dt, where g(t) = f(v+t)—f(u+t)for0<t<landa<u<v<b.
u 0

Therefore, if {(cx, di)};_, is a disjoint collection of open subintervals of (a, b),

ADﬁhf=%-£hg(t)dt,

where

E= LnJ(ck, dy)and g(1) = i[f(dk +1) = f(ck +1)]forall0 <z <1.
k=1 k=1

If §n; [di — ck] <8, then, for0 <t <1, En} [(dx+1t) — (ck +1)] <8, and therefore g(t) <¢/2.
k=1 k=1
Thus
1 h
/ Diff, f= - - [ g(t)dt<e/2.
E hJo
Hence (26) is verified for this choice of 6. O
Remark For a nondegenerate closed, bounded interval [a, b), let F 1ip, F 4c, and F gy denote

the families of functions on [a, b that are Lipschitz, absolutely continuous, and of bounded
variation, respectively. We have the following strict inclusions:

FrLipCFacC Fay. 27)
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Proposition 7 tells us of the first inclusion, and the second inclusion was established in Theorem
7. Each of these collections is closed with respect to the formation of linear combinations.
Moreover a function in one of these collections has its total variation function in the same
collection. Therefore, by (23), a function in one of these collections may be expresed as the
difference of two increasing functions in the same collection (see Problem 46).

37.

38.

39.

41.

42.

43,

PROBLEMS

Let f be a continuous function on [0, 1] that is absolutely continuous on [e, 1] for each
0<e<l.

(i) Show that f may not be absolutely continuous on [0, 1].

(i) Show that f is absolutely continuous on [0, 1] if it is increasing.

(iif) Show that the function f on [0, 1], defined by f(x) = 4/x for 0 < x < 1, is absolutely
continuous, but not Lipschitz, on [0, 1].

Show that f is absolutely continuous on [a, b] if and only if for each € > 0, there is a § > 0
such that for every countable disjoint collection {(ax, bx)}32; of open intervals in (a, b),

S 17(0) = Fla)] < S e —a] <.
k=1 k=1

Use the preceding problem to show that if f is increasing on [a, b], then f is absolutely
continuous on [a, b] if and only if for each ¢, there is a § > 0 such that for a measurable subset
E of [a, b],

m*(f(E)) <eifm(E) <.

. Use the preceding problem to show that an increasing absolutely continuous function f

on [a, b] maps sets of measure zero onto sets of measure zero. Conclude that the Cantor-

Lebesgue function ¢ is not absolutely continuous on [0, 1] since the function ¢, defined by

¥(x) = x+ ¢(x) for 0 < x < 1, maps the Cantor set to a set of measure 1 (page 52).

Let f be an increasing absolutely continuous function on [a, b]. Use (i) and (ii) below to

conclude that f maps measurable sets to measurable sets.

(i) Infer from the continuity of f and the compactness of [a, b] that f maps closed sets to
closed sets and therefore maps Fj; sets to F, sets.

(ii) The preceding problem tells us that f maps sets of measure zero to sets of measure zero.
Show that both the sum and product of absolutely continuous functions are absolutely
continuous.

Define the functions f and g on [-1, 1] by f(x) =xSfor-1<x<1and

_ x% cos(w/2x) ifx#0,xe[-1, 1]
g(")‘{ 0 ifx =0,

(i) Show that both f and g are absolutely continuous on [—1, 1].
(ii) For the partition P, = {~1, 0, 1/2n, 1/[2n — 1}, ..., 1/3, 1/2, 1} of [-1, 1], examine
V(f o 33 Pn)

(iii) Show that f o g fails to be of bounded variation, and hence also fails to be absolutely
continuous, on [-1, 1].
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44. Let f be Lipschitz on R and g be absolutely continuous on [a, 5]. Show that the composition
f o g is absolutely continuous on [a, b].

45. Let f be absolutely continuous on R and g be absolutely continuous and strictly monotone
on [a, b]. Show that the composition f o g is absolutely continuous on [a, b].

46. Verify the assertions made in the final remark of this section.

47. Show that a function f is absolutely continuous on [a, b] if and only if for each ¢ > 0, there is
a &> 0 such that for every finite disjoint collection {(a, bx)};_, of open intervalsin (a, b),

i[f(bk) = fla)]| <eif i[bk —a] <.
k=1 k=1

6.5 INTEGRATING DERIVATIVES: DIFFERENTIATING INDEFINITE INTEGRALS

Let f be a continuous function on the closed, bounded interval [a, b]. In (14), take a = u and
b = v to arrive at the following discrete formulation of the fundamental theorem of integral
calculus:

b
f Diffy f = Avaf(b) — Avaf(a).

Since f is continuous, the limit of the right-hand side as A — 0% equals £(b) — f(a). We now
show that if f is absolutely continuous, then the limit of the left-hand side as A — 0% equals

f: f' and thereby establish the fundamental theorem of integral calculus for the Lebesgue
integral 4 '

Theorem 10 Let the function f be absolutely continuous on the closed, bounded interval
[a, b]. Then f is differentiable almost everywhere on (a, b), its derivative f' is integrable over
[a, b), and

[ 7=10)- 1@ (8)

Proof We infer from the discrete formulation of the fundamental theorem of integral
calculus that

lim

n— oo

b
f Diff,, f] = f(5) - f(a). 29)

Theorem 8 tells us that f is the difference of increasing functions on [a, b] and therefore, by
Lebesgue’s Theorem, is differentiable almost everywhere on (a, b). Therefore {Diff; /n [}
converges pointwise almost everywhere on.(a, b) to f’. On the other hand, according to
Theorem 9, {Diffy, f} is uniformly integrable over [a, b]. The Vitali Convergence Theorem
(page 95) permits passage of the limit under the integral sign in order to conclude that

b b b
. . _ . . _ ,
Jlim ]; Dlﬂl/nf]— /; Jlim Diffy, f = fa f. (30)
Formula (28) follows from (29) and (30). _ O

4This approach to the proof of the fundamental theorem of integral calculus for the Lebesgue inte-
gral is taken in a note by Patrick Fitzpatrick and Brian Hunt in which Theorem 9 is proven (see www-
users.math.umd.edw/~pmf/huntpmy).
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In the study of calculus, indefinite integrals are defined with respect to the Riemann
integral. We here call a function f on a closed, bounded interval [a, b] the indefinite integral
of g over [a, b] provided g is Lebesgue integrable over [a, b] and

f(x)=f(a)+fngoraﬂxe[a, b). (31)

Theorem 11 A function f on a closed, bounded interval [a, b} is absolutely continuous on
[a, b] if and only if it is an indefinite integral over [a,. b].

Proof First suppose f is absolutely continuous on [a, b]. For each x € (a, b], f is absolutely
continuous over [a, x] and hence, by the preceding theorem, in the case [a, b] is replaced by

[a, 4], )
@ =)+ [ 1.

Thus f is the indefinite integral of f’ over [a, b].

Conversely, suppose that f is the indefinite integral over [a, b] of g. For a disjoint
collection {(ax, bx)};_; of open intervals in (a, b), if we define E = Uj_, (ax, bi), then, by
the monotonicity and additivity over domains properties of the integral,

f k =3[ lel = f gl (32)

Let € > 0. Since |g| is integrable over [a, b], according to Proposition 23 of Chapter 4, there
is a 8 > 0 such that f; |g| < €if E C [a, b] is measurable and m(E) < 8. It follows from (32)
that this same & responds to the € challenge regarding the criterion for f to be absolutely
continuous on [a, b]. O

2 1f(bi) = fla)l = 2

k=1

Corollary 12 Let the function f be monotone on the closed, bounded interval [a, b]. Then f
is absolutely continuous on [a, b] if and only if

b
[ 7=s0)-s@. - 63

Proof Theorem 10 is the assertion that (33) holds if f is absolutely continuous, irrespective
of any monotonicity assumption. Conversely, assume f is increasing and (33) holds. Let x
belong to [a, b]. By the additivity over domains of integration,

b X b
0= f'-[f(b)—f(a)1={/ f'—[f(x)—f(a)1}+{ f’—[f(b)-f(x)]}-
According to Corollary 4,

X b
[ 7=t - s@iomd [ 7~ 150 - sl <0
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If the sum of two nonnegative numbers is zero, then they both are zero. Therefore
X
@ =fa@+ [ 5.
a

Thus f is the indefinite integral of f'. The preceding theorem tells us that f is absolutely
continuous. a

Lemma 13 Let f be integrable over the closed, bounded interval [a, b]. Then

f(x) =0 for almost all x € [a, b] (34)
if and only if
fxz f=0forall (x1, x2) C[a, b}. (35)
x1

Proof Clearly (34) implies (35). Conversely, suppose (35) holds. We claim that
/ f = Ofor all measurable sets E C [a, b]. (36)
E

Indeed, (36) holds for all open sets contained in (a, b) since integration is countably additive
and every open set is the union of countable disjoint collection of open intervals. The
continuity of integration then tells us that (36) also holds for all G sets contained in (a, b)
since every such set is the intersection of a countable descending collection of open sets. But
every measurable subset of [a, b] is of the form G ~ Ey, where G is a G5 subset of (a, b) and
m(Ep) = 0 (see page 40). We conclude from the additivity over domains of integration that
(36) is verified. Define

E*={xe[a, b]| f(x) >0} and E~ = {x€[a, b] | f(x)<0}.

These are two measurable subsets of [a, b] and therefore, by (36),

/:f+=/E+f=0and/:(—f-)=—fE_f=o.

According to Proposition 9 of Chapter 4, a nonnegative integrable function with zero integral
must vanish almost everywhere on its domain. Thus f* and f~ vanish almost everywhere
on [a, b] and hence so does f. O

Theorem 14 Let f be integrable over the closed, bounded interval [a, b]. Then

4
dx

/x f} = f(x) for almost all x € (a, b). (37)

Proof Define the function F on [a, b] by F(x) = [} f for all x €[a, b]. Theorem 18 tells us
that since F is an indefinite integral, it is absolutely continuous. Therefore, by Theorem 10, F
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is differentiable almost everywhere on (a, b) and its derivative F” is integrable. According to
the preceding lemma, to show that the integrable function F’ — f vanishes almost everywhere
on [a, b] it suffices to show that its integral over every closed subinterval of [a, b] is zero.
Let [x1, x2] be contained in [a, b]. According to Theorem 10, in the case [a, b] is replaced
by [x1, x2], and the linearity and additivity over domains properties of integration,

f:[l”—f] fF /f F(x2) - F(x) /f
L

A function of bounded variation is said to be singular provided its derivative vanishes
almost everywhere. The Cantor-Lebesgue function is a non-constant singular function. We
infer from Theorem 10 that an absolutely continuous function is singular if and only if it is
constant. Let f be of bounded variation on [a, b]. According to Corollary 6, f' is integrable
over [a, b]. Define

g(x)= /x f and h(x) = f(x) —fx f forall x € [a, b],

O

so that
f=g+hon][a, b].
According to Theorem 11, the function g is absolutely continuous. We infer from Theorem 14
that the function A is singular. The above decomposition of a function of bounded variation
f as the sum g + h of two functions of bounded variation, where g is absolutely continuous
and h is singular, is called a Lebesgue decomposition of f.
~
PROBLEMS

48. The Cantor-Lebesgue function ¢ is continuous and increasing on [0, 1]. Conclude from
Theorem 10 that ¢ is not absolutely continuous on [0, 1]. Compare this reasoning with that
proposed in Problem 40.

49. Let f be continuous on [a, b] and differentiable almost everywhere on (a, b). Show that
b
[ £=1)- 5@

if and only if

[ [, ot ] - | [ it 1]

50. Let f be continuous on [a, b] and differentiable almost everywhere on (a, b). Show that if
{Diffy/, f} is uniformly integrable over [a, b], then

b
fa £ = £(b) - f(a).
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51. Let f be continuous on [a, b] and differentiable almost everywhere on (a, b). Suppose there
- is a nonnegative function g that is integrable over [a, b] and

IDiffl/,, f| < gae.on|a, b]for alln.

Show that

b
, [ 7= 14)- sta).

52. Let f and g be absolutely continuous on [a, b]. Show that
f f-& =f(b)g(b) - f(a)g(a) f fe

53. Let the function f be absolutely continuous on [a, b]. Show that f is Lipschitz on [a, b] if
and only if there is a ¢ > 0 for which | f'| < ca.e.on [a, b].

54. (i) Let f be asingular increasing function on [a, b]. Use the Vitali Covering Lemma to show
that f has the following property: Given € > 0,8 > 0, there is a finite disjoint collection
{(ax, b )};_; of open intervals in (a, b) for which

ki_l[bk — @] <8 and ki_llf(m ~ f(@)]> £(b) - f(a) -

(i) Let f be an increasing function on [a, b] with the property described in part (i). Show
that f is singular.

(iif) Let {f,} be a sequence of singular increasing functions on [a, b] for which the series
2021 fa(x) converges to a finite value for each x € [a, b]. Define

o fx)= 2 fa(x) for xe[a, b].

Show that f is also singular.

55. Let f be of bounded variation on [a, b], and define v(x) = TV( fj,, 5 ) for all x € [a, B].
(i) Show that|f’| <v' a.e on [a, b], and infer from this that

b
[ 171 < TV(S)

(i) Show that the above is an equality if and only if f is absolutely continuous on [a, b].
(iii) Compare parts (i) and (ii) with Corollaries 4 and 12, respectively.

56. Let g be strictly increasing and absolutely continuous on [a, b].
(i) Show that for any open subset O of (a, b),

m(a(0)) = [ #x)ds
(ii) Show that for any G5 subset E of (a, b),

mla(E)) = [ £(x)ds



57.

58.

59.
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(iii) Show that for any subset E of [a, b] that has measure 0, its image g( E) also has measure
0, so that

m(s(E) =0 [ #(x)dx
(iv) Show that for any measurable subset A of [a, b],

n(s(4) = [ ¢(x)dx.
(v) Letc=g(a)andd = g(b). Show that for any simple function ¢ on [c, d],
b
/d ¢(y)dy = f o(8(x))8'(x) dx.
c a
(vi) Show that for any nonnegative integrable function f over [c, d],
’ b
[ soras= [ ststegx1ae

(vii) Show that part (i) follows from (vi) in the case that f is the characteristic function of O
and the composition is defined.

Is the change of variables formula in the last part of the preceding problem true if we just
assume g is increasing, not necessarily strictly? '

Construct an absolutely continuous strictly increasing function f on [0, 1] for which f’ =0 on
a set of positive measure. (Hint: Let E be the relative complement in [0, 1] of a generalized
Cantor set of positive measure and f the indefinite integral of yg. See Problem 39 of Chapter
2 for the construction of such a Cantor set.)

For a nonnegative integrable function f over [c, d], and a strictly increasing absolutely
continuous function g on [a, b] such that g([a, b]) C[c, d], is it possible to justify the change
of variables formula

g(b) b
[ s0av= [ ey @y
g(a) a

by showing that

:‘x [/g(x) f(s)ds ~ f: f(g(t))g'(t)dt} = 0 for almost all x € (a, b)?

&(a)

. Let f be absolutely continuous and singular on [a, b]. Show that f is constant. Also show

that the Lebesgue decomposition of a function of bounded variation is unique if the singular
function is required to vanish at x = a.
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6.6 CONVEX FUNCTIONS

Throughout this section (a, b) is an open interval that may be bounded or unbounded.

Definition A real-valued function ¢ on (a, b) is said to be convex provided for each pair of
points x1, x2 in (a,b) and each A with0 < A < 1,

e(Ax1 + (1= A)xz) < A¢(x1) + (1= A)e(x2). (38)

If we look at the graph of ¢, the convexity inequality can be formulated geometrically by
saying that each point on the chord between (x1, ¢(x1)) and (x3, ¢(x2)) is above the graph
of o.

Observe that for two points x; < x; in (a, b), each point x in (x1, x2) may be expres-
sed as

x=Ax; + (1 - A)xp where A = r-x

X=X
Thus the convexity inequality may be written as

x2 x

o) <[22 o) +|

—x .
! ]tp(xz)forxl <x<uxyin(a, b).
X2 =X

Regathering terms, this inequality may also be rewritten as

e(x) —e(n) _ o(x2) — o(x)
X — X - X3 —X

forx; <x <xyin(a, b). (39)

Therefore convexity may also be formulated geometrically by saying that for x; <x < x,, the
slope of the chord from (x;, ¢(x1)) to (x, ¢(x)) is no greater than the slope of the chord
from (x, ¢(x)) to (x2, ¢(x2)). '

Proposition 15 If ¢ is differentiable on (a, b) and its derivative ¢ is increasing, then ¢ is
convex. In particular, ¢ is convex if it has a nonnegative second derivative ¢" on (a, b).

Proof Let x1, x be in (a, b) with x; < x,, and let x belong to (x, x;). We must show that

e(x) = ¢(x1) _ o(x) —¢(x).
X — X1 - Xy —X

However, apply the Mean Value Theorem to the restriction of ¢ to each of the intervals
[x1, x] and [x, x2] to choose points ¢; € (x1, x) and ¢, € (x, x;) for which

o) = LIE0N ang g o) = 22 =00)

Thus, since ¢’ is increasing,

A=) - gar) < () = LD o
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Example Each of the following three functions is convex since each has a nonnegative
second derivative:

@(x) =x"on (0, 0o) for p > 1; o(x) =e* on (—o00, 0); ¢(x) =1In(1/x) on (0, cc).
The following final geometric reformulation of convexity will be useful in the estab-
lishment of differentiability properties of convex functions.

The Chordal Slope Lemma Let ¢ be convex on (a, b). If x1 < x < x; belong to (a, b), then
for pr=(x1,0(x1)), p=(x0(x)), p2=(x2,0(x2)),

X x X

Slope of p1p < slope of P1p: < slope of Pp3.

Proof Regather terms in the inequality (39) to rewrite it in the following two equivalent
forms:

olm)=o(x) _gbo)=olm) g

X]—x - X3 —x1

x)—o(x x) —o(x .
o(x2) —¢( 1)5(0( 2) ‘p()forx1<x<x21n(a,b). O
X —x1 Xy —x

For a function g on an open interval (a, b), and point xq € (a, b), if

lim g(xo+h) —g(x0)

exists and is finite,
h—>0,h<0 h

we denote this limit by g’(x; ) and call it the left-hand derivative of g at xo. Similarly, we
define g'(x{") and call it the right-hand derivative of g at xo. Of course, g is differentiable at
xo if and only if it has left-hand and right-hand derivatives at x that are equal. The continuity
and differentiability properties of convex functions follow from the following lemma, whose
proof follows directly from the Chordal Slope Lemma.

Lemma 16 Let ¢ be a convex function on (a, b). Then ¢ has left-hand and right-hand
derivatives at each point x € (a, b). Moreover, for points u,v in (a, b) with u < v, these
one-sided derivatives satisfy the following inequality:

PuT)<¢(ut) < W <¢'(v7) < (v"). (40)
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Corollary 17 Let ¢ be a convex function on (a,b). Then ¢ is Lipschitz, and therefore
absolutely continuous, on each closed, bounded subinterval [c, d] of (a, b).

Proof According to the preceding lemma, forc <u <v <d,

o) <o/t < LI < gm) < i) (1)

and therefore

lo(u) — @(v)l < M|u — v| for all u, v € [c, d],

where M = max{|¢/(ct)|, |¢'(d~)|}. Thus the restriction of ¢ to [u, v] is Lipschitz. A
Lipschitz function on a closed, bounded interval is absolutely continuous. O

We infer from the above corollary and Corollary 6 that any convex function defined
on an open interval is differentiable almost everywhere on its domain. In fact, much more
can be said.

Theorem 18 Let ¢ be a convex function on (a, b). Then ¢ is differentiable except at a
countable number of points and its derivative ¢’ is an increasing function.
TT—

Proof We infer from the inequalities (40) that the functions

x> f'(x7) and x— f'(xF)
are increasing real-valued functions on (a, b). But, according to Theorem 1, an increasing
real-valued function is continuous except at a countable number of points. Thus, except
on a countable subset C of (a, b), both the left-hand and right-hand derivatives of ¢ are
continuous. Let xo belong to (a, b) ~C. Choose a sequence {x,} of points greater than
xo that converges to xo. Apply Lemma 16, with x; =  and x, = v, and take limits
to conclude that

¢(x5) <¢'(x) <¢'(xp)-
Then ¢/(x5) = ¢/(x{) so that ¢ is differentiable at xo. To show that ¢’ is an increasing
function on (a, b) ~C, let u, v belong to (a, b) ~ C with u < v. Then by Lemma 16,

= SW=e) -

Let ¢ be a convex function on (a, b) and xq belong to (a,b). For a real number m,
the line y = m(x — xo) + ¢(xo), which passes through the point (xg, ¢(xg)), is called a
supporting line at x; for the graph of ¢ provided this line always lies below the graph of ¢,
that is, if

o(x)>=m(x—xp)+ ¢(xp) for all x € (a, b).

It follows from Lemma 16 that such a line is supporting if and only if its slope m lies between
the left- and right-hand derivatives of ¢ at xo. Thus, in particular, there is always at least one
supporting line at each point. This notion enables us to give a short proof of the following
inequality:
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Jensen’s Inequality Let ¢ be a convex function on (—o0, 00), f an integrable function over
[0,1], and ¢ o f also integrable over [0, 1]. Then

1 1
<o(/0 f(x)dx)s /0 (00 £)(x)dx. @)

Proof Define a = jg f(x)dx. Choose m to lie between the left-hand and right-hand
derivative of ¢ at the point a. Then y = m(t — a) + ¢(a) is the equation of a supporting line
at (a, ¢(a)) for the graph of . Hence

o(t)>m(t—a)+¢(a)forallteR.

Since f is integrable over [0, 1], it is finite a.e.on [0, 1] and therefore, substituting f(x) for ¢
in this inequality, we have

o(f(x)) = m(f(x) - a) + ¢(a) for almost all x € [0, 1].

Integrate across this inequality, using the monotonicity of the Lebesgue integral and the
assumption that both’ f and ¢ o f are integrable over [a, b}, to obtain

1 1
/ o £(x))dx> / [n(f(x) - a) +o(a)] dx
0 0

1
=m|;/(; f(x)dx—a +¢(Ol)=(0(a)' a

A few words regarding the assumption, for Jensen’s Inequality, of the integrability of
@ o f over [0, 1] are in order. We have shown that a convex function is continuous and
therefore Proposition 7 of Chapter 3 tells us that the composition ¢ o f is measurable if ¢ is
convex and f is integrable. If ¢ o f is nonnegative, then it is unnecessary to assume the p o f
is integrable since equality (42) trivially holds if the right-hand integral equals +oc. In the
case ¢ o f fails to be nonnegative, if there are constants ¢; and ¢, for which

lo(x)| < c1+c2|x| forall xeR, (43)
then we infer from the integral comparison test that ¢ o f is integrable over [0, 1] if f is. In

the absence of the growth assumption (43), the function ¢ o f may not be integrable over
[0, 1] (see Problem 71).

PROBLEMS
61. Show that a real-valued function ¢ on (a, b) is convex if and only if for points x1, ..., x, in
(a, b) and nonnegative numbers Ay, ..., A, such that 37_; Ax =1,

¢(i At xk) < i M o(xk)-
k=1 k=1

Use this to directly prove Jensen’s Inequality for f a simple function.
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62.

63.

65.

69.

70.

71.

Show that a continuous function on (a, b) is convex if and only if

<P(x1 ;"‘2> = o) -;qo(xz) for all x1, x; € (a, b).

A function on a general interval ] is said to be convex provided it is continuous on 7 and (38)
holds for all x, x; € I. Is a convex function on a closed, bounded interval [a, 5] necessarily
Lipschitz on [a, b]?

. Let ¢ have a second derivative at each point in (a, b). Show that ¢ is convex if and only if ¢”

is nonnegative.
Suppose a > 0 and b > 0. Show that the function ¢(t) = (a+ bt)? is convex on [0, 0o) for
1<p<oo.

. For what functions ¢ is Jensen’s Inequality always an equality?
67.
68.

State and prove a version of Jensen’s Inequality on a general closed, bounded interval [a, b].
Let f be integrable over [0, 1]. Show that

1 1
exp [ [ f(x)dx}s [ exetryas

Let {@,} be a sequence of nonnegative numbers whose sum is 1 and {¢,,} a sequence of positive
numbers. Show that

00 0
H {;‘,‘" =< 2 anln.
n=1 n=1

Let g be a positive measurable function on [0, 1]. Show thatlog ( fol g(x)dx) > fol log (g(x))dx
whenever each side is defined.

(Nemytskii) Let ¢ be a continuous function on R. Show that if there are constants for which
(45) holds, then ¢ o f is integrable over [0, 1] whenever f is. Then show that if ¢ o f is
integrable over [0, 1] whenever f is, then there are constants c¢; and c; for which (45) holds.
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Completeness of the real numbers may be formulated by asserting that if {a,} is a sequence
of real numbers for which lim, ;o la; — an| = 0, there is a real number a for which
limp_, o0 |an — al = 0. There is a corresponding completeness property for the Lebesgue
integral. For E measurable and 1 < p < 0o, define LP(E) to be the collection of measurable
functions f for which | f|7 is integrable over E; thus L!(E) is the collection of integrable
functions. If { £,} is a sequence of functions in LP( E) for which

lim fElfn—fm|P=0,

n, m—00

there is a function f belonging to L?( E) for which

tim [ 14, - 17 =0
This is the Riesz-Fischer Theorem, the centerpiece of this chapter. A collection F of functions
in LP(E) is said to be dense in L?( E) provided for each g in LP(E) and € > 0, there is a
function f belonging to F for which | £ 18 — fIP <e. We prove that there is a countable
collection of functions that is dense in L”(E), and that both the continuous functions and
the simple functions are dense in L?( E). The proofs of the Riesz-Fischer Theorem and the
denseness results are framed in the context of normed linear spaces of functions. In order
to construct this frame we prove two basic inequalities, Holder’s Inequaliy and Minkowski’s
Inequality.

7.1 NORMED LINEAR SPACES

Throughout this chapter E denotes a measurable set of real numbers. Define F to be the
collection of all measurable extended real-valued functions on E that are finite a.e. on E.
Define two functions f and g in F to be equivalent, and write f = g, provided

f(x) = g(x) for almost all x € E.
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This is an equivalence relation, that is, it is reflexive, symmetric, and transitive. Therefore
it induces a partition of F into a disjoint collection of equivalence classes, which we denote
by F/=. There is a natural linear structure on F/~: given two functions f and g in F, their
equivalence classes [ f] and [g] and real numbers « and 8, we define the linear combination
a-[ f1+B-[g] to be the equivalence class of the functionsin F that take the value a f (x)+Bg(x)
at points x in E at which both f and g are finite. These linear combinations are properly
defined in that they are independent of the choice of representatives of the equivalence
classes. The zero element of this linear space is the equivalence class of functions that vanish
ae.onkE.

A subset of a linear space is called a subspace provided it is closed with respect to the
formation of linear combinations. There is a natural family {L?( E)}; < p < o of subspaces of
F/=.For1l < p < oo, we define L?(E) to be the collection of equivalence classes [f] for

which
/ | fIP < o0.
E

This is properly defined since if f = g, then [, | f|P = [ |g|?. For any two numbers a and b,
la +b| < |a| + |b| <2max{|al, |bl},

and hence
la+blP <27{lal? + |b|F}. 6]

We infer from this inequality, together with the linearity and monotonicity of integration,
that if [f] and [g] belong to LP(E), so also does the linear combination a - [f] + B - [g].
Therefore LP(E) is a linear space. Of course, L!(E) comprises equivalence classes of
integrable functions.

We call a function f € F essentially bounded provided there is some M > 0, called an
essential upper bound for f, for which

|f(x)| < M for almost all x € E.

We define L®(E) to be the collection of equivalence classes [ f] for which f is essentially
bounded. It is easy to see that this is properly defined and L*( E) also is a linear subspace
of F/=

For simplicity and convenience, we refer to the equivalence classes in /= as functions
and denote them by f rather than [ f]. Thus to write f = g means that f — g vanishes a.e. on
E. This simplification imposes the obligation to check consistency when defining concepts
for the LP( E) spaces. For instance, it is meaningful to assert that a sequence {f,} in L?(E)
converges pointwise a.e. on E to a function f e LP(E) since if g, = f,, foralln and f =g,
then, since the union of a countable collection of sets of measure zero also is of measure
zero, the sequence {g,} also converges pointwise a.e. on E to g. To state that a function f
in L?[a, b] is continuous means that there is a continuous function that agrees with f a.e.
on [a, b]. Since complements of sets of measure zero are dense in R, there is only one such
continuous function and it is often convenient to consider this unique continuous function
as the representative of [ f].

In the late nineteenth century it was observed that while real-valued functions of one or
several real variables were the rudimentary ingredients of classical analysis, it is also useful
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to consider real-valued functions that have as their domain linear spaces of functions: such
functions were called functionals. It became apparent that in order to systematically study
such fruitful concepts as convergence of a sequence (and maintain the linearity property of
convergent sequences) and thereby define the concept of continuous functional, it would
be useful to extend the concept of absolute value from the real numbers to general linear
spaces.! The notion’that emerged from these investigations is called a norm.

Definition Let X be a linear space. A real-valued functional | - | on X is called a norm
provided for each f and g in X and each real number a,

(The Triangle Inequality)
If+el <lfll+ gl

(Positive Homogeneity)

lefIl = ledll £

(Nonnegativity)
[l > 0and | f|| =0ifand only if f = 0.

By a normed linear space we mean a linear space together with a norm. If X is a linear
space normed by || - || we say that a function in X is a unit function provided || f|| = 1. For

any f€X, f#0, the function f/| f|| is a unit function: it is a scalar multiple of f which we
call the normalization of f.

Example (the Normed Linear Space L/(E)) For a function f in L! (E), define

I1£11t =Llf|-

Then | - || is a norm on L!(E). Indeed, for f, g L'(E), since f and g are finite a.c. on E,
we infer from the triangle inequality for real numbers that

[f+gl <|fl+Iglae.onE.

Therefore, by the monotonicity and linearity of integration,

1f 4+ gl = fE el < fE [11+ gl] = fE 1+ fE gl = 1711 + gl

Clearly, || - ||; is positively homogeneous. Finally, if f € L'(E) and || f|l; = 0, then f = O a.e.
on E. Therefore [ f]is the zero element of the linear space L!( E) C /-, thatis, f = 0.

Example (the Normed Linear Space L*(E)) For a function f in L*®(E), define || ||« to
be the infimum of the essential upper bounds for f. We call || || the essential supremum

IWe will see later that continuity can also be examined in relation to metric structures, or, more generally,
topological structures, on a domain and range of a mapping.
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of f and claim that | - || is a norm on L*®(E). The positivity and positive homogeneity
properties follow by the same arguments used in the preceding example. To verify the
triangle inequality, we first show that || f||o is an essential upper bound for f on E, that is,

[f1 <1 fllo a.e. on E. 2
Indeed, for each natural number n, there is a subset E,, of E for which

Ifl <l fllc+1/non E~E, and m(E,) = 0.
Hence, if we define Eoo =32, Ey,
[fI < fllcon E~Exandm(Ex) = 0.

Thus the essential supremum of f is the smallest essential upper bound for f, that is, (2)
holds. Now for f, g€ L*(E),

[£(x) +&(x)l < 1f (%) +1g(x)] < [ flloo + llglloo for almost all x € E.
Therefore, | flloo + 18lloo is an essential upper bound for f + g and hence

I1f + &lloo <l fllo + l1&lloo-

Example (The Normed Linear Spaces £; and £,,) There is a collection of normed linear
spaces of sequences that have simpler structure but many similarities with the L?( E) spaces.
For 1 < p < oo, define £” to be the collection of real sequences a = (a1, a2, .. .) for which

00

2 lax)? < o0.
k=1

Inequality (1) shows that the sum of two sequences in £7 also belongs to £7 and clearly a real
multiple of a sequence in £7 also belongs to £7. Thus £7 is a linear space. We define £ to be
the linear space of real bounded sequences. For a sequence a = (ay, a3, ...) in £, define

@}l =, lakl.
k=1

This is a norm on ¢1. For a sequence {a} in £*°, define
Haktloo = sup 1<k<ocolal-

It is also easy to see that || - || is @ norm on £°.

Example (The Normed Linear Space Cla, b]) Let [a, b] be a closed, bounded interval.
Then the linear space of continuous real-valued functions on [a, b] is denoted by Cla, b].
Since each continuous function on [a, b] takes a maximum value, for € C[a, b], we can define

(1 llmax =XI€II[3§’]If(x)I.

We leave it as an exercise to show that this defines a norm that we call the maximum norm.
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PROBLEMS

b
Il = ] 1.

Show that this is a norm on C[a, b]. Also show that there is no number ¢ > 0 for which

1. For f in C[a, b], define

I flmax < cll f1l1 for all £ in C[a, b],

but there is a ¢ > 0 for which

£l < cll fllmax for all f in C[a, b].

2. Let X be the family of all polynomials with real coefficients defined on R. Show that this
is a linear space. For a polynomial p, define | p|| to the sum of the absolute values of the
coefficients of p. Is this a norm?

3. For f in L'[a, b], define || f]l = /7 x| f(x)| dx. Show that this is a norm on L![a, b].
4. For f in L*[a, b], show that

1£loo =min{M | m {xin[a, b] | 1£(x)I>M}= o}
and if, furthermore, f is continuous on [a, b], that
Il fllco = I f Il max-
5. Show that £ and ¢! are normed linear spaces.

7.2 THE INEQUALITIES OF YOUNG, HOLDER, AND MINKOWSKI

In the preceding section we introduced the linear spaces L?(E) for 1 < p < oo and E a
measurable set of real numbers. In the cases p = 1 and p = oo, we defined a norm on these
spaces. We now define a norm on L?(E) for 1 < p < 0.

Definition For E a measurable set, 1 < p < oo, and a function f in LP(E), define

£, = [ [ |f|”]l/p.

We will show that the functional || - ||, is a norm on L?( E). Indeed, positive homogeneity is
clear. Moreover, according to Proposition 9 of Chapter 4, || f||, = 0if and only if f vanishes
a.e. on E. Therefore [ f] is the zero element of the linear space L!(E) C /=, thatis, f = 0.
It remains to establish the Triangle Inequality, that is, to show that

If+&llp < £llp+lgllp for all £, gin LP(E).

This inequality in not obvious. It is called Minkowski’s Inequality.
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Definition The conjugate of a number p € (1, 0c) is the number q = p/(p — 1), which is the
unique number q € (1, 0o) for which

1 1

—+-=1

p 9

The conjugate of 1 is defined to be 0o and the conjugate of oo defined to be 1.

Young’s Inequality For 1 < p < oo, q the conjugate of p, and any two positive numbers a
and b,

14 q
w<? 2
P q

Proof The function g, defined by g(x) = [1/p] xP +1/q—x for x>0, has a positive derivative
on (1, 00), a negative derivative on (0, 1), and takes the value 0 at x = 1. The function g
therefore is nonnegative on (0, 0o), that is,

x<[1/p]xf +1/qif x> 0.
In particular,
. a
x0 < [1/plxg +1/qif xo = prasg
However, this inequality is equivalent to Young’s Inequality, since, because p(¢ —1) = g, it
is the inequality obtained by dividing each side of Young’s Inequality by »7. O

Theorem 1 Let E be a measurable set, 1 < p < oo, and q the conjugate of p. If f belongs to
LP(E) and g belongs to L1(E), then their product f - g is integrable over E and

Hélder’s Inequality
fEIf'gIS 1A Np - lelyg- - ©)

Moreover, if f #0, the function® f* = || f|l;” - sgn(f) - 1P~ belongs to LI(X, p),
/;f'f*=IIfIIpa"dIIf*IIq=1. (@)

Proof First consider the case p = 1. Then Holder’s Inequality follows from the monotonicity
of integration and the observation (2) that || f||« is an essential upper bound for f on E.
Observe that since f* = sgn( f), (4) holds with p = 1, ¢ = co. Now consider p > 1. Assume
f#0and g#0, for otherwise there is nothing to prove. It is clear that if Holder’s Inequality
is true when f is replaced by its normalization f/|| f||, and g is replaced by its normalization
8/ligllg, then it is true for f and g. We therefore assume that || f]|, = llgll, = 1, that is,

flfl"=land/IgI"=l,
E E

2The function sgn( f) takes the value 1if f(x) > 0 and —1if f(x) < 0. Therefore sgn(f) - f = || a.c. on E
since f is finite a.e. on E.
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in which case Holder’s Inequality becomes

/Elf'glsl-

Since |f|P and |g|? are integrable over E, f and g are finite a.e. on E. Thus, by Young’s
Inequality,

P lel
gl =171 1l < X L B e on k.
14 q

We infer from the linearity of integration and the integral comparison test that f - g is
integrable over E and

flf o< /Ifl”+ f|g|q=% ‘1;

It remains to prove (4). Observe that

f-fr= ||f||},_"-|f|" ae.onE.

Therefore
fE £ =L fE 1P = IAI5P 112 = 11

Sinceg(p—1) =p, [ f*llg =1. . O

It is convenient, for feLP(E), f#0, to call the function f* defined above the
conjugate function of f.

Minkowski’s Inequality Let E be a measurable set and 1 < p < oc. If the functions f and g
belong to LP(E), then so does their sum f + g and, moreover,

Nf+gllp < I1fllp + l8llp-

Proof In the preceding section we considered the cases p = 1 and p = co. So we here
consider the case pe (1, oo). We already inferred from (1) that f + g belongs to LP(E).
Assume f + g #0. Consider (f + g)*, the conjugate function of f + g. We infer from the
linearity of integration and Holder’s Inequality that

IIf+g|Ip=/;(f+g)~(f+8)*
=/f-(f+g)*+/g'(f+g)*
E E

<Nfp- N0 +8)"Ng+lglp - N(f +8)*lq
=1£lp+ llellp-
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The special case of Holder’s Inequality when p = ¢ = 2 has its own name.

The Cauchy-Schwarz Inequality Let E be a measurable set and f and g measurable functions
on E for which f? and g? are integrable over E. Then their product f - g also is integrable over

E and ‘/Elfgls\/P'\@'

Corollary 2 Let E be a measurable set and 1 < p < 0o. Suppose F is a family of functions in
LP(E) that is bounded in LP( E) in the sense that there is a constant M for which

Ifll, < M forall finF.
Then the family F is uniformly integrable over E.

Proof Let € > 0. We must show there is a 8 > 0 such that for any f in F,
f|f|<eingEismeasuIableandm(A)<8.
A

Let A be a measurable subset of E of finite measure. Consider LP(A) and L7(A) where g is
the conjugate of p. Define g to be identically equal to 1 on A. Since m(A) < oo, g belongs
to L7(A). We infer from Holder’s Inequality, applied to this g and the restriction of f to A,

that y y
p q
= . el . q
/;m fAm gS[fAlfl} Mm} .
But for all fin F,
1/p /p 1/q
4 4 q| = g
[fAm} s[/Elfl] <Mand Mlm} [m(4)]
Therefore, for all f in F,

/Ifl < M-[m(a)]"9.
A

Therefore for each € > 0, § = [¢/ M| responds to the € challenge regarding the criterion for
F to be uniformly integrable. O

Corollary 3 Let E be a measurable set of finite measure and 1 < p; < py < oo. Then
LP2(E) C LP\(E). Furthermore,

1 flp, < clfllp, for all fin LP*(E), ©)

where ¢ = [m(E)]&"’;TI;l ifpp<oocandc= [m(E)]% if py = oo.
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Proof We leave the case p; = 0o as an exercise. Assume p; < oc. Define p = p5/p; >1 and
let g be the conjugate of p. Let f belong to L”2( E). Observe that £t belongs to LP(E) and
g = Xk belongs to L( E) since m( E) < co. Apply Hélder’s Inequality. Then

1/q y
Pl — p1 . p1 . q — P q
fEIfI‘ /Eml < IR [fEm] 171 [m(E)]4.

Take the 1/ p; power of each side to obtain (5). - O

Example In general, for E of finite measure and 1 < p; < p» < oo, LP2(E) is a proper
subspace of LPL( E ). For instance, let E = (0, 1]and f be defined by f(x) = x* for 0<x < 1,
where —1/p; <a < —1/p;. Then f € LP{(E)~L"(E).

Example In general, for E of infinite measure, there are no inclusion relationships among
the LP( E) spaces. For instance, for E = (1, co) and f defined by
12
= >1
f(x) T+inx forx>1,

f belongs to LP(E) if and only if p = 2.

PROBLEMS
6. Show that if Holder’s Inequality is true for normalized functions it is true in general.
7. Verify the assertions in the above two examples regarding the membership of the function f
in LP(E).
8. Let f and g belong to L2(E). From the linearity of integration show that for any number A,

Aszf2+2A/Ef-g+ngz=fE(Af+g)220-

From this and the quadratic formula directly derive the Cauchy-Schwarz Inequality.
9. Show that in Young’s Inequality there is equality if and onlyifa = b = 1.

10. Show that in Holder’s Inequality there is equality if and only if there are constants « and B,
not both zero, for which
a|f|? = B|g|? a.e.on E.

11. For a point x = (x1,x2,...,%,) in R", define T, to be the step function on the interval
[1, n + 1) that takes the value x; on the interval [k, k + 1), for 1 <k < n. For p > 1, define
llxll p = I Txll p, the norm of the function T in L[1, n + 1). Show that this defines a norm on
R". State and prove the Holder and Minkowski Inequalities for this norm.

12. For 1 < p < o and a sequence a = (ay,ap, ...) € £P, define T, to be the function on the
interval [1, co) that takes the value a; on [k, k + 1), for k = 1,2, .... Show that T, belongs
to LP[1, oo) and that |ja||, = || T4l ,. Use this to state and prove the Holder and Minkowski
Inequalities in £7.

13. Show that if f is a bounded function on E that belongs to L”(E), then it belongs to LP2(E)
for any p; > p;.
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14.

15.
16.
17.
18.
19.

20.

21.

22

Show thatif f(x) = In(1/x) for x € (0, 1], then f belongs to L?(0, 1] forall 1 < p < oo but
does not belong to L*(0, 1].

Formulate and prove an extension of Hélder’s Inequality for the product of three functions.
Suppose that { f,} is bounded in L'[0, 1]. Is { £, } uniformly integrable over [0, 1]?

For 1 < p < 00, suppose that {f,} is bounded in LP(R). Is { f,,} tight?

Assume m(E) < 0o. For f € L*(E), show that lim,, _, o || Il = || fllo-

For 1 < p < 00, g the conjugate of p, and f € L?(E), show that

Iflp = max f
Tl geLI(E), lgly<1 Ef #

For 1 < p < o0, ¢ the conjugate of p, and f € L?(E), show that f = 0if and only if

/f~g=0forallgeLq(E).
E

For 1 < p < oo, find the values of the parameter A for which

[f Oforall feLP[0, 1].

e—>0+ e)‘

(Riesz) For 1 < p < oo, show that if the absolutely continuous function F on [a, b] is the
indefinite integral of an LP[a, b] function, then there is a constant M > 0 such that for any
partition {xo, . .., x,} of [a, b],

& 1 F(x) = F(x-1)l?

<M.
& - xelet

7.3 LP IS COMPLETE: THE RIESZ-FISCHER THEOREM

The concepts of convergent sequence and Cauchy sequence are defined for a sequence in
a normed linear space in exactly the same way they are for sequences in R, normed by the
absolute value.

Definition A sequence {f,} in a linear space X that is normed by || - | is said to converge to f
in X provided

Jim 1= fall =o0.

We write

{(fu}=> finXor "li)moof,,=finX

to mean that each f, and f belong to X and lim, _, » || f — full = 0.
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It is clear that for a sequence {f,} and function f in C[a, b), {f,}— f in Cla, b], normed
by the maximum norm, if and only if {f,} — f uniformly on [a, b]. Furthermore, since the
essential supremum of a function in L*°( E) is an essential upper bound, for a sequence { f,;}
and function fin L*(E), {f,}— fin L*°(E) if and only if {f,} — f uniformly on the com-
plement of a set of measure zero. For a sequence {f,} and function f in LP(E),1 < p<oo,
{fa} = fin LP(E) if and only if

n—oo

lim fElfn—fI”=0-

Definition A sequence {f,} in a linear space X that is normed by || - || is said to be Cauchy in
X provided for each € > 0, there is a natural number N such that

I fn = fmll <€ forallm,n>N.
A normed linear space X is said to be complete provided every Cauchy sequence in X

converges to a function in X. A complete normed linear space is called a Banach space.

The completeness axiom for the real numbers is equivalent to the assertion that R,
normed by the absolute value, is complete. This immediately implies that each Euclidean
space R” also is complete. In a first course in mathematical analysis it is always proven that
C[a, b], normed by the maximum norm, is complete (see Problem 31). The same argument,
together with the measurability of pointwise limits of measurable functions, shows that
L®(E) also is complete (see Problem 33).

Proposition 4 Let X be a normed linear space. Then every convergent sequence in X is
Cauchy. Moreover, a Cauchy sequence in X converges if it has a convergent subsequence.

Proof Let {f,} > f in X. By the triangle inequality for the norm,

I fo = full = LS = F14f = full < N fu = FI 41 fu — £l fOr allm, .

Therefore { f,} is Cauchy.

Now let {f,} be a Cauchy sequence in X that has a subsequence { f,,} which converges
in X to f. Let¢>0. Since { f,} is Cauchy, we may choose N such that || f, — fmll , <€/2 for all
n,m > N. Since {f, } converges to f we may choose k such that n;, > N and || fo, — £l < €/2.
Then, by the triangle inequality for the norm,

o= Fllp = Ilfa = fu ]+ e = £p
=fa— fnk"p'l' “fnk - f||p <€f0rn > N.

Therefore {f,} = fin X O
In view of the above lemma, a useful strategy to establish the completeness of a

particular normed linear space is to show that a particular type of Cauchy sequence, tailored
to the properties of the space, converges and also show that every Cauchy sequence has
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a subsequence of this particular type (see Problems 30 and 32). In the LP(E) spaces,
1 < p < 00, so-called rapidly Cauchy sequences,’ defined as follows, are useful.

Definition Let X be a linear space normed by || - ||. A sequence {f,} in X is said to be rapidly
Cauchy provided there is a convergent series of positive numbers S € for which

I fesr = fill < € forallk.

It is useful to observe that if {f,} is a sequence in a normed linear space and the
sequence of nonnegative numbers {a;} has the property that

I fi+1 = fiell < ay for all &,

then, since
n+k—1
Jotk— fo= 2 [fj+1 - f]] for all n, k,
Jj=n
n+k-1 00
Motk = fall = 3 Wfju1 = fill < 3 ajforalln, k. (6)
J=n Jj=n

Proposition 5 Let X be a normed linear space. Then every rapidly Cauchy sequence in X is
Cauchy. Furthermore, every Cauchy sequence has a rapidly Cauchy subsequence.

Proof Let {f,} be a rapidly Cauchy sequence in X and Sioq €k a convergent series of
nonnegative numbers for which

I fer1 = fiell = 6% for all k. (7
We infer from (6) that
00
I fotk = full < 2 € forall n, k. ®)
J=n

Since the series 352 ; €, converges, the series pOpad e% also converges. We infer from (8)
that {f,} is Cauchy. Now assume that {f,} is a Cauchy sequence in X. We may inductively
choose a strictly increasing sequence of natural numbers {n;} for which

| fresr = fuell < (1/2)k for all k.

The subsequence { f,, } is rapidly Cauchy since the geometric series with ratio 1/v/2 converges.
O

Theorem 6 Let E be a measurable set and 1 < p < oc. Then every rapidly Cauchy sequence
in LP( E) converges both with respect to the LP( E) norm and pointwise a.e. on E to a function
in LP(E).

31n the article “Rethinking the Lebesgue Integral” (American Math Monthly, December, 2009), Peter Lax
singles out pointwise limits of sequences of continuous functions that are rapidly Cauchy with respect to the L!
norm as primary objects in the construction of the complete space L. He defends the viewpoint that the principal
object of desire in the program to use theorems about Banach spaces in the study of integration is the identification

of L!. Lax constructs functions in L! as limits of rapidly Cauchy sequences of continuous functions without first
making a separate study of measure theory.
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Proof We leave the case p = oo as an exercise (Problem 33). Assume 1 < p<oo. Let {f,} be
a rapidly convergent sequence in L?( E). By possibly excising from E a set of measure zero,
we may assume that each of the f,’s takes real values. Choose 322, € to be a convergent
series of positive numbers such that

I fes1 = fellp < € for all k, )

and therefore
/ |fest — fil? < &7 forall k. (10)
E

Fix a natural number k. Since, for x € E, | fy11(x) — fi(x)| > € if and only if | fri1(x) —
fi(x)|P > €, we infer from (10) and Chebychev’s Inequality that

m{xeE| lfin(x) = f(0Nz e} =m{xe | 1fisa(x) = f(x)P" = ef}

1
<1 -fElfm _ AP

€

<€

Since p > 1, the series 3 €f converges. The Borel-Cantelli Lemma tells us that there is a
subset Ey of E that has measure zero and for each x € E ~ Ej, there is an index K (x) such that

| fer1(x) = fi(x)l < e forall k > K(x).
Let x belong to E ~ Ey. Then

n+k-1
st (®) = (DS D Ufjaa(x) = £()]
J=n
< iejforallnzl((x)andallk. (11)
j=n

The series 32, € converges, and therefore the sequence of real numbers { fi(x)} is Cauchy.
The real numbers are complete. Denote the limit of { f;(x)} by f(x). It follows from (9) and
(6) that

P

o0
[iss=sip < |3 ] foralink 1)

j=n

Since {f,} > f pointwise a.e. on E, take the limit as k — oo in this inequality and infer from
Fatou’s Lemma that

P
/Elf—f,,lps [ﬁeg} for all n.
J=n
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Since the series 2,‘5‘):1 ez converges, f belongs to LP(E) and {f,} — f in LP(E). The proof
is complete since we constructed f as the pointwise limit a.e. on E of {f,}. O

The Riesz-Fischer Theorem Let E be a measurable set and 1 < p < 0o0. Then LP(E) is a
Banach space. Moreover, if {f,}— f in LP(E), a subsequence of {f,} converges pointwise
aeonEtof.

Proof Let {f;} be a Cauchy sequence LP(E). According to Proposition 5, there is a
subsequence {f;,} of {f,} that is rapidly Cauchy. The preceding theorem tells us that {f,,}
converges to a function f in L?( E) both with respect to the LP( E) norm and pointwise a.e.
on E. According to Proposition 4 the whole Cauchy sequence converges to f with respect to
the LP( E) norm.

As the following example shows, a sequence {f,} in LP( E) that converges pointwise
a.e.on E to f in L?( E) will not in general converge in LP(E).

Example For E = [0, 1], 1 < p < 00, and each natural number n, let f, = n'/p X(0,1/n)- The
sequence converges pointwise on [0, 1] to the function that is identically zero but does not
converge to this function with respect to the LP[0, 1] norm.

The next two theorems provide necessary and sufficient conditions for convergence in L?( E)
for a sequence that converges pointwise.

Theorem 7 Let E be a measurable set and 1 < p < 00. Suppose {fn} is a sequence in LP(E)
that converges pointwise a.e. on E to the function f which belongs to LP(E). Then

(> 1 in L2(E) fandonly tim_ [ 15,17 = [ 15

Proof By possibly excising from E a set of measure zero, we may assume f and each f,
is real-valued and the convergence is pointwise on all of E. We infer from Minkowski’s
Inequality that, for eachn, ||| full, — | fll ol < Il fo — fll . Hence, if {f,} - fin LP(E), then
lim, , o0 [ 1fal? = [¢|fal?. To prove the converse, assume lim, . oo [ | fal? = [i | fal”.
Define (¢) = ¢” for all . Then ¢ is convex since its second derivative is nonnegative and thus

'//(a;b) < ¥(a) ; y(b) for all a, b.

Hence
p

a0 toralla, b,

|a? + |b|P
0<—— -
- .2
Therefore, for each n, a nonnegative measurable function 4, is defined on E by

ho(x) = If,,(x)|P-24- lf()P fn(x)z—f(x)

p
forallxeE.
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Since {h,} — | f|? pointwise on E, we infer from Fatou’s Lemma that

fElfI”sliminf[/Ehn]

I A IO
_hmmf[L 2
=L|f|P—ﬁmsup[L

”}
g [ [ <o

thatis, {f,} — fin LP(E). O

fa(x) - f(x)
2

p}
fn(x) - f(x)
2

Thus

Theorem 8 Let E be a measurable set and 1 < p < 0. Suppose {f,} is a sequence in L7 (E)
that converges pointwise a.e. on E to the function f which belongs to LP(E). Then

{fi}— fin LP(E)
if and only if
{1 £17} is uniformly integrable and tight over E.

Proof The sequence of nonnegative integrable functions {| f, — f|”} converges pointwise a.e.
on E to zero. According to Corollary 2 of Chapter 5, a corollary of the Vitali Convergence
Theorem,

lim f | f» = fIP = 0if and only if {| f, — f|7} is uniformly integrable and tight over E.
E

n— 00
However, we infer from the inequality (1) that for all n,

|fo = FIP < 2P{1 ful” + | fIP} and | fal” < 2P(| fo — fIP +|f|"} ae. oM E.

By assumption, | f|? is integrable over E, and therefore {| f, — f|?} is uniformly integrable
and tight over E if and only if the sequence {| f,|?} is uniformly integrable and tight over E.
O

PROBLEMS
23. Provide an example of a Cauchy sequence of real numbers that is not rapidly Cauchy.

24. Let X be normed linear space. Assume that {f,} - f in X, {g,} > g in X, and @ and B are
real numbers. Show that
{afn +Bgn} > af +Bgin X.

25. Assume that E has finite measure and 1 < p; < p; < oo. Show thatif {f,} —» f in LP2(E),
then {f,} » fin LP1(E).
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26.

27.

28.

29.

30.

3L

32.

33.
34.
35.

(The L? Dominated Convergence Theorem) Let {f,} be a sequence of measurable functions
that converges pointwise a.e. on E to f. For 1 < p < oo, suppose there is a function g in
LP(E) such that for all n, | f,| < g a.e. on E. Prove that {f,} - f in LP(E).

For E a measurable set and 1 < p < o0, assume {f,} > f in LP(E). Show that there is a
subsequence {fy,} and a function g € L?( E) for which | fnl < gae.onEforallk.

Assume E has finite measure and 1 < p < oo. Suppose {,} is a sequence of measurable
functions that converges pointwise a.e. on E to f. For 1 < p<oo, show that { f,} — fin LP(E)
if there is a 6 > 0 such that {f,} belongs to and is bounded as a subset of LPH(E).

Consider the linear space of polynomials on [a, 5] normed by | - [|max norm. Is this normed
linear space a Banach space?

Let {4} be a sequence in C[a, b] and $°, a; a convergent series of positive numbers such
that

I fir1 — fillmax < ax for all k.
Prove that

o0
[fatk(x) = fie(X)] < I fask = filmax < D, a;j for all k, n and all x €[a, b).

Jj=n

Conclude that there is a function f € C[a, b] such that {f,} - f uniformly on [a, b]

Use the preceding problem to show that C[a, b], normed by the maximum norm, is a Banach
space.

Let {f,} be a sequence in L*(E) and 3°, a; a convergent series of positive numbers such
that

I fes1 = filloo < ai for all k.
Prove that there is a subset Ej of E which has measure zero and

00
[fatk(x) = fie(X) < Ntk = filloo < 2 ajforallk,nand all xe E~ E,.
Jj=n
Conclude that there is a function f € L*®(E) such that {f,} > f uniformly on E ~ Ej.
Use the preceding problem to show that L®( E) is a Banach space.
Prove that for 1 < p < o0, I” is a Banach space.

Show that the space of ¢ of all convergent sequences of real numbers and the space cy of all
sequences that converge to zero are Banach spaces with respect to the I norm.

7.4 APPROXIMATION AND SEPARABILITY

We here elaborate on the general theme of Littlewood’s second principle, namely, the
approximation of functions in one class by ones in a better class. We consider approximation
with respect to the L”( E) norm. It is useful to introduce the general concept of denseness.

Definition Let X be a normed linear space with norm || - ||. Given two subsets F and G of X
with F C G, we say that F is dense in G, provided for each function g in G and € > 0, there is a
function f in F for which || f — g|| <e.
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It is not difficult to see that the set F is dense in G if and only if for each g in G there is a
sequence {f,} in F for which
nlimoo fa=ginX.

Moreover, it is also useful to observe that for F CGC HC X,
if F is dense in G and G is dense in H, then F is dense in H. (13)

We have already encountered dense sets: the rational numbers are dense in R, as are
the irrational numbers. Moreover, the Weierstrass Approximation Theorem* may be stated
in our present vocabulary of normed linear spaces as follows: the family of polynomials
restricted to [a, b] is dense in the linear space C[a, b], normed by the maximum norm.

Proposition 9 Let E be a measurable set and 1 < p < 0o. Then the subspace of simple
functions in LP(E) is dense in LP(E).

Proof Let g belong to LP(E). First consider p = oo. There is a subset Eg of E of measure
zero for which g is bounded on E ~ Ej. We infer from the Simple Approximation Lemma
that there is a sequence of simple functions on E ~ Ej that converge uniformly on E ~ E
to g and therefore with respect to the L*°( E) norm. Thus the simple functions are dense in
L*®(E).

Now suppose 1 < p < oc. The function g is measurable and therefore, by the Simple
Approximation Theorem, there is a sequence {g,} of simple functions on E such that
{on} — g pointwise on E and .
len| < |g| on E for all n.

It follows from the integral comparison test that each ¢, belongs to L?(E). We claim that
{¢n} = gin LP(E). Indeed, for all n,

lon — 8P < 27{lgal? + |g|”} < 2P*1|g|? on E.

Since |g|” is integrable over E, we infer from the Lebesgue Dominated Convergence
Theorem that {¢,} — g in L7 (E). O

Proposition 10 Let [a, b] be a closed, bounded interval and 1 < p < 0c. Then the subspace
of step functions on [a, b] is dense in LP[a, b}.

Proof The preceding proposition tells us that the simple functions are dense in LP[a, b].
Therefore it suffices to show that the step functions are dense in the simple functions, with
respect to the | - |, norm. Each simple function is a linear combination of characteristic
functions of measurable sets. Therefore, if each such characteristic function can be arbitrarily
closely approximated, in the || - ||, norm, by a step function, since the step functions are a
linear space, so can any simple function. Let g = x4, where A is a measurable subset of
[a, b] and let € > 0, and seek a step function f on [a, b] for which || f — g||, < €. According
to Theorem 12 of Chapter 2, there is a finite disjoint collection of open intervals, {I;};_;, for

4See Patrick Fitzpatrick’s Advanced Calculus [Fit09] for a proof.
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which, if we define U = Uj_; I, then the symmetric difference AAU = [A~U]U[UN A]
has the property that
m(AAU) <eP.

Since U is the union of a finite disjoint collection of open intervals, y is a step function.
Moreover,

lxa = xull, = [m(AAU)]VP. (14)
Therefore || xa — xull, < € and the proof is complete. O

Definition A normed linear space X is said to be separable provided there is a countable
subset that is dense in X.

The real numbers are separable since the rational numbers are a countable dense
subset. For [a, b] a closed, bounded interval, C[a, b], normed by the maximum norm, is
separable since we infer from the Weierstrass Approximation Theorem that the polynomials
with rational coefficients are a countable set that is dense in C[a, b).

Theorem 11 Let E be a measurable set and 1 < p < 0o. Then the normed linear space LP(E)
is separable.

Proof Let [a, b] be a closed, bounded interval and S[a, b] the collection of step functions
on [a, b]. Define S'[a, b] to be subcollection of S[a, b] comprising step functions  on [a, b]
that take rational values and for which there is a partition P = {xg, ..., x,} of [a, b] with
¥ constant on (x;—1, x ), for 1 < k < n, and x; rational for 1 < k¥ < n — 1. We infer from
the density of the rational numbers in the real numbers that $'[a, b] is dense in S[a, b], with
respect to the L”( E) norm. We leave it as an exercise to verify that S'[a, b]is a countable set.
There are the following two inclusions, each of which is dense with respect to the LP[a, b]
norm:
8'la, b] C Sla, b) C L?[a, b).

Therefore, by (13), S'[a, b] is dense in LP[a, b]. For each natural number », define F, to
be the functions on R that vanish outside [-n, n] and whose restrictions to [-n, n] belong
to S'[—n, n]. Define F =U,¢N Fr. Then F is a countable collection of functions in L”(R).
By the Monotone Convergence Theorem,

; P_ I3 P
Tim. f[_“]m fR \fIP forall f € LP(R).

Therefore, by the choice of each F,, F is a countable collection of functions that is dense in
LP(R). Finally, let E be a general measurable set. Then the collection of restrictions to E of
functions in F is a countable dense subset of L?( E), and therefore LP( E) is separable. [

As the following example shows, in general L®(E) is not separable.

Example Let[a, b] be a nondegenerate closed, bounded interval. We claim that the normed
linear space L*[a, b] is not separable. To verify this claim, we argue by contradiction.
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Suppose there is a countable set {f,}%°, that is dense in L*[a, b]. For each number

x €[a, b], select a natural number 1(x) for which

1X[a, x] = fa()lloo <1/2.

Observe that
I Xfa, x1] = X[a,xs]llc =1ifa <x; <x <b.

Therefore 7 is a one-to-one mapping of [a, b] onto a set of natural numbers. But a set of
natural numbers is countable and [a, b]is not countable. We conclude from this contradiction
that L®[a, b]is not separable.

For a measurable subset E of R, we denote by C.(E) the linear space of continuous
real-valued functions on E that vanish outside a bounded set. In the proof of the above
theorem, for 1 < p < 0o, we presented a dense subset F of LP(R) with the property that
for each f € F, there is a closed, bounded interval [a, b] for which the restriction of f
to [a, b] is a step function and f vanishes outside [a, b]. It is not difficult to see that each
f € F is the limit in LP(R) of a sequence of continuous, piecewise linear functions, each
of which vanish outside a bounded set. Define ' to be the union of all such approximating
sequences of functions in . Then F” is dense in LP(R). Moreover, for E a measurable set,
the collection of restriction to E of functions belonging to ' is a dense subset of LP(E)
consisting of continuous functions on E that vanish outside a bounded set. This proves the
following theorem.

Theorem 12 Let E be a measurable set and 1 < p < oc. Then Cc(E)is densein LP(E).

PROBLEMS

36. Let S be a subset of a normed linear space X. Show that S is dense in X if and only if each
g € X is the limit of a sequence in S.

37. Verify (13).
38. Prove that the collection of polynomials with rational coefficients is countable.

39. Let E be a measurable set, 1 < p < 00, q the conjugate of p, and S a dense subset of L4(E).
Show thatif g€ LP(E) and [, f- g =0forall feS, theng =0.
40. Verify the details in the proof of Theorem 11.

41. Let E be a measurable set of finite measure and 1 < p; < p < oo. Consider the linear space
LP2(E) normed by | - ||, . Is this normed linear space a Banach space?

42. Exhibit a measurable set E for which L ( E)) is separable. Show that L®( E) is not separable
if the set E contains a nondegenerate interval.

43. Suppose that X is a Banach space with norm | - ||. Let X be a dense subspace of X. Assume
that Xo, when normed by the norm it inherits from X, is also a Banach space. Prove that
X = Xp.

44. For1 < p < oo, show that the sequence space £7 is separable. Show that the collection of sets
of natural numbers is uncountable and conclude that £* is not separable.
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45.
46.

47.

48.

49.

50.

51.

Prove Theorem 12.
Show that for 1 < p < oo and any two numbers a and b,

P
[sena) - lal"? - sgn(p) 161" |

<2?.|la-b).

Show that for 1 < p < oo and any two numbers a and b,
Isgn(a) - lal” — sgn(b) - 1617] < p - la — bl(lal + [b])"".

(Mazur) Let E be a measurable set and 1 < p < 0o. For f in L!( E), define the function ®( f)
on E by

O(f)(x) = sga( f(x)If ().
Show that &( f) belongs to LP( E). Moreover, use Problem 46 to show that

I®(f) — D(g)ll, <27 - | f —glly forall £, gin L'(E).

From this conclude that ® is a continuous mapping of L!(E) into LP(E) in the sense that
if {f,}— f in L1(E), then {®( f,)} = ®(f) in LP(E). Then show that ® is one-to-one and
its image is L”( E). Find a formula for the inverse mapping. Use the preceding problem to
conclude that the inverse mapping &' is a continuous mapping from L”(E) to L' (E).

Use the preceding problem to show that the separability of L!( E) implies the separability of
LP(E),forl < p<oo.

For [a, b] a nondegenerate closed, bounded interval, show that there is no continuous
mapping ® from L![a, b] onto L®[a, b].

Use Lusin’s Theorem to prove Theorem 12.
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For a measurable set E, 1 < p < o0, and g conjugate to p, let g belong to L9( E). Define the
real-valued functional T on L?(E) by

T(f):fEf.gforaneLﬂ(E). @)

Halder’s Inequality tells us that f - g is integrable and therefore T is properly defined. The
functional T inherits linearity from the linearity of integration. Furthermore, there isa M > 0
for which

IT(F)I <M-|fll,forall f e LP(E). (if)

Indeed, by Holder’s Inequality, this holds for M = | g||,. The Riesz Representation Theorem
asserts that if T is any real-valued linear functional on LP( E) with the property that there
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