






Preface

The first three editions of H.L.Royden's Real Analysis have contributed to the education of
generations of mathematical analysis students. This fourth edition of Real Analysis preserves
the goal and general structure of its venerable predecessors-to present the measure theory,
integration theory, and functional analysis that a modem analyst needs to know.

The book is divided the three parts: Part I treats Lebesgue measure and Lebesgue
integration for functions of a single real variable; Part II treats abstract spaces-topological
spaces, metric spaces, Banach spaces, and Hilbert spaces; Part III treats integration over
general measure spaces, together with the enrichments possessed by the general theory in
the presence of topological, algebraic, or dynamical structure.

The material in Parts II and III does not formally depend on Part I. However, a careful
treatment of Part I provides the student with the opportunity to encounter new concepts in a
familiar setting, which provides a foundation and motivation for the more abstract concepts
developed in the second and third parts. Moreover, the Banach spaces created in Part I, the
LP spaces, are one of the most important classes of Banach spaces. The principal reason for
establishing the completeness of the LP spaces and the characterization of their dual spaces
is to be able to apply the standard tools of functional analysis in the study of functionals and
operators on these spaces. The creation of these tools is the goal of Part II.

NEW TO THE EDITION

This edition contains 50% more exercises than the previous edition

Fundamental results, including Egoroff s Theorem and Urysohn's Lemma are now
proven in the text.

The Borel-Cantelli Lemma, Chebychev's Inequality, rapidly Cauchy sequences, and
the continuity properties possessed both by measure and the integral are now formally
presented in the text along with several other concepts.

There are several changes to each part of the book that are also noteworthy:

Part I

The concept of uniform integrability and the Vitali Convergence Theorem are now
presented and make the centerpiece of the proof of the fundamental theorem of
integral calculus for the Lebesgue integral

A precise analysis of the properties of rapidly Cauchy sequences in the LP(E) spaces,
1 < p < oo, is now the basis of the proof of the completeness of these spaces

Weak sequential compactness in the LP(E) spaces, 1 < p < oo, is now examined in
detail and used to prove the existence of minimizers for continuous convex functionals.
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Part II

General structural properties of metric and topological spaces are now separated into
two brief chapters in which the principal theorems are proven.

In the treatment of Banach spaces, beyond the basic results on bounded linear
operators, compactness for weak topologies induced by the duality between a Banach
space and its dual is now examined in detail.

There is a new chapter on operators in Hilbert spaces, in which weak sequential com-
pactness is the basis of the proofs of the Hilbert-Schmidt theorem on the eigenvectors
of a compact symmetric operator and the characterization by Riesz and Schuader of
linear Fredholm operators of index zero acting in a Hilbert space.

Part III

General measure theory and general integration theory are developed, including the
completeness, and the representation of the dual spaces, of the LP(X, µ) spaces for,
1 < p < oo. Weak sequential compactness is explored in these spaces, including the
proof of the Dunford-Pettis theorem that characterizes weak sequential compactness
inL1(X,A).
The relationship between topology and measure is examined in order to characterize
the dual of C(X), for a compact Hausdorff space X. This leads, via compactness
arguments, to (i) a proof of von Neumann's theorem on the existence of unique
invariant measures on a compact group and (ii) a proof of the existence, for a mapping
on a compact Hausdorf space, of a probability measure with respect to which the
mapping is ergodic.

The general theory of measure and integration was born in the early twentieth century. It
is now an indispensable ingredient in remarkably diverse areas of mathematics, including
probability theory, partial differential equations, functional analysis, harmonic analysis, and
dynamical systems. Indeed, it has become a unifying concept. Many different topics can
agreeably accompany a treatment of this theory. The companionship between integration
and functional analysis and, in particular, between integration and weak convergence, has
been fostered here: this is important, for instance, in the analysis of nonlinear partial
differential equations (see L.C. Evans' book Weak Convergence Methods for Nonlinear
Partial Differential Equations [AMS, 1998]).

The bibliography lists a number of books that are not specifically referenced but should
be consulted for supplementary material and different viewpoints. In particular, two books
on the interesting history of mathematical analysis are listed.

SUGGESTIONS FOR COURSES: FIRST SEMESTER

In Chapter 1, all the background elementary analysis and topology of the real line needed
for Part I is established. This initial chapter is meant to be a handy reference. Core material
comprises Chapters 2, 3, and 4, the first five sections of Chapter 6, Chapter 7, and the first
section of Chapter 8. Following this, selections can be made: Sections 8.2-8.4 are interesting
for students who will continue to study duality and compactness for normed linear spaces,
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while Section 5.3 contains two jewels of classical analysis, the characterization of Lebesgue
integrability and of Riemann integrability for bounded functions.

SUGGESTIONS FOR COURSES: SECOND SEMESTER

This course should be based on Part III. Initial core material comprises Section 17.1, Section
18.1-18.4, and Sections 19.1-19.3. The remaining sections in Chapter 17 may be covered at
the beginning or as they are needed later: Sections 17.3-17.5 before Chapter 20, and Section
17.2 before Chapter 21. Chapter 20 can then be covered. None of this material depends on
Part II. Then several selected topics can be chosen, dipping into Part II as needed.

Suggestion 1: Prove the Baire Category Theorem and its corollary regarding the partial
continuity of the pointwise limit of a sequence of continuous functions (Theorem 7 of
Chapter 10), infer from the Riesz-Fischer Theorem that the Nikodym metric space is
complete (Theorem 23 of Chapter 18), prove the Vitali-Hahn-Saks Theorem and then
prove the Dunford-Pettis Theorem.
Suggestion 2: Cover Chapter 21 (omitting Section 20.5) on Measure and Topology,
with the option of assuming the topological spaces are metrizable, so 20.1 can be
skipped.

Suggestion 3: Prove Riesz's Theorem regarding the closed unit ball of an infinite
dimensional normed linear space being noncompact with respect to the topology
induced by the norm. Use this as a motivation for regaining sequential compactness
with respect to weaker topologies, then use Helley's Theorem to obtain weak sequential
compactness properties of the L P (X, µ) spaces, 1 < p < oo, if L9 (X, µ) is separable
and, if Chapter 21 has already been covered, weak-* sequential compactness results
for Radon measures on the Borel a--algebra of a compact metric space.

SUGGESTIONS FOR COURSES: THIRD SEMESTER

I have used Part II, with some supplemental material, for a course on functional analysis,
for students who had taken the first two semesters; the material is tailored, of course, to that
chosen for the second semester. Chapter 16 on bounded linear operators on a Hilbert space
may be covered right after Chapter 13 on bounded linear operators on a Banach space, since
the results regarding weak sequential compactness are obtained directly from the existence
of an orthogonal complement for each closed subspace of a Hilbert space. Part II should be
interlaced with selections from Part III to provide applications of the abstract space theory
to integration. For instance, reflexivity and weak compactness can be considered in general
LP(X, µ) spaces, using material from Chapter 19. The above suggestion 1 for the second
semester course can be taken in the third semester rather than the second, providing a truly
striking application of the Baire Category Theorem. The establishment, in Chapter 21, of the
representation of the dual of C(X ), where X is a compact Hausdorff space, provides another
collection of spaces, spaces of signed Radon measures, to which the theorems of Helley,
Alaoglu, and Krein-Milman apply. By covering Chapter 22 on Invariant Measures, the
student will encounter applications of Alaoglu's Theorem and the Krein-Milman Theorem
to prove the existence of Haar measure on a compact group and the existence of measures
with respect to which a mapping is ergodic (Theorem 14 of Chapter 22), and an application
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of Helley's Theorem to establish the existence of invariant measures (the Bogoliubov-Krilov
Theorem).

I welcome comments at pmf@math.umd.edu. A list of errata and remarks will be
placed on www.math.umd.edu/-pmf/RealAnalysis.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge my indebtedness to teachers, colleagues, and students. A
penultimate draft of the entire manuscript was read by Diogo Arsenio, whom I warmly
thank for his observations and suggestions, which materially improved that draft. Here in my
mathematical home, the University of Maryland, I have written notes for various analysis
courses, which have been incorporated into the present edition. A number of students
in my graduate analysis classes worked through parts of drafts of this edition, and their
comments and suggestions have been most helpful: I thank Avner Halevy, Kevin McGoff,
and Himanshu Tiagi. I am pleased to acknowledge a particular debt to Brendan Berg who
created the index, proofread the final manuscript, and kindly refined my tex skills. I have
benefited from conversations with many friends and colleagues; in particular, with Diogo
Arsenio, Michael Boyle, Michael Brin, Craig Evans, Manos Grillakis, Brian Hunt, Jacobo
Pejsachowicz, Eric Slud, Robert Warner, and Jim Yorke. Publisher and reviewers: J. Thomas
Beale, Duke University; Richard Carmichael, Wake Forest University; Michael Goldberg,
Johns Hopkins University; Paul Joyce, University of Idaho; Dmitry Kaliuzhnyi-Verbovetskyi,
Drexel University; Giovanni Leoni, Carnegie Mellon University; Bruce Mericle, Mankato
State University; Stephen Robinson, Wake Forest University; Martin Schechter, University
of California-Irvine; James Stephen White, Jacksonville State University; and Shanshuang
Yang, Emory University.

Patrick M. Fitzpatrick
College Park, MD

November, 2009



Contents

Preface

I Lebesgue Integration for Functions of a Single Real Variable 1

Preliminaries on Sets, Mappings, and Relations 3
Unions and Intersections of Sets ............................. 3

Equivalence Relations, the Axiom of Choice, and Zorn's Lemma .......... 5

1 The Real Numbers: Sets, Sequences, and Functions 7
1.1 The Field, Positivity, and Completeness Axioms ................. 7

1.2 The Natural and Rational Numbers ........................ 11

1.3 Countable and Uncountable Sets ......................... 13

1.4 Open Sets, Closed Sets, and Borel Sets of Real Numbers ............ 16
1.5 Sequences of Real Numbers ............................ 20
1.6 Continuous Real-Valued Functions of a Real Variable ............. 25

2 Lebesgue Measure 29
2.1 Introduction ..................................... 29
2.2 Lebesgue Outer Measure .............................. 31

2.3 The Q-Algebra of Lebesgue Measurable Sets .................. 34
2.4 Outer and Inner Approximation of Lebesgue Measurable Sets ........ 40
2.5 Countable Additivity, Continuity, and the Borel-Cantelli Lemma ....... 43
2.6 Nonmeasurable Sets .... ........................... 47
2.7 The Cantor Set and the Cantor-Lebesgue Function ............... 49

3 Lebesgue Measurable Functions 54
3.1 Sums, Products, and Compositions ........................ 54
3.2 Sequential Pointwise Limits and Simple Approximation ............ 60
3.3 Littlewood's Three Principles, Egoroffs Theorem, and Lusin's Theorem ... 64

4 Lebesgue Integration 68
4.1 The Riemann Integral ................................ 68
4.2 The Lebesgue Integral of a Bounded Measurable Function over a Set of

Finite Measure .................................... 71

4.3 The Lebesgue Integral of a Measurable Nonnegative Function ........ 79

4.4 The General Lebesgue Integral .......................... 85

4.5 Countable Additivity and Continuity of Integration ............... 90

4.6 Uniform Integrability: The Vitali Convergence Theorem ............ 92

Vii



viii Contents

5 Lebesgue Integration: Further Topics
5.1 Uniform Integrability and Tightness: A General Vitali Convergence Theorem
5.2 Convergence in Measure ..............................
5.3 Characterizations of Riemann and Lebesgue Integrability ...........

6 Differentiation and Integration
6.1 Continuity of Monotone Functions ........................
6.2 Differentiability of Monotone Functions: Lebesgue's Theorem ........
6.3 Functions of Bounded Variation: Jordan's Theorem ..............
6.4 Absolutely Continuous Functions ..........................
6.5 Integrating Derivatives: Differentiating Indefinite Integrals ..........
6.6 Convex Functions ..................................

7 The I)' Spaces: Completeness and Approximation
7.1 Normed Linear Spaces ...............................
7.2 The Inequalities of Young, Holder, and Minkowski ...............
7.3 1/ Is Complete: The Riesz-Fischer Theorem ..................
7.4 Approximation and Separability ..........................

8 The I)' Spaces: Duality and Weak Convergence
8.1 The Riesz Representation for the Dual of LP,1 < p < oo ...........
8.2 Weak Sequential Convergence in LP .......................
8.3 Weak Sequential Compactness ...........................
8.4 The Minimization of Convex Functionals .....................

II Abstract Spaces: Metric, Topological, Banach, and Hilbert Spaces

97

97
99

102

107
108
109
116
119
124
130

135
135

139
144
150

155
155
162
171

174

181

9 Metric Spaces: General Properties 183
9.1 Examples of Metric Spaces ............................. 183
9.2 Open Sets, Closed Sets, and Convergent Sequences

................
187

9.3 Continuous Mappings Between Metric Spaces .................. 190
9.4 Complete Metric Spaces .............................. 193
9.5 Compact Metric Spaces ............................... 197
9.6 Separable Metric Spaces .............................. 204

10 Metric Spaces: Three Fundamental Theorems 206
10.1 The Arzelii-Ascoli Theorem ............................ 206
10.2 The Baire Category Theorem ........................... 211
10.3 The Banach Contraction Principle ......................... 215

11 Topological Spaces: General Properties 222
11.1 Open Sets, Closed Sets, Bases, and Subbases ................... 222
11.2 The Separation Properties ............................. 227
11.3 Countability and Separability ........................... 228
11.4 Continuous Mappings Between Topological Spaces ............... 230



Contents ix

11.5 Compact Topological Spaces ............................ 233
11.6 Connected Topological Spaces ........................... 237

12 Topological Spaces: Three Fundamental Theorems 239

12.1 Urysohn's Lemma and the Tietze Extension Theorem ............. 239
12.2 The Tychonoff Product Theorem ......................... 244
12.3 The Stone-Weierstrass Theorem .......................... 247

13 Continuous Linear Operators Between Banach Spaces 253

13.1 Normed Linear Spaces ............................... 253
13.2 Linear Operators .................................. 256
13.3 Compactness Lost: Infinite Dimensional Normed Linear Spaces ........ 259
13.4 The Open Mapping and Closed Graph Theorems ................ 263
13.5 The Uniform Boundedness Principle ....................... 268

14 Duality for Normed Linear Spaces 271

14.1 Linear Functionals, Bounded Linear Functionals, and Weak Topologies ... 271
14.2 The Hahn-Banach Theorem ............................ 277
14.3 Reflexive Banach Spaces and Weak Sequential Convergence ......... 282
14.4 Locally Convex Topological Vector Spaces .................... 286
14.5 The Separation of Convex Sets and Mazur's Theorem ............. 290
14.6 The Krein-Milman Theorem ............................ 295

15 Compactness Regained: The Weak Topology 298

15.1 Alaoglu's Extension of Helley's Theorem .................... 298
15.2 Reflexivity and Weak Compactness: Kakutani's Theorem ........... 300
15.3 Compactness and Weak Sequential Compactness: TheTheorem ....................................... 302
15.4 Metrizability of Weak Topologies ......................... 305

16 Continuous Linear Operators on Hilbert Spaces 308

16.1 The Inner Product and Orthogonality ....................... 309
16.2 The Dual Space and Weak Sequential Convergence .............. 313
16.3 Bessel's Inequality and Orthonormal Bases ................... 316
16.4 Adjoints and Symmetry for Linear Operators .................. 319
16.5 Compact Operators ................................. 324
16.6 The Hilbert-Schmidt Theorem ........................... 326
16.7 The Riesz-Schauder Theorem: Characterization of Fredholm Operators ... 329

III Measure and Integration: General Theory 335

17 General Measure Spaces: Their Properties and Construction 337

17.1 Measures and Measurable Sets ........................... 337
17.2 Signed Measures: The Hahn and Jordan Decompositions ........... 342
17.3 The Carath6odory Measure Induced by an Outer Measure ........... 346



x Contents

17.4 The Construction of Outer Measures ....................... 349
17.5 The Caratheodory-Hahn Theorem: The Extension of a Premeasure to aMeasure ....................................... 352

18 Integration Over General Measure Spaces 359
18.1 Measurable Functions ................................ 359
18.2 Integration of Nonnegative Measurable Functions ............... 365
18.3 Integration of General Measurable Functions .................. 372
18.4 The Radon-Nikodym Theorem .......................... 381
18.5 The Nikodym Metric Space: The Vitali-Hahn-Saks Theorem ......... 388

19 General LP Spaces: Completeness, Duality, and Weak Convergence 394
19.1 The Completeness of LP(X, µ),1 < p < oo ................... 394
19.2 The Riesz Representation Theorem for the Dual of LP(X, µ),1 < p:5 oo . . 399
19.3 The Kantorovitch Representation Theorem for the Dual of L°O(X, µ) . . . . 404
19.4 Weak Sequential Compactness in LP(X, p.),1 < p < 1 ............. 407
19.5 Weak Sequential Compactness in L1(X, µ): The Dunford-Pettis Theorem . . 409

20 The Construction of Particular Measures 414
20.1 Product Measures: The Theorems of Fubini and Tonelli ............ 414
20.2 Lebesgue Measure on Euclidean Space R" .................... 424
20.3 Cumulative Distribution Functions and Borel Measures on R ......... 437
20.4 Caratheodory Outer Measures and Hausdorff Measures on a Metric Space . 441

21 Measure and Topology 446
21.1 Locally Compact Topological Spaces ....................... 447
21.2 Separating Sets and Extending Functions ..................... 452
21.3 The Construction of Radon Measures ....................... 454
21.4 The Representation of Positive Linear Functionals on QX): The Riesz-

Markov Theorem .................................. 457
21.5 The Riesz Representation Theorem for the Dual of C(X) ........... 462
21.6 Regularity Properties of Baire Measures ..................... 470

22 Invariant Measures 477
22.1 Topological Groups: The General Linear Group ................ 477
22.2 Kakutani's Fixed Point Theorem ......................... 480
22.3 Invariant Borel Measures on Compact Groups: von Neumann's Theorem . . 485
22.4 Measure Preserving Transformations and Ergodicity: The Bogoliubov-Krilov

Theorem ....................................... 488
Bibliography 495

Index 497



PART ONE

LEBESGUE
INTEGRATION FOR
FUNCTIONS OF A
SINGLE REAL
VARIABLE





Preliminaries on Sets,
Mappings, and Relations

Contents

Unions and Intersections of Sets .......................... 3

Equivalence Relations, the Axiom of Choice, and Zorn's Lemma ....... 5

In these preliminaries we describe some notions regarding sets, mappings, and relations
that will be used throughout the book. Our purpose is descriptive and the arguments given
are directed toward plausibility and understanding rather than rigorous proof based on an
axiomatic basis for set theory. There is a system of axioms called the Zermelo-Frankel
Axioms for Sets upon which it is possible to formally establish properties of sets and thereby
properties of relations and functions. The interested reader may consult the introduction
and appendix to John Kelley's book, General Topology [Ke175], Paul Halmos's book, Naive
Set Theory [Ha198], and Thomas Jech's book, Set Theory [JecO6].

UNIONS AND INTERSECTIONS OF SETS

For a set A,1 the membership of the element x in A is denoted by x E A and the nonmembership
of x in A is denoted by x 0 A. We often say a member of A belongs to A and call a member of
A a point in A. Frequently sets are denoted by braces, so that {x I statement about x} is the
set of all elements x for which the statement about x is true.

Two sets are the same provided they have the same members. Let A and B be sets. We
call A a subset of B provided each member of A is a member of B; we denote this by A C B
and also say that A is contained in B or B contains A. A subset A of B is called a proper
subset of B provided A t B. The union of A and B, denoted by A U B, is the set of all points
that belong either to A or to B; that is, A U B = {x I X E A or x E B}. The word or is used here
in the nonexclusive sense, so that points which belong to both A and B belong to A U B. The
intersection of A and B, denoted by A n B, is the set of all points that belong to both A and
B; that is, A fl B = {x I X E A and X E B}. The complement of A in B, denoted by B - A, is the
set of all points in B that are not in A; that is, B - A = {x I X E B, x $ A}. If, in a particular
discussion, all of the sets are subsets of a reference set X, we often refer to X ^- A simply as
the complement of A.

The set that has no members is called the empty-set and denoted by 0. A set that is not
equal to the empty-set is called nonempty. We refer to a set that has a single member as a
singleton set. Given a set X, the set of all subsets of X is denoted by P(X) or 2X; it is called
the power set of X.

In order to avoid the confusion that might arise when considering sets of sets, we
often use the words "collection" and "family" as synonyms for the word "set." Let F be
a collection of sets. We define the union of F, denoted by UFE.T F, to be the set of points

1The Oxford English Dictionary devotes several hundred pages to the definition of the word "set."
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that belong to at least one of the sets in Y. We define the intersection of F, denoted by
(l F E .F F, to be the set of points that belong to every set in F. The collection of sets F is said
to be disjoint provided the intersection of any two sets in .E is empty. For a family F of sets,
the following identities are established by checking set inclusions.

De Morgan's identities

X U Fl = n [X F] and X - n FJ = U [X - F],
FE.F JJ FE,F FE.F FE.F

that is, the complement of the union is the intersection of the complements, and the
complement of the intersection is the union of the complements.

For a set A, suppose that for each A E A, there is defined a set EA. Let F be the
collection of sets {EA I A E A}. We write .F = {EA}A E A and refer to this as an indexing (or
parametrization) of .F by the index set (or parameter set) A.

Mappings between sets

Given two sets A and B, by a mapping or function from A into B we meana correspondence
that assigns to each member of A a member of B. In the case B is the set of real numbers
we always use the word "function." Frequently we denote such a mapping by f : A -* B,
and for each member x of A, we denote by f (x) the member of B to which x is assigned.
For a subset A' of A, we define f (A') = {b I b = f (a) for some member a of A'}: f (A') is
called the image of A' under f. We call the set A the domain of the function f and f(A)
the image or range of f. If f (A) = B, the function f is said to be onto. If for each member b
of f (A) there is exactly one member a of A for which b = f (a), the function f is said to be
one-to-one. A mapping f : A -+ B that is both one-to-one and onto is said to be invertible;
we say that this mapping establishes a one-to-one correspondence between the sets A and B.
Given an invertible mapping f : A -+ B, for each point bin B, there is exactlyone member a
of A for which f (a) = b and it is denoted by f -1(b ). This assignment defines the mapping
f-1: B -- >A, which is called the inverse of f. Two sets A and B are said to be equipotent
provided there is an invertible mapping from A onto B. Two sets which are equipotent are,
from the set-theoretic point of view, indistinguishable.

Given two mappings f : A -+ B and g : C -+ D for which f (A) C C then the composition
g o f : A -+ D is defined by [g o f] (x) = g (f (x)) for each x E A. It is not difficult to see that
the composition of invertible mappings is invertible. For a set D, define the identity mapping
idD : D -+ D is defined by idD (x) = x for all x E D. A mapping f : A B is invertible if and
only if there is a mapping g : B -+ A for which

gof=id and fog=id.
Even if the mapping f : A -+ B is not invertible, for a set E, we define f-1(E) to be

the set {a E A I f (a) E E}; it is called the inverse image of E under f. We have the following
useful properties: for any two sets E1 and E2,

f-1(El U E2) = f-1(El) U f-1(E2), f-'(El n E2) = f-1(El) o f-1(E2)
and

f-'(El^'E2)=f-1(EI) f-1(E2).



Equivalence Relations, the Axiom of Choice, and Zorn's Lemma 5

Finally, for a mapping f : A -* B and a subset A' of its domain A, the restriction of f to A',
denoted by PA', is the mapping from A' to B which assigns f (x) to each x E A'.

EQUIVALENCE RELATIONS, THE AXIOM OF CHOICE, AND ZORN'S LEMMA

Given two nonempty sets A and B, the Cartesian product of A with B, denoted by A X B, is
defined to be the collection of all ordered pairs (a, b) where a E A and b E B and we consider
(a, b) = (a', b') if and only if a = a' and b = Y.2 For a nonempty set X, we call a subset R
of X X X a relation on X and write x R x' provided (x, x') belongs to R. The relation R is said
to be reflexive provided x R x, for all x E X; the relation R is said to be symmetric provided
x R x' if x' R x; the relation R is said to be transitive provided whenever x R x' and x' R x",
then x R x".

Definition A relation R on a set X is called an equivalence relation provided it is reflexive,
symmetric, and transitive.

Given an equivalence relation R on a set X, for each x E X, the set RX = {x' I x' E X, x Rx'} is

called the equivalence class of x (with respect to R). The collection of equivalence classes is
denoted by X/R. For example, given a set X, the relation of equipotence is an equivalence
relation on the collection 2X of all subsets of X. The equivalence class of a set with respect
to the relation equipotence is called the cardinality of the set.

Let R be an equivalence relation on a set X. Since R is symmetric and transitive,
RX = Rx' if and only if x R x' and therefore the collection of equivalence classes is disjoint.
Since the relation R is reflexive, X is the union of the equivalence classes. Therefore X/R is
a disjoint collection of nonempty subsets of X whose union is X. Conversely, given a disjoint
collection F of nonempty subsets of X whose union is X, the relation of belonging to the
same set in .F is an equivalence relation R on X for which F = X/R.

Given an equivalence relation on a set X, it is often necessary to choose a subset C
of X which consists of exactly one member from each equivalence class. Is it obvious that
there is such a set? Ernst Zermelo called attention to this question regarding the choice of
elements from collections of sets. Suppose, for instance, we define two real numbers to be
rationally equivalent provided their difference is a rational number. It is easy to check that
this is an equivalence relation on the set of real numbers. But it is not easy to identify a set
of real numbers that consists of exactly one member from each rational equivalence class.

Definition Let F be a nonempty family of nonempty sets. A choice function f on F is a
function f from F to UFEj7F with the property that for each set F in F, f (F) is a member
of F.

Zermelo's Axiom of Choice Let .F be a nonempty collection of nonempty sets. Then there is
a choice function on F.

21n a formal treatment of set theory based on the Zermelo-Frankel Axioms, an ordered pair (a, b) is defined to
be the set ({a}, (a, b)} and a function with domain in A and image in B is defined to be a nonempty collection of
ordered pairs in A X B with the property that if the ordered pairs (a, b) and (a, b') belong to the function, then
b=b'.
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Very roughly speaking, a choice function on a family of nonempty sets "chooses" a member
from each set in the family. We have adopted an informal, descriptive approach to set theory
and accordingly we will freely employ, without further ado, the Axiom of Choice.

Definition A relation R on a set nonempty X is called a partial ordering provided it is
reflexive, transitive, and, for x, x' in X,

ifxRx'andz Rx, thenx=x'.

A subset E of X is said to be totally ordered provided for x, x' in E, either x R X, or x' Rx. A
member x of X is said to be an upper bound for a subset E of X provided x'Rx for all x' E E,
and said to be maximal provided the only member x' of X for which x R x' is x' = x.

For a family .F of sets and A, B E .F, define A R B provided A C B. This relation of
set inclusion is a partial ordering of F. Observe that a set F in .F is an upper bound for a
subfamily F' of F provided every set in F' is a subset of F and a set F in F is maximal
provided it is not a proper subset of any set in F. Similarly, given a family .F of sets and
A, B E.F define A R B provided B C A. This relation of set containment is a partial ordering
of Y. Observe that a set F in F is an upper bound for a subfamily .F' of .F provided every
set in .F' contains F and a set F in .F is maximal provided it does not properly contain any
set in.F.

Zorn's Lemma Let X be a partially ordered set for which every totally ordered subset has an
upper bound. Then X has a maximal member.

We will use Zorn's Lemma to prove some of our most important results, including the
Hahn-Banach Theorem, the Tychonoff Product Theorem, and the Krein-Milman Theorem.
Zorn's Lemma is equivalent to Zermelo's Axiom of Choice. For a proof of this equivalence
and related equivalences, see Kelley [Ke175], pp. 31-36.

We have defined the Cartesian product of two sets. It is useful to define the Carte-
sian product of a general parametrized collection of sets. For a collecton of sets (EA}AEA
parametrized by the set A, the Cartesian product of {Es}A E A, which we denote by IIAE A EA, is
defined to be the set of functions f from A to UA E A EA such that for each A E A, f (A) belongs
to EA. It is clear that the Axiom of Choice is equivalent to the assertion that the Cartesian
product of a nonempty family of nonempty sets is nonempty. Note that the Cartesian product
is defined for a parametrized family of sets and that two different parametrizations of the same
family will have different Cartesian products. This general definition of Cartesian product is
consistent with the definition given for two sets. Indeed, consider two nonempty sets A and B.
Define A {Al, A2} where Al #A2 and then define EA, = A and EA2 = B. The mapping that as-
signs to the function f E IIAE A EA the ordered pair (f (Al), f (A2)) is an invertible mapping of
the Cartesian product IIA E A EA onto the collection of ordered pairs AX B and therefore these
two sets are equipotent. For two sets E and A, define EA = E for all A E A. Then the Cartesian
product IIA E A EA is equal to the set of all mappings from A to Eand is denoted by EA.
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We assume the reader has a familiarity with the properties of real numbers, sets of real
numbers, sequences of real numbers, and real-valued functions of a real variable, which are
usually treated in an undergraduate course in analysis. This familiarity will enable the reader
to assimilate the present chapter, which is devoted to rapidly but thoroughly establishing
those results which will be needed and referred to later. We assume that the set of real
numbers, which is denoted by R, satisfies three types of axioms. We state these axioms and
derive from them properties on the natural numbers, rational numbers, and countable sets.
With this as background, we establish properties of open and closed sets of real numbers;
convergent, monotone, and Cauchy sequences of real numbers; and continuous real-valued
functions of a real variable.

1.1 THE FIELD, POSITIVITY, AND COMPLETENESS AXIOMS

We assume as given the set R of real numbers such that for each pair of real numbersa and
b, there are defined real numbers a + b and ab called the sum and product, respectively, of
a and b for which the following Field Axioms, Positivity Axioms, and Completeness Axiom
are satisfied.

The field axioms

Commutativity of Addition: For all real numbers a and b,

a+b=b+a.
Associativity of Addition: For all real numbers a, b, and c,

(a+b)+c=a+(b+c).
The Additive Identity: There is a real number, denoted by 0, such that

0 + a = a + 0 = a for all real numbers a.
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The Additive Inverse: For each real number a, there is a real number b such that

a+b=0.

Commutativity of Multiplication: For all real numbers a and b,

ab = ba.

Associativity of Multiplication: For all real numbers a, b, and c,

(ab)c = a(bc).

The Multiplicative Identity: There is a real number, denoted by 1, such that

la = al = a for all real numbers a.

The Multiplicative Inverse: For each real number a # 0, there is a real number b such that

ab=1.

The Distributive Property: For all real numbers a, b, and c,

a(b+c)=ab+ac.

The Nontriviality Assumption:
1#0.

Any set that satisfies these axioms is called a field. It follows from the commutativity
of addition that the additive identity, 0, is unique, and we infer from the commutativity
of multiplication that the multiplicative unit, 1, also is unique. The additive inverse and
multiplicative inverse also are unique. We denote the additive inverse of a by -a and, if a# 0,
its multiplicative inverse by a-1 or 1/a. If we have a field, we can perform all the operations
of elementary algebra, including the solution of simultaneous linear equations. We use the
various consequences of these axioms without explicit mention.1

The positivity axioms

In the real numbers there is a natural notion of order: greater than, less than, and so on.
A convenient way to codify these properties is by specifying axioms satisfied by the set of
positive numbers. There is a set of real numbers, denoted by P, called the set of positive
numbers. It has the following two properties:

P1 If a and b are positive, then ab and a + b are also positive.
P2 For a real number a, exactly one of the following three alternatives is true:

a is positive, -a is positive, a = 0.

IA systematic development of the consequences of the Field Axioms may be found in the first chapter of the
classic book A Survey of Modern Algebra by Garrett Birkhoff and Saunders MacLane [BM97].
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The Positivity Axioms lead in a natural way to an ordering of the real numbers: for real
numbers a and b, we define a > b to mean that a - b is positive, and a > b to mean that a > b
or a = b. We then define a < b to mean that b > a, and a < b to mean that b > a.

Using the Field Axioms and the Positivity Axioms, it is possible to formally establish
the familiar properties of inequalities (see Problem 2). Given real numbers a and b for which
a < b, we define (a, b) = {x I a < x < b), and say a point in (a, b) lies between a and b. We
call a nonempty set I of real numbers an interval provided for any two points in I, all the
points that lie between these points also belong to I. Of course, the set (a, b) is an interval,
as are the following sets:

[a,b]={xl a<x<b};[a,b)={xI a<x<b};(a,b]={xl a<x<b}. (1)

The completeness axiom

A nonempty set E of real numbers is said to be bounded above provided there is a real
number b such that x < b for all x E E : the number b is called an upper bound for E.
Similarly, we define what it means for a set to be bounded below and for a number to be a
lower bound for a set. A set that is bounded above need not have a largest member. But the
next axiom asserts that it does have a smallest upper bound.

The Completeness Axiom Let E be a nonempty set of real numbers that is bounded above.
Then among the set of upper bounds for E there is a smallest, or least, upper bound.

For a nonempty set E of real numbers that is bounded above, the least upper bound of
E, the existence of which is asserted by the Completeness Axiom, will be denoted by l.u.b. S.
The least upper bound of E is usually called the supremum of E and denoted by sup S. It
follows from the Completeness Axiom that every nonempty set E of real numbers that is
bounded below has a greatest lower bound; it is denoted by g.l.b. E and usually called the
infimum of E and denoted by inf E. A nonempty set of real numbers is said to be bounded
provided it is both bounded below and bounded above.

The triangle inequality

We define the absolute value of a real number x, 1x4, to be x if x > 0 and to be -x if x < 0.

The following inequality, called the Triangle Inequality, is fundamental in mathematical
analysis: for any pair of real numbers a and b,

ja+bI<jai +Ibl.

The extended real numbers

It is convenient to introduce the symbols oo and -oo and write -oo < x < oo for all real
numbers x. We call the set R U ±oo the extended real numbers. If a nonempty set E of
real numbers is not bounded above we define its supremum to be oo. It is also convenient
to define -oo to be the supremum of the empty-set. Therefore every set of real numbers
has a supremum that belongs to the extended real-numbers. Similarly, we can extend the
concept of infimum so every set of real numbers has an infimum that belongs to the extended
real numbers. We will define limits of sequences of real numbers and it is convenient to
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allow limits that are extended real numbers. Many properties of sequences of real numbers
that converge to real numbers, such as the limit of the sum is the sum of the limits and
the limit of the product is the product of the limit, continue to hold for limits that are +00,
provided we make the following extension of the meaning of sum and product: oo + 00 = 00,
-oo - oo = -oo and, for each real number x, x+oo = oo and x - oo = -oo; if x> 0, x oo = 00
and x (-oo) = -oo while if x < 0, x oo = -oo and x (-oo) = oo. We define (-oo, oo) = R.
For a, b E R, we define

(a,oo)={xERI a<x}, (-oo,b)={xERI x<b}

and

[a,00)={xERI a<x}, (-oo,b]={xERI x<b}.

Sets of the above form are unbounded intervals. We leave it as an exercise to infer from the
completeness of R that all unbounded intervals are of the above type and that all bounded
intervals are of the form listed in (1) together with intervals of the form (a, b).

PROBLEMS

1. For a # 0 and b t 0, show that (ab)-1 = a-1b-1.

2. Verify the following:
(i) For each real number a * 0, a2 > 0. In particular, 1 > 0 since 1 * 0 and 1 = 12.

(ii) For each positive number a, its multiplicative inverse a-1 also is positive.

(iii) If a > b, then

ac>bcif c>0andac<bcifc<0.

3. For a nonempty set of real numbers E, show that inf E = sup E if and only if E consists of a
single point.

4. Let a and b be real numbers.
(i) Show that if ab = 0, then a = 0 or b = 0.

(ii) Verify that a2 - b2 = (a - b) (a + b) and conclude from part (i) that if a2 = b2, then
a = b or a = -b.

(iii) Let c be a positive real number. Define E = {x E R I x2 < c.} Verify that E is nonempty
and bounded above. Define xo = sup E. Show that x2 = c. Use part (ii) to show that
there is a unique x > 0 for which x2 = c. It is denoted by /c-.

5. Let a, b, and c be real numbers such that a * 0 and consider the quadratic equation

axe+bx+c=0, XER.

(i) Suppose b2 - 4ac > 0. Use the Field Axioms and the preceding problem to complete the
square and thereby show that this equation has exactly two solutions given by

X = -b + b2 - 4ac
and x = -b - b2 - 4ac

2a 2a

(ii) Now suppose b2 - 4ac < 0. Show that the quadratic equation fails to have any solution.
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6. Use the Completeness Axiom to show that every nonempty set of real numbers that is
bounded below has an infimum and that

inf E _ -sup {-x I X E E} .

7. For real numbers a and b, verify the following:

(i) Iabl = IaIIbl.

(ii) Ia+bl < IaI+Ibl.
(iii) Fore > 0,

Ix - al <eifandonlyifa - e< x < a +e.

1.2 THE NATURAL AND RATIONAL NUMBERS

It is tempting to define the natural numbers to be the numbers 1, 2, 3, ... and so on. However,
it is necessary to be more precise. A convenient way to do this is to first introduce the concept
of an inductive set.

Definition A set E of real numbers is said to be inductive provided it contains 1 and if the
number x belongs to E, the number x + 1 also belongs to E.

The whole set of real numbers R is inductive. From the inequality 1 > 0 we infer that
the sets {x E R I x > 0} and {x e R I x > 11 are inductive. The set of natural numbers, denoted
by N, is defined to be the intersection of all inductive subsets of R. The set N is inductive.
To see this, observe that the number 1 belongs to N since 1 belongs to every inductive set.
Furthermore, if the number k belongs to N, then k belongs to every inductive set. Thus, k + 1
belongs to every inductive set and therefore k + 1 belongs to N.

Principle of Mathematical Induction For each natural number n, let S(n) be some mathe-
matical assertion. Suppose S(1) is true. Also suppose that whenever k is a natural number for
which S(k) is true, then S(k + 1) is also true. Then S(n) is true for every natural number n.

Proof Define A = {k E N I S(k) is true). The assumptions mean precisely that A is an
inductive set. Thus N C A. Therefore S(n) is true for every natural number n.

Theorem l Every nonempty set of natural numbers has a smallest member.

Proof Let E be a nonempty set of natural numbers. Since the set {x E R I x > 1) is inductive,
the natural numbers are bounded below by 1. Therefore E is bounded below by 1. As a
consequence of the Completeness Axiom, E has an infimum; define c = inf E. Since c + 1 is
not a lower bound for E, there is an m E E for which in <c+1. We claim that in is the smallest
member of E. Otherwise, there is an n E E for which n < m. Since n E E, c < n. Thus c <
n <m < c + 1 and therefore m - n < 1. Therefore the natural number in belongs to the interval
(n, n + 1). An induction argument shows that for every natural number n, (n, n + 1) n N = 0
(see Problem 8). This contradiction confirms that m is the smallest member of E.

Arehimedean Property For each pair of positive real numbers a and b, there is a natural
number n for which na > b.
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Proof Define c = b/a > 0. We argue by contradiction. If the theorem is false, then c is an
upper bound for the natural numbers. By the Completeness Axiom, the natural numbers
have a supremum; define co = sup N. Then co - 1 is not an upper bound for the natural
numbers. Choose a natural number n such that n > co - 1. Therefore n + 1 > co. But the
natural numbers are inductive so that n + 1 is a natural number. Since n + 1 > co, co is not
an upper bound for the natural numbers. This contradiction completes the proof.

We frequently use the Archimedean Property of R reformulated as follows; for each
positive real number e, there is a natural number n for which 1/n < e.2

We define the set of integers, denoted by Z, to be the set of numbers consisting of the
natural numbers, their negatives, and the number 0. The set of rational numbers, denoted by
Q, is defined to be the set of quotients of integers, that is, numbers x of the form x = m/n,
where in and n are integers and n #0. A real number is called irrational if it is not rational. As
we argued in Problem 4, there is a unique positive number x for which x2 = 2; it is denoted
by /2-. This number is not rational. Indeed, suppose p and q are natural numbers for which
(p/q)2 = 2. Then p2 = 2q2. The prime factorization theorem3 tells us that 2 divides p2
just twice as often as it divides p. Hence 2 divides p2 an even number of times. Similarly, 2
divides 2q2 an odd number of times. Thus p2 * 2q2 and therefore is irrational.

Definition A set E of real numbers is said to be dense in R provided between any two real
numbers there lies a member of E.

Theorem 2 The rational numbers are dense in R.

Proof Let a and b be real numbers with a < b. First suppose that a > 0. By the Archimedean
Property of R, there is a natural number q for which (1/q) < b - a. Again using the
Archimedean Property of R, the set of natural numbers S = in E N I n/q > b) is nonempty.
According to Theorem 1, S has a smallest member p. Observe that 1/q < b- a < b and hence
p > 1. Therefore p - 1 is a natural number (see Problem 9) and so, by the minimality of the
choice of p, (p -1)/q < b. We also have

a = b - (b - a) < (p/q) - (1/q) = (p -1)/q.

Therefore the rational number r = (p - 1)/q lies between a and b. If a < 0, by the
Archimedean property of R, there is a natural number n for which n > -a. We infer from
the first case considered that there is a rational number r that lies between n + a and n + b.
Therefore the natural number r - n lies between a and b.

PROBLEMS

8. Use an induction argument to show that for each natural number n, the interval (n, n + 1)
fails to contain any natural number.

2Archimedeas explicitly asserted that it was his fellow Greek, Eurathostenes, who identified the property that
we have here attributed to Archimedeas.

TThis theorem asserts that each natural number may be uniquely expressed as the product of prime natural
numbers; see [BM97].
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9. Use an induction argument to show that if n > 1 is a natural number, then n - 1 also is a
natural number. Then use another induction argument to show that if m and n are natural
numbers with n > m, then n - m is a natural number.

10. Show that for any integer n, there is exactly one integer in the interval [n, n + 1).

11. Show that any nonempty set of integers that is bounded above has a largest member.

12. Show that the irrational numbers are dense in R.

13. Show that each real number is the supremum of a set of rational numbers and also the
supremum of a set of irrational numbers.

14. Show that if r > 0, then, for each natural number n, (1 + r)" > 1 + n r.

15. Use induction arguments to prove that for every natural number n,
(i)

lZ - n(n+1)(2n+1)
6

13 +23 +... +n3 = (1 +2+... +n)2.

1 -1+r+...+r"
r"_1

= ifr#11-r

1.3 COUNTABLE AND UNCOUNTABLE SETS

In the preliminaries we called two sets A and B equipotent provided there is a one-to-one
mapping f of A onto B. We refer to such an f as a one-to-one correspondence between
the sets A and B. Equipotence defines an equivalence relation among sets, that is, it is
reflexive, symmetric, and transitive (see Problem 20). It is convenient to denote the initial
segment of natural numbers (k E N 11 < k < n} by (1.... , n}. The first observation regarding
equipotence is that for any natural numbers n and m, the set {1.... , n +m} is not equipotent
to the set {1, ... , n}. This observation is often called the pigeonhole principle and may be
proved by an induction argument with respect to n (see Problem 21).

Definition A set E is said to be finite provided either it is empty or there is a natural number
n for which E is equipotent to {1, ... , n}. We say that E is countably infinite provided E is
equipotent to the set N of natural numbers. A set that is either finite or countably infinite is said
to be countable. A set that is not countable is called uncountable.

Observe that if a set is equipotent to a countable set, then it is countable. In the proof
of the following theorem we will use the pigeonhole principle and Theorem 1, which tells us
that every nonempty set of natural numbers has a smallest, or first, member.

Theorem 3 A subset of a countable set is countable. In particular, every set of natural numbers
is countable.

Proof Let B be a countable set and A a nonempty subset of B. First consider the case that B is
finite. Let f be a one-to-one correspondence between {1.... , n j and B. Define g(1) to be the
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first natural number j, 1 < j < n, for which f (j) belongs to A. If A = (f (g(1)) } the proof is
complete since f o g is a one-to-one correspondence between {1} and A. Otherwise, define
g(2) to be the first natural number j,1 < j < n, for which f (j) belongs to A (f (g(1) )}.
The pigeonhole principle tells us that this inductive selection process terminates after at
most N selections, where N < n. Therefore f o g is a one-to-one correspondence between
{1.... , N} and A. Thus A is finite.

Now consider the case that B is countably infinite. Let f be a one-to-one correspondence
between N and B. Define g(1) to be the first natural number j for which f (j) belongs to A.
Arguing as in the first case, we see that if this selection process terminates, then A is finite.
Otherwise, this selection process does not terminate and g is properly defined on all of N.
It is clear that f o g is a one-to-one mapping with domain N and image contained in A. An
induction argument shows that g(j) > j for all j. For each x E A, there is some k for which
x = f (k). Hence x belongs to the set (f (g(1) ), ... , f (g(k)) }. Thus the image of f o g is A.
Therefore A is countably infinite.

Corollary 4 The following sets are countably infinite:

n times

(i) For each natural numbers n, the Cartesian product N X . . X N.

(ii) The set of rational numbers Q.

Proof We prove (i) for n = 2 and leave the general case as an exercise in induction. Define
the mapping g from N X N to N by g(m, n) = (m + n )2 + n. The mapping g is one-to-one.
Indeed, if g (m, n) = g(m', n'), then (m + n )2- (m' + n' )2 = n' - n and hence

Im +n +m' +n'I Im +n - m' - n'I = In' - nI.

If n # n', then the natural number m + n + m' + n' both divides and is greater than the natural
number In' - n 1, which is impossible. Thus n = n', and hence m = m'. Therefore N X N
is equipotent to g(N x N), a subset of the countable set N. We infer from the preceding
theorem that N X N is countable. To verify the countability of Q we first infer from the
prime factorization theorem that each positive rational number x may be written uniquely
as x = p/q where p and q are relatively prime natural numbers. Define the mapping g from
Q to N by g(0) =0,g(p/q) = (p+ q)2+gifx= p/q >0 and p and q are relatively prime
natural numbers and g(x) = -g(-x) if x < 0. We leave it as an exercise to show that g is
one-to-one. Thus Q is equipotent to a subset of N and hence, by the preceding theorem, is
countable. We leave it as an exercise to use the pigeonhole principle to show that neither
N X N nor Q is finite.

For a countably infinite set X, we say that {xn,I n E N} is an enumeration of X provided

X={xn I nEN} andxn#xmifn#m.

Theorem 5 A nonempty set is countable if and only if it is the image of a function whose
domain is a nonempty countable set.
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Proof Let A be a nonempty countable set and f be mapping of A onto B. We suppose
that A is countably infinite and leave the finite case as an exercise. By composing with a
one-to-one correspondence between A and N, we may suppose that A = N. Define two
points x, x' in A to be equivalent provided f (x) = f (x'). This is an equivalence relation, that
is, it is reflexive, symmetric, and transitive. Let E be a subset of A consisting of one member
of each equivalence class. Then the restriction of f to E is a one-to-one correspondence
between E and B. But E is a subset of N and therefore, by Theorem 3, is countable. The set
B is equipotent to E and therefore B is countable. The converse assertion is clear; if B is a
nonempty countable set, then it is equipotent either to an initial segment of natural numbers
or to the natural numbers.

Corollary 6 The union of a countable collection of countable sets is countable.

Proof Let A be a countable set and for each A E A, let EA be a countable set. We will show
that the union E = UAEA EA is countable. If E is empty, then it is countable. So we assume
E#0. We consider the case that A is countably infinite and leave the finite case as an exercise.
Let (An I n E NJ be an enumeration of A. Fix n E N. If EAn is finite and nonempty, choose
a natural number N(n) and a one-to-one mapping fn of (1, ..., N(n)} onto EA.; if EAn is
countably infinite, choose a a one-to-one mapping fn of N onto EAR. Define

E' = { (n, k) E N X NI EA. is nonempty, and 1 < k < N(n) if EAn is also finite}.

Define the mapping f of E' to E by f (n, k) = fn (k). Then f is a mapping of E' onto E.
However, E' is a subset of the countable set N X N and hence, by Theorem 3, is countable.
Theorem 5 tells us that E also is countable.

We call an interval of real numbers degenerate if it is empty or contains a single
member.

Theorem 7 A nondegenerate interval of real numbers is uncountable.

Proof Let I be a nondegenerate interval of real numbers. Clearly I is not finite. We argue by
contradiction to show that I is uncountable. Suppose I is countably infinite. Let (xn I n E N}
be an enumeration of I. Let [a1, b1] be a nondegenerate closed, bounded subinterval of I
which fails to contain x1. Then let [a2, b2] be a nondegenerate closed, bounded subinterval of
[a1, b1], which fails to contain x2. We inductively choose a countable collection {[an, bn]}'1
of nondegenerate closed, bounded intervals, which is descending in the sense that, for
each n, [an+i, bin+i] C [an, bin] and such that for each n, x, 0 [an, bin]. The nonempty set
E = {an I n E N} is bounded above by b1. The Completeness Axiom tells us that E has a
supremum. Define x* = sup E. Since x* is an upper bound for E, an < x* for all n. On the
other hand, since {[an, bin]}n°1 is descending, for each n, bin is an upper bound for E. Hence,
for each n, x* < bin. Therefore x* belongs to [an, bin] for each n. But x* belongs to [al, b1] C 1
and therefore there is a natural number no for which x* = xno. We have a contradiction since
x* = xno does not belong to [ano, bno]. Therefore I is uncountable.
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PROBLEMS

16. Show that the set Z of integers is countable.

17. Show that a set A is countable if and only if there is a one-to-one mapping of A to N.

18. Use an induction argument to complete the proof of part (i) of Corollary 4.

19. Prove Corollary 6 in the case of a finite family of countable sets.

20. Let both f : A --). B and g: B -+ C be one-to-one and onto. Show that the composition
g o f : A -* B and the inverse f -1: B -* A are also one-to-one and onto.

21. Use an induction argument to establish the pigeonhole principle.

22. Show that 2N, the collection of all sets of natural numbers, is uncountable.

23. Show that the Cartesian product of a finite collection of countable sets is countable. Use
the preceding problem to show that NN, the collection of all mappings of N into N, is not
countable.

24. Show that a nondegenerate interval of real numbers fails to be finite.

25. Show that any two nondegenerate intervals of real numbers are equipotent.

26. Is the set R X R equipotent to R?

1.4 OPEN SETS, CLOSED SETS, AND BOREL SETS OF REAL NUMBERS

Definition A set O of real numbers is called open provided for each x E O, there is a r > O for
which the interval (x - r, x + r) is contained in O.

For a < b, the interval (a, b) is an open set. Indeed, let x belong to (a, b). Define
r = min{b - x, x - a}. Observe that (x - r, x + r) is contained in (a, b). Thus (a, b) is an
open bounded interval and each bounded open interval is of this form. For a, b E R, we
defined

(a,oo)={xERI a<x},(-oo,b)={xERI x<b} and (-oo, oo) = R.

Observe that each of these sets is an open interval. Moreover, it is not difficult to see that
since each set of real numbers has an infimum and supremum in the set of extended real
numbers, each unbounded open interval is of the above form.

Proposition 8 The set of real numbers R and the empty-set 0 are open; the intersection of any
finite collection of open sets is open; and the union of any collection of open sets is open.

Proof It is clear that R and 0 are open and the union of any collection of open sets is
open. Let {Ok}k=1 be a finite collection of open subsets of R. If the intersection of this
collection is empty, then the intersection is the empty-set and therefore is open. Otherwise,
let x belong to lk=1Ok. For 1 < k < n, choose rk > 0 for which (x - rk, x + rk) C Ok. Define
r = min(r1,... , r > 0 and (x - r, x + r) C nk=1Ok. Therefore f1k=1Ok. is open.

It is not true, however, that the intersection of any collection of open sets is open. For
example, for each natural number n, let On be the open interval (-11n, 11n). Then, by the
Archimedean Property of R, n,,1 On = (0}, and {0} is not an open set.
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Proposition 9 Every nonempty open set is the disjoint union of a countable collection of open
intervals.

Proof Let 0 be a nonempty open subset of R. Let x belong to O. There is a y > x for which
(x, y) C O and a z < x for which (z, x) C O. Define the extended real numbrs ax and bx by

ax=inf{zI (z,x)CO} and bx=sup {yI (x,y)CO}.

Then Ix = (ax, bx) is an open interval that contains x. We claim that

Ix C 0 but ax 0 0, bx 0 0. (2)

Indeed, let w belong to Ix, say x < w < bx. By the definition of bx, there is a number
y > w such that (x, y) C 0, and so w E O. Moreover, bx 0 0, for if bx E 0, then for some
r > 0 we have (bx - r, bx + r) C O. Thus (x, bx + r) C 0, contradicting the definition
of bx. Similarly, ax 0 O. Consider the collection of open intervals Since each x in
O is a member of Ix, and each Ix is contained in 0, we have 0 = Ux E o Ix. We infer
from (2) that {Ix}xEo is disjoint. Thus 0 is the union of a disjoint collection of open
intervals. It remains to show that this collection is countable. By the density of the rationals,
Theorem 2, each of these open intervals contains a rational number. This establishes a
one-to-one correspondence between the collection of open intervals and a subset of the
rational numbers. We infer from Theorem 3 and Corollary 4 that any set of rational
numbers is countable. Therefore 0 is the union of a countable disjoint collection of open
intervals.

Definition For a set E of real numbers, a real number x is called a point of closure of E
provided every open interval that contains x also contains a point in E. The collection of points
of closure of E is called the closure of E and denoted by E.

It is clear that we always have E C E. If E contains all of its points of closure, that is,
E = E, then the set E is said to be dosed.

Proposition 10 For a set of real numbers E, its closure t is closed. Moreover, E is the smallest
closed set that contains E in the sense that if F is closed and E C F, then E C F.

Proof The set E is closed provided it contains all its points of closure. Let x be a point of
closure of E. Consider an open interval Ix which contains x. There is a point X' E En Ix. Since
x' is a point of closure of E and the open interval Ix contains x', there is a point x" E E f1 Ix.
Therefore every open interval that x also contains a point of E and hence x E E. So the set E
is closed. It is clear that if A C B, then A C B, and hence if F is closed and contains E, then
ECF=F.

Proposition 11 A set of real numbers is open if and only if its complement in R is closed.

Proof First suppose E is an open subset of R. Let x be a point of closure of R - E. Then x
cannot belong to E because otherwise there would be an open interval that contains x and
is contained in E and thus is disjoint from R ^- E. Therefore x belongs to R - E and hence
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R ^- E is closed. Now suppose R E is closed. Let x belong to E. Then there must be an
open interval that contains x that is contained in E, for otherwise every open interval that
contains x contains points in X - E and therefore x is a point of closure of R - E. Since
R E is closed, x also belongs to R ^- E. This is a contradiction.

Since R - [R - E] = E, it follows from the preceding proposition thata set is closed if
and only if its complement is open. Therefore, by De Morgan's Identities, Proposition 8 may
be reformulated in terms of closed sets as follows.

Proposition 12 The empty-set 0 and R are closed; the union of any finite collection of closed
sets is closed; and the intersection of any collection of closed sets is closed.

A collection of sets {EA}AEA is said to be a cover of a set E provided E C UAEA EA.
By a subcover of a cover of E we mean a subcollection of the cover that itself also is a cover
of E. If each set EA in a cover is open, we call {EA}AEA an open cover of F. If the cover
{EA}AEA contains only a finite number of sets, we call it a finite cover. This terminology is
inconsistent: In "open cover" the adjective "open" refers to the sets in the cover; in "finite
cover" the adjective "finite" refers to the collection and does not imply that the sets in the
collection are finite sets. Thus the term "open cover" is an abuse of language and shouldprop-
erly be "cover by open sets." Unfortunately, the former terminology is well established in
mathematics.

The Heine-Borel Theorem Let F be a closed and bounded set of real numbers. Then every
open cover of F has a finite subcover.

Proof Let us first consider the case that F is the closed, bounded interval [a, b]. Let F
be an open cover of [a, b]. Define E to be the set of numbers x E [a, b] with the property
that the interval [a, x] can be covered by a finite number of the sets of F. Since a E E, E is
nonempty. Since E is bounded above by b, by the completeness of R, E has a supremum;
define c = sup E. Since c belongs to [a, b], there is an 0 E.F that contains c. Since 0 is open
there is an E > 0, such that the interval (c - e, c + e) is contained in O. Now c - E is not an
upper bound for E, and so there must be an x E E with x > c - e. Since X E E, there is a finite
collection ( 0 1 ,..., Ok} of sets in F that covers [a, x]. Consequently, the finite collection
( 0 1 ,---, Ok, 01 covers the interval [a, c + c). Thus c = b, for otherwise c < b and c isnot an
upper bound for E. Thus [a, b] can be covered by a finite number of sets from F, proving
our special case.

Now let F be any closed and bounded set and .F an open cover of F. Since F is
bounded, it is contained in some closed, bounded interval [a, b]. The preceding proposition
tells us that the set 0 = R ^- F is open since F is closed. Let F* be the collection of open
sets obtained by adding 0 to F, that is, F* = F U O. Since .F covers F, F* covers [a, b]. By
the case just considered, there is a finite subcollection of F* that covers [a, b] and hence F.
By removing 0 from this finite subcover of F, if 0 belongs to the finite subcover, we have a
finite collection of sets in .F that covers F.

We say that a countable collection of sets is descending or nested provided
En+1 C E for every natural number n. It is said to be ascending provided E g: E,,+, for
every natural number n.
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The Nested Set Theorem Let {Fn}n° 1 be a descending countable collection of nonempty
closed sets of real numbers for which F1 bounded. Then

00

n
n=1

Proof We argue by contradiction. Suppose the intersection is empty. Then for each real
number x, there is a natural number n for which x 0 Fn, that is, x E O,, = R ^- Fn. Therefore
Un° 1 0, = R. According to Proposition 4, since each F. is closed, each On is open. Therefore
{On}n_i is an open cover of R and hence also of Fl. The Heine-Borel Theorem tells us
that there a natural number N for which F C UN-n= 1

On. Since {Fn}n°1 is descending, the
collection of complements {On }n° is ascending. Therefore UN 1 On = ON = R ^- FN. Hence
F1 C R - FN, which contradicts the assumption that FN is a nonempty subset of F1.

Definition Given a set X, a collection A of subsets of X is called a 0'-algebra (of subsets of X)
provided (i) the empty-set, 0, belongs to A; (ii) the complement in X of a set in A also belongs
to A; (iii) the union of a countable collection of sets in A also belongs to A.

Given a set X, the collection {0, X} is a o--algebra which has two members and is
contained in every o--algebra of subsets of X. At the other extreme is the collection of sets
2x which consists of all subsets of X and contains every o -algebra of subsets of X. For
any u--algebra A, we infer from De Morgan's Identities that A is closed with respect to
the formation of intersections of countable collections of sets that belong to A; moreover,
since the empty-set belongs to A, A is closed with respect to the formation of finite
unions and finite intersections of sets that belong to A. We also observe that a u--algebra
is closed with respect to relative complements since if Al and A2 belong to A, so does
Al - A2 = Al n [X - A2]. The proof of the following proposition follows directly from the
definition of o--algebra.

Proposition 13 Let F be a collection of subsets of a set X. Then the intersection A of all
Q-algebras of subsets of X that contain F is a o--algebra that contains F. Moreover, it is the
smallest u--algebra of subsets of X that contains .F in the sense that any v-algebra that contains
F also contains A.

Let (A,,}1 be a countable collection of sets that belong to a u--algebra A. Since A
is closed with respect to the formation of countable intersections and unions, the following
two sets belong to A :

00 -
limsup{An}n 1= n fU

An]

and liminf{An}n° 1= U n=k
k=1 n=k k=1 JAn

The set lim sup{An }n°1 is the set of points that belong to An for countably infinitely many
indices n while the set lim inf{An}n 1 is the set of points that belong to An except for at most
finitely many indices n.

Although the union of any collection of open sets is open and the intersection of
any finite collection of open sets is open, as we have seen, the intersection of a countable
collection of open sets need not be open. In our development of Lebesgue measure and
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integration on the real line, we will see that the smallest o--algebra of sets of real numbers
that contains the open sets is a natural object of study.

Definition The collection B of Borel sets of real numbers is the smallest o--algebraof sets of
real numbers that contains all of the open sets of real numbers.

Every open set is a Borel set and since a or-algebra is closed with respect to the formation
of complements, we infer from Proposition 4 that every closed set is a Borel set. Therefore,
since each singleton set is closed, every countable set is a Borel set. A countable intersection
of open sets is called a Ga set. A countable union of closed sets is called an FQ set. Since
a o--algebra is closed with respect to the formation of countable unions and countable
intersections, each GS set and each Fv set is a Borel set. Moreover, both the lim inf and
lim sup of a countable collection of sets of real numbers, each of which is either open or
closed, is a Borel set.

PROBLEMS

27. Is the set of rational numbers open or closed?

28. What are the sets of real numbers that are both open and closed?

29. Find two sets A and B such that A n B = 0 and A n B # 0.

30. A point x is called an accumulation point of a set E provided it is a point of closure of E ^- {x}.
(i) Show that the set E' of accumulation points of E is a closed set.

(ii) Show that E = E U E'.

31. A point x is called an isolated point of a set E provided there is an r > 0 for which
(x - r, x + r) n E = {x}. Show that if a set E consists of isolated points, then it is countable.

32. A point x is called an interior point of a set E if there is an r > 0 such that the open interval
(x - r, x + r) is contained in E. The set of interior points of E is called the interior of E
denoted by int E. Show that
(i) E is open if and only if E = int E.

(ii) E is dense if and only if int(R - E) = 0.

33. Show that the Nested Set Theorem is false if Fl is unbounded.

34. Show that the assertion of the Heine-Borel Theorem is equivalent to the Completeness
Axiom for the real numbers. Show that the assertion of the Nested Set Theorem is equivalent
to the Completeness Axiom for the real numbers.

35. Show that the collection of Borel sets is the smallest o--algebra that contains the closed sets.

36. Show that the collection of Borel sets is the smallest o--algebra that contains intervals of the
form [a, b), where a < b.

37. Show that each open set is an FQ set.

1.5 SEQUENCES OF REAL NUMBERS

A sequence of real numbers is a real-valued function whose domain is the set of natu-
ral numbers. Rather than denoting a sequence with standard functional notation such as
f : N--> R, it is customary to use subscripts, replace f (n) with an, and denote a sequence
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by fan }. A natural number n is called an index for the sequence, and the number an cor-
responding to the index n is called the nth term of the sequence. Just as we say that a
real-valued function is bounded provided its image is a bounded set of real numbers, we
say a sequence fan ) is bounded provided there is some c > 0 such that Ian 1 < c for all n.
A sequence is said to be increasing provided an < an+1 for all n, is said to be decreasing
provided {-an} is inceasing, and said to be monotone provided it is either increasing or
decreasing.

Definition A sequence fan } is said to converge to the number a provided for every E > 0,
there is an index N for which

ifn>N, thenIa -and<E.

We call a the limit of the sequence and denote the convergence of fan) by writing

fan} -* a or lim an = a.
n--rao

(3)

We leave the proof of the following proposition as an exercise.

Proposition 14 Let the sequence of real numbers (an) converge to the real number a. Then
the limit is unique, the sequence is bounded, and, for a real number c,

if an <c foralln, thena <c.

Theorem 15 (the Monotone Convergence Criterion for Real Sequences) A monotone
sequence of real numbers converges if and only if it is bounded.

Proof Let {an} be an increasing sequence. If this sequence converges, then, by the preceding
proposition, it is bounded. Now assume that fan } is bounded. By the Completeness Axiom,
the set S = {an i n E N} has a supremum: define a = sup S. We claim that fan } -+ a. Indeed,
let c > 0. Since s is an upper bound for S, an < a for all n. Since a - E is not an upper bound
for S, there is an index N for which aN > a - E. Since the sequence is increasing, an > a - E
for all n > N. Thus if n > N, then I a - an I < E. Therefore {an } -* a. The proof for the case
when the sequence is decreasing is the same.

For a sequence fan} and a strictly increasing sequence of natural numbers {nk}, we call
the sequence (ank} whose kth term is ank a subsequence of {an}.

Theorem 16 (the Bolzano-Weierstrass Theorem) Every bounded sequence of real numbers
has a convergent subsequence.

Proof Let {an} be a bounded sequence of real numbers. Choose M > 0 such that IanI < M
for all n. Let n be a natural number. Define En = {aj I j > n}. Then En C [-M, M] and En is
closed since it is the closure of a set. Therefore {En} is a descending sequence of nonempty
closed bounded subsets of R. The Nested Set Theorem tells us that fl 1 En # 0; choose
a E nn° 1 En. For each natural number k, a is a point of closure of {ai I j > k}. Hence, for
infinitely many indices j > n, aj belongs to (a -1/k, a + 11k). We may therefore inductively
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choose a strictly increasing sequence of natural numbers {nk} such that la-ank I< Ilk for all k.
By the Archimedean Property of R, the subsequence {ank} converges to a.

Definition A sequence of real numbers {an} is said to be Cauchy provided for each e > 0,
there is an index N for which

if n, m > N, then lam - and < E. (4)

Theorem 17 (the Cauchy Convergence Criterion for Real Sequences) A sequence of real
numbers converges if and only if it is Cauchy.

Proof First suppose that {an } -* a. Observe that for all natural numbers n and m,

Ian-aml=l(an-a)+(a-am)I<Ian-al+Iam-al. (5)

Let c > 0. Since {an} -* a, we may choose a natural number N such that if n > N, then
Ian - al < E/2. We infer from (5) that if n, m > N, then Ian - am I <c. Therefore the sequence
{an} is Cauchy. To prove the converse, let {an} be a Cauchy sequence. We claim that it is
bounded. Indeed, for E = 1, choose N such that if n, m > N, then Ian - am I < 1. Thus

Ian l = I (an - aN) + aN I < I an - aN I + IaN I < 1 + IaN I for all n > N.

Define M = 1 + max{ lai I> , IaN I }. Then Ian 1 < M for all n. Thus {an } is bounded. The
Bolzano-Weierstrass Theorem tells us there is a subsequence {ank } which converges to a. We
claim that the whole sequence converges to a. Indeed, let E > 0. Since {an } is Cauchy we may
choose a natural number N such that

if n, m > N, then Ian - am I < E/2.

On the other hand, since {ank } -+ a we may choose a natural number nk such that la - ank I
< E/2 and nk > N. Therefore

Ian-al=I(an-ank)+(ank-a)I<Ian-ankl+la-ankl<Eforalln>N.

Theorem 18 (Linearity and Montonicity of Convergence of Real Sequences) Let {an } and
{bn} be convergent sequences of real numbers. Then for each pair of reatnumbers a and (3,
the sequence {a an + 0 bn } is convergent and

lim [a an + /3 bn ] =a lim an +0' lim bn . (6)n-roo n-00 n->oo

Moreover,

Proof Define

Observe that

if an < bn for all n, then lim an < lim bn. (7)n- oo n->oo

lim an = a and lim bn = b.
n - oo n -> oo

(8)



Section 1.5 Sequences of Real Numbers 23

Let E > 0. Choose a natural number N such that

Ian-al<E/[2+21a1]andIbn-bl<E/[2+2101]forall n>N.

We infer from (8) that

n>N.

Therefore (6) holds. To verify (7), set cn = bn - an for all n and c = b - a, Then cn > 0 for
all n and, by linearity of convergence, {cn } c. We must show c > 0. Let c > 0. There is an
N such that

-E<C - Cn<Eforall n > N.

In particular, 0 < CN < c + E. Since c > -E for every positive number c, c > 0.

If a sequence {an } has the property that for each real number c, there is an index N
such that if n > N, then an > c we say that {an } converges to infinity, call oo the limit of (an }
and write lim, , oo an = oo. Similar definitions are made at -oo. With this extended concept
of convergence we may assert that any monotone sequence (an } of real numbers, bounded
or unbounded, converges to an extended real number and therefore limn an is properly
defined.

The extended concept of supremum and infimum of a set and of convergence for any
monotone sequence of real numbers allows us to make the following definition.

Definition Let {an} be a sequence of real numbers. The limit superior of {an}, denoted by
lim sup{an }, is defined by

lim sup{an} = lim [sup {ak I k > nj
n +00

The limit inferior of {an}, denoted by lini ml (a,,), is defined by

liminf{an} = lim [inf {ak I k > n}].
n-roc

We leave the proof of the following proposition as an exercise.

Proposition 19 Let {an} and {bn} be sequences of real numbers.

(i) lim sup{an} = £ E R if and only if for each E > 0, there are infinitely many indices n
for which an > £ - E and only finitely many indices n for which an > f + E.

(ii) lim sup{an} = oo if and only if {an) is not bounded above.
(iii)

lim sup {an } lim inf {-an }.

(iv) A sequence of real numbers {an } converges to an extended real number a if and only if

lim inf{an } = lim sup{an } = a.

(v) If an < bn for all n, then
lim sup{an} <liminf{bn}.



24 Chapter 1 The Real Numbers: Sets, Sequences, and Functions

For each sequence {ak} of real numbers, there corresponds a sequence of partial sums
{sn} defined by sn = Y,'=, ak for each index n. We say that the series Yk 1 ak is summable to
the real numbers provided (sn } -* s and write s = k ak.

We leave the proof of the following proposition as an exercise.

Proposition 20 Let (an } be a sequence of real numbers.

(i) The series Ek 1 ak is summable if and only if for each c > 0, there is an index N for
which

n+m

I ak
k=n

< E for n > N and any natural number in.

(ii) If the series Y_k° 1 Jak I is summable, then E 1 ak also is summable.

(iii) If each term ak is nonnegative, then the series 2' 1 ak is summable if and only if the
sequence of partial sums is bounded.

PROBLEMS

38. We call an extended real number a cluster point of a sequence {an} if a subsequence converges
to this extended real number. Show that liminf(an} is the smallest cluster point of {an} and
lim sup{an} is the largest cluster point of (an).

39. Prove Proposition 19.

40. Show that a sequence (an) is convergent to an extended real number if and only if there is
exactly one extended real number that is a cluster point of the sequence.

41. Show that lim inf an < lim sup an.

42. Prove that if, for all n, an > 0 and bn > 0, then

lim sup [an bn] < (limsup an) (limsup bn),

provided the product on the right is not of the form 0 oo.

43. Show that every real sequence has a monotone subsequence. Use this to provide another
proof of the Bolzano-Weierstrass Theorem.

44. Let p be a natural number greater than 1, and x a real number, 0 < x < 1. Show that there is
a sequence {an } of integers with 0 < an < p for each n such that

00 anx=I -
n=1 Pn

and that this sequence is unique except when x is of the form q/ pn, in which case there are
exactly two such sequences. Show that, conversely, if {an} is any sequence of integers with
0 < an < p, the series

00aan

n=1 P

converges to a real number x with 0 < x < 1. If p = 10, this sequence is called the decimal
expansion of x. For p = 2 it is called the binary expansion; and for p = 3, the ternary
expansion.

45. Prove Proposition 20.
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46. Show that the assertion of the Bolzano-Weierstrass Theorem is equivalent to the Complete-
ness Axiom for the real numbers. Show that the assertion of the Monotone Convergence
Theorem is equivalent to the Completeness Axiom for the real numbers.

1.6 CONTINUOUS REAL-VALUED FUNCTIONS OF A REAL VARIABLE

Let f be a real-valued function defined on a set E of real numbers. We say that f is
continuous at the point x in E provided that for each c > 0, there is a S > 0 for which

ifx'EEandIx' -xI <5, thenlf(x) - f(x)I<E.

The function f is said to be continuous (on E) provided it is continuous at each point in its
domain E. The function f is said to be Lipschitz provided there is a c > 0 for which

If(x) - f(x)I <c Ix' -xl forallx',xEE.

It is clear that a Lipschitz functon is continuous. Indeed, for a number x E E and any E > 0,
S = E/c responds to the c challenge regarding the criterion for the continuity of f at x. Not
all continuous functions are Lipschitz. For example, if f (x) = lx- for 0 < x < 1, then f is
continuous on [0, 1] but is not Lipschitz.

We leave as an exercise the proof of the following characterization of continuity at a
point in terms of sequential convergence.

Proposition 21 A real-valued function f defined on a set E of real numbers is continuous
at the point x, E E if and only if whenever a sequence in E converges to x, its image
sequence { f (xrz )} converges to f (x ).

We have the following characterization of continuity of a function on all of its domain.

Proposition 22 Let f be a real-valued function defined on a set E of real numbers. Then f is
continuous on E if and only if for each open set 0,

f-1 (O) = E fl U where U is an open set. (9)

Proof First assume the inverse image under f of any open set is the intersection of the
domain with an open set. Let x belong to E. To show that f is continuous at x, let E > 0. The
interval I = (f (x) - E, f (x) + E) is an open set. Therefore there is an open set U such that

f-t(I)={x'EEI f(x)-E<f(x')<f(x)+E}=EnU.
In particular, f (E fl U) C I and x belongs to E n U. Since U is open there is a S > 0such
that (x - S, x + S) C U. Thus if X' E E and Ix- xI < S, then If (x') - f (x)l < E. Hence f is
continuous at x.

Suppose now that f is continuous. Let 0 be an open set and x belong to f-t (0). Then
f (x) belongs to the open set O so that there is an c > 0, such that (f (x) - E, f (x) + E) C O.
Since f is continuous at x, there is a S > 0 such that if x' belongs to E and Ix' - xI < S, then
If (x') - f (x) I < E. Define IX = (x - S, x + 3). Then f (E n 1X) C O. Define

U= U I.
X E f-1(O)
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Since U is the union of open sets it is open. It has been constructed so that (9) holds.

The Extreme Value Theorem A continuous real-valued function on a nonempty closed,
bounded set of real numbers takes a minimum and maximum value.

Proof Let f be a continuous real-valued function on the nonempty closed bounded set E of
real numbers. We first show that f is bounded on E, that is, there is a real number M such that

If(x)I <MforallxEE. (10)

Let x belong to E. Let S > 0 respond to the e = 1 challenge regarding the criterion for
continuity of f at x. Define Ix = (x - S, x + S). Therefore if x' belongs to E n Ix, then
I f (x') - f (x) I < 1 and so I f (x') I < I f (x) I + 1. The collection {Ix}x E E is an open cover of
E. The Heine-Borel Theorem tells us that there are a finite number of points {x1, ... , xn}
in E such that {Ixk}k-1 also covers E. Define M = 1 +max{If(xl)1, . If(xn)I}. We claim
that (10) holds for this choice of E. Indeed, let x belong to E. There is an index k such that
x belongs to Ixk and therefore If (x) 1 < 1 + If (xk) I < M. To see that f takes a maximum
value on E, define m = sup f (E). If f failed to take the value m on E, then the function
x H 1/ (f (x) - M), x E E is a continuous function on E which is unbounded. This contradicts
what we have just proved. Therefore f takes a maximum value of E. Since -f is continuous,
- f takes a maximum value, that is, f takes a minimum value on E.

The Intermediate Value Theorem Let f be a continuous real-valued function on the closed,
bounded interval [a, b] for which f (a) < c < f (b). Then there is a point xo in (a, b) at which
f(xo) = c.

Proof We will define by induction a descending countable collection {[an, bn]}' 1 of closed
intervals whose intersection consists of a single point xo E (a, b) at which f(xo) = c. Define
al = a and bl = b. Consider the midpoint ml of [al, bl]. If c < f(ml ), define a2 = al and
b2 = ml. If f(ml) > c, define a2 = m1 and b2 = b1. Therefore f(a2) < c < f(b2) and
b2 - a2 = [b1 - al]/2. We inductively continue this bisection process to obtain a descending
collection {[an, bn]}n

1
of closed intervals such that

f (an) < c < f (bn) and bn - an = [b - a]/2n-1 for all n. (11)

According to the Nested Set Theorem, nn, , [an, bn] is nonempty. Let xo belong to
°O1 [an, bn ]. Observe thatnn=

Ian - x0I bn - an = [b - a]/2n-1 for all n.

Therefore {an } -+ xo. By the continuity of fat xo, (f(an)) -* f (xo ). Since f (an) < c for
all n, and the set (-oo, c] is closed, f(xo) < c. By a similar argument, f(xo) > c. Hence
f(xo)=c.

Definition A real-valued function f defined on a set E of real numbers is said to be uniformly
continuous provided for each e > 0, there is a S > 0 such that for all x, x' in E,

if Ix - x'I < S, then If (x) - f(x')I <e.
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Theorem 23 A continuous real-valued function on a closed, bounded set of real numbers is
uniformly continuous.

Proof Let f be a continuous real-valued function on a closed bounded set E of real
numbers. Let c > 0. For each x E E, there is a Sx > 0 such that if x' E E and Ix' - xI < Sx, then
If (x1) - f (x) I < e/2. Define Ix to be the open interval (x - Sx/2, x + 3x/2). Then {Ix}X E E

is an open cover of E. According to the Heine-Borel Theorem, there is a finite subcollection
{ I 1 , . . . , I, } which covers E. Define

S 2mm{Sx....... xn}.

We claim that this S > 0 responds to the c > 0 challenge regarding the criterion for f to
be uniformly continuous on E. Indeed, let x and x' belong to E with Ix - x'I < S. Since
{Ixl, ... , I. } covers E, there is an index k for which Ix -xkI < Sxk/2. Since Ix - x'I <S < Sxk/2,

I X ' I X ' - X I .

By the definition of Sxk , since Ix - xkI < Sxk and Ix' -xkI < Sxk we have If(X) - f (Xk) I <c/2
and I f (x') -. f (xk) I< E/2. Therefore

If(x)-f(X )I <If(x)-f(xk)I +lf(X)-f(xk)I <E/2+E/2=E.

Definition A real-valued function f defined on a set E of real numbers is said to be increasing
provided f (x) < f (x') whenever x, x' belong to E and x < x', and decreasing provided - f
is increasing. It is called monotone if it is either increasing or decreasing.

Let f be a monotone real-valued function defined on an open interval I that contains
the point x0. We infer from the Monotone Convergence Theorem for Sequence for Real
Sequences that if is a sequence in I fl (x0, oo) which converges to x0, then the sequence
{ f (x )I converges to a real number and the limit is independent of the choice of sequence

We denote the limit by f (xo ). Similarly, we define f (xo ). Then clearly f is continuous
at xo if and only if f (xo) = f (xo) = f (xo) . If f fails to be continuous at x0, then the only

point of the image off that lies between f (xo) and f (xo) is f (xo) and f is said to have a
jump discontinuity at xo. Thus, by the Intermediate Value Theorem, a monotone function
on an open interval is continuous if and only if its image is an interval (see Problem 55).

PROBLEMS

47. Let E be a closed set of real numbers and f a real-valued function that is defined and
continuous on E. Show that there is a function g defined and continuous on all of R such that
f (x) = g (x) for each x E E. (Hint: Take g to be linear on each of the intervals of which R -E
is composed.)

48. Define the real-valued function f on R by setting

f(x) _
x if x irrational

p sin I if x =
9

in lowest terms.

At what points is f continuous?
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49. Let f and g be continuous real-valued functions with a common domain E.
(i) Show that the sum, f + g, and product, f g, are also continuous functions.

(ii) If h is a continuous function with image contained in E, show that the composition f o h
is continuous.

(iii) Let max{ f, g} be the function defined by max{ f, g}(x) = max(f (x), g(x)}, for x E E.
Show that max{ f, g} is continuous.

(iv) Show that If I is continuous.

50. Show that a Lipschitz function is uniformly continuous but there are uniformly continuous
functions that are not Lipschitz.

51. A continuous function (p on [a, b] is called piecewise linear provided there is a partition
a = xo < xt < < x = b of [a, b] for which rp is linear on each interval [x,, x;+,]. Let f be a
continuous function on [a, b] and E a positive number. Show that there is a piecewise linear
function p on [a, b] with If (x) - p (x) I < E for all x E [a, b].

52. Show that a nonempty set E of real numbers is closed and bounded if and only if every
continuous real-valued function on E takes a maximum value.

53. Show that a set E of real numbers is closed and bounded if and only if every open cover of E
has a finite subcover.

54. Show that a nonempty set E of real numbers is an interval if and only if every continuous
real-valued function on E has an interval as its image.

55. Show that a monotone function on an open interval is continuous if and only if its image is an
interval.

56. Let f be a real-valued function defined on R. Show that the set of points at which f is
continuous is a GS set.

57. Let { be a sequence of continuous functions defined on R. Show that the set of points x
at which the sequence { f, (x)} converges to a real number is the intersection of a countable
collection of F, sets.

58. Let f be a continuous real-valued function on R. Show that the inverse image with respect to
f of an open set is open, of a closed set is closed, and of a Borel set is Borel.

59. A sequence f f,,) of real-valued functions defined on a set E is said to converge uniformly on
E to a function f if given c > 0, there is an N such that for all x E E and all n >_ N, we have
I f (x) - f (x) I < E. Let { f } be a sequence of continuous functions defined on a set E. Prove
that if { f on f on E.

60. Prove Proposition 21. Use this proposition and the Bolzano-Weierstrass Theorem to provide
another proof of the Extreme Value Theorem.
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2.1 INTRODUCTION

The Riemann integral of a bounded function over a closed, bounded interval is defined
using approximations of the function that are associated with partitions of its domain
into finite collections of subintervals. The generalization of the Riemann integral to the
Lebesgue integral will be achieved by using approximations of the function that are
associated with decompositions of its domain into finite collections of sets which we call
Lebesgue measurable. Each interval is Lebesgue measurable. The richness of the collection
of Lebesgue measurable sets provides better upper and lower approximations of a function,
and therefore of its integral, than are possible by just employing intervals. This leads to a
larger class of functions that are Lebesgue integrable over very general domains and an
integral that has better properties. For instance, under quite general circumstances we will
prove that if a sequence of functions converges pointwise to a limiting function, then the
integral of the limit function is the limit of the integrals of the approximating functions.
In this chapter we establish the basis for the forthcoming study of Lebesgue measurable
functions and the Lebesgue integral: the basis is the concept of measurable set and the
Lebesgue measure of such a set.

The length 1(I) of an interval I is.defined to be the difference of the endpoints of I
if I is bounded, and oo if I is unbounded. Length is an example of a set function, that is, a
function that associates an extended real number to each set in a collection of sets. In the
case of length, the domain is the collection of all intervals. In this chapter we extend the set
function length to a large collection of sets of real numbers. For instance, the "length" of an
open set will be the sum of the lengths of the countable number of open intervals of which
it is composed. However, the collection of sets consisting of intervals and open sets is still
too limited for our purposes. We construct a collection of sets called Lebesgue measurable
sets, and a set function of this collection called Lebesgue measure which is denoted by m.
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The collection of Lebesgue measurable sets is a o -algebra' which contains all open sets and
all closed sets. The set function m possesses the following three properties.

The measure of an interval is its length Each nonempty interval I is Lebesgue mea-
surable and

m(I) = f(I).

Measure is translation invariant If E is Lebesgue measurable and y is any number, then
the translate of E by y, E + y = {x + y I X E E}, also is Lebesgue measurable and

m(E+ y) = m(E).

Measure is countably additivity over countable disjoint unions of sets2 If {Ek}k
1

is a
countable disjoint collection of Lebesgue measurable sets, then

ao 00

m UEk m(Ek).
k=1 k=1

It is not possible to construct a set function that possesses the above three properties
and is defined for all sets of real numbers (see page 48). In fact, there is not even a set function
defined for all sets of real numbers that possesses the first two properties and is finitely
additive (see Theorem 18). We respond to this limitation by constructing a set function on a
very rich class of sets that does possess the above three properties. The construction has two
stages.

We first construct a set function called outer-measure, which we denote by m*. It
is defined for any set, and thus, in particular, for any interval. The outer measure of an
interval is its length. Outer measure is translation invariant. However, outer measure is not
finitely additive. But it is countably subadditive in the sense that if {Ek}k1 is any countable
collection of sets, disjoint or not, then

m* UEk < I m*(Ek).
k=1 k=1

The second stage in the construction is to determine what it means for a set to be Lebesgue
measurable and show that the collection of Lebesgue measurable sets is a o-algebra
containing the open and closed sets. We then restrict the set function m* to the collection
of Lebesgue measurable sets, denote it by m, and prove m is countably additive. We can m
Lebesgue measure.

1A collection of subsets of R is called a Q-algebra provided it contains R and is closed with respect to the
formation of complements and countable unions; by De Morgan's Identities, such a collection is also closed with
respect to the formation of countable intersections.

2For a collection of sets to be disjoint we mean what is sometimes called pairwise disjoint, that is, that each pair
of sets in the collection has empty intersection.
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PROBLEMS

In the first three problems, let m be a set function defined for all sets in a Q-algebra A with values
in [0, oo]. Assume m is countably additive over countable disjoint collections of sets in A

1. Prove that if A and B are two sets in A with A C B, then m(A) < m(B). This property is
called monotonicity.

2. Prove that if there is a set A in the collection A for which m (A) < oo, then m (O) = 0.

3. Let (Ek}i 1 be a countable collection of sets in A. Prove that m (U001 1 Ek) < Y,k 1 m(Ek ).

4. A set function c, defined on all subsets of R, is defined as follows. Define c(E) to be oo if
E has infinitely many members and c(E) to be equal to the number of elements in E if E
is finite; define c(0) = 0. Show that c is a countably additive and translation invariant set
function. This set function is called the counting measure.

2.2 LEBESGUE OUTER MEASURE

Let I be a nonempty interval of real numbers. We define its length, 1(I), to be oo if I is
unbounded and otherwise define its length to be the difference of its endpoints. For a set
A of real numbers, consider the countable collections {Ik}'1 of nonempty open, bounded
intervals that cover A, that is, collections for which A C U' 1 Ik. For each such collection,
consider the sum of the lengths of the intervals in the collection. Since the lengths are positive
numbers, each sum is uniquely defined independently of the order of the terms. We define
the outer measure3 of A, m* (A), to be the infimum of all such sums, that is

m*(A) = inf I(Ik)
1k=1

ACUIk .CH

It follows immediately from the definition of outer measure that m* (0) = 0. Moreover, since
any cover of a set B is also a cover of any subset of B, outer measure is monotone in the
sense that

ifACB, then m*(A) <m*(B).

Example A countable set has outer measure zero. Indeed, let C be a countable set
enumerated as C = {ck}k 1. Let E> 0. For each natural number k, define Ik = (ck -E/2k+I ck+

E/2k+t ). The countable collection of open intervals {Ik}1
1

° 1 covers C. Therefore

00 00

0<m*(C)<Et(Ik)=EE/2k=E.
k=1 k=1

This inequality holds for each E > 0. Hence m* (E) = 0.

Proposition 1 The outer measure of an interval is its length.

3There is a general concept of outer measure, which will be considered in Part III. The set function m* is a
particular example of this general concept, which is properly identified as Lebesgue outer measure on the real line.
In Part I, we refer to m * simply as outer measure.
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Proof We begin with the case of a closed, bounded interval [a, b]. Let c > 0. Since the open
interval (a - E, b + E) contains [a, b] we have m* ([a, b]) < £((a - E, b+ E)) = b - a+ 2E. This
holds for any c > 0. Therefore m * ([a, b]) < b - a. It remains to show that m* ([a, b]) > b - a.
But this is equivalent to showing that if {Ik}k 1 is any countable collection of open, bounded
intervals covering [a, b], then

00

E f(Ik) > b - a. (1)
k=1

By the Heine-Borel Theorem,4 any collection of open intervals covering [a, b] has a finite
subcollection that also covers [a, b]. Choose a natural number n for which {Ik}k=1 covers
[a, b]. We will show that

n

I f(Ik)?b-a, (2)
k=1

and therefore (1) holds. Since a belongs to uk=1 Ik, there must be one of the Ik's that contains
a. Select such an interval and denote it by (al, bl ). We have a1 < a < b1. If b1 > b, the
inequality (2) is established since

n

Ef(Ik)>bl-al>b-a.
k=1

Otherwise, b1 E [a, b), and since b10 (al, b1), there is an interval in the collection {Ik)k=1,
which we label (a2, b2), distinct from (al, bi), for which b1 E (a2, b2); that is, a2 < b1 < b2.
If b2 > b, the inequality (2) is established since

n

I f(Ik)> (b1-al)+(b2-a2)=b2-(a2-bl)-al>b2-al>b-a.
k=1

We continue this selection process until it terminates, as it must since there are only n
intervals in the collection {Ik}k=1. Thus we obtain a subcollection {(ak, bk )}k

1
of {Ik}k=1 for

which

while

at <a,

ak+1 < bk for l < k < N -1,

and, since the selection process terminated,

bN > b.

Thus
n N

I f(Ik) > 2f((ai,bi))
k=1 k=1

_ (bN -aN)+(bN-1 -al)

=bN-(aN-bN-1)-...-(a2-bl)-al

> bN - al > b - a.

4See page 18.
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Thus the inequality (2) holds.

If I is any bounded interval, then given c > 0, there are two closed, bounded intervals
Jl and J2 such that

J1 CICJ2

while
£(I) - E <f(Ji) andf(J2) <1(I) +E.

By the equality of outer measure and length for closed, bounded intervals and the mono-
tonicity of outer measure,

1(I) -E <1(J1) =m*(Ji) <m*(I) <m*(J2) =1(J2) <1(I)+E.

This holds for each c > 0. Therefore 2(I) = m*(I).

If I is an unbounded interval, then for each natural number n, there is an interval J C I
with f(i) = n. Hence m*( I) > m* (J) = f (J) = n. This holds for each natural number n.
Therefore m*(I) = oo.

Proposition 2 Outer measure is translation invariant, that is, for any set A and number y,

m*(A + y) = m*(A).

Proof Observe that if {Ik}k 1 is any countable collection of sets, then {Ik}k01 covers A if and
only if Ilk + y}k 1 covers A + y. Moreover, if each Ik is an open interval, then each Ik + y is
an open interval of the same length and so

00 00

I1(Ik)=I1(Ik+Y)-
k=1 k=1

The conclusion follows from these two observations.

Proposition 3 Outer measure is countably subadditive, that is, if {Ek}k 1 is any countable
collection of sets, disjoint or not, then

00

m*IUEkEm*(Ek).
k=1k=1

Proof If one of the Ek's has infinite outer measure, the inequality holds trivially. We
therefore suppose each of the Ek's has finite outer measure. Let c > 0. For each natural
number k, there is a countable collection {Ik,i}°O1 of open, bounded intervals for which

00 00

Ek C U Ik,i and I t (Ik,i) < m* (Ek) + E/2k.
i=1 i=1

Now {Ik,i}1<k,i<00 is a countable collection of open, bounded intervals that covers U00 1 Ek:
the collection is countable since it is a countable collection of countable collections. Thus,
by the definition of outer measure,
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* lm U Ek < E t(Ik,i) =}.. 11(Ik,i)J
k=1 1<k,i<oo k=1 i=1

< [m*(Ek)+E/2k]
k=1

= [klm*]k +E.

Since this holds for each c > 0, it also holds for c = 0. The proof is complete.

If {Ek}k=1 is any finite collection of sets, disjoint or not, then

n 11 n

m* UEk<2m*(Ek).
k=1 ) k=1

This finite subadditivity property follows from countable subadditivity by taking Ek = 0
fork > n.

PROBLEMS

5. By using properties of outer measure, prove that the interval [0, 1] is not countable.

6. Let A be the set of irrational numbers in the interval [0, 1]. Prove that m*(A) = 1.

7. A set of real numbers is said to be a GS set provided it is the intersection of a countable
collection of open sets. Show that for any bounded set E, there is a Gs set G for which

ECG and m*(G) =m*(E).

8. Let B be the set of rational numbers in the interval [0, 1], and let Ilk]"=1 be a finite collection
of open intervals that covers B. Prove that Ek=1 m* (Ik) > 1.

9. Prove that if m*(A) = 0, then m* (A U B) = m*(B).

10. Let A and B be bounded sets for which there is an a > 0 such that la - bI > a for all a E A, b E B.
Prove that m*(A U B) = m*(A) +m*(B).

2.3 THE o-ALGEBRA OF.LEBESGUE MEASURABLE SETS

Outer measure has four virtues: (i) it is defined for all sets of real numbers, (ii) the outer
measure of an interval is its length, (iii) outer measure is countably subadditive, and (iv)
outer measure is translation invariant. But outer measure fails to be countably additive. In
fact, it is not even finitely additive (see Theorem 18): there are disjoint sets A and B for
which

m*(AU B) <m*(A)+m*(B). (3)
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To ameliorate this fundamental defect we identify a o -algebra of sets, called the
Lebesgue measurable sets, which contains all intervals and all open sets and has the property
that the restriction of the set function outer measure to the collection of Lebesgue measurable
sets is countably additive. There are a number of ways to define what it means for a set to be
measurable.5 We follow an approach due to Constantine Caratheodory.

Definition A set E is said to be measurable provided for any set A,6

m*(A) =m*(Afl E)+m*(Afl EC).

We immediately see one advantage possessed by measurable sets, namely, that the
strict inequality (3) cannot occur if one of the sets is measurable. Indeed, if, say, A is
measurable and B is any set disjoint from A, then

m*(A U B) =m*([AUB]flA))+m*([AUB)]flAC) =m*(A)+m*(B).

Since, by Proposition 3, outer measure is finitely subadditive and A = [A fl E] U [A fl Ec],
we always have

m*(A) <m*(AflE)+m*(AflEC).

Therefore E is measurable if and only if for each set A we have

m* (A) > m* (A fl E) +m*(A fl EC). (4)

This inequality trivially holds if m*(A) = oo. Thus it suffices to establish (4) for sets A that
have finite outer measure.

Observe that the definition of measurability is symmetric in E and EC, and therefore
a set is measurable if and only if its complement is measurable. Clearly the empty-set 0 and
the set R of all real numbers are measurable.

Proposition 4 Any set of outer measure zero is measurable. In particular, any countable set
is measurable.

Proof Let the set E have outer measure zero. Let A be any set. Since

AfECEandAnEC A,

by the monotonicity of outer measure,

m*(Afl E) <m*(E) =0andm*(Afl EC) <m*(A).

Thus,

m*(A) > m*(A fl EC) = O+m*(A fl EC) = m*(Afl E) +m*(Afl EC),

and therefore E is measurable.

5 We should fully identify what we here call a measurable set as a Lebesgue measurable subset of the real line. A
more general concept of measurable set will be studied in Part III. However, there will be no confusion in the first
part of this book in simply using the adjective measurable.

6Recall that for a set E, by EC we denote the set {x e R I x 0 E}, the complement of E in R. We also denote EC by
R - E. More generally, for two sets A and B, we let A - B denote (a e A I x 0 B} and call it the relative complement
of B in A.
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Proposition S The union of a finite collection of measurablesets is measurable

Proof As a first step in the proof, we show that the union of two measurable sets El and E2
is measurable. Let A be any set. First using the measurability of El, then the measurability
of E2, we have

m*(A) =m*(AnEl)+m*(AnEI )

= m*(Af1El)+m*([AnEl ]nE2)+m*([AnE1 ]nE2 ).

There are the following set identities:

[AnEC]nEz =Afl[ElUE2]c

and

[A n El] U [A fl El fl E2] = A n [El U E2].

We infer from these identities and the finite subadditivity of outer measure that

m*(A)=m*(AnEl)+m*([AnEl]fl E2)+m*([AnEC]fl E2)

=m*(Afl El)+m*([Afl El]nE2)+m*(Afl[ElUE2]c)

> m*(Afl[El UE2])+m*(Afl[ElUE2]c).

Thus El U E2 is measurable.

Now let {Ek}k=1 be any finite collection of measurable sets. We prove the measurability
of the union Uk=1 Ek, for general n, by induction. This is trivial for n = 1. Suppose it is true
for n -1. Thus, since

n n-1 1

UEk= UEkJUEn,
k=1 k=1

and we have established the measurability of the union of two measurable sets, the set
Uk=1 Ek is measurable. p

Proposition 6 Let A be any set and {Ek}k=1 a finite disjoint collection of measurable sets.
Then

n
m* (An[OEk]) = m*(A fl Ek ).

k=1

In particular,
H)=

UEk)= n
=1 I 1

Proof The proof proceeds by induction on n. It is clearly true for n = 1. Assume it is true
for n - 1. Since the collection {Ek}k=1 is disjoint,

M * m*(Ek).

A f1fUEk]fIEn=AflEf
k=1
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and

A fl UEkJf1En

Hence, by the measurability of En and the induction assumption,

m* A f1 [k=1]) =m*(Afl En)+m* A f1l U1Ek]

n-1
= m*(Af1 En) + E m*(Af1 Ek)

k=1

n

_ I m*(AnEk).
k=1

A collection of subsets of R is called an algebra provided it contains R and is closed
with respect to the formation of complements and finite unions; by De Morgan's Identities,
such a collection is also closed with respect to the formation of finite intersections. We infer
from Proposition 5, together with the measurability of the complement of a measurable set,
that the collection of measurable sets is an algebra. It is useful to observe that the union of
a countable collection of measurable sets is also the union of a countable disjoint collection
of measurable sets. Indeed, let (Ak)k 1 be a countable collection of measurable sets. Define
Ai = Al and for each k > 2, define

k-1
Ak=Ak' UA1.

1=1

Since the collection of measurable sets is an algebra, (Ak}00 1 is a disjoint collection of
measurable sets whose union is the same as that of {Ak}' k=1.

Proposition 7 The union of a countable collection of measurable sets is measurable.

Proof Let E be the union of a countable collection of measurable sets. As we observed above,
there is a countable disjoint collection of measurable sets (Ek)k° 1 for which E = U- 1 Ek.
Let A be any set. Let n be a natural number. Define Fn = Uk=1 Ek. Since Fn is measurable
and F,, J EC,

m*(A) =m*(Af1 Fn)+m*(Af1 Fn) > m*(Af1 Fn)+m*(Af1 EC).

By Proposition 6,

Thus

n

m*(Afl Fn) = Im*(AflEk).
k=1

n

m*(A) > E m*(Afl Ek)+m*(Afl EC).
k=1
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The left-hand side of this inequality is independent ofn. Therefore

m*(A)> m*(AflEk)+m*(AfEC).
k=1

Hence, by the countable subadditivity of outer measure,

m*(A) > m*(A fl E)+m*(Afl EC).

Thus E is measurable.

A collection of subsets of R is called an Q-algebra provided it contains R and is
closed with respect to the formation of complements and countable unions; by De Morgan's
Identities, such a collection is also closed with respect to the formation of countable
intersections. The preceding proposition tells us that the collection of measurable sets is a
Q-algebra.

Proposition 8 Every interval is measurable.

Proof As we observed above, the measurable sets are a u-algebra. Therefore to show that
every interval is measurable it suffices to show that every interval of the form (a, oo) is
measurable (see Problem 11). Consider such an interval. Let A be any set. We assume a does
not belong to A. Otherwise, replace A by A - (a), leaving the outer measure unchanged. We
must show that

where

m*(A1) +m*(A2) < m* (A), (5)

Al =Afl(-oo,a)andA2=Afl(a,oo).

By the definition of m *(A) as an infimum, to verify (5) it is necessary and sufficient to show
that for any countable collection (Ik1k11, of open, bounded intervals that covers A,

m*(A1) +m*(A2) < 2 Wk)-00
k=1

Indeed, for such a covering, for each index k, define

I'k=lkfl(-oc,a)andIk =Ikfl(a,oo)

Then Ik and Ii' are intervals and

(6)

e(lk)=e(lk)+e(Ik)
Since

1 and (I'} k1 are countable collections of open, bounded intervals that cover Al
and A2, respectively, by the definition of outer measure,

00

m*(At) < e(lk) andm*(A2) 2 Wk")-
k=1 k=1
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Therefore
00 00

m*(A1)+m*(Al) < f(Ik) + Wk
k=1 k=1

00

R(Ik+Wk
k=1

00=
Y_ 2(Ik).
k=1

Thus (6) holds and the proof is complete.

Every open set is the disjoint union of a countable collection of open intervals? We
therefore infer from the two preceding propositions that every open set is measurable. Every
closed set is the complement of an open set and therefore every closed set is measurable.
Recall that a set of real numbers is said to be a GS set provided it is the intersection of
a countable collection of open sets and said to be an FQ set provided it is the union of a
countable collection of closed sets. We infer from Proposition 7 that every GS set and every
FQ set is measurable.

The intersection of all the a-algebras of subsets of R that contain the open sets is a
a-algebra called the Borel a-algebra; members of this collection are called Borel sets. The
Borel a-algebra is contained in every a-algebra that contains all open sets. Therefore, since
the measurable sets are a a-algebra containing all open sets, every Borel set is measurable.
We have established the following theorem.

Theorem 9 The collection M of measurable sets is a that contains the a--algebra
B of Borel sets. Each interval, each open set, each closed set, each GS set, and each F, set is
measurable.

Proposition 10 The translate of a measurable set is measurable.

Proof Let E be a measurable set. Let A be any set and y be a real number. By the
measurability of E and the translation invariance of outer measure,

m* (A) =m*(A- y) =m*([A-y]flE)+m*([A- y]flEC)

=m*(Afl [E+y])+m*(Afl [E+y]C).

Therefore E + y is measurable.

PROBLEMS

11. Prove that if a a-algebra of subsets of R contains intervals of the form (a, oo), then it contains
all intervals.

12. Show that every interval is a Borel set.

7See page 17.
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13. Show that (i) the translate of an FR set is also FR, (ii) the translate of a GS set is also Gs, and
(iii) the translate of a set of measure zero also has measure zero.

14. Show that if a set E has positive outer measure, then there is a bounded subset of E that also
has positive outer measure.

15. Show that if E has finite measure and c > 0, then E is the disjoint union of a finite number of
measurable sets, each of which has measure at most E.

2.4 OUTER AND INNER APPROXIMATION OF LEBESGUE MEASURABLE SETS

We now present two characterizations of measurability of a set, one based on inner approx-
imation by closed sets and the other on outer approximation by open sets, which provide
alternate angles of vision on measurability. These characterizations will be essential tools for
our forthcoming study of approximation properties of measurable and integrable functions.

Measurable sets possess the following excision property: If A is a measurable set of
finite outer measure that is contained in B, then

m*(B-A) = m*(B) -m*(A). (7)

Indeed, by the measurability of A,

m*(B) =m*(BfA)+m*(Bfl AC) =m*(A)+m*(B-A),

and hence, since m* (A) < oo, we have (7).

Theorem 11 Let E be any set of real numbers. Then each of the following four assertions is
equivalent to the measurability of E.
(Outer Approximation by Open Sets and GS Sets)

(i) For each e > 0, there is an open set 0 containing E for which m* (0 - E) < E.
(ii) There is a GS set G containing E for which m*(G - E) = 0.

(Inner Approximation by Closed Sets and FQ Sets)

(iii) For each e > 0, there is a closed set F contained in E for which m* (E - F) < e.

(iv) There is an FQ set F contained in E for which m*( E - F) = 0.

Proof We establish the equivalence of the measurability of E with each of the two outer
approximation properties (i) and (ii). The remainder of the proof follows from De Morgan's
Identities together with the observations that a set is measurable if and only if its complement
is measurable, is open if and only if its complement is closed, and is FQ if and only if its
complement is G.

Assume E is measurable. Let e > 0. First consider the case that m*(E) < oo. By the
definition of outer measure, there is a countable collection of open intervals [1k)11 which
covers E and for which

00

E f(Ik) <m*(E)+E.
k=1

Define 0 = U1 1 Ik. Then 0 is an open set containing E. By the definition of the outer
measure of 0,

m*(O) < 2 f(Ik) <m*(E)+E,
k=1
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so that
m*(O) - m*(E) <e.

However, E is measurable and has finite outer measure. Therefore, by the excision property
of measurable sets noted above,

m*(O-E) = m*(O) - m*(E) < e.

Now consider the case that m*(E) = oo. Then E may be expressed as the disjoint union of
a countable collection (Ek}k 1 of measurable sets, each of which has finite outer measure.
By the finite measure case, for each index k, there is an open set Ok containing Ek for which
m* (Ok - Ek) < E/2k. The set 0 = Uk 1 Ok is open, it contains E and

O-E=UOk-ECU[Ok-Ek].00 00

k=1 k=1

Therefore

00

00

m*(O-E)) E,m*(Ok^-Ek)<E'E/2k=E.
k=1 k=1

Thus property (i) holds for E.

Now assume property (i) holds for E. For each natural number k, choose an open set
0 that contains E and for which m* (Ok - E) < 1/k. Define G = nk,1 Ok. Then G is a Gs set
that contains E. Moreover, since for each k, G ' E C Ok - E, by the monotonicity of outer
measure,

m*(G, E) < m*(Ok . E) < 1/k.

Therefore m*(G - E) = 0 and so (ii) holds. Now assume property (ii) holds for E. Since a
set of measure zero is measurable, as is a GS set, and the measurable sets are an algebra, the
set

E=Gf1[G^-E]C

is measurable.

The following property of measurable sets of finite outer measure asserts that such sets
are "nearly" equal to the disjoint union of a finite number of open intervals.

Theorem 12 Let E be a measurable set of finite outer measure. Then for each c > 0, there is a
finite disjoint collection of open intervals (Ik}k=1 for which if 0 = Uk=1 Ik, then8

m*(E^-O)+m*(O-E) <E.

Proof According to assertion (i) of Theorem 11, there is an open set U such that

ECU andm*(U^-E) <E/2. (8)

tFor two sets A and B, the symmetric difference of A and B, which is denoted by AAB, is defined to be the set
[A - B] U [B - A]. With this notation the conclusion is that m*(E AO) < E.
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Since E is measurable and has finite outer measure, we infer from the excision property
of outer measure that U also has finite outer measure. Every open set of real numbers
is the disjoint union of a countable collection of open intervals .9 Let U be the union of
the countable disjoint collection of open intervals {Ik}I1. Each interval is measurable and
its outer measure is its length. Therefore, by Proposition 6 and the monotonicity of outer
measure, for each natural number n,

k=1 k =1

n n

f(Ik)=m*UIk) <m*(U)<oo.(L

The right-hand side of this inequality is independent of n. Therefore

ao

C (Ik) < 00-
k=1

Choose a natural number n for which

00

f(Ik)<E/2.
k=n+1

Define 0 = Uk=1 Ik. Since 0 ^ E C U ^' E, by the monotomcity of outer measure and (8),

m*(O^ E) <m*(U E) <E/2.

On the other hand, since E C U,

00

E-OCU'O= U Ik,
k=n+1

so that by the definition of outer measure,

00

Thus

m*(E^ O) S Q(Ik) <E/2.
k=n+1

Remark A comment regarding assertion (i) in Theorem 11 is in order. By the definition
of outer measure, for any bounded set E, regardless of whether or not it is measurable, and
any o5 > 0, there is an open set 0 such that E C 0 and m*(O) < m* (E) + E and therefore
m* (0) - m* (E) < E. This does not imply that m*(O' E) < E, because the excision property

m*(O. E)=m*(O)-m*(E)

is false unless E is measurable (see Problem 19).

9See page 17.
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PROBLEMS

16. Complete the proof of Theorem 11 by showing that measurability is equivalent to (iii) and
also equivalent to (iv).

17. Show that a set E is measurable if and only if for each e > 0, there is a closed set F and open
set O for which F C E C O and m * (O ^- F) < e.

18. Let E have finite outer measure. Show that there is an Fv set F and a GS set G such that

FC E C G andm*(F) =m*(E) =m*(G).

19. Let E have finite outer measure. Show that if E is not measurable, then there is an open set
0 containing E that has finite outer measure and for which

m*(0-E) >m*(0) -m*(E).

20. (Lebesgue) Let E have finite outer measure. Show that E is measurable if and only if for each
open, bounded interval (a, b),

b-a=m*((a, b) fl E)+m*((a, b)-E).

21. Use property (ii) of Theorem 11 as the primitive definition of a measurable set and prove
that the union of two measurable sets is measurable. Then do the same for property (iv).

22. For any set A, define m** (A) E [0, oo] by

m**(A)=inf {m*(0) I OD A,0 open.}

How is this set function m** related to outer measure m*?

23. For any set A, define m*** (A) E [0, oo] by

m*** (A) =sup {m* (F) I F C A, F closed.}

How is this set function m*** related to outer measure m*?

2.5 COUNTABLE ADDITIVITY, CONTINUITY, AND THE BOREL-CANTELLI LEMMA

Definition The restriction of the set function outer measure to the class of measurable sets
is called Lebesgue measure. It is denoted by m, so that if E is a measurable set, its Lebesgue
measure, m(E), is defined by

m(E) = m*(E).

The following proposition is of fundamental importance.

Proposition 13 Lebesgue measure is countably additive, that is, if {Ek}1 1 is a countable
disjoint collection of measurable sets, then its union U' 1 Ek also is measurable and

(OEk) m(Ek).
k=1
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Proof Proposition 7 tells us that U'
1 Ek is measurable. According to Proposition 3, outer

measure is countably subadditive. Thus

l 00

M OEkI<1m(Ek).
k=1 I k=1

(9)

It remains to prove this inequality in the opposite directon. According to Proposition 6, for
each natural number n,

m(U Ek l = I m(Ek).
k=1 I k=1

Since Uk1 Ek contains Uk=1 Ek, by the monotonicity of outer measure and the preceding
equality,

/
1 m (Ek) for each n.M

CU Ek
>

k=1 I k=1

The left-hand side of this inequality is independent of n. Therefore

11 00

M OEkI?Em(Ek).
k=1 I k=1

(10)

From the inequalities (9) and (10) it follows that these are equalities.

According to Proposition 1, the outer measure of an interval is its length while
according to Proposition 2, outer measure is translation invariant. Therefore the preceding
proposition completes the proof of the following theorem, which has been the principal goal
of this chapter.

Theorem 14 The set function Lebesgue measure, defined on the 0-algebra of Lebesgue
measurable sets, assigns length to any interval, is translation invariant, and is countable
additive.

A countable collection of sets {Ek}k1 is said to be ascending provided for each k,
Ek C Ek+1, and said to be descending provided for each k, Ek+1 C Ek.

Theorem 15 (the Continuity of Measure) Lebesgue measure possesses the following conti-
nuity properties:

(i) If {Ak}k 1 is an ascending collection of measurable sets, then

m O Ak1) = klim m(Ak).
+00k=1 1

(ii) If {Bk}k11, is a descending collection of measurable sets and m( B1) < oo, then

\1

(12)M I I Bk I k
OO

m(Bk)
k=1 I
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Proof We first prove (i). If there is an index ko for which m(Ako) = oo, then, by the
monotonicity of measure, m (Uk 1 Ak) = oo and m(Ak) = oo for all k > ko. Therefore (11)
holds since each side equals oo. It remains to consider the case that m(Ak) < 00 for all k.
Define A0 = 0 and then define Ck = Ak ^- Ak_1 for each k > 1. By construction, since the
sequence {Ak}k 1 is ascending,

00 -
{Ck}k

1
is disjoint and U Ak = U Ck.

k=1 k=1

By the countable additivity of m,

mCUAk)=mCUCkJ =.m(Ak-Ak_1).

Since {Ak}k 1 is ascending, we infer from the excision property of measure that

00 00
m(Ak-Ak-1)= I[m(Ak)-m(Ak-1)1

k=1 k=1
=limn_*

oo Y, [m(Ak)-m(Ak-1)]
k=1

= limn >oo[m(A,) - m(Ao)]-

(13)

(14)

Since m(Ao) = m(O) = 0, (11) follows from (13) and (14).

To prove (ii) we define Dk = B1 - Bk for each k. Since the sequence {Bk}k 1 is
descending, the sequence {Dk}1

1
° 1 is ascending. By part (i),

0 1
m U Dk lim m( Dk ).

k=1 f k -+oo

According to De Morgan's Identities,

00 00 00

UDk=U[Bi^'Bk]=B1'" nBk.
k=1 k=1 k=1

On the other hand, by the excision property of measure, for each k, since m(Bk) < 00,
m(Dk) = m(B1) - m (Bk ). Therefore

m(Bl' n Bkl = lim[m(Bi) -m(Bn)]
\\ k=1 J

Once more using excision we obtain the equality (12).

For a measurable set E, we say that a property holds almost everywhere on E, or it
holds for almost all x E E, provided there is a subset E0 of E for which m (Eo) = 0 and the
property holds for all x e E - Eo.
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The Borel-Cantef Lemma Let {Ek}k
1 be a countable collection of measurable sets for

which 7_k 1 m (Ek) < oo. Then almost all x e R belong to at most finitely many of the Ek's.

Proof For each n, by the countable subadditivity of m,

1M UEk< j m(Ek)<oo.
k=n ) k=n

Hence, by the continuity of measure,

m nUEk lim m(UEk)<
nhm> oo a o >m(Ek)=0.

n=1
[k=n

]

1

n k=n
k=n

Therefore almost all x e R fail to belong to nn° 1 [U' n Ek] and therefore belong to at most
finitely many Ek'S.

The set function Lebesgue measure inherits the properties possessed by Lebesgue
outer measure. For future reference we name some of these properties.

(Finite Additivity) For any finite disjoint collection {Ek}k=1 of measurable sets,

n n

m1UEkl=E m(Ek).
k=1 k=1

(Monotonicity) If A and B are measurable sets and A C B, then

m(A) < m(B).

(Excision) If, moreover, A C B and m(A) < oo, then

m(B^-A) = m(B) -m(A),

so that if m (A) = 0, then
m(B-A) =m(B).

(Countable Monotonicity) For any countable collection {Ek}k1 of measurable sets
that covers a measurable set E,

m(E) < m(Ek).
k=1

Countable monotonicity is an amalgamation of the monotonicity and countable sub-
additivity properties of measure that is often invoked.

Remark In our forthcoming study of Lebesgue integration it will be apparent that it is the
countable additivity of Lebesgue measure that provides the Lebesgue integral with its decisive
advantage over the Riemann integral.
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PROBLEMS

24. Show that if El and E2 are measurable, then

m(El UE2)+m(E1 nE2)=m(E1)+m(E2).

25. Show that the assumption that m (Bl) < oo is necessary in part (ii) of the theorem regarding
continuity of measure.

26. Let {Ek}k 1 be a countable disjoint collection of measurable sets. Prove that for any set A,

m* An U Ek) = I m*(A n Ek).
k=1 k=1

27. Let M' be any o--algebra of subsets of R and m' a set function on M' which takes values in
[0, oo}, is countably additive, and such that m'(0) = 0.
(i) Show that m' is finitely additive, monotone, countably monotone, and possesses the

excision property.

(ii) Show that m' possesses the same continuity properties as Lebesgue measure.

28. Show that continuity of measure together with finite additivity of measure implies countable
additivity of measure.

2.6 NONMEASURABLE SETS

We have defined what it means for a set to be measurable and studied properties of the
collection of measurable sets. It is only natural to ask if, in fact, there are any sets that fail to
be measurable. The answer is not at all obvious.

We know that if a set E has outer measure zero, then it is measurable, and since any
subset of E also has outer measure zero, every subset of E is measurable. This is the best that
can be said regarding the inheritance of measurability through the relation of set inclusion:
we now show that if E is any set of real numbers with positive outer measure, then there are
subsets of E that fail to be measurable.

Lemma 16 Let E be a bounded measurable set of real numbers. Suppose there is a bounded,
countably infinite set of real numbers A for which the collection of translates of E, {A+ E}AE A,

is disjoint. Then m (E) = 0.

Proof The translate of a measurable set is measurable. Thus, by the countable additivity of
measure over countable disjoint unions of measurable sets,

m AEA U (A+E)J = > m(A+E). (15)
AEA

Since both E and A are bounded sets, the set UAE A (A+ E) also is bounded and therefore has
finite measure. Thus the left-hand side of (15) is finite. However, since measure is translation
invariant, m (A + E) = m (E) > 0 for each A E A. Thus, since the set A is countably infinite
and the right-hand sum in (15) is finite, we must have m(E) = 0.
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For any nonempty set E of real numbers, we define two points in E to be rationally
equivalent provided their difference belongs to Q, the set of rational numbers. It is easy to see
that this is an equivalence relation, that is, it is reflexive, symmetric, and transitive. We call it
the rational equivalence relation on E. For this relation, there is the disjoint decomposition
of E into the collection of equivalence classes. By a choice set for the rational equivalence
relation on E we mean a set CE consisting of exactly one member of each equivalence class.
We infer from the Axiom of Choice10 that there are such choice sets. A choice set CE is
characterized by the following two properties:

(i) the difference of two points in CE is not rational;

(ii) for each point x in E, there is a point c in CE for which x = c + q, with q rational.

This first characteristic property of CE may be conveniently reformulated as follows:

For any set A C Q, {A + CE}A E A is disjoint. (16)

Theorem 17 (Vitali) Any set E of real numbers with positive outer measure contains a subset
that fails to be measurable.

Proof By the countable subadditivity of outer measure, we may suppose E is bounded. Let
CE be any choice set for the rational equivalence relation on E. We claim that CE is not
measurable. To verify this claim, we assume it is measurable and derive a contradiction.

Let A0 be any bounded, countably infinite set of rational numbers. Since CE is
measurable, and, by (16), the collection of translates of CE by members of A0 is disjoint, it
follows from Lemma 16 that m(CE) = 0. Hence, again using the translation invariance and
the countable additivity of measure over countable disjoint unions of measurable sets,

m U (A+CE) = 2 m(A+CE)=0.
AEA0 AEA0

To obtain a contradiction we make a special choice of A0. Because E is bounded it is
contained in some interval [-b, b]. We choose

Ao = [-2b, 2b] n Q.

Then A0 is bounded, and is countably infinite since the rationals are countable and dense.11
We claim that

EC U (A+CE). (17)
A E [-2b, 2b]nQ

Indeed, by the second characteristic property of CE, if x belongs to E, there is a number c in
the choice set CE for which x = c + q with q rational. But x and c belong to [-b, b], so that q
belongs to [-2b, 2b]. Thus the inclusion (17) holds. This is a contradiction because E, a set
of positive outer measure, is not a subset of a set of measure zero. The assumption that CE
is measurable has led to a contradiction and thus it must fail to be measurable.

10See page 5.
11 See pages 12 and 14.



Section 2.7 The Cantor Set and the Cantor-Lebesgue Function 49

Theorem 18 There are disjoint sets of real numbers A and B for which

m*(A U B) < m*(A) + m*(B).

Proof We prove this by contradiction. Assume m*(AU B) = m*(A) + m*(B) for every
disjoint pair of sets A and B. Then, by the very definition of measurable set, every set must
be measurable. This contradicts the preceding theorem.

PROBLEMS

29. (i) Show that rational equivalence defines an equivalence relation on any set.

(ii) Explicitly find a choice set for the rational equivalence relation on Q.

(iii) Define two numbers to be irrationally equivalent provided their difference is irrational.
Is this an equivalence relation on R? Is this an equivalence relation on Q?

30. Show that any choice set for the rational equivalence relation on a set of positive outer
measure must be uncountably infinite.

31. Justify the assertion in the proof of Vitali's Theorem that it suffices to consider the case that
E is bounded.

32. Does Lemma 16 remain true if A is allowed to be finite or to be uncountably infinite? Does it
remain true if A is allowed to be unbounded?

33. Let E be a nonmeasurable set of finite outer measure. Show that there is a GS set G that
contains E for which

m*(E) = m*(G), while m*(G - E) > 0.

2.7 THE CANTOR SET AND THE CANTOR-LEBESGUE FUNCTION

We have shown that a countable set has measure zero and a Borel set is Lebesgue measurable.
These two assertions prompt the following two questions.

Question 1 If a set has measure zero, is it also countable?

Question 2 If a set is measurable, is it also Borel?

The answer to each of these questions is negative. In this section we construct a set
called the Cantor set and a function called the Cantor-Lebesgue function. By studying these
we answer the above two questions and later provide answers to other questions regarding
finer properties of functions.

Consider the closed, bounded interval I [0, 1]. The first step in the construction of
the Cantor set is to subdivide I into three intervals of equal length 1/3 and remove the
interior of the middle interval, that is, we remove the interval (1/3, 2/3) from the interval
[0, 1] to obtain the closed set C1, which is the union of two disjoint closed intervals, each of
length 1/3 :

C1 = [0, 1/3] U [2/3, 1].

We now repeat this "open middle one-third removal" on each of the two intervals in C1 to
obtain a closed set C2, which is the union of 22 closed intervals, each of length 1/32 :

C2 = [0, 1/9] U [2/9, 1/3] U [2/3, 7/9] U [8/9, 1].
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We now repeat this "open middle one-third removal" on each of the four intervals in C2
to obtain a closed set C3, which is the union of 23 closed intervals, each of length 1/33. We
continue this removal operation countably many times to obtain the countable collection of
sets {Ck}k1. We define the Cantor set C by

00

C=nck.
k=1

The collection {Ck}k 1 possesses the following two properties:

(i) {Ck}k 1 is a descending sequence of closed sets;

(ii) For each k, Ck is the disjoint union of 21 closed intervals, each of length 1/3k.

Proposition 19 The Cantor set C is a closed, uncountable set of measure zero.

Proof The intersection of any collection of closed sets is closed. Therefore C is closed. Each
closed set is measurable so that each Ck and C itself is measurable.

Now each Ck is the disjoint union of 2k intervals, each of length 1/3k, so that by the
finite additivity of Lebesgue measure,

m(Ck) = (2/3)k.

By the monotonicity of measure, since m(C) < m(Ck) = (2/3)k, for all k, m(C) = 0. It
remains to show that C is uncountable. To do so we argue by contradiction. Suppose C is
countable. Let {ck}k 1 be an enumeration of C. One of the two disjoint Cantor intervals
whose union is C1 fails to contain the point cl; denote it by Fl. One of the two disjoint Cantor
intervals in C2 whose union is F1 fails to contain the point c2; denote it by F2. Continuing in
this way, we construct a countable collection of sets (Fk)1 1, which, for each k, possesses the
following three properties: (i) Fk is closed and Fk+1 C Fk; (ii)Fk C Ck; and (iii) ck 0 Fk. From
(i) and the Nested Set Theorem12 we conclude that the intersection fl 1 Fk is nonempty.
Let the point x belong to this intersection. By property (ii),

00 00

nFkCnCk=C,
k=1 k=1

and therefore the point x belongs to C. However, (ck}k1 is an enumeration of C so that
x = c for some index n. Thus cn = x E fl 1 Fk C F. This contradicts property (iii). Hence
C must be uncountable.

A real-valued function f that is defined on a set of real numbers is said to be
increasing provided f (u) < f (v) whenever u < v and said to be strictly increasing, provided
f (u) < f (v) whenever u < v.

We now define the Cantor-Lebesgue function, a continuous, increasing function (p
defined on [0, 1] which has the remarkable property that, despite the fact that 9(1) > 00),
its derivative exists and is zero on a set of measure 1. For each k, let Ok be the union of the
2k - 1 intervals which have been removed during the first k stages of the Cantor deletion
process. Thus Ck = [0, 1] ^- Ok. Define 0 = Uk 1 Ok. Then, by De Morgan's Identities,
C = [0, 1] - O. We begin by defining cp on 0 and then we define it on C.

12See page 19.
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Fix a natural number k. Define rp on Ok to be the increasing function on Ok which is
constant on each of its 2k - 1 open intervals and takes the 2k - 1 values

{1/2k, 2/2k, 3/2k, ... , [2k -1]/2k}.

Thus, on the single interval removed at the first stage of the deletion process, the prescription
for (p is

cp(x) =1/2 if x E (1/3, 2/3).

On the three intervals that are removed in the first two stages, the prescription for cp is

11/4 if x E (1/9, 2/9)
(p(x) = 2/4 if x E (3/9, 6/9) = (1/3, 2/3)

3/4 if x E (7/9, 8/9)

We extend cp to all of [0, 1] by defining it on C as follows:

cp(0) = 0 and cp(x) = sup {cp(t) I tEOl[0, x)}ifxEC^'{0}.

Proposition 20 The Cantor-Lebesgue function cp is an increasing continuous function that
maps [0, 1] onto [0, 1]. Its derivative exists on the open set 0, the complement in [0, 1] of the
Cantor set,

cp' =Oon 0while in (O) = 1.

0
1

The graph of the Cantor-Lebesgue function on 03 = [0, 1]'C3

Proof Since cp is increasing on 0, its extension above to [0, 1] also is increasing. As for
continuity, (p certainly is continuous at each point in 0 since for each such point belongs to
an open interval on which it is constant. Now consider a point xo E C with x0 # 0, 1. Since the
point xo belongs to C it is not a member of the 2k - 1 intervals removed in the first k stages
of the removal process, whose union we denote by Ok. Therefore, if k is sufficiently large, xo
lies between two consecutive intervals in Ok: choose ak in the lower of these and bk in the
upper one. The function (p was defined to increase by 1/2k across two consecutive intervals
in Ok. Therefore

ak < xo < bk and cp(bk) - p(ak) =1/2k.
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Since k may be arbitrarily large, the function (p fails to have a jump discontinuity at xo. For an
increasing function, a jump discontinuity is the only possible type of discontinuity. Therefore
cp is continuous at xo. If xo is an endpoint of [0, 1], a similar argument establishes continuity
at xo.

Since cp is constant on each of the intervals removed at any stage of the removal
process, its derivative exists and equals 0 at each point in 0. Since C has measure zero, its
complement in [0, 1], 0, has measure 1. Finally, since (p(0) = 0, cp(1) = 1 and cp is increasing
and continuous, we infer from the Intermediate Value Theorem that cp maps [0, 1] onto
[0, 1].

Proposition 21 Let cp be the Cantor-Lebesgue function and define the function 41 on [0, 1] by

0r (x) =cp(x)+x forallxE[0, 1].

Then 0 is a strictly increasing continuous function that maps [0, 1] onto [0, 2],

(i) maps the Cantor set C onto a measurable set of positive measure and
(ii) maps a measurable set, a subset of the Cantor set, onto a nonmeasurable set.

Proof The function 0 is continuous since it is the sum of two continuous functions and
is strictly increasing since it is the sum of an increasing and a strictly increasing function.
Moreover, since /i(0) = 0 and cur(l) = 2, 0([0, 1]) = [0, 2]. For 0 = [0, 1] ^- C, we have the
disjoint decomposition

[0, 1]=CUO

which 0 lifts to the disjoint decomposition

[0, 2] = 0(0) U i/r(C). (18)

A strictly increasing continuous function defined on an interval has a continuous inverse.
Therefore /r(C) is closed and 0(0) is open, so both are measurable. We will show that
m(i/r(O)) = 1 and therefore infer from (18) that m(ci(C)) = 1 and thereby prove (i).

Let {Ik}k 1 be an enumeration (in any manner) of the collection of intervals that are
removed in the Cantor removal process. Thus 0 = Uk 1 I. Since (p is constant on each Ik,

maps Ik onto a translated copy of itself of the same length. Since 41 is one-to-one, the
collection {i/r('k)}k 1 is disjoint. By the countable additivity of measure,

00 00

mMO)) = I £(kIk)) = Y, £(Ik) =m(O).
k=1 k=1

But m (C) = 0 so that m (O) = 1. Therefore m(0(0)) = 1 and hence, by (18), m (O(C)) = 1.
We have established (i).

To verify (ii) we note that Vitali's Theorem tells us that /r(C) contains a set W, which
is nonmeasurable. The set 0-1(W) is measurable and has measure zero since it is a subset of
the Cantor set. The set qH (W) is a measurable subset of the Cantor set, which is mapped
by 0 onto a nonmeasurable set.
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Proposition 22 There is a measurable set, a subset of the Cantor set, that is not a Bore[ set.

Proof The strictly increasing continuous function li defined on [0, 1] that is described in
the preceding proposition maps a measurable set A onto a nonmeasurable set. A strictly
increasing continuous function defined on an interval maps Borel sets onto Borel sets (see
Problem 47). Therefore the set A is not Borel since otherwise its image under 0 would be
Borel and therefore would be measurable.

PROBLEMS

34. Show that there is a continuous, strictly increasing function on the interval [0, 1] that maps a
set of positive measure onto a set of measure zero.

35. Let f be an increasing function on the open interval I. For xo E 1 show that f is continuous
at xo if and only if there are sequences {a"} and {b"} in I such that for each n, a" < xo < b",
andlim"_,Q[f(b") - f(a")] = 0.

36. Show that if f is any increasing function on [0, 1] that agrees with the Cantor-Lebesgue
function W on the complement of the Cantor set, then f = cp on all of [0, 11.

37. Let f be a continuous function defined on E. Is it true that f -1(A) is always measurable if A
is measurable?

38. Let the function f : [a, b] -* R be Lipschitz, that is, there is a constant c > 0 such that for
all u, v E [a, b], If (u) - f (v) I < clu - vI. Show that f maps a set of measure zero onto a
set of measure zero. Show that f maps an F0 set onto an FQ set. Conclude that f maps a
measurable set to a measurable set.

39. Let F be the subset of [0, 1] constructed in the same manner as the Cantor set except that
each of the intervals removed at the nth deletion stage has length a3-" with 0 < a < 1. Show
that F is a closed set, [0, 1] ^- F dense in [0, 11, and m(F) = 1- a. Such a set F is called a
generalized Cantor set.

40. Show that there is an open set of real numbers that, contrary to intuition, has a boundary
of positive measure. (Hint: Consider the complement of the generalized Cantor set of the
preceding problem.)

41. A nonempty subset X of R is called perfect provided it is closed and each neighborhood of
any point in X contains infinitely many points of X. Show that the Cantor set is perfect. (Hint:
The endpoints of all of the subintervals occurring in the Cantor construction belong to C.)

42. Prove that every perfect subset X of R is uncountable. (Hint: If X is countable, construct a
descending sequence of bounded, closed subsets of X whose intersection is empty.)

43. Use the preceding two problems to provide another proof of the uncountability of the Cantor
set.

44. A subset A of R is said to be nowhere dense in R provided that for every open set 0 has an
open subset that is disjoint from A. Show that the Cantor set is nowhere dense in R.

45. Show that a strictly increasing function that is defined on an interval has a continuous inverse.

46. Let f be a continuous function and B be a Borel set. Show that f -t (B) is a Borel set. (Hint:
The collection of sets E for which f -t (E) is Borel is a o--algebra containing the open sets.)

47. Use the preceding two problems to show that a continuous strictly increasing function that is
defined on an interval maps Borel sets to Borel sets.
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We devote this chapter to the study of measurable functions in order to lay the foundation
for the study of the Lebesgue integral, which we begin in the next chapter. All continuous
functions on a measurable domain are measurable, as are all monotone and step functions
on a closed, bounded interval. Linear combinations of measurable functions are measurable.
The pointwise limit of a sequence of measurable functions is measurable. We establish
results regarding the approximation of measurable functions by simple functions and by
continuous functions.

3.1 SUMS, PRODUCTS, AND COMPOSITIONS

All the functions considered in this chapter take values in the extended real numbers, that
is, the set R U {too}. Recall that a property is said to hold almost everywhere (abbreviated
a.e.) on a measurable set E provided it holds on E - E0, where E0 is a subset of E for which
m(Eo) =0.

Given two functions h and g defined on E, for notational brevity we often write "h < g
on E" to mean that h (x) < g(x) for all x E E. We say that a sequence of functions (f, } on E
is increasing provided f < on E for each index n.

Proposition l Let the function f have a measurable domain E. Then the following statements
are equivalent:

(i) For each real number c, the set fx E E I f (x) > c} is measurable.

(ii) For each real number c, the set {x E E I f (x) > c) is measurable.

(iii) For each real number c, the set {x E E I f (x) < c} is measurable.

(iv) For each real number c, the set {x E E I f (x) < c} is measurable.

Each of these properties implies that for each extended real number c,

the set {x E E I f (x) = c} is measurable.

Proof Since the sets in (i) and (iv) are complementary in E, as are the sets in (ii) and (iii), and
the complement in E of a measurable subset of E is measurable, (i) and (iv) are equivalent,
as are (ii) and (iii).
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Now (i) implies (ii), since

00

{xEEI f(x)>c}=n{xEEI f(x)>c-1/k},
k=l

and the intersection of a countable collection of measurable sets is measurable. Similarly,
(ii) implies (i), since

{xEEI f(x)>c}=U{xEEI f(x)>c+l/k},
k=1

and the union of a countable collection of measurable sets is measurable.

Thus statements (i)-(iv) are equivalent. Now assume one, and hence all, of them hold.
If cisarealnumber,{xEEI f(x)=c}={xEEI f(x))>c}fl{xEEI f(x)<c},so f-1(c)
is measurable since it is the intersection of two measurable sets. On the other hand, if c is
infinite, say c = oo,

00

{xEEI f(x)=oo}=n{xEEI f(x)>k}
k=1

so f -1(oo) is measurable since it is the intersection of a countable collection of measurable
sets.

Definition An extended real-valued function f defined on E is said to be Lebesgue measur-
able, or simply measurable, provided its domain E is measurable and it satisfies one of the
four statements of Proposition 1.

Proposition 2 Let the function f be defined on a measurable set E. Then f is measurable if
and only if for each open set 0, the inverse image of 0 under f, f -1(0) = {x E E I f (X) E O},

is measurable.

Proof If the inverse image of each open set is measurable, then since each interval (c, oo)
is open, the function f is measurable. Conversely, suppose f is measurable. Let 0 be open.
Then1 we can express 0 as the union of a countable collection of open, bounded intervals
{Ik}l 1 where each Ik may be expressed as Bk fl Ak, where Bk = (-oo, bk) and Ak = (ak, 00).
Since f is a measurable function, each f -1(Bk) and f -1(Ak) are measurable sets. On the
other hand, the measurable sets are a v-algebra and therefore f -1(0) is measurable since

f-1(O) = f-1 [UBk f

Ak
= U f-1(Bk) n f-1(Ak)

k=1 ] k=1

The following proposition tells us that the most familiar functions from elementary
analysis, the continuous functions, are measurable.

Proposition 3 A real-valued function that is continuous on its measurable domain is
measurable.

'See page 17.
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Proof Let the function f be continuous on the measurable set E. Let 0 be open. Since f
is continuous, f-1(O) = E n U, where U is open.2 Thus f-1(O), being the intersection
of two measurable sets, is measurable. It follows from the preceding proposition that f is
measurable.

A real-valued function that is either increasing or decreasing is said to be monotone.
We leave the proof of the next proposition as an exercise (see Problem 24).

Proposition 4 A monotone function that is defined on an interval is measurable.

Proposition 5 Let f be an extended real-valued function on E.

(i) If f is measurable on E and f = g a.e. on E, then g is measurable on E.

(ii) For a measurable subset D of E, f is measurable on E if and only if the restrictions of
f to D and E ^- D are measurable.

Proof First assume f is measurable. Define A = {x E E I f (x) 0 g(x)}. Observe that

{x E EI g(x)>c}={xEAI g(x)>c}U[{xEEI f(x)>c}n[E-A]]

Since f = g a.e. on E, m (A) = 0. Thus [X E A I g(x) > c} is measurable since it is a subset
of a set of measure zero. The set f X E E I f (x) > c} is measurable since f is measurable
on E. Since both E and A are measurable and the measurable sets are an algebra, the set
{x E E I g(x) > c) is measurable. To verify (ii), just observe that for any c,

{xEEI f(x)>c}={xEDI f(x)>c}U{xEE' DI f(x)>c}

and once more use the fact that the measurable sets are an algebra.

The sum f + g of two measurable extended real-valued functions f and g is not
properly defined at points at which f and g take infinite values of opposite sign. Assume f
and g are finite a.e. on E. Define E0 to be the set of points in E at which both f and g are
finite. If the restriction off + g to E0 is measurable, then, by the preceding proposition, any
extension of f + g, as an extended real-valued function, to all of E also is measurable. This
is the sense in which we consider it unambiguous to state that the sum of two measurable
functions that are finite a.e. is measurable. Similar remarks apply to products. The following
proposition tells us that standard algebraic operations performed on measurable functions
that are finite a.e. again lead to measurable functions

Theorem 6 Let f and g be measurable functions on E that are finite a.e. on E.

(Linearity) For any a and P,

a f + fig is measurable on E.

(Products)
f g is measurable on E.

2See page 25.
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Proof By the above remarks, we may assume f and g are finite on all of E. If a = 0, then
the function a f also is measurable. If a # 0, observe that for a number c,

{xEEI af(x)>c}={xEEI f(x)>c/a} ifa>0

and

{xEEI af(x)>c}={xEEI f(x)<c/a} ifa<0.
Thus the measurability off implies the measurability of a f. Therefore to establish linearity
it suffices to consider the case that a = /3 =1.

For X E E, if f (x) + g(x) < c, then f (x) < c - g(x) and so, by the density of the set of
rational numbers Q in R, there is a rational number q for which

f (x) < q < c - g(x).

Hence

IX EEI f(x)+g(x)<c}=U{xEEI g(x)<c-q}fl{xEEI f(x)<q}.
qEQ

The rational numbers are countable. Thus {x E E I f (x) + g(x) < c} is measurable, since it is
the union of a countable collection of measurable sets. Hence f + g is measurable.

To prove that the product of measurable functions is measurable, first observe that

fg = 2 [(.f + g)2 - f2 - A.

Thus, since we have established linearity, to show that the product of two measurable
functions is measurable it suffices to show that the square of a measurable function is
measurable. For c > 0,

{xEEI f2(x)>C)={xEEI f(x)>,/}UIX EEI f(x)<-.}

while for c < 0,
{xEEI f2(x)>c}=E.

Thus f2 is measurable.

Many of the properties of functions considered in elementary analysis, including con-
tinuity and differentiability, are preserved under the operation of composition of functions.
However, the composition of measurable functions may not be measurable.

Example There are two measurable real-valued functions, each defined on all of R, whose
composition fails to be measurable. By Lemma 21 of Chapter 2, there is a continuous, strictly
increasing function 0 defined on [0, 1] and a measurable subset A of [0, 1] for which i/s(A)
is nonmeasurable. Extend 0 to a continuous, strictly increasing function that maps R onto
R. The function 0- 1 is continuous and therefore is measurable. On the other hand, A is a
measurable set and so its characteristic function XA is a measurable function. We claim that
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the composition f = XA o 0-1 is not measurable. Indeed, if I is any open interval containing
1 but not 0, then its inverse image under f is the nonmeasurable set /F(A).

Despite the setback imposed by this example, there is the following useful proposition
regarding the preservation of measurability under composition (also see Problem 11).

Proposition 7 Let g be a measurable real-valued function defined on E and f a continuous
real-valued function defined on all of R Then the composition f o g is a measurable function
on E.

Proof According to Proposition 2, a function is measurable if and only if the inverse image
of each open set is measurable. Let 0 be open. Then

(fog)-1(0) =g 1(f-1(d))

Since f is continuous and defined on an open set, the set U = f-1(0) is open.3 We infer
from the measurability of the function g that g-1 (U) is measurable. Thus the inverse image
(f o g)-1(0) is measurable and so the composite function f o g is measurable.

An immediate important consequence of the above composition result is that if f is
measurable with domain E, then If I is measurable, and indeed

I f I P is measurable with the same domain E for each p > 0.

For a finite family { fk}k_1 of functions with common domain E, the function

max{fi,..., fn}

is defined on E by

max{ft,..., f )(x)=max{fi(x),..., fn(x)}forxEE.

The function min{ fl, ... , fn} is defined the same way.

Proposition 8 For a finite family { fk)n=1 of measurable functions with common domain E,
the functions max{ fi, ... , fn) and min{ fi, ... , fn } also are measurable.

Proof For any c, we have

n

{xEE I max{fi,..., fn}(x)>c}=U{xEE I fk(x)>c}
k=1

so this set is measurable since it is the finite union of measurable sets. Thus the function
max{ fl, ... , fn} is measurable. A similar argument shows that the function min{ fi, ... , fn}
also is measurable.

3See page 25.
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For a function f defined on E, we have the associated functions If I, f+ and f- defined
on E by

If1(x)=max{f(x),-f(x)}, f+(x)=max{f(x),0), f-(x)=max{-f(x),0}.

If f is measurable on E, then, by the preceding proposition, so are the functions If I, f
and f -. This will be important when we study integration since the expression of f as the
difference of two nonnegative functions,

f=f+-fon E,
plays an important part in defining the Lebesgue integral.

PROBLEMS

1. Suppose f and g are continuous functions on [a, b]. Show that if f = g a.e. on [a, b], then, in
fact, f = g on [a, b]. Is a similar assertion true if [a, b] is replaced by a general measurable
set E?

2. Let D and E be measurable sets and f a function with domain D U E. We proved that f is
measurable on D U E if and only if its restrictions to D and E are measurable. Is the same
true if "measurable" is replaced by "continuous"?

3. Suppose a function f has a measurable domain and is continuous except at a finite number
of points. Is f necessarily measurable?

4. Suppose f is a real-valued function on R such that f-1 (c) is measurable for each number c.
Is f necessarily measurable?

5. Suppose the function f is defined on a measurable set E and has the property that
{x E E I f (x) > c} is measurable for each rational number c. Is f necessarily measurable?

6. Let f be a function with measurable domain D. Show that f is measurable if and only if the
function g defined on R by g(x) = f (x) for x E D and g(x) = 0 for x 0 D is measurable.

7. Let the function f be defined on a measurable set E. Show that f is measurable if and only
if for each Borel set A, f-1(A) is measurable. (Hint: The collection of sets A that have the
property that f -1(A) is measurable is a o -algebra.)

8. (Borel measurability) A function f is said to be Borel measurable provided its domain E is a
Borel set and for each c, the set (x E E I f (x) > c) is a Borel set. Verify that Proposition 1 and
Theorem 6 remain valid if we replace "(Lebesgue) measurable set" by "Borel set." Show
that: (i) every Borel measurable function is Lebesgue measurable; (ii) if f is Borel measurable
and B is a Borel set, then f -1(B) is a Borel set; (iii) if f and g are Borel measurable, so is
f o g; and (iv) if f is Borel measurable and g is Lebesgue measurable, then fog is Lebesgue
measurable.

9. Let If,) be a sequence of measurable functions defined on a measurable set E. Define E0 to
be the set of points x in E at which If, (x)) converges. Is the set E0 measurable?

10. Suppose f and g are real-valued functions defined on all of R, f is measurable, and g is
continuous. Is the composition f o g necessarily measurable?

11. Let f be a measurable function and g be a one-to-one function from R onto R which has a
Lipschitz inverse. Show that the composition f o g is measurable. (Hint: Examine Problem
38 in Chapter 2.)
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3.2 SEQUENTIAL POINTWISE LIMITS AND SIMPLE APPROXIMATION

For a sequence If,, } of functions with common domain E and a function f on E, there are
several distinct ways in which it is necessary to consider what it means to state that

"the sequence f converges to f."

In this chapter we consider the concepts of pointwise convergence and uniform convergence,
which are familiar from elementary analysis. In later chapters we consider many other modes
of convergence for a sequence of functions.

Definition For a sequence f f, I of functions with common domain E, a function f on E and
a subset A of E, we say that

(i) The sequence (fn } converges to f pointwise on A provided

nlm f, (x) = f(x) forallxEA.
+oo

(ii) The sequence {fn} converges to f pointwise a.e. on A provided it converges to f
pointwise on A - B, where m (B) = 0.

(iii) The sequence { f } converges to f uniformly on A provided for each e > 0, there is an
index N for which

If - con Aforalln > N.

When considering sequences of functions (fn} and their convergence to a function
f, we often implicitly assume that all of the functions have a common domain. We write
"{ f pointwise on A" to indicate the sequence {fn} converges to f pointwise on A and
use similar notation for uniform convergence.

The pointwise limit of continuous functions may not be continuous. The pointwise
limit of Riemann integrable functions may not be Riemann integrable. The following
proposition is the first indication that the measureable functions have much better stability
properties.

Proposition 9 Let (fn} be a sequence of measurable functions on E that converges pointwise
a e. on E to the function f . Then f is measurable.

Proof Let E0 be a subset of E for which m(Eo) = 0 and (f") converges to f pointwise on
E - E0. Since m (Eo) = 0, it follows from Proposition 5 that f is measurable if and only if its
restriction to E - E0 is measurable. Therefore, by possibly replacing E by E - Eo, we may
assume the sequence converges pointwise on all of E.

Fix a number c. We must show that {x E E I f (x) < c} is measurable. Observe that for
apoint xEE,since f(x),

f(x) <c

if and only if

there are natural numbers n and k for which fj(x) < c -1/n for all j > k.
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But for any natural numbers n and j, since the function fj is measurable, the set
{x E E I f j (x) < c -1/n} is measurable. Therefore, for any k, the intersection of the countably
collection of measureable sets

00

n{xEEI fj(x)<c-1/n}
j=k

also is measurable. Consequently, since the union of a countable collection of measurable
sets is measurable,

{xEEI f(x)<c}= U nfj(x)<c-1/n}
1<k,n<oo j=k

is measurable.

If A is any set, the characteristic function of A, XA, is the function on R defined by

XA (X) =
r1

Sl 0

ifxEA

ifx0A.

It is clear that the function XA is measurable if and only if the set A is measurable. Thus
the existence of a nonmeasurable set implies the existence of a nomneasurable function.
Linear combinations of characteristic functions of measurable sets play a role in Lebesgue
integration similar to that played by step functions in Riemann integration, and so we name
these functions.

Definition A real-valued function W defined on a measurable set E is called simple provided
it is measurable and takes only a finite number of values.

We emphasize that a simple function only takes real values. Linear combinations and
products of simple functions are simple since each of them takes on only a finite number of
values. If c P is simple, has domain E and takes the distinct values cl, ... , cn, then

n

cp = I ck XEk on E, where Ek = {xEEI cp(x) = ck}.
k=1

This particular expression of W as a linear combination of characteristic functions is called
the canonical representation of the simple function cp.

The Simple Approximation Lemma Let f be a measurable real-valued function on E.
Assume f is bounded on E, that is, there is an M > 0 for which If I < M on E. Then for
each c > 0, there are simple functions cpE and +1E defined on E which have the following
approximation properties:

cpEG f < cfrE and 0<-4,,,-(pE <E on E.
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Proof Let (c, d) be an open, bounded interval that contains the image of E, f (E), and

c=Yo <Yl <... <Yn-1 <yn =d

be a partition of the closed, bounded interval [c, d] such that yk - yk-1 < e for 1 < k < n.
Defne

Ik=[Yk-1, Yk)andEk= f-1(Ik)for1 <k<n.

Since each Ik is an interval and the function f is measurable, each set Ek is measurable.
Define the simple functions (pe and a!!E on E by

n n

(pE=IYk-1-XEkandEYk-XE,.
k=1 k=1

Let x belong to E. Since f (E) C (c, d), there is a unique k, 1 < k < n, for which
yk-1 < f(x) < yk and therefore

(AF (X) = Yk-1 < f(x) <Yk = a/!E(x).

But yk - yk-1 < e, and therefore (PE and 41E have the required approximation properties.

To the several characterizations of measurable functions that we already established,
we add the following one.

The Simple Approximation Theorem An extended real-valued function f on a measurable
set E is measurable if and only if there is a sequence ((p} of simple functions on E which
converges pointwise on E to f and has the property that

I(Pn I <If I on E for all n.

If f is nonnegative, we may choose f (pn ) to be increasing.

Proof Since each simple function is measurable, Proposition 9 tells us that a function is
measurable if it is the pointwise limit of a sequence of simple functions. It remains to prove
the converse.

Assume f is measurable. We also assume f > 0 on E. The general case follows
by expressing f as the difference of nonnegative measurable functions (see Problem 23).
Let n be a natural number. Define En = fx E E I f (x) < n.} Then En is a measurable
set and the restriction of f to En is a nonnegative bounded measurable function. By the
Simple Approximation Lemma, applied to the restriction of f to En and with the choice of
e = 1/n, we may select simple functions (pin and on defined on En which have the following
approximation properties:

0 < (pin < f < af/n on En and 0 < On - (pin < 1/n on En.

Observe that
0 <(pn < f and0< f -(pin <a/1n-(pin <1/n on En. (1)
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Extend (pn to all of E by setting !pn (x) = n if f (x) > n. The function cpn is a simple function
defined on E and 0 < lpn < f on E. We claim that the sequence {i/in } converges to f pointwise
on E. Let x belong to E.

Case 1: Assume f (x) is finite. Choose a natural number N for which f (x) < N. Then

0< f(x)-cpn(x)<1/nforn>N,

and therefore limn , oc 4fn (x) = f (x).

Case 2: Assume f (x) __oo. Then !pn (x) = n for all n, so that limn !pn(x) = f (x).

By replacing each con with max{cpl, ... , (pn } we have {(p,, } increasing.

PROBLEMS

12. Let f be a bounded measurable function on E. Show that there are sequences of simple
functions on E, {(p,) and {t(fn}, such that {(p} is increasing and {qin} is decreasing and each of
these sequences converges to f uniformly on E.

13. A real-valued measurable function is said to be semisimple provided it takes only a countable
number of values. Let f be any measurable function on E. Show that there is a sequence of
semisimple functions f fn) on E that converges to f uniformly on E.

14. Let f be a measurable function on E that is finite a.e.on E and m( E) < oo. For each c > 0,
show that there is a measurable set F contained in E such that f is bounded on F and
m(E - F) < E.

15. Let f be a measurable function on E that is finite a.e. on E and m ( E) < oo. Show that for each
E > 0, there is a measurable set F contained in E and a sequence (cpn } of simple functions on
E such that {cpn } --- f uniformly on F and m (E - F) < E. (Hint: See the preceding problem.)

16. Let I be a closed, bounded interval and E a measurable subset of I. Let E > 0. Show that
there is a step function h on I and a measurable subset F of I for which

h=XEonFandm(I-F)<E.

(Hint: Use Theorem 12 of Chapter 2.)

17. Let I be a closed, bounded interval and a simple function defined on I. Let E > 0. Show that
there is a step function h on I and a measurable subset F of I for which

h = 0 on F and m(I - F) < E.

(Hint: Use the fact that a simple function is a linear combination of characteristic functions
and the preceding problem.)

18. Let I be a closed, bounded interval and f a bounded measurable function defined on I. Let
c > 0. Show that there is a step function h on I and a measurable subset F of I for which

I h- fI <EonFandm(I^-F) <E.

19. Show that the sum and product of two simple functions are simple as are the max and
the min.
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20. Let A and B be any sets. Show that

XAnB = XA XB

XAUB = XA + XB - XA XB

XAC=1-XA

21. For a sequence { f } of measurable functions with common domain E, show that each of the
following functions is measurable:

inf { f }, sup { f }, lim inf ff.) and lim sup { f }.

22. (Dini's Theorem) Let (f,,} be an increasing sequence of continuous functions on [a, b]
which converges pointwise on [a, b] to the continuous function f on [a, b]. Show that the
convergence is uniform on [a, b]. (Hint: Let e > 0. For each natural number n, define
E. = {x E [a, b] I f (x) - f (x) < e}. (Show that {E } is an open cover of [a, b] and use the
Heine-Borel Theorem.)

23. Express a measurable function as the difference of nonnegative measurable functions and
thereby prove the general Simple Approximation Theorem based on the special case of a
nonnegative measurable function.

24. Let I be an interval and f : I -* R be increasing. Show that f is measurable by first showing
that, for each natural number n, the strictly increasing function x'- f (x) +x/n is measurable,
and then taking pointwise limits.

3.3 LITTLEWOOD'S THREE PRINCIPLES, EGOROFF'S THEOREM,
AND LUSIN'S THEOREM

Speaking of the theory of functions of a real variable, J. E. Littlewood says,4 "The extent
of knowledge required is nothing like so great as is sometimes supposed. There are three
principles, roughly expressible in the following terms: Every [measurable] set is nearly a
finite union of intervals; every [measurable] function is nearly continuous; every pointwise
convergent sequence of [measurable] functions is nearly uniformly convergent. Most of the
results of [the theory] are fairly intuitive applications of these ideas, and the student armed
with them should be equal to most occasions when real variable theory is called for. If one
of the principles would be the obvious means to settle the problem if it were `quite' true, it
is natural to ask if the `nearly' is near enough, and for a problem that is actually solvable it
generally is."

Theorem 12 of Chapter 2 is one precise formulation of Littlewood's first principle: It
tells us that given a measurable set E of finite measure, then for each e > 0, there is a finite
disjoint collection of open intervals whose union U is "nearly equal to" E in the sense that
m(E' U)+m(U^-E) <E.

A precise realization of the last of Littlewood's principle is the following surprising
theorem.

Egoroff s Theorem Assume E has finite measure. Let If,) be a sequence of measurable
functions on E that converges pointwise on E to the real-valued function f. Then for each
e > 0, there is a closed set F contained in E for which

{ f } -* f uniformly on F and m (E - F) < E.

4Littlewood [Lit4l], page 23.
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To prove Egoroff's Theorem it is convenient to first establish the following lemma.

Lemma 10 Under the assumptions of Egoroff's Theorem, for each 'n > 0 and S > 0, there is a
measurable subset A of E and an index N for which

Ifn - fl < 17onAforalln>Nandm(E' A)<S.

Proof For each k, the function If - fkl is properly defined, since f is real-valued, and it is
measurable, so that the set {x E E I if (x) - fk(x)I < fl is measurable. The intersection of a
countable collection of measurable sets is measurable. Therefore

En={xEEl If(x)- fk(x)I <7jforallk>n}

is a measurable set. Then {En}11 is an ascending collection of measurable sets, and
E = Un° 1En, since I fn) converges pointwise to f on E. We infer from the continuity of
measure that

m(E)=slim m(En).
+00

Since m (E) < oo, we may choose an index N for which m (EN) > m (E) - E. Define A = En
and observe that, by the excision property of measure, m (E' A) = m (E) - m (EN) < E.

Proof of Egoroff's Theorem For each natural number n, let An be a measurable subset
of E and N(n) an index which satisfy the conclusion of the preceding lemma with S =
e/2n+1 and 17 = 1/n, that is,

and

Define

m(E-An) <e/2n+1 (2)

Ifk-fI<1/nonAnforall k>N(n).

00

A=nAn.
n=1

By De Morgan's Identities, the countably subadditivity of measure and (2),

m(E^'A)=mI U[E^,An]I 1 m(E-An)<1,e/2n+1=E/2.

n=1 / n=1 n=1

(3)

We claim that f fn) converges to f uniformly on A. Indeed, let E > 0. Choose an index no
such that 1/no < E. Then, by (3),

I fk - f I < 1/no on Ano fork > N (no ).

However, A C Ano and 1/no < e and therefore

Ifk - fI < eonAfork> N(no).

Thus {f} converges to f uniformly on A and m (E - A) < E/2.

Finally, by Theorem 11 of Chapter 2, we may choose a closed set F contained in A for
which m (A - F) < e/2. Thus m (E - F) < E and {f}-'f uniformly on F.
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It is clear that Egoroff's Theorem also holds if the convergence is pointwise a.e. and
the limit function is finite a.e.

We now present a precise version of Littlewood's second principle in the case the
measurable function is simple and then use this special case to prove the general case of the
principle, Lusin's Theorem.

Proposition 11 Let f be a simple function defined on E. Then for each E > 0, there is a
continuous function g on R and a closed set F contained in E for which

f =gonFandm(E' F)<E.

Proof Let a1, a2, ... , an be the finite number of distinct values taken by f, and let them
be taken on the sets El, E2, ... , En, respectively. The collection (Ek)k=1 is disjoint since
the ak's are distinct. According to Theorem 11 of Chapter 2, we may choose closed sets
F1, F2, ... , Fn such that for each index k,1 < k < n,

Fk C Ek and m (Ek . Fk) < E/n.

Then F = Uk-1 Fk, being the union of a finite collection of closed sets, is closed. Since
(Ek}k_1 is disjoint,

m(E^-F)=mIU[Ek Fk])_Y,
k-1 k=1

Define g on F to take the value ak on Fk for 1 < k < n. Since the collection {Fk}k=1 is
disjoint, g is properly defined. Moreover, g is continuous on F since for a point x E F1, there
is an open interval containing x which is disjoint from the closed set Uk#; Fk and hence on
the intersection of this interval with F the function g is constant. But g can be extended
from a continuous function on the closed set F to a continuous function on all of R (see
Problem 25). The continuous function g on R has the required approximation properties.

Lusin's Theorem Let f be a real-valued measurable function on E. Then for each E > 0, there
is a continuous function g on R and a closed set F contained in E for which

f =gon Fandm(E-F)<E.

Proof We consider the case that m (E) < oo and leave the extension to m (E) = oo as
an exercise. According to the Simple Approximation Theorem, there is a sequence (f"}
of simple functions defined on E that converges to f pointwise on E. Let n be a natural
number. By the preceding proposition, with f replaced by f,, and E replaced by E/2n+1 we
may choose a continuous function gn on R and a closed set Fn contained in E for which

fn = gn on F" and m (E ' Fn) <,612n+1.

According to Egoroff's Theorem, there is a closed set F0 contained in E such that I fn)
converges to f uniformly on Fo and in (E - Fo) < E/2. Define F = n

o Fn. Observe that,
by De Morgan's Identities and the countable subadditivity of measure,
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00m(E"'F)=m([E Fo]UU[E"'Fn]I<E/2+I E/2n+1=E.
\ n=1 n=1

The set F is closed since it is the intersection of closed sets. Each fn is continuous on F
since F C Fn and f, = gn on F. Finally, (fn} converges to f uniformly on F since F C F0.
However, the uniform limit of continuous functions is continuous, so the restriction of f to
F is continuous on F. Finally, there is a continuous function g defined on all of R whose
restriction to F equals f (see Problem 25). This function g has the required approximation
properties.

PROBLEMS

25. Suppose f is a function that is continuous on a closed set F of real numbers. Show that
f has a continuous extension to all of R. This is a special case of the forthcoming Tietze
Extension Theorem. (Hint: Express R ^- F as the union of a countable disjoint collection of
open intervals and define f to be linear on the closure of each of these intervals.)

26. For the function f and the set F in the statement of Lusin's Theorem, show that the restriction
of f to F is a continuous function. Must there be any points at which f, considered as a
function on E, is continuous?

27. Show that the conclusion of Egoroff's Theorem can fail if we drop the assumption that the
domain has finite measure.

28. Show that Egoroff's Theorem continues to hold if the convergence is pointwise a.e. and f is
finite a.e.

29. Prove the extension of Lusin's Theorem to the case that E has infinite measure.

30. Prove the extension of Lusin's Theorem to the case that f is not necessarily real-valued, but
may be finite a.e.

31. Let f f,,) be a sequence of measurable functions on E that converges to the real-valued f
pointwise on E. Show that E = U0 1 Ek, where for each index k, Ek is measurable, and (fn }
converges uniformly to f on each Ek if k > 1, and m(E1) = 0.
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We now turn to our main object of interest in Part I, the Lebesgue integral. We define this
integral in four stages. We first define the integral for simple functions over a set of finite
measure. Then for bounded measurable functions f over a set of finite measure, in terms of
integrals of upper and lower approximations off by simple functions. We define the integral
of a general nonnegative measurable function f over E to be the supremum of the integrals
of lower approximations of f by bounded measurable functions that vanish outside a set of
finite measure; the integral of such a function is nonnegative, but may be infinite. Finally,
a general measurable function is said to be integrable over E provided fEj f I < oo. We
prove that linear combinations of integrable functions are integrable and that, on the class
of integrable functions, the Lebesgue integral is a monotone, linear functional. A principal
virtue of the Lebesgue integral, beyond the extent of the class of integrable functions, is
the availability of quite general criteria which guarantee that if a sequence of integrable
functions f fn) converge pointwise almost everywhere on E to f, then

nhmooJ fn=J [hin fn ]-J f.
E E E

We refer to that as passage of the limit under the integral sign. Based on Egoroff's
Theorem, a consequence of the countable additivity of Lebesgue measure, we prove
four theorems that provide criteria for justification of this passage: the Bounded Convergence
Theorem, the Monotone Convergence Theorem, the Lebesgue Dominated Convergence
Theorem, and the Vitali Convergence Theorem.

4.1 THE RIEMANN INTEGRAL

We recall a few definitions pertaining to the Riemann integral. Let f be a bounded real-
valued function defined on the closed, bounded interval [a, b]. Let P = {xo, x1 ,.. . , xn} be a
partition of [a, b], that is,

a=xo<xl<...<xn=b.
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Define the lower and upper Darboux stuns for f with respect to P, respectively, by

n

L(f,

P)
i=1

i < n,

mi=inf{f(x)I xl_i<x<x1}andM,=sup{f(x)I xi_1<x<xi}.

We then define the lower and upper Riemann integrals off over [a, b], respectively, by

b

(R)f f = sup {L(f, P) I Pa partition of [a, b]}
a

and

rb
(R)J f = inf {U(f, P) I Pa partition of [a, b]).

a

Since f is assumed to be bounded and the interval [a, b] has finite length, the lower and
upper Riemann integrals are finite. The upper integral is always at least as large as the lower
integral, and if the two are equal we say that f is Riemann integrable over [a, b] 2 and call
this common value the Riemann integral of f over [a, b]. We denote it by

(R) fbf
a

to temporarily distinguish it from the Lebesgue integral, which we consider in the next
section.

A real-valued function f defined on [a, b] is called a step function provided there is a
partition P = {xo, x1, ..., xn } of [a, b] and numbers c1, ..., c, such that for 1 < i < n,

r(x) = ci if x1_1 < x < xi.

Observe that

1If we define

n

L(+fr, P) ci(xi -x1_1) = U(O, P).
i=1

mi =inf {f(x) I xi_1 <x <xi} andMi =sup {.f(x) I xi-1 <x <xi},

so the infima and suprema are taken over closed subintervals, we arrive at the same value of the upper and lower
Riemann integral.

2An elegant theorem of Henri Lebesgue, Theorem 8 of Chapter 5, tells us that a necessary and sufficient
condition for a bounded function f to be Riemann integrable over [a, b] is that the set of points in [a, b] at which
f fails to be continuous has Lebesgue measure zero.
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From this and the definition of the upper and lower Riemann integrals, we infer that a step
function a/i is Riemann integrable and

b n

(R)
a i=1

Therefore, we may reformulate the definition of the lower andupper Riemann integrals as
follows:

f=SUP{(R)f(R) f b b qp a step function and p < f on [a, b] } ,

and

(R)f b f = inf r(R) f b afr I afr a step function and s > f on [a, b]1.

Example (Dirichlet's Function) Define f on [0, 1] by setting f(x) = 1 if x is rational and
0 if x is irrational. Let P be any partition of [0, 1]. By the density of the rationals andthe
irrationals,3

L(f, P)=0andU(f, P)=1.
Thus

(R) fo,f=O<1=(R) fo

so f is not Riemann integrable. The set of rational numbers in [0,1] is countable .4 Let {qk}00°
1

be an enumeration of the rational numbers in [0, 1]. For a natural number n, define fn on
[0, 1] by setting fn(x) = 1, if x = qk for some qk with 1 < k < n, and f (x) = 0 otherwise.
Then each fn is a step function, so it is Riemann integrable. Thus, {f,) is an increasing
sequence of Riemann integrable functions on [0, 1],

I fn I < 1 on [0, 1] for all n

and

J fn I--* f pointwise on [0, 1].

However, the limit function f fails to be Riemann integrable on [0, 1].

PROBLEMS

1. Show that, in the above, Dirichlet function example, { fn} fails toconverge to f uniformly on
[0, 1].

2. A partition P' of [a, b] is called a refinement of a partition P provided each partition point
of P is also a partition point of P'. For a bounded function f on [a, b], show that under
refinement lower Darboux sums increase and upper Darboux sums decrease.

3See page 12.
4See page 14.
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3. Use the preceding problem to show that for a bounded function on a closed, bounded interval,
each lower Darboux sum is no greater than each upper Darboux sum. From this conclude
that the lower Riemann integral is no greater than the upper Riemann integral.

4. Suppose the bounded function f on [a, b] is Riemann integrable over [a, b]. Show that there
is a sequence [P,) of partitions of [a, b] for which limn , [U(f, Pn) -L (f, P.)] = 0.

5. Let f be a bounded function on [a, b]. Suppose there is a sequence (Pn} of partitions of
[a, b] for which limn , [U(f, Pn) - L(f, P.)] = 0. Show that f is Riemann integrable
over [a, b].

6. Use the preceding problem to show that since a continuous function f on a closed, bounded
interval [a, b] is uniformly continuous on [a, b], it is Riemann integrable over [a, b].

7. Let f be an increasing real-valued function on [0, 1]. For a natural number n, define Pn to
be the partition of [0, 1] into n subintervals of length 1/n. Show that U(f, Pn) - L(f, Pn)
1/n[ f (1) - f (0)]. Use Problem 5 to show that f is Riemann integrable over [0, 1].

8. Let {f,} be a sequence of bounded functions that converges uniformly to f on the closed,
bounded interval [a, b]. If each fn is Riemann integrable over [a, b], show that f also is
Riemann integrable over [a, b]. Is it true that

b b

lim fn = ! f?
n-+oo

a a

4.2 THE LEBESGUE INTEGRAL OF A BOUNDED MEASURABLE FUNCTION
OVER A SET OF FINITE MEASURE

The Dirichlet function, which was examined in the preceding section, exhibits one of the
principal shortcomings of the Riemann integral: a uniformly bounded sequence of Riemann
integrable functions on a closed, bounded interval can converge pointwise to a function that
is not Riemann integrable. We will see that the Lebesgue integral does not suffer from this
shortcoming.

Henceforth we only consider the Lebesgue integral, unless explicitly mentioned oth-
erwise, and so we use the pure integral symbol to denote the Lebesgue integral. The
forthcoming Theorem 3 tells us that any bounded function that is Riemann integrable over
[a, b] is also Lebesgue integrable over [a, b] and the two integrals are equal.

Recall that a measurable real-valued function 41 defined on a set E is said to be simple
provided it takes only a finite number of real values. If 0 takes the distinct values al, ..., an
on E, then, by the measurability of t/i, its level sets /-1(ai) are measurable and we have the
canonical representation of 0 on E as

n

41 on F, where each Ei=/i-1(ai)={XEEI /i(x)=ail. (1)
i=1

The canonical representation is characterized by the Ei's being disjoint and the ai's being
distinct.

Definition For a simple function 0 defined on a set of finite measure E, we define the integral
of 0 over E by

f=ai-m(Ei),
E i=1
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where 0 has the canonical representation given by (1).

Lemma 1 Let {Ei}" 1 be a finite disjoint collection of measurable subsets of a set of finite
measure E. For 1 < i < n, let ai be a real number.

n

jq'XE;onE,then =m(Ei).
i=1

Proof The collection {E1 }" 1 is disjoint but the above may not be the canonical representation
since the ai's may not be distinct. We must account for possible repetitions. Let (A1, ... , Am )

be the distinct values taken by cp. For 1 < j < m, set A j = {x E E I (p(x) = Aj}. By definition
of the integral in terms of canonical representations,

I = Aj.m(Aj).
E j=1

For 1 < j < m, let Ij be the set of indices i in (1.....n} for which ai = Aj. Then
{l, ... , n} = U, 1 Ii, and the union is disjoint. Moreover, by finite additivity of measure,

m(Aj) = I m(Ei)forall 1 < j <m.
iE lj

Therefore

ai.m(Ei)I E m(Ei)J
i=1 j=1 L i E Ij j=1 i r Ij

_EAi.m(Ai) rcP.
j=1 _ E

One of our goals is to establish linearity and monotonicity properties for the general
Lebesgue integral. The following is the first result in this direction.

Proposition 2 (Linearity and Monotonicity of Integration) Let cp and 4 be simple functions
defined on a set of finite measure E. Then for any a and S,

IEIEJE 0.
Moreover,

JELifp<41onE, then

Proof Since both cp and 0 take only a finite number of values on E, we may choose a finite
disjoint collection {E1}"

1
of measurable subsets of E, the union of which is E, such that 9

and 41 are constant on each E,. For each i, 1 < i < n, let ai and bi, respectively, be the values
taken by cp and 0 on E,. By the preceding lemma,

IE

n n

.m(Ei)
i=1
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However, the simple function acp + /3o takes the constant value aai + Obi on Ei. Thus, again
by the preceding lemma,

fE
(alp+PO)(aai+Obi) m(Ei)

i=1

n n

=a> (p+P i.
i=1 i=1 fE fE

To prove monotonicity, assume W < 41 on E. Define 77 = 0 - w on E. By linearity,

fE0 fE'P= fE(o-'P)= fEn'g.

since the nonnegative simple function 71 has a nonnegative integral.

The linearity of integration over sets of finite measure of simple functions shows
that the restriction in the statement of Lemma 1 that the collection {Ei}" 1 be disjoint is
unnecessary.

A step function takes only a finite number of values and each interval is measurable.
Thus a step function is simple. Since the measure of a singleton set is zero and the measure
of an interval is its length, we infer from the linearity of Lebesgue integration for simple
functions defined on sets of finite measure that the Riemann integral over a closed, bounded
interval of a step function agrees with the Lebesgue integral.

Let f be a bounded real-valued function defined on a set of finite measure E. By
analogy with the Riemann integral, we define the lower and upper Lebesgue integral,
respectively, of f over E to be

sup IfE (P (p simple and p< f on E, I

and

inf If 41 I 0 simple and f < alr on E.J
E

Since f is assumed to be bounded, by the monotonicity property of the integral for simple
functions, the lower and upper integrals are finite and the upper integral is always at least as
large as the lower integral.

Definition A bounded function f on a domain E of finite measure is said to be Lebesgue
integrable over E provided its upper and lower Lebesgue integrals over E are equal. The
common value of the upper and lower integrals is called the Lebesgue integral, or simply the
integral, off over E and is denoted by fE f.

Theorem 3 Let f be a bounded function defined on the closed, bounded interval [a, b]. If f is
Riemann integrable over [a, b], then it is Lebesgue integrable over [a, b] and the two integrals
are equal.
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Proof The assertion that f is Riemann integrable means that, setting I = [a, b],

sup{(R)f(i p a step function, q < fl = inf J(R)
J

a step function, f < i
JJ i

To prove that f is Lebesgue integrable we must show that

sup {f Qp simple, cp < f} = inf iJ 0r 0 simple, f < Of .

if,
However, each step function is a simple function and, as we have already observed, for
a step function, the Riemann integral and the Lebesgue integral are the same. Therefore
the first equality implies the second and also the equality of the Riemann and Lebesgue
integrals.

We are now fully justified in using the symbol fE f, without any preliminary (R), to
denote the integral of a bounded function that is Lebesgue integrable over a set of finite
measure. In the case of an interval E = [a, b], we sometimes use the familiar notation f b f

to denote fl, J, f and sometimes it is useful to use the classic Leibniz notation f ' f (x) dx.

Example The set E of rational numbers in [0, 1] is a measurable set of measure zero. The
Dirichlet function f is the restriction to [0, 1] of the characteristic function of E, XE. Thus
f is integrable over [0, 1] and

f f= fo[o, 1]
We have shown that f is not Riemann integrable over [0, 1].

Theorem 4 Let f be a bounded measurable function on a set of finite measure E. Then f is
integrable over E.

Proof Let n be a natural number. By the Simple Approximation Lemma, with e = 1/n,
there are two simple functions cpn and On defined on E for which

!pn f On on E,

and

0<On-cpn<1/n on E.

By the monotonicity and linearity of the integral for simple functions,

0< f On- f fin= f
E E E



Section 4.2 The Lebesgue Integral of a Bounded Measurable Function 75

However,

0<inf{J
E

41 p
.

41 simple, 41 > f} - sup {fE (

JEJE

cp simple, (p < ff

This inequality holds for every natural number n and m(E) is finite. Therefore the upper
and lower Lebesgue integrals are equal and thus the function f is integrable over E.

It turns out that the converse of the preceding theorem is true; a bounded function on
a set of finite measure is Lebesgue integrable if and only if it is measurable: we prove this
later (see the forthcoming Theorem 7 of Chapter 5). This shows, in particular, that not every
bounded function defined on a set of finite measure is Lebesgue integrable. In fact, for any
measurable set E of finite positive measure, the restriction to E of the characteristic function
of each nonmeasurable subset of E fails to be Lebesgue integrable over E.

Theorem 5 (Linearity and Monotonicity of Integration) Let f and g be bounded measurable
functions on a set of finite measure E. Then for any a and /3,

JEJEJE 9. (2)

Moreover,

if f<gon E,then
JE

f<JE g. (3)

Proof A linear combination of measurable bounded functions is measurable and bounded.
Thus, by Theorem 4, a f + /3g is integrable over E. We first prove linearity for S = 0. If 0 is
a simple function so is at/i, and conversely (if a 0 0). We established linearity of integration
for simple functions. Let a > 0. Since the Lebesgue integral is equal to the upper Lebesgue
integral,

faf= inf
J

= a inf J[/a]=aJf.
+t>of E E

For a < 0, since the Lebesgue integral is equal both to the upper Lebesgue integral and the
lower Lebesgue integral,

J af= inf
J

= a sup
J ['P/ a] = a J

f.
E

rp>af
E [W/a]<f E E

It remains to establish linearity in the case that a = S = 1. Let 01 and 02 be simple functions
for which f < 01 and g < 02 on E. Then 01 +02 is a simple function and f + g <- 01 +02 on
E. Hence, since fE (f + g) is equal to the upper Lebesgue integral of f + g over E, by the
linearity of integration for simple functions,

f fEJ(f+g)J(i +2)=J c1+J 2
E
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The greatest lower bound for the sums of integrals on the right-hand side, as l1 and 1/2 vary
among simple functions for which f < 41, and g < 02, equals fE f + fEg. These inequalities
tell us that fE(f + g) is a lower bound for these same sums. Therefore,

fE (f+g) Ji+fg.
It remains to prove this inequality in the opposite direction. Let Wl and (P2 be simple functions
for which V1 < f and (P2 < g on E. Then V1 + W2 < f + g on E and og1 + (p2 is simple. Hence,
since fE( f + g) is equal to the lower Lebesgue integral of f + g over E, by the linearity of
integration for simple functions,

fE (f + g) fE(I1+P2)= fE (Pi + fE(P2-

The least upper bound bound for the sums of integrals on the right-hand side, as (pi and
(P2 vary among simple functions for which Cpl < f and (P2 < g, equals fE f + fEg. These
inequalities tell us that fE(f + g) is an upper bound for these same sums. Therefore,

JEJEJEg.

This completes the proof of linearity of integration.

To prove monotonicity, assume f < g on E. Define h = g - f on E. By linearity,

JEJEJEJEh.

The function h is nonnegative and therefore 0 < h on E, where 0=0 on E. Since the integral
of h equals its lower integral, fE h > fE 0 = 0. Therefore, fE f < fE g.

Corollary 6 Let f be a bounded measurable function on a set of finite measure E. Suppose A
and B are disjoint measurable subsets of E. Then

JAUBf = IAf +JBf
(4)

Proof Both f XA and f XB are bounded measurable functions on E. Since A and B are
disjoint,

f-XAUB=f-XA+f-XB
Furthermore, for any measurable subset El of E (see Problem 10),

IE1 f= ffX,
Therefore, by the linearity of integration,

IAUBIEJEIEJAIBf
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Corollary 7 Let f be a bounded measurable function on a set of finite measure E. Then

E f
Proof The function If I is measurable and bounded. Now

-IfI s f IfI on E.

By the linearity and monotonicity of integration,

(5)

lfl ,-
fE LiLiii

that is, (5) holds.

Proposition 8 Let (fn} be a sequence of bounded measurable functions on a set of finite
measure E.

If f uniformly on E, then lim f fn =f f.
'oo E E

Proof Since the convergence is uniform and each fn is bounded, the limit function f is
bounded. The function. f is measurable since it is the pointwise limit of a sequence of
measurable functions. Let e > 0. Choose an index N for which

I f - fn I < e/m (E) on E for all n > N. (6)

By the linearity and monotonicity of integration and the preceding corollary, for each n > N,

f f-fA 5 L if - fn1 <- [e/m(E)l . m(E) = E.

Therefore limn , fE fn fE f-

This proposition is rather weak since frequently a sequence will be presented that
converges pointwise but not uniformly. It is important to understand when it is possible to
infer from

(fn} -+ f pointwise a.e. on E

that

r 1

lim
L

f f f.
n-+oo

We refer to this equality as passage of the limit under the integral sign.5 Before proving our
first important result regarding this passage, we present an instructive example.

5This phrase is taken from I. P. Natanson's Theory of Functions of a Real Variable [Nat55}.



78 Chapter 4 Lebesgue Integration

Example For each natural number n, define fn on [0, 1] to have the value 0 ifx > 2/n, have
f (1/n) = n, f (0) = 0 and to be linear on the intervals [0, 1/n] and [1/n, 2/n]. Observe that
f1 fn = 1 for each n. Define f = 0 on [0, 1]. Then

1

I fo

(fn } f pointwise on [0, 1], but nlim
J

fn *
0

Thus, pointwise convergence alone is not sufficient to justify passage of the limit under the
integral sign.

The Bounded Convergence Theorem Let (f,) be a sequence of measurable functions on a
set of finite measure E. Suppose (fn} is uniformly pointwise bounded on E, that is, there is a
number M > 0 for which

I fn I< M on E for all n.

If { fn } --+f pointwise on E, then lint f fn = J f.n oo E E

Proof The proof of this theorem furnishes a nice illustration of Littlewood's Third Principle.
If the convergence is uniform, we have the easy proof of the preceding proposition. However,
Egoroff's Theorem tells us, roughly, that pointwise convergence is "nearly"uniform.

The pointwise limit of a sequence of measurable functions is measurable. Therefore f
is measurable. Clearly If I < M on E. Let A be any measurable subset of E and n a natural
number. By the linearity and additivity over domains of the integral,

JE
In - =

JE
- f ] = f[In - f ] + J+

E E

Therefore, by Corollary 7 and the monotonicity of integration,

1EJE!AA- f .fl (7)

To p rove convergence of the integrals, let E>0. Since m (E) <oo and f is real-valued, Egoroff's
Theorem tells us that there is a measurable subset A of E for which {fn } - f uniformly on A
and m (E - A) < E/4M. By uniform convergence, there is an index N for which

2
m(E)onAforall n>N.Ifn - fI<

E

Therefore, for n > N, we infer from (7) and the monotonicity of integration that

f2ffn-JE E

Hence the sequence of integrals (fE fn) converges to fE f.

Remark Prior to the proof of the Bounded Convergence Theorem, no use was made of the
countable additivity of Lebesgue measure on the real line. Only finite additivity was used, and
it was used just once, in the proof of Lemma 1. But for the proof of the Bounded Convergence
Theorem we used Egoroff's Theorem. The proof of Egoroff's Theorem needed the continuity
of Lebesgue measure, a consequence of countable additivity of Lebesgue measure.
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PROBLEMS

9. Let E have measure zero. Show that if f is a bounded function on E, then f is measurable
and fE f = 0.

10. Let f be a bounded measurable function on a set of finite measure E. For a measurable
subset A of E, show that fA f = fE f XA.

11. Does the Bounded Convergence Theorem hold for the Riemann integral?

12. Let f be a bounded measurable function on a set of finite measure E. Assume g is bounded
and f = g a.e. on E. Show that fE f = fE g

13. Does the Bounded Convergence Theorem hold if m(E) < oo but we drop the assumption
that the sequence (I f I} is uniformly bounded on E?

14. Show that Proposition 8 is a special case of the Bounded Convergence Theorem.

15. Verify the assertions in the last Remark of this section.

16. Let f be a nonnegative bounded measurable function on a set of finite measure E. Assume
fE f = 0. Show that f = 0 a.e. on E.

4.3 THE LEBESGUE INTEGRAL OF A MEASURABLE
NONNEGATIVE FUNCTION

A measurable function f on E is said to vanish outside a set of finite measure provided there
is a subset E0 of E for which m(Eo) < oo and f =0 on E' Eo. It is convenient to say that a
function that vanishes outside a set of finite measure has finite support and define its support
to be {x e E I f (x) # 0).6 In the preceding section, we defined the integral of a bounded
measurable function f over a set of finite measure E. However, even if m(E) = oo, if f is
bounded and measurable on E but has finite support, we can define its integral over E by

Lf =lEDf>
where E0 has finite measure and f = 0 on E - Eo. This integral is properly defined, that is, it
is independent of the choice of set of finite measure E0 outside of which f vanishes. This is a
consequence of the additivity over domains property of integration for bounded measurable
functions over a set of finite measure.

Definition For f a nonnegative measurable function on E, we define the integral of f over
E by7

f = sup h I h bounded, measurable, of finite support and 0 < h < f on Ej. (8)f If

6But care is needed here. In the study of continuous real-valued functions on a topological space, the support of
a function is defined to be the closure of the set of points at which the function is nonzero.

7This is a definition of the integral of a nonnegative extended real-valued measurable function; it is not a
definition of what it means for such a function to be integrable. The integral is defined regardless of whether the
function is bounded or the domain has finite measure. Of course, the integral is nonnegative since it is defined to
be the supremum of a set of nonnegative numbers. But the integral may be equal to oo, as it is, for instance, for
a nonnegative measurable function that takes a positive constant value of a subset of E of infinite measure or the
value oo on a subset of E of positive measure.
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Chebychev's Inequality Let f be a nonnegative measurable function on E. Then for any
A>0,

m{xEEI f(x)>A}<1
fE

f. (9)

Proof Define EA = {x E E I f (x) > A). First suppose m(Ex) = oo. Let n be a natural number.
Define EA, n = EA fl [-n, n] and On = A XEA. -Then on is a bounded measurable function
of finite support,

dinand0<On < fon Efor all n.
E

We infer from the continuity of measure that

r
lim m(EA,n)= Jim f On<J f.

n -CO n-+oo E E

Thus inequality (9) holds since both sides equal no. Now consider the case m(Ex) < oo.
Define h = A A. XEA. Then h is a bounded measurable function of finite support and 0 <_ h f
on E. By the definition of the integral of f over E,

h<J
E

Divide both sides of this inequality by A to obtain Chebychev's Inequality.

Proposition 9 Let f be a nonnegative measurable function on E. Then

IE f = 0 if and only if f = 0 a. e. on E. (10)

Proof First assume fE f = 0. Then, by Chebychev's Inequality, for each natural num-
ber n, m(xEXI f(x) > 1/n) = 0. By the countable additivity of Lebesgue measure,
m (x E X I f (x) > 0) = 0. Conversely, suppose f = 0 a.e. on E. Let (p be a simple function
and h a bounded measurable function of finite support for which 0 < p < h < f on E. Then
9 = 0 a.e. on E and hence fE 9 = 0. Since this holds for all such (p, we infer that fE h = 0.
Since this holds for all such h, we infer that fE f = 0.

Theorem 10 (Linearity and Monotonicity of Integration) Let f and g be nonnegative
measurable functions on E. Then for any a > 0 and p > 0,

f(af+/3g) = afEf+18f 9.

Moreover,

if f < g on E, then fE f :s fE g. (12)
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Proof For a > 0, 0 < h < f on E if and only if 0 < ah < a f on E. Therefore, by the linearity
of the integral of bounded functions of finite support, fE a f = a fE f . Thus, to prove linearity
we need only consider the case a = 0 = 1. Let h and g be bounded measurable functions of
finite support for which 0 < h < f and 0 < k < g on E. We have 0 < h + k < f + g on E,
and h + k also is a bounded measurable function of finite support. Thus, by the linearity of
integration for bounded measurable functions of finite support,

fh+fk=f(h+k)f(f+g).
The least upper bound for the sums of integrals on the left-hand side, as h and k vary
among bounded measurable functions of finite support for which h < f and k < g, equals
fE f + fE g. These inequalities tell us that fE (f + g) is an upper bound for these same sums.
Therefore,

ff+fgJ(f+g).
It remains to prove this inequality in the opposite direction, that is,

j(f+g)_<f
E Ef+fE 9.

By the definition of fE (f + g) as the supremum of fE P as P ranges over all bounded
measurable functions of finite support for which 0 < C < f + g on E, to verify this inequality
it is necessary and sufficient to show that for any such function t,

ftff+fg.E < (13)

For such a function f, define the functions h and k on E by

h=min{f, £}andk=t-h on E.

Let x belong to E. If 2(x) < f(x), then k(x) = 0 < g(x); if e(x) > f(x), then h(x) _
£ (x) - f (x) < g (x ). Therefore, h < g on E. Both h and k are bounded measurable functions
of finite support. We have

0 <h < f,0 <k <gand1=h+konE.

Hence, again using the linearity of integration for bounded measurable functions of finite
support and the definitions of fE f and fE g, we have

JEl= IE h + fEk < fE f + j g.

Thus (13) holds and the proof of linearity is complete.

In view of the definition of fE f as a supremum, to prove the monotonicity inequality
(12) it is necessary and sufficient to show that if h is a bounded measurable function of finite
support for which 0 < h < f on E, then

fE h < fE g. (14)
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Let h be such a function. Then h < g on E. Therefore, by the definition of fE g as a
supremum, fE h < f E g. This completes the proof of monotonicity.

Theorem 11 (Additivity Over Domains of Integration) Let f be a nonnegative measurable
function on E. If A and B are disjoint measurable subsets of E, then

In particular, if E0 is a subset of E of measure zero, then

fEJEEO f. (15)

Proof Additivity over domains of integration follows from linearity as it did for bounded
functions on sets of finite measure. The excision formula (15) follows from additivity over
domains and the observation that, by Proposition 9, the integral of a nonnegative function
over a set of measure zero is zero.

The following lemma will enable us to establish several criteria to justify passage of the
limit under the integral sign.

Fatou's Lemma Let [f,) be a sequence of nonnegative measurable functions on E.

If {fn}- f pointwise a.e. on E, then f f <liminf f fn. (16)
E E

Proof In view of (15), by possibly excising from E a set of measure zero, we assume the
pointwise convergence is on all of E. The function f is nonnegative and measurable since
it is the pointwise limit of a sequence of such functions. To verify the inequality in (16) it
is necessary and sufficient to show that if h is any bounded measurable function of finite
support for which 0 < h < f on E, then

JELh < liminf fn (17)

Let h be such a function. Choose M > 0 for which Ih I < M on E. Define E0 = {x E E I h (x ):P60}.

Then m(E0) < oc. Let n be a natural number. Define a function hn on E by

hn = min{h, fn} on E.

Observe that the function hn is measurable, that

0<hn <Mon E0and hn=0 on E' E0.

Furthermore, for each x in E, since h (x) < f (x) and { fn (x)) --) f (x), {hn (X)) -+ h (x ). We
infer from the Bounded Convergence Theorem applied to the uniformly bounded sequence
of restrictions of hn to the set of finite measure E0, and the vanishing of each hn on E ^- E0, that

lim f hn = lim f0 hn = f h = f h.
n-+00 E n ->oo EE0 E
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However, for each n, hn < fn on E and therefore, by the definition of the integral of fn over
E, fE hn < fE fn. Thus,

JE

= f liminf
fEn-+OO E

The inequality in Fatou's Lemma may be strict.

Example Let E = (0, 1] and for a natural number n, define fn = n X(0. 1/n). Then {fn}
converges pointwise on E to f ° 0 on E. However,

f f=0<1= lim ffn.
E n -+oo

As another example of strict inequality in Fatou's Lemma, let E = R and for a natural
number n, define gn = X(n. +,). Then {gn} converges pointwise on E to g°0 on E. However,

J
g=0<1= lim fan.

E

However, the inequality in Fatou's Lemma is an equality if the sequence if,,) is
increasing.

The Monotone Convergence Theorem Let {fn} be an increasing sequence of nonnegative
measurable functions on B.

If f fn) - f pointwise a.e. on E, then

Proof According to Fatou's Lemma,

lim f ,f =f f .
n E E

'EJE fn.
However, for each index n, f, < f a.e. on E, and so, by the monotonicity of integration for
nonnegative measurable functions and (15), fE fn < fE f. Therefore

flim sup fE ji.

ff=hm f .fn .
oo

Corollary 12 Let {un} be a sequence of nonnegative measurable functions on E.

If f = 1 un pointwise a. e. on E, then ff=f un .

1

Proof Apply the Monotone Convergence Theorem with fn = Ek=1 uk, for each index n,
and then use the linearity of integration for nonnegative measurable functions.
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Definition A nonnegative measurable function f on a measurable set E is said to be integrable
over E provided

JE
f<00.

Proposition 13 Let the nonnegative function f be integrable over E. Then f is finite a. e. on E.

Proof Let n be a natural number. Chebychev's Inequality and the monotonicity of measure
tell us that

m{xEEI f(x)=oo}<m{xEEI f(x)>n}<1Lf.
E

But fE f is finite and therefore m{x E E I f (x) = oo} = 0.

Beppo Levi's Lemma Let[ fn } bean increasing sequence of nonnegative measurable functions
on E. If the sequence of integrals [fE fn} is bounded, then { fn} converges pointwise on E to a
measurable function f that is finite a.e. onffn=ff<00.E and

lim
n*o0 E E

Proof Every monotone sequence of extended real numbers converges to an extended real
number.8 Since { fn} is an increasing sequence of extended real-valued functions on E, we
may define the extended real-valued nonnegative function f pointwise on E by

f(x)= lim f(x) for all XE E.
->o0

According to the Monotone Convergence Theorem, { fE fn) -+ fE f. Therefore, since the
sequence of real numbers { fE fn} is bounded, its limit is finite and so fE f < oo. We infer
from the preceding proposition that f is finite a.e. on E.

PROBLEMS

17. Let E be a set of measure zero and define f = 00 on E. Show that fE f = 0-

18. Show that the integral of a bounded measurable function of finite support is properly defined.

19. For a number a, define f (x) = x' for 0 < x < 1, and f (0) = 0. Compute fo f.

20. Let {f, } be a sequence of nonnegative measurable functions that converges to f pointwise on
E. Let M > 0 be such that fE fn < M for all n. Show that fE f < M. Verify that this property
is equivalent to the statement of Fatou's Lemma.

21. Let the function f be nonnegative and integrable over E and c > 0. Show there is a simple
function ,1 on E that has finite support, 0 < ri < f on E and fE If - ,qI < E. If E is a closed,
bounded interval, show there is a step function h on E that has finite support and f E I f - h I < E.

22. Let I fn) be a sequence of nonnegative measurable functions on R that converges pointwise
on R to f and f be integrable over R. ShowShow that

if
if

JR n-i
f = limoo

RJ
fn, then

f E

= limao
f E

for any measurable set E.

8See page 23.
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23. Let {an} be a sequence of nonnegative real numbers. Define the function f on E = [1, oo) by
setting f(x) =anifn < x < n + 1. Show that fEf = E001 an

24. Let f be a nonnegative measurable function on E.
(i) Show there is an increasing sequence {cpn} of nonnegative simple functions on E, each of

finite support, which converges pointwise on E to f.

(ii) Show that fE f = sup { fET I (p simple, of finite support and 0 < 1P <, f on E}.

25. Let { fn} be a sequence of nonnegative measurable functions on E that converges pointwise
on E to f . Suppose fn < f on E for each n. Show that

ni[fn=1 f
E E

26. Show that the Monotone Convergence Theorem may not hold for decreasing sequences of
functions.

27. Prove the following generalization of Fatou's Lemma: If { fn} is a sequence of nonnegative
measurable functions on E, then

r r

f
lim inf fn < lim inf

f EE E

4.4 THE GENERAL LEBESGUE INTEGRAL

For an extended real-valued function f on E, we have defined the positive part f+ and the
negative part f- of f, respectively, by

f+(x)=max{f(x),0}and f-(x)=max(-f(x),0)forallxEE.

Then f+ and f- are nonnegative functions on E,

f=f+-fonE
and

Ifl=f++f-onE.
Observe that f is measurable if and only if both f+ and f- are measurable.

Proposition 14 Let f be a measurable function on E. Then f+and f - are integrable over E
i f and only i f I f I is integrable over E.

Proof Assume f + and f - are integrable nonnegative functions. By the linearity of integra-
tion for nonnegative functions, I f I = f+ + f - is integrable over E. Conversely, suppose
If I is integrable over E. Since 0 < f+ < If I and 0 < f- < If I on E, we infer from the
monotonicity of integration for nonnegative functions that both f+ and f- are integrable
over E.

Definition A measurable function f on E is said to be integrable over E provided If I is

integrable over E. When this is so we define the integral off over E by

EE.f =JEf+-J1
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Of course, for a nonnegative function f, since f = f+ and f - = 0 on E, this definition
of integral coincides with the one just considered. By the linearity of integration for bounded
measurable functions of finite support, the above definition of integral also agrees with the
definition of integral for this class of functions.

Proposition 15 Let f be integrable over E. Then f is finite a.e. on E and

(18)fEfEE0f

Proof Proposition 13, tells us that If I is finite a.e.on E. Thus f is finite a.e.on E. Moreover,
(18) follows by applying (15) to the positive and negative parts of f.

The following criterion for integrability is the Lebesgue integral correspondent of the
comparison test for the convergence of series of real numbers.

Proposition 16 (the Integral Comparison Test) Let f be a measurable function on E.
Suppose there is a nonnegative function g that is integrable over E and dominates f in the
sense that

I f l < g on E.

Then f is integrable over E and

fE f Ifl.
JE

Proof By the monotonicity of integration f o r nonnegative functions, I f I, and hence f, is
integrable. By the triangle inequality for real numbers and the linearity of integration for
nonnegative functions,

JE f JEJE J
1.fl-Lf++Lf= E 0

We ha ve arrived at our final stage of generality for the Lebesgue integral for functions
of a single real variable. Before proving the linearity property for integration, we need to
address, with respect to integration, a point already addressed with respect to measurability.
The point is that for two functions f and g which are integrable over E, the sum f +g is not
properly defined at points in E where f and g take infinite values of opposite sign. However,
by Proposition 15, if we define A to be the set of points in E at which both f and g are finite,
then m (E - A) = 0. Once we show that f + g is integrable over A, we define

JE(.f +g) = J(f+g).

We infer from (18) that f E (f +g) is equal to the integral over E of any extension of (f +g) I A

to an extended real-valued function on all of E.



Section 4.4 The General Lebesgue Integral 87

Theorem 17 (Linearity and Monotonicity of Integration) Let the functions f and g be
integrable over E. Then for any a and 0, the function a f + (3g is integrable over E and

f(af+/3g)=aff+f3jg.
E

Moreover,

if f g on E, then f<fE g.
E

Proof If a > 0, then [a f ]+ = a f + and [a f ]- = a f -, while if a < 0, [a f ]+ = -a f
and [a f ]- = -a f+. Therefore fE a f = a fE f, since we established this for nonnegative
functions f and a > 0. So it suffices to establish linearity in the case a = R = 1. By
the linearity of integration for nonnegative functions, I f I + IgI is integrable over E. Since
If + gI If I + ISI on E, by the integral comparison test, f + g also is integrable over E.
Proposition 15 tells us that f and g are finite a.e. on E. According to the same proposition,
by possibly excising from E a set of measure zero, we may assume that f and g are finite on
E. To verify linearity is to show that

f[f+gft -fE[f+g] =Lf f+ -
fE
f J+[f 8+-

fE
9 1.

E E E

But

(f+g)+- (f+g) =f+g=(f+- f-)+ (g+ -g-) onE,
and therefore, since each of these six functions takes real values on E,

(f+g)++f +g =(f+g) +f++g+onE.
We infer from linearity of integration for nonnegative functions that

f(f+g) + fEf + fEg = fE(f+g) + fEf++ fEg+

(19)

Since f, g and f + g are integrable over E, each of these six integrals is finite. Rearrange
these integrals to obtain (19). This completes the proof of linearity.

To establish monotonicity we again argue as above that we may assume g and f are
finite on E. Define h = g - f on E. Then h is a properly defined nonnegative measurable
function on E. By linearity of integration for integrable functions and monotonicity of
integration for nonnegative functions,

IEJEJEJEh>0.

Corollary 18 (Additivity Over Domains of Integration) Let f be integrable over E. Assume
A and B are disjoint measurable subsets of E. Then

JAUBf
=fAf+lB f. (20)
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Proof Observe that If XAI -< If I and If XBI If I on E. By the integral comparison test,
the measurable functions f XA and f XB are integrable over E. Since A and B are disjoint

f XAUB=f XA+f XBonE.

But for any measurable subset C of E (see Problem 28),

fC f= fE f - Xc

Thus (20) follows from (21) and the linearity of integration.

(21)

The following generalization of the Bounded Convergence Theorem provides another
justification for passage of the limit under the integral sign.

The Lebesgue Dominated Convergence Theorem Let If,,) be a sequence of measurable
functions on E. Suppose there is a function g that is integrable over E and dominates { fn} on
E in the sense that I fn I < g on E for all n.

If {f,,} -a f pointwise a.e. on E, then f is integrable over E and
n
lim f fn = fE .E E

Proof Since I fn I < g on E and I f I < g a.e. on E and g is integrable over E, by the integral
comparison test, f and each fn also are integrable over E. We infer from Proposition 15
that, by possibly excising from E a countable collection of sets of measure zero and using the
countable additivity of Lebesgue measure, we may assume that f and each fn is finite on E.
The function g - f and for each n, the function g - fn, are properly defined, nonnegative
and measurable. Moreover, the sequence {g - fn} converges pointwise a.e. on E to g - f.
Fatou's Lemma tells us that

JE(g- f) 5liminfJE(g- M.

Thus, by the linearity of integration for integrable functions,

L!Ef= fE(8f)S{1m1nffE(g-fn)= fEg - limsupfEfn,

that is,

lim sup fE fn < fE f.

Similarly, considering the sequence {rg + fn }, we obtain

JE f < lim inf f
E

A .

The proof is complete.
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The following generalization of the Lebesgue Dominated Convergence Theorem, the
proof of which we leave as an exercise (see Problem 32), is often useful (see Problem 33).

Theorem 19 (General Lebesgue Dominated Convergence Theorem) Let { fn} be a sequence
of measurable functions on E that converges pointwise a.e. on E to f. Suppose there is a
sequence {gn } of nonnegative measurable functions on E that converges pointwise a.e. on E to
g and dominates { f, } on E in the sense that

I A I < gn on E for all n.

If lim
JE

gn = fE g < 00' then Urn J fnn oo = f fn+00 E E

Remark In Fatou's Lemma and the Lebesgue Dominated Convergence Theorem, the
assumption of pointwise convergence a.e. on E rather than on all of E is not a decoration
pinned on to honor generality. It is necessary for future applications of these results. We
provide one illustration of this necessity. Suppose f is an increasing function on all of R. A
forthcoming theorem of Lebesgue (Lebesgue's Theorem of Chapter 6) tells us that

lim
f(x+1/n)- f(x)

= f(x) for almost all x. (22)n->oo 1/n

From this and Fatou's Lemma we will show that for any closed, bounded interval [a, b],

f f b fi(x) dx < f(b) - f (a).

In general, given a nondegenerate closed, bounded interval [a, b] and a subset A of [a, b] that
has measure zero, there is an increasing function f on [a, b] for which the limit in (22) fails to
exist at each point in A (see Problem 10 of Chapter 6).

PROBLEMS

28. Let f be integrable over E and C a measurable subset of E. Show that fc f = fE f Xc.

29. For a measurable function f on [1, oo) which is bounded on bounded sets, define an = 44+1 f

for each natural number n. Is it true that f is integrable over [1, oo) if and only if the series
7,' 1 an converges? Is it true that f is integrable over [1, oo) if and only if the series 2'1 an
converges absolutely?

30. Let g be a nonnegative integrable function over E and suppose If,) is a sequence of
measurable functions

fin

ons on E such that foreach n, fI

gg

a.e.on rE. Show that

-< Jim sup J in < J lim sup fn .
E E

31. Let f be a measurable function on E which can be expressed as f = g + h on E, where g is
finite and integrable over E and h is nonnegative on E. Define fE f = fE g + fE h. Show that
this is properly defined in the sense that it is independent of the particular choice of finite
integrable function g and nonnegative function h whose sum is f.
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32. Prove the General Lebesgue Dominated Convergence Theorem by following the proof of
the Lebesgue Dominated Convergence Theorem, but replacing the sequences {g - fn} and
{g + fn}, respectively, by {gn - ff} and {gn + fn}.

33. Let { fn} be a sequence of integrable functions on E for which fn -* f a.e. on E and f is
integrable over E. Show that fE If - fn I 0 if and only if limn fE I.fn I = fE I f I (Hint:
Use the General Lebesgue Dominated Convergence Theorem.)

34. Let f be a nonnegative measurable function on R. Show that
n

f = f fn-oo f
n R

35. Let f be a real-valued function of two variables (x, y) that is defined on the square
Q = {(x, y) 10 < x < 1, 0 < y < 1} and is a measurable function of x for each fixed value
of y. Suppose for each fixed value of x, limy .o f(x, y) = f(x) and that for all y, we have
If (x, y) I < g(x), where g is integrable over [0, 1]. Show that

li o f 1 f(x, Y)dx = f1 f(x)dx.

Also show that if the function f (x, y) is continuous in y for each x, then

h(y) = f f(x, y)dx1

0

is a continuous function of y.

36. Let f be a real-valued function of two variables (x, y) that is defined on the square
Q = {(x, y) 10 < x < 1, 0 < y < 1} and is a measurable function of x for each fixed value of
y. For each (x, y) E Q let the partial derivative a fl ay exist. Suppose there is a function g that
is integrable over [0, 1] and such that

af(x, Y) <g(x)forall (x, y)EQ.

Prove that

d

dy
(x, y)dxforall y[0, 1].

Jo

1

f(x, y)dx =Jlf
ay

4.5 COUNTABLE ADDITIVITY AND CONTINUITY OF INTEGRATION

The linearity and monotonicity properties of the Lebesgue integral, which we established
in the preceding section, are extensions of familiar properties of the Riemann integral. In
this brief section we establish two properties of the Lebesgue integral which have no coun-
terpart for the Riemann integral. The following countable additivity property for Lebesgue
integration is a companion of the countable additivity property for Lebesgue measure.

Theorem 20 (the Countable Additivity of Integration) Let f be integrable over E and
{En}n° 1 a disjoint countable collection of measurable subsets of E whose union is E. Then

00f= f (23)
fE n=1 En
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Proof Let n be a natural number. Define fn = f Xn where Xn is the characteristic function
of the measurable set Uk=1 Ek. Then fn is a measurable function on E and

Ifnl<If Ion E.

Observe that {fn} -+ f pointwise on E. Thus, by the Lebesgue Dominated Convergence
Theorem,

f f = lnn f fn
E n-+ oo E

On the other hand, since {En}" 1 is disjoint, it follows from the additivity over domains
property of the integral that for each n,

fn

fn = I f f
E k=1 E,t

Thus
n co

lim fn = lim E f.fE f- n > C'0 fE n --> oo n Ek f = n=1
11

We leave it to the reader to use the countable additivity of integration to prove
the following result regarding the continuity of integration: use as a pattern the proof of
continuity of measure based on countable additivity of measure.

Theorem 21 (the Continuity of Integration) Let f be integrable over E.

(i) If {En }n° 1 is an ascending countable collection of measurable subsets of E, then

Jf = nl f f (24)
En f&

(ii) If (En}n°1 is a descending countable collection of measurable subsets of E, then

f. (25)f f = lim
fE.0o En

n -a oo
nn-=l n

PROBLEMS

37. Let f be a integrable function on E. Show that for each E > 0, there is a natural number N

for which if n > N, then fErt f < E where En = {x E E I IxI > n}.

38. For each of the two functions f on [1, oo) defined below, show that limn fl" f exists while
f is not integrable over [1, oo). Does this contradict the continuity of integration?
(i) Define f (x) = (-1)n/n, for n < x < n + 1.

(ii) Define f(x) _ (sinx)/x fort <x <oo.

39. Prove the theorem regarding the continuity of integration.



92 Chapter 4 Lebesgue Integration

4.6 UNIFORM INTEGRABILITY: THE VITALI CONVERGENCE THEOREM

We conclude this first chapter on Lebesgue integration by establishing, for functions that are
integrable over a set of finite measure, a criterion for justifying passage of the limit under
the integral sign which is suggested by the following lemma and proposition.

Lemma 22 Let E be a set of finite measure and S > 0. Then E is the disjoint union of a finite
collection of sets, each of which has measure less than S.

Proof By the continuity of measure,

nlimnm(E-'[-n, n]) =m(0) =0.

Choose a natural number no for which m (E ^- [-no, no]) < S. By choosing a fine enough
partition of [-no, no], express E fl [-no, no] as the disjoint union of a finite collection of sets,
each of which has measure less than S.

Proposition 23 Let f be a measurable function on E. If f is integrable over E, then for each
E > 0, there is a S > O for which

if ACE is measurable and m(A) < S, then J IfI < C. (26)
A

Conversely, in the case m (E) < oo, if for each e > 0, there is a S > 0 for which (26) holds, then
f is integrable over E.

Proof The theorem follows by establishing it separately for the positive and negative parts
of f. We therefore suppose f > 0 on E. First assume f is integrable over E. Let e > 0.
By the definition of the integral of a nonnegative integrable function, there is a measurable
bounded function fE of finite support for which

0< fE< fonEandO<f f- r fE<e/2.
E E

Since f - fE > 0 on E, if A C E is measurable, then, by the linearity and additivity over
domains of the integral,

But fE is bounded. Choose M > 0 for which 0 < fE < M on Eo. Therefore, if A C E is
measurable, then

f f< f
A A

Define S = e/2M. Then (26) holds for this choice of S. Conversely, suppose m(E) < oo and
for each E > 0, there is a S > 0 for which (26) holds. Let So > 0 respond to the a =1 challenge.
Since m (E) < oo, according to the preceding lemma, we may express E as the disjoint union
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of a finite collection of measurable subsets {Ek}k1, each of which has measure less than S.
Therefore

NI f <N.
k=1 Ek

By the additivity over domains of integration it follows that if h is a nonnegative measurable
function of finite support and 0 < h < f on E, then fE h < N. Therefore f is integrable.

Definition A family F of measurable functions on E is said to be uniformly integrablie
over9E provided for each E > 0, there is a S > 0 such that for each f E .F,

if A C E is measurable and m(A) < S, then J If I <6- (27)
a

Example Let g be a nonnegative integrable function over E. Define

.T = If I f is measurable on E and If 1:5 g on E} .

Then .F is uniformly integrable. This follows from Proposition 23, with f replaced by g, and
the observation that for any measurable subset A of E, by the monotonicity of integration,
if f belongs to F, then fiij.
Proposition 24 Let { fk}k_1 be a finite collection of functions, each of which is integrable over
E. Then {fk}k=1 is uniformly integrable.

Proof Let cc > 0. For 1 < k < n, by Proposition 23, there is a Sk > 0 for which

if ACE is measurable and m (A) < Sk, then f IM I < E. (28)
A

Define S = min{Sl, ... , SO . This S responds to the E challenge regarding the criterion for the
collection {fk}k=1 to be uniformly integrable.

Proposition 25 Assume E has finite measure. Let the sequence of functions (f,) be uniformly
integrable over E. If {f,} -* f pointwise a.e. on E, then f is integrable over E.

Proof Let So > 0 respond to the c = 1 challenge in the uniform integrability criteria for the
sequence f fn }. Since m (E) < oo, by Lemma 22, we may express E as the disjoint union of a
finite collection of measurable subsets {Ek}k1 such that m (Ek) < So for 1 < k < N. For any
n, by the monotonicity and additivity over domains property of the integral,

f IfnI = I f Ifnl <N.
E k=l Ek

9What is here called "uniformly integrable" is sometimes called "equuntegrable."
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We infer from Fatou's Lemma that

jIftIiminfjIfnIN.

Thus I f I is integrable over E.

The Vitae Convergence Theorem Let E be of finite measure. Suppose the sequence of
functions If,) is uniformly integrable over E.

If { f pointwise a.e. on E, then f is integrable over E and ,limo
fE
f=

J
f.

E

Proof Propositions 25 tells us that f is integrable over E and hence, by Proposition 15, is
finite a.e. on E. Therefore, using Proposition 15 once more, by possibly excising from E a set
of measure zero, we suppose the convergence is pointwise on all of E and f is real-valued.
We infer from the integral comparison test and the linearity, monotonicity, and additivity
over domains property of integration that, for any measurable subset A of E and any natural
number n,

JELf JE(fn - f)

< fIfnfI
(29)

= f Ifn-fI+f Ifn-fl
'A A

Ifn-fi+ IfI+ Ifl'EA'A'A
Let E > 0. By the uniform integrability of { f, }, there is a S > 0 such that fA I fn I < E/3 for any
measurable subset of E for which m (A) < S. Therefore, by Fatou's Lemma, we also have
fA If I < E/3 for any measurable subset of A for which m(A) < S. Since f is real-valued and
E has finite measure, Egoroff's Theorem tells us that there is a measurable subset Eo of E
for which m (Eo) < S and If, } -+ f uniformly on E- E0. Choose a natural number N such
that Ifn - f I < ,/[3 m (E) ] on E - Eo for all n > N. Take A = Eo in the integral inequality
(29). If n > N, then

f fn- f f f Ep E
Ifn - fl+ fp

If .I+
nI+ f If-1

E ^

This completes the proof.
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The following theorem shows that the concept of uniform integrability is an essential
ingredient in the justification, for a sequence {hn} of nonnegative functions on a set of finite
measure that converges pointwise to h = 0, of passage of the limit under the integral sign.

Theorem 26 Let E be of finite measure. Suppose {hn } is a sequence of nonnegative integrable
functions that converges pointwise a. e. on E to h =0. Then

h, = 0 if and only if {hn} is uniformly integrable over E.lim fEn- oo

Proof If {hn) is uniformly integrable, then, by the Vitali Convergence Theorem, limn-+ 00
fE hn = 0. Conversely, suppose limn 00 fE hn = 0. Let c > 0. We may choose a natural
number N for which fE hn < E if n > N. Therefore, since each hn > 0 on E,

if A C E is measurable and n > N, then
J

hn < E. (30)
A

According to Propositions 23 and 24, the finite collection {h,,) 1 is uniformly integrable
over E. Let S respond to the E challenge regarding the criterion for the uniform integrability
of {hn}n 1. We infer from (30) that S also responds to the c challenge regarding the criterion
for the uniform integrability of {hn}nt

PROBLEMS

40. Let f be integrable over R. Show that the function F defined by

F(x)=
fx

fforallxER

is properly defined and continuous. Is it necessarily Lipschitz?

41. Show that Proposition 25 is false if E = R.

42. Show that Theorem 26 is false without the assumption that the hn's are nonnegative.

43. Let the sequences of functions {hn} and (gn) be uniformly integrable over E. Show that for
any a and p, the sequence of linear combinations {afn + /3g,,) also is uniformly integrable
over E.

44. Let f be integrable over R and c > 0. Establish the following three approximation properties.
(i) There is a simple function rl on R which has finite support and fR If - 711 <,5 (Hint: First

verify this if f is nonnegative.]

(ii) There is a step function s on R which vanishes outside a closed, bounded interval and
fR If - sl < E. (Hint: Apply part (i) and Problem 18 of Chapter 3.)

(iii) There is a continuous function g on R which vanishes outside a bounded set and
fRIf-91 <E.

45. Let f be integrable'over E. Define f to be the extension off to all of R obtained by setting
f =0 outside of E. Show that f is integrable over R and fE f = fR f. Use this and part (i) and
(iii) of the preceding problem to show that for E > 0, there is a simple function 71 on E and a
continuous function g on E for which fE If -'ii < E and fE If - g1 < E.
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46. (Riemann-Lebesgue) Let f be integrable over (-oo, oo). Show that

flim f (x) cos nx dx = 0.

(Hint: First show this for f is a step function that vanishes outside a closed, bounded interval
and then use the approximation property (ii) of Problem 44.)

47. Let f be integrable over (-oo, oo).
(i) Show that for each t,

00

ff(x)dx=f°°f(x+r)dx.

(ii) Let g be a bounded measurable function on R. Show that

00

g(x) [f(x)- f(x+t)]=0.lim
1t- O _00

(Hint: First show this, using uniform continuity of f on R, if f is continuous and vanishes
outside a bounded set. Then use the approximation property (iii) of Problem 44.)

48. Let f be integrable over E and g be a bounded measurable function on E. Show that f g is
integrable over E.

49. Let f be integrable over R. Show that the following four assertions are equivalent:
(i) f = 0 a.e on R.

(ii) fR fg = 0 for every bounded measurable function g on R.

(iii) fA f = 0 for every measurable set A.

(iv) fo f = 0 for every open set 0.

50. Let F be a family of functions, each of which is integrable over E. Show that F is uniformly
integrable over E if and only if for each c > 0, there is a S > 0 such that for each f E .F,

if ACE is measurable and m (A) < S, then
IAf

< E.

51. Let .F be a family of functions, each of which is integrable over E. Show that .F is uniformly
integrable over E if and only if for each c > 0, there is a S > 0 such that for all f E F,

if U is open and m (E n U) < S, then f IfI<E.
Ef1U

52. (a) Let F be the family of functions f on [0, 1], each of which is integrable over [0, 1] and

has f o I f I < 1. Is F uniformly integrable over [0, 1]?

(b) Let F be the family of functions f on [0, 1], each of which is continuous on [0, 1] and
has If I < 1 on [0, 1]. Is .E uniformly integrable over [0, 1]?

(c) Let F be the family of functions f on [0, 1], each of which is integrable over [0, 1] and
6has fQ If I < b - a for all [a, b] C [0, 1]. Is Y uniformly integrable over [0, 1]?
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In this brief chapter, we first consider a generalization of the Vitali Convergence Theorem
to sequences of integrable functions on a set of infinite measure; for a pointwise convergent
sequence of integrable functions, tightness must be added to uniform integrablity in order
to justify passage of the limit under the integral sign. We then consider a mode of sequential
convergence for sequences of measurable functions called convergence in measure and
examine its relationship to pointwise convergence and convergence of integrals. Finally, we
prove that a bounded function is Lebesgue integrable over a set of finite measure if and
only if it is measurable, and that a bounded function is Riemann integrable over a closed,
bounded interval if and only if it is continuous at almost all points in its domain.

5.1 UNIFORM INTEGRABILITY AND TIGHTNESS: A GENERAL VITALI
CONVERGENCE THEOREM

The Vitali Convergence Theorem of the preceding chapter tells us that if m (E) < oo, If,,) is
uniformly integrable over E and converges pointwise almost everywhere on E to f, then f
is integrable over E and passage of the limit under the integral sign is justified, that is,

nlLJE.fn]=fEn fn=1! (1)

This theorem requires that E have finite measure. Indeed, for each natural number n, define
fn = X[n, n+1] and f ° 0 on R. Then { fn } is uniformly integrable over R and converges
pointwise on R to f. However,

lim
n+oo

The fol lowing property of functions that are integrable over sets of infinite measure suggests
an additional property which should accompany uniform integrability in order to justify
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passage of the limit under the integral sign for sequences of functions on a domain of infinite
measure.

Proposition 1 Let f be integrable over E. Then for each c > 0, there is a set of finite measure
Eo for which

f IfI<E.
E EO

Proof Let c > 0. The nonnegative function If I is integrable over E. By the definition of the
integral of a nonnegative function, there is a bounded measurable function g on E, which
vanishes outside a subset Eo of E of finite measure, for which 0 < g < If I and f E I fl - fE g <E
Therefore, by the linearity and additivity over domains properties of integration,

J EO
fI = fE'E0[Ifl -g] fE[IfI -g] <E.

Definition A family .F of measurable functions on E is said to be tightover E provided for
each E > 0, there is a a subset Eo of E of finite measure for which

LEO
IfI <Eforall f EF.

We infer from Proposition 23 of the preceding chapter that if F is a family of functions
on E that is uniformly integrable and tight over E, then each function in F is integrable
over E.

The Vitali Convergence Theorem Let {fn } be a sequence of functions on E that is uniformly
integrable and tight over E. Suppose f fn) -+ f pointwise a.e. on E. Then f is integrable over
E and

hm
n -r oo JE fn= fE f

Proof Let E > 0. By the tightness over E of the sequence If,,), there is a measurable subset
Eo of E which has finite measure and

LEO
I fn I < E/4 for all n.

We infer from Fatou's Lemma that fE - EO I f I < E/4. Therefore f is integrable over E - E0.
Moreover, by the linearity and monotonicity of integration,

f [fn - f]I -- f IfnI+ f IfI<E/2 for all n. (2)
E-EO E-Eo E- EO

But Eo has finite measure and f fn) is uniformly integrable over E0. Therefore, by the Vitali
Convergence Theorem for functions on domains of finite measure, f is integrable over Eo
and we may choose an index N for which

fn-f]I<E/2 foralln>N. (3)fE [
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Therefore f is integrable over Efand, by (2) and (3),

[fn - f]< Eforalln>N.
E

The proof is complete.

We leave the proof of the following corollary as an exercise.

Corollary 2 Let {hn} be a sequence of nonnegative integrable functions on E. Suppose
{hn (x) } -)' 0 for almost all x in E. Then

lim J
h, = 0 if and only if {hn} is uniformly integrable and tight over E.

n -> 00E

PROBLEMS

1. Prove Corollary 2.

2. Let (fk}k=1 be a finite family of functions, each of'which is integrable over E. Show that
{ fk}k-1 is uniformly integrable and tight over E.

3. Let the sequences of functions {hn} and {gn} be uniformly integrable and tight over E. Show
that for any a and j3, (a fn + 09n) also is uniformly integrable and tight over E.

4. Let f fn) be a sequence of measurable functions on E. Show that (fn) is uniformly integrable
and tight over E if and only if for each c > 0, there is a measurable subset E0 of E that has
finite measure and a 8 > 0 such that for each measurable subset A of E and index n,

if m (A f l E0) < S, then
J

I fn I < E.
A

5. Let if,) be a sequence of integrable functions on R. Show that f fn) is uniformly integrable
and tight over R if and only if for each c > 0, there are positive numbers r and 8 such that for
each open subset 0 of R and index n,

if m (on (-r, r)) < S, then f I fn I <'e.
0

5.2 CONVERGENCE IN MEASURE

We have considered sequences of functions that converge uniformly, that converge pointwise,
and that converge pointwise almost everywhere. To this list we add one more mode of
convergence that has useful relationships both to pointwise convergence almost everywhere
and to forthcoming criteria for justifying the passage of the limit under the integral sign.

Definition Let {f,} be a sequence of measurable functions on E and f a measurable function
on E for which f and each fn is finite a.e. on E. The sequence { fn} is said to converge in
measure on E to f provided for each 77 > 0,

nlimomIX EEI I.fn(x)-f(x)I>1)}=0.
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When we write If,, I -+ f in measure on E we are implicitly assuming that f and each
fn is measurable, and finite a.e. on E. Observe that if {fn} -+ f uniformly on E, and f is a
real-valued measurable function on E, then If,,) -* f in measure on E since for 'q > 0, the
set {x E E I I fn (x) - f (x) I > q} is empty for n sufficiently large. However, we also have the
following much stronger iesult.

Proposition 3 Assume E has finite measure. Let If,,) be a sequence of measurable functions
on E that converges pointwise a.e. on E to f and f is finite a.e. on E. Then If,,) -+ f in
measure on E.

Proof First observe that f is measurable since it is the pointwise limit almost everywhere
of a sequence of measurable functions. Let t > 0. To prove convergence in measure we let
E > 0 and seek an index N such that

m{xEEI Ifn(x)- f(x)I>'i}<Eforalln>N. (4)

Egoroff's Theorem tells us that there is a measurable subset F of E with m(E- F) < E such
that {f,,} -+ f uniformly on F. Thus there is an index N such that

Ifn-fI<iionFforalln>N.

Thus, for n > N, {x E E I I fn (x) - f (x) I > 71} C E - F and so (4) holds for this choice of N.

The above proposition is false if E has infinite measure. The following example shows
that the converse of this proposition also is false.

Example Consider the sequence of subintervals of [0, 1], {In}n01, which has initial terms
listed as

[0, 1], [0, 1/2], [1/2, 1], [0, 1/3], [1/3, 2/3], [2/3, 1],

[0, 1/4], [1/4, 1/2], [1/2, 3/4], [3/4, 1] ...

For each index n, define fn to be the restriction to [0, 1] of the characteristic func-
tion of In. Let f be the function that is identically zero on [0, 1]. We claim that
{ fn } -*f in measure. Indeed, observe that limn , P (In) = 0 since for each natural
number m,

m(m+1)ifn>1+ +m= 2 , then t(I,,)<1/m.

Thus, for 0<i<1,since {xEEIIf,(x)- f(x)I> i}CI,,

0<lim m{xEEI Ifn(x)-f(x)I>ti}_< l l 1(In)=0.n
-+ oo

However, it is clear that there is no point x in [0, 1] at which {fn (x)) converges to f (x) since
for each point x in [0, 1], fn (x) = 1 for infinitely many indices n, while f (x) = 0.

Theorem 4 (Riesz) If {f,} -+ f in measure on E, then there is a subsequence { fnk } that
converges pointwise a. e. on E to f .
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Proof By the definition of convergence in measure, there is a strictly increasing sequence of
natural numbers Ink) for which

m{xEEI Ifj(x)-f(x)I>1/k}<1/2kforallj>nk.

For each index k, define

Ek = {xEEI I.fnt - .f (x) I > 1/k} .

Then m (Ek) < 1/2k and therefore E' 1 m (Ek) < oo. The Borel-Cantelli Lemma tells
us that for almost all x E E, there is an index K(x) such that x 0 Ek if k > K(x),
that is,

fnk(x) - f(x)I < 1/k for all k> K(x).

Therefore

kl mfnk(x)=.f(x)

Corollary 5 Let {f, } be a sequence of nonnegative integrable functions on E. Then

lim
J

fn = 0n *ooE

if and only if

(5)

{ fn) -+ 0 in measure on E and (fn } is uniformly integrable and tight over E. (6)

Proof First assume (5). Corollary 2 tells us that If,,) is uniformly integrable and tight over
E. To show that I fn } -+ 0 in measure on E, let q > 0. By Chebychev's Inequality, for each
index n,

1
m{xEEI Efn

Thus,

0<nli mm{xEEI fn>rl}<_ 1 .nl J fn=0.
71 E

Hence I fn) i 0 in measure on E.

To prove the converse, we argue by contradiction. Assume (6) holds but (5) fails to
hold. Then there is some co > 0 and a subsequence {fn,) for which

,,, Efor all k.
JE

f

However, by Theorem 4, a subsequence of ( fnk} converges to f ° 0 pointwise almost
everywhere on E and this subsequence is uniformly integrable and tight so that, by the Vitali
Convergence Theorem, we arrive at a contradiction to the existence of the above E. This
completes the proof.
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PROBLEMS

6. Let { fn} -> f in measure on E and g be a measurable function on E that is finite a.e. on E.
Show that { fn } -> gin measure on E if and only if f = g a.e. on E.

7. Let E have finite measure, f f } -* f in measure on E and g be a measurable function on
E that is finite a.e. on E. Prove that [f, g} - f - g in measure, and use this to show that
f f,,21 -). f2 in measure. Infer from this that if {gn} - gin measure, then f f g, } -> f g in
measure.

8. Show that Fatou's Lemma, the Monotone Convergence Theorem, the Lebesgue Dominated
Convergence Theorem, and the Vitali Convergence Theorem remain valid if "pointwise
convergence a.e." is replaced by "convergence in measure."

9. Show that Proposition 3 does not necessarily hold for sets E of infinite measure.

10. Show that linear combinations of sequences that converge in measure on a set of finite
measure also converge in measure.

11. Assume E has finite measure. Let {fn} be a sequence of measurable functions on E
and f a measurable on E for which f and each fn is finite a.e. on E. Prove that
f fin measure on E if and only if every subsequence of { fn} has in turn a further
subsequence that converges to f pointwise a.e. on E.

12. Show that a sequence {a3} of real numbers converges to a real number if Iai+i - ajI < 1/2V
for all j by showing that the sequence {a1} must be Cauchy.

13. A sequence { f, } of measurable functions on E is said to be Cauchy in measure provided given
rl > 0 and E > 0 there is an index N such that for all m, n > N,

m {x E E l I.fn(x) - .fm(x)I > rl} < E.

Show that if {f,} is Cauchy in measure, then there is a measurable function f on E to which
the sequence { f,} converges in measure. (Hint: Choose a strictly increasing sequence of
natural numbers {nj} such that for each index j, if Ej = [X E El I fns+l (x) - fns (x) I > 1/2j),
then m(Ej) < 1/23. Now use the Borel-Cantelli Lemma and the preceding problem.)

14. Assume m(E) < oo. For two measurable functions g and h on E, define

p(g,h)=J Ig-hl
E1+Ig-hl'

Show that { fn} -* fin measure on E if and only if limn, p(fn, f) = 0.

5.3 CHARACTERIZATIONS OF RIEMANN AND LEBESGUE INTEGRABILITY

Lemma 6 Let {cpn} and (1/!n} be sequences of functions, each of which is integrable over E,
such that {(pn } is increasing while {r/in } is decreasing on E. Let the function f on E have the
property that

rpn < f < fir, on E for all n.

If

then

nhmo f (pn] = 0,
E

{cpn} - f pointwise a.e. on E, [on) ---> f pointwise a.e. on E, f is integrable over E,



Section 5.3 Characterizations of Riemann and Lebesgue Integrability 103

lim J (Pn = J f and lnn
J

On =
J

fn- oo E E n iM E E

Proof For x in E, define

cP*(x) = nl q (x) and "lim 4,. (x).

The functions are ,p* and i/r* properly defined since monotone sequences of extended real-
valued numbers converge to an extended real number and they are measurable since each is
the pointwise limit of a sequence of measurable functions. We have the inequalities

cpn < ,p* < f < , f* < i#n on E for all n. (7)

By the monotonicity and linearity of the integral of nonnegative measurable functions,

0< f f n,
E E

so that

00fj, nlim f
Since i/r* - ,p* is a nonnegative measurable function and fE(O* - (p*) = 0, Proposition 9 of
Chapter 4 tells us that r/r* = p* a.e. on E. But ,p* < f < 0* on E. Therefore

((on } - f and (11ln } - f pointwise a.e. on E.

Therefore f is measurable. Observe that since 0 < f - (pi < 'i - (Pi on E and qii and ,pl are
integrable over E, we infer from the integral comparison test that f is integrable over E. We
infer from inequality (7) that for all n,

and

and therefore

0< J'E '/-fJE -f(On-ion)

0 < fffcof(fo)f(.IIofl)

lim f !Pn = f .f = lim f ,yn.n +ooE E n-+oo E
Theorem 7 Let f be a bounded function on a set of finite measure E. Then f is Lebesgue
integrable over E if and only if it is measurable.

Proof We have already shown that a bounded measurable function on a set of finite
measure is Lebesgue integrable (see page 74). It remains to prove the converse. Suppose f
is integrable. From the equality of the upper and lower Lebesgue integrals we conclude that
there are sequences of simple functions (,pn) and {,yn} for which

cpn S f < urn on E for all n,
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and

lim f con] = 0.
E

Since the maximum and minimum of a pair of simple functions are again simple, using
the monotonicity of integration and by possibly replacing cpn by maxl<i<n cpi and On by
minl<i<nOi, we may suppose {rpm} is increasing and (On} is decreasing. By the preceding
lemma, {rpm) --)- f pointwise almost everywhere on E. Therefore f is measurable since it is
the pointwise limit almost everywhere of a sequence of measurable functions.

At the very beginning of our consideration of integration, we showed that if a bounded
function on the closed, bounded interval [a, b] is Riemann integrable over [a, b], then it is
Lebesgue integrable over [a, b] and the integrals are equal. We may therefore infer from
the preceding theorem that if a bounded function on [a, b] is Riemann integrable, then it is
measurable. The following theorem is much more precise.

Theorem 8 (Lebesgue) Let f be a bounded function on the closed, bounded interval [a, b].
Then f is Riemann integrable over [a, b] if and only if the set of points in [a, b] at which f
fails to be continuous has measure zero.

Proof We first suppose f is Riemann integrable. We infer from the equality of the upper
and lower Riemann integrals over [a, b] that there are sequences of partitions {Pn} and {P,',}
of [a, b] for which

nl[U(f,Pn)-L(f,P, Pn)] =

where U (f , Pn) and L (f , Pn) upper and lower Darboux sums. Since, under refinement,
lower Darboux sums increase and upper Darboux sums decrease, by possibly replacing
each Pn by a common refinement of P1.... , Pn, Pi, .... Pn, we may assume each Pn+i is a
refinement of Pn and Pn = P. For each index n, define cpn to be the lower step function
associated with f with respect to Pn, that is, which agrees with f at the partition points of P,
and which on each open interval determined by Pn has constant value equal to the infimum
off on that interval. We define the upper step function On in a similar manner. By definition
of the Darboux sums,

bL(f,Pn)= f conandU(f,Pn)=
a

OVnforalln.
a a

Then {cpn} and (On) are sequences of integrable functions such that for each index n,
con 5 f 5 On on E. Moreover, the sequence {(p, } is increasing and (din } is decreasing, because
each Pn+i is a refinement of Pn. Finally,

b

nlimo f [On-rPn]=n i[U(f,Pn)-L(.f,Pn)] =0.
a

We infer from the preceding lemma that

{cpn} -+ f and {IOrn} -+ f pointwise a.e on [a, b].
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The set E of points x at which either (r/i, (x) ) or {(Pn (x )) fail to converge to f (x) has measure
0. Let Eo be the union of E and the set of all the partition points in the P,,'s. As the union
of a set of measure zero and a countable set, m(Eo) = 0. We claim that f is continuous at
each point in E Eo. Indeed, let xo belong to E - Eo. To show that f is continuous at xo, let
c > 0. Since {0n (xo) } and {(P, (xo )} converge to f (xo ), we may choose a natural number no
for which

f(xo)-E<(Pno(x0) f(x0) 4'no(Xo) <f(xo)+E. (8)

Since xo is not a partition point of P O, we may choose S > 0 such that the open interval
(xo - S, xo + S) is contained in the open interval Ino determined by Pno which contains xo.
This containment implies that

if Ix - xoI < S, then cPno(xo) < (Pno(x) < f(x) < Wino(x) < cno(x)

From this inequality and inequality (8) we infer that

if Ix - xo l < 3, then if (x) - f (xo) I < E.

Thus f is continuous at xo.

It remains to prove the converse. Assume f is continuous at almost all points in [a, b].
Let {Pn} be any sequence of partitions of [a, b] for whichl

nlimo gap P,, = 0.

We claim that
nlmm[U(f, Pn) - L(f, P.)] = 0. (9)

If this is verified, then from the following estimate for the lower and upper Riemann
integrals,

0< fa f- f bf -< [U(f, Pn) - L(f, P.)] for all n,b
a

we conclude that f is integrable over [a, b]. For each n, let (pn and rlrn be the lower and upper
step functions associated with f over the partition P, . To prove (9) is to prove that

Jim

Jabn - 00
[+/rn - (Pn] = 0. (10)

The Riemann integral of a step function equals its Lebesgue integral. Moreover, since the
function f is bounded on the bounded set [a, b], the sequences {(pn } and {/n } are uniformly
bounded on [a, b]. Hence, by the Bounded Convergence Theorem, to verify (10) it suffices
to show that ((pn) -+ f and {urn} -+ f pointwise on the set of points in (a, b) at which f is
continuous and which are not partition points of any partition Pn. Let xo be such a point. We
show that

nlim n(xo) = f(xo) and nli n(xo) = f(xo)+00

1The gap of a partition P is defined to be the maximum distance between consecutive points of the partition.
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Let c > 0. Let S > 0 be such that

f(xo)-E/2< f(x)< f(xo)+E/2 if Ix - xol<S. (12)

Choose an index N for which gap Pn < S if n > N. If n > N and In is the open partition
interval determined by P, , which contains xo, then In C (xo - S, xo + S). We infer from (12)
that

f(xo) - E/2 < pn(xo) < f(xo) < //n(xo) < f(xo) +e/2
and therefore

0 < 4 , . (xo) - f (xo) < E and 0 < f (xo) - qpn (xo) < E for all n > N.

Thus (11) holds and the proof is complete.

PROBLEMS

15. Let f and g be bounded functions that are Riemann integrable over [a, b]. Show that the
product fg also is Riemann integrable over [a, b].

16. Let f be a bounded function on [a, b] whose set of discontinuities has measure zero. Show
that f is measurable. Then show that the same holds without the assumption of boundedness.

17. Let f be a function on [0, 1] that is continuous on (0, 1]. Show that it is possible for the
sequence (A1/n, I] f } to converge and yet f is not Lebesgue integrable over [0, 1]. Can this
happen if f is nonnegative?
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The fundamental theorems of integral and differential calculus, with respect to the Riemann
integral, are the workhorses of calculus. In this chapter we formulate these two theorems for
the Lebesgue integral. For a function f on the closed, bounded interval [a, b], when is

fb f'=f(b)-f(a)?

Assume f is continuous. Extend f to take the value f (b) on (b, b + 1], and for 0 < h < 1,
define the divided difference function Diffhf and average value function Avh f on [a, b] by

r+h
Diffhf (x) = f (x + h 1(x)

and Avh f (x) = h
J

f (t) dt for all x in [a, b].
x

A change of variables and cancellation provides the discrete formulation of (i) for the
Riemann integral:

f
b

Diffhf =Avhf(b)-The

limit of the right-hand side as h 0+ equals f (b) - f (a). We prove a striking theorem
of Henri Lebesgue which tells us that a monotone function on (a, b) has a finite derivative
almost everywhere. We then define what it means for a function to be absolutely continuous
and prove that if f is absolutely continuous, then f is the difference of monotone functions
and the collection of divided differences, (Diffhf)o<h<1, is uniformly integrable. Therefore,
by the Vitali Convergence Theorem, (i) follows for f absolutely continuous by taking the
limit as h -+ 0+ in its discrete formulation. If f is monotone and (i) holds, we prove that f
must be absolutely continuous. From the integral form of the fundamental theorem, (i), we
obtain the differential form, namely, if f is Lebesgue integrable over [a, b], then

[fxd
= f (x) for almost all x in [a, b]. (ii)
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6.1 CONTINUITY OF MONOTONE FUNCTIONS

Recall that a function is defined to be monotone if it is either increasing or decreasing.
Monotone functions play a decisive role in resolving the question posed in the preamble.
There are two reasons for this. First, a_theorem of Lebesgue (page 112) asserts that a
monotone function on an open interval is differentiable almost everywhere. Second, a
theorem of Jordan (page 117) tells us that a very general family of functions on a closed,
bounded interval, those of bounded variation, which includes Lipschitz functions, may be
expressed as the difference of monotone functions and therefore they also are differentiable
almost everywhere on the interior of their domain. In this brief preliminary section we
consider continuity properties of monotone functions.

Theorem 1 Let f be a monotone function on the open interval (a, b). Then f is continuous
except possibly at a countable number of points in (a, b).

Proof Assume f is increasing. Furthermore, assume (a, b) is bounded and f is increasing
on the closed interval [a, b]. Otherwise, express (a, b) as the union of an ascending sequence
of open, bounded intervals, the closures of which are contained in (a, b), and take the union
of the discontinuities in each of this countable collection of intervals. For each xo E (a, b), f
has a limit from the left and from the right at xo. Define

f(xo)= lim f(x)=sup{f(x)I a<x<xo},
x->x0

f(xo)= lim+f(x)=inf{f(x)I xo<x<b}.

Since f is increasing, f (xo) < f (xo ). The function f fails to be continuous at xo if and only
if f(xo) < f(xo ), in which case we define the open "jump" interval J(xo) by

J(xo)={yIf(xo)<y<f(xo)}.

Each jump interval is contained in the bounded interval [f(a), f(b)] and the collection
of jump intervals is disjoint. Therefore, for each natural number n, there are only a finite
number of jump intervals of length greater than 1/n. Thus the set of points of discontinuity
of f is the union of a countable collection of finite sets and therefore is countable.

Proposition 2 Let C be a countable subset of the open interval (a, b). Then there is an
increasing function on (a, b) that is continuous only at points in (a, b) C.

Proof If C is finite the proof is clear. Assume C is countably infinite. Let {qn}'1 be an
enumeration of C. Define the function f on (a, b) by setting t

f(x)= 7 xi for all a<x<b.
In 19n fix} 2

1 We use the convention that a sum over the empty-set is zero.
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Since a geometric series with a ratio less than 1 converges, f is properly defined. Moreover,

ifa<u<v<b, then f(v)- f(u)= 1

2n

Thus f is increasing. Let xo = qk belong to C. Then, by (1),

(1)

f (X0) - f (X) > Zk for all x < xp.

Therefore f fails to be continuous at xo. Now let xo belong to (a, b) - C. Let n be a natural
number. There is an open interval I containing xo for which qn does not belong to I for
1 < k < n. We infer from (1) that I f (x) - f (xo) I < 1/2u for all x E I. Therefore f is
continuous at xo.

PROBLEMS

1. Let C be a countable subset of the nondegenerate closed, bounded interval [a, b]. Show that
there is an increasing function on [a, b] that is continuous only at points in [a, b] ^- C.

2. Show that there is a strictly increasing function on [0, 1] that is continuous only at the
irrational numbers in [0, 1].

3. Let f be a monotone function on a subset E of R. Show that f is continuous except possibly
at a countable number of points in E.

4. Let E be a subset of R and C a countable subset of E. Is there a monotone function on E that
is continuous only at points in E - C?

6.2 DIFFERENTIABILITY OF MONOTONE FUNCTIONS: LEBESGUE'S THEOREM

A closed, bounded interval [c, d] is said to be nondegenerate provided c < d.

Definition A collection F of closed, bounded, nondegenerate intervals is said to cover a set
E in the sense of Vitali provided for each point x in E and c > 0, there is an interval I in F
that contains x and has I( I) < E.

The Vitali Covering Lemma Let E be a set of finite outer measure and F a collection of
closed, bounded intervals that covers E in the sense of Vitali. Then for each c > 0, there is a
finite disjoint subcollection {Ik}k=1 of F for which

m* [E - U lkl < E.
k=1 J

(2)

Proof Since m*(E) < oo, there is an open set 0 containing E for which m(O) < oo. Because
.T is a Vitali covering of E, we may assume that each interval in.F is contained in O. By the
countable additivity and monotonicity of measure,

if {Ik}' 1 C -F is disjoint, then Wk) < m(O) < oo. (3)00

k=1
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Moreover, since each Ik is closed and .F is a Vitali covering of E,

00

if (Ik}k=1 C F , then E U Ik C U I where .fin = 'I E .F
k=1 I E.F,,

InUlk=01. (4)
k=1

If there is a finite disjoint subcollection of F that covers E, the proof is complete. Otherwise,
we inductively choose a disjoint countable subcollection (Ik}1 1 of F which has the following
property:

n 00

E-UIkC U 5*Ikforalln, (5)
k=1 k=n+1

where, for a closed, bounded interval I, 5 * I denotes the closed interval that has the same
midpoint as I and 5 times its length. To begin this selection, let 11 be any interval in F.
Suppose n is a natural number and the finite disjoint subcollection (Ik}k=1 of F has been
chosen. Since E ^ Uk=1 Ik # 0, the collection Fn defined in (4) is nonempty. Moreover, the
supremum, sn, of the lengths of the intervals in F,, is finite since m(O) is an upper bound for
these lengths. Choose In+1 to be an interval in .Fn for which a (In+1) > sn/2. This inductively
defines {Ik}k°1, a countable disjoint subcollection of F such that for each n,

n

e(In+1)>e(1)/2 ifIE.FandInUlk=0. (6)
k=1

We infer from (3) that {e( Ik )I -* 0. Fix a natural number n. To verify the inclusion (5), let
x belong to E - Uk=1 Ik. We infer from (4) that there is an I E.F which contains x and is
disjoint from Uk=1 Ik. Now I must have nonempty intersection with some Ik, for otherwise,
by (6), e (Ik) > e(I )/2 for all k, which contradicts the convergence of (t( Ik) ) to 0. Let N be
the first natural number for which I n IN # 0. Then N > n. Since I n Uk i Ik = 0, we infer
from (6) that f (IN) > f(I)/2. Since x belongs to 1 and I n IN :A 0, the distance from x to the
midpoint of IN is at most t (l) + 1/2 t (IN) and hence, since t (I) < 2 e (IN ), the distance
from x to the midpoint of IN is less than 5/2 t(IN). This means that x belongs to 5 * IN.
Thus,

00

xE5*INC U 5*Ik.
k=n+1

We have established the inclusion (5).

Let e > 0. We infer from (3) that here is a natural number n for which k=n}1 Wk)
< e/5. This choice of n, together with the inclusion (5) and the monotonicity and countable
additivity of measure, establishes (2).

For a real-valued function f and an interior point x of its domain, the upper derivative
off at x, D f (x) and the lower derivative off at x, D f (x) are defined as follows:

Df(x) ho[suP o
grl<hf(x+t)-f(x)l;

(x+tt-f(x)l.Df(x) lio[info<ItI<h f
h
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We have b f (x) > P f (x) . If b f (x) equals D f (x) and is finite, we say that f is differentiable
at x and define f' (x) to be the common value of the upper and lower derivatives.

The Mean Value Theorem of calculus tells us that if a function f is continuous on the
closed, bounded interval [c, d] and differentiable on its interior (c, d) with f' > a on (c, d),
then

a- (d - c) <[f(d)-f(c)].

The proof of the following generalization of this inequality, inequality (7), is a nice illustration
of the fruitful interplay between the Vitali Covering Lemma and monotonicity properties of
functions.

Lemma 3 Let f be an increasing function on the closed, bounded interval [a, b]. Then, for
each a > 0,

m*{xE(a, b) I Df(x)>a) < 1 [f(b)-f(a)] (7)

and

a

m*{xE(a, b)IDf(x)=oo}=0. (8)

Proof Let a > 0. Define Ea = {x E (a, b) I D f (x) > a). Choose a' E (0, a). Let F be the
collection of closed, bounded intervals [c, d] contained in (a, b) for which f (d) - f(c) >
a'(d - c). Since b f > a on Ea, F is a Vitali covering of Ea. The Vitali Covering Lemma
tells us that there is a finite disjoint subcollection {[ck, dkJ}k-1 of .T for which

n

m*
E.

[Ck, dk] < E.
k=1

Since E. C C Jk=1[ck, dk] U {E,, Uk=1[Ck, dk]}, by the finite subadditivity of outer measure,
the preceding inequality and the choice of the intervals [ck, dk],

n

m*(E,,) < I (dk - ck) +E < 1 - I [f(dk) - f(ck)]+E.
k=1 a k=1

(9)

However, the function f is increasing on [a, b] and {[ck, dk]}k=1 is a disjoint collection of
subintervals of [a, b]. Therefore

n

Y, [f(dk) - f(ck)] < f(b) - f(a).
k=1

Thus for each c > 0, and each a' E (0, a),

m*(En)<a,.[f(b)-f(a)]+E.

This proves (7). For each natural number n, {x E (a, b) I D f(x) = oo} C En and therefore

m*{xE (a, b) I Df(x) = oo} <m*(En) < 1 . (f(b) - f(a)).
n

This proves (8).
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Lebesgue's Theorem If the function f is monotone on the open interval (a, b), then it is
differentiable almost everywhere on (a, b).

Proof Assume f is increasing. Furthermore, assume (a, b) is bounded. Otherwise, express
(a, b) as the union of an ascending sequence of open, bounded intervals and use the
continuity of Lebesgue measure. The set of points x in (a, b) at which b f (x) > D f (x) is
the union of the sets

Ea,p = {xE(a, b) I Df(x)>a>I3> Df(x)}

where a and /3 are rational numbers. Hence, since this is a countable collection, by the
countable subadditivity of outer measure, it suffices to prove that each Ea, p has outer
measure zero. Fix rationale a, /3 with a > /3 and set E = Ea,p. Let e > 0. Choose an open set
0 for which

ECOC(a, b) andm(O) <m*(E)+E. (10)

Let .E be the collection of closed, bounded intervals [c, d] contained in 0 for which
f (d) - f (c) < /3 (d - c). Since D f < R on E, F is a Vitali covering of E. The Vitali Covering
Lemma tells us that there is a finite disjoint subcollection ([ck, dk]}k=1 of F for which

m* LE U [ck, dk]l < E.
L k=1

By the choice of the intervals [ck, dk], the inclusion of the union of the disjoint collection
intervals {[ck, dk]}k=1 in 0 and (10),

J[f(dk)-f(Ck)]</3I2(dk-Ck)J </3'm(0)<$-[m*(E)+e].
k=1 k=1

(12)

For 1 < k < n, we infer from the preceding lemma, applied to the restriction of f to [ck, dk],
that

m*(En (Ck, dk)) < a[.f(dk) -f(ck)]

Therefore, by (11),

m*(E)<1m*(Efl(ck,dk))+E<aII [f(dk)-.f(ck)]J+E. (13)
k=1 k=1

We infer from (12) and (13) that

m*(E)<a.m*(E)+ E+5forall e>0.-a
Therefore, since 0 < m*(E) < oo and /3/a < 1, m*(E) = 0.

Lebesgue's Theorem is the best possible in the sense that if E is a set of measure zero
contained in the open interval (a, b), there is an increasing function on (a, b) that fails to
be differentiable at each point in E (see Problem 10).



Section 6.2 Differentiability of Monotone Functions: Lebesgue's Theorem 113

Remark Frigyes Riesz and Bela Sz.-Nagy2 remark that Lebesgue's Theorem is "one of the
most striking and most important in real variable theory." Indeed, in 1872 Karl Weierstrass
presented mathematics with a continuous function on an open interval which failed to be
differentiable at any point.3 Further pathology was revealed and there followed a period of
uncertainty regarding the spread of pathology in mathematical analysis. Lebesgue's Theorem,
which was published in 1904, and its consequences, which we pursue in Section 5, helped
restore confidence in the harmony of mathematics analysis.

Let f be integrable over the closed, bounded interval [a, b]. Extend f to take the value
f (b) on (b, b + 1]. For 0 < h < 1, define the divided difference function Diffh f and average
value function Avh f of [a, b] by

f(x + f (x) 1

Diffh f(x) = hh
and Avh f(x) = h f forallx E [a, b].

By a change of variables in the integral and cancellation, for all a < u < v < b,

J

vDiffh
f = Avh f(v) - Avh f(u). (14)

u

Corollary 4 Let f be an increasing function on the closed, bounded interval [a, b]. Then f' is
integrable over [a, b] and

ff'f(b)_f(a). (15)

Proof Since f is increasing on [a, b + 1], it is measurable (see Problem 22) and therefore
the divided difference functions are also measurable. Lebesgue's Theorem tells us that
f is differentiable almost everywhere on (a, b). Therefore (Diffl/n f) is a sequence of
nonnegative measurable functions that converges pointwise almost everywhere on [a, b]
to f'. According to Fatou's Lemma,

fb f' < liminf I
IJ

b Diff1 n fn -s oo
IILJ

/a

By the change of variable formula (14), for each natural number n, since f is increasing,

b rb+1/n +11n 1 +1/n

fa D1/nfn J
f=f(b)-ln f(b)-f(a).

Thus

limsup
LJ

f(b) - f(a). (17)
n- - a

The inequality (15) follows from the inequalities (16) and (17).

2See page 5 of their book Functional Analysis [RSN90].
3A simpler example of such a function, due to Bartel van der Waerden, is examined in Chapter 8 of Patrick

Fitzpatrick's Advanced Calculus [FitO9].
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Remark The integral in (15) is independent of the values taken by f at the endpoints. On
the other hand, the right-hand side of this equality holds for the extension of any increasing
extension off on the open, bounded interval (a, b) to its closure [a, b]. Therefore a tighter
form of equality (15) is

f
b

f':5 sup f(x)- inf f(x). (18)
a xE(a,b) XE(a,b)

The right-hand side of this inequality equals f(b) - f(a) if and only if f is continuous at
the endpoints. However, even if f is increasing and continuous on [a, b], inequality (15)
may be strict. It is strict for the Cantor-Lebesgue function cp on [0, 1] since 0(1) - q'(0) = 1
while cp' vanishes almost everywhere on (0, 1). We show that for an increasing function f on
[a, b], (15) is an equality if and only if the function is absolutely continuous on [a, b] (see the
forthcoming Corollary 12).

Remark For a continuous function f on a closed, bounded interval [a, b] that is differentiable
on the open interval (a, b), in the absence of a monotonicity assumption on f we cannot infer
that its derivative f' is integrable over [a, b]. We leave it as an exercise to show that for f
defined on [0, 1] by

f(x)
xzsin(1/x2) for0<x<1
0 for x = 0,

f' is not integrable over [0, 1].

PROBLEMS

5. Show that the Vitali Covering Lemma does not extend to the case in which the covering
collection has degenerate closed intervals.

6. Show that the Vitali Covering Lemma does extend to the case in which the covering collection
consists of nondegenerate general intervals.

7. Let f be continuous on R. Is there an open interval on which f is monotone?

8. Let I and J be closed, bounded intervals and y > 0 be such that 2(I) > y £(J). Assume
I n J # 0. Show that if y > 1/2, then J C 5 * I, where 5 * I denotes the interval with the same
center as I and five times its length. Is the same true if 0 < y < 1/2?

9. Show that a set E of real numbers has measure zero if and only if there is a countable
collection of open intervals {Ik}l 1 for which each point in E belongs to infinitely many of the
Ik's and 1k 1t (Ik) < 00-

10. (Riesz-Nagy) Let E be a set of measure zero contained in the open interval (a, b). According
to the preceding problem, there is a countable collection of open intervals contained in (a, b),
{(ck, dk)}' 1, for which each point in E belongs to infinitely many intervals in the collection
and 7,', (dk - ck) < oo. Define

f(x) = I t((ck, dk) n (-oo, x)) for all xin (a,b).00
k=1

Show that f is increasing and fails to be differentiable at each point in E.
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11. For real numbers a < 0 and y > 0, show that if g is integrable over [a + y, f3 + y], then

J
Rg(t+y)dt= rR+rg(t)dt.

a a+Y

Prove this change of variables formula by successively considering simple functions, bounded
measurable functions, nonnegative integrable functions, and general integrable functions.
Use it to prove (14).

12. Compute the upper and lower derivatives of the characteristic function of the rationals.

13. Let E be a set of finite outer measure and F a collection of closed, bounded intervals that
cover E in the sense of Vitali. Show that there is a countable disjoint collection {1k}' 1 of
intervals in F for which

m*IE-UIk]=O.
L k=1

14. Use the Vitali Covering Lemma to show that the union of any collection (countable or
uncountable) of closed, bounded nondegenerate intervals is measurable.

15. Define f on R by

f(x)- x sin(1/x) ifx#0
0 ifx=0.

Find the upper and lower derivatives off at x = 0.

16. Let g be integrable over [a, b]. Define the antiderivative of g to be the function f defined on
[a, b] by

f(x) = fax gforallxE[a, b].

Show that f is differentiable almost everywhere on (a, b).

17. Let f be an increasing bounded function on the open, bounded interval (a, b). Verify (15).

18. Show that if f is defined on (a, b) and c E (a, b) is a local minimizer for f, then D f (c) < 0 <
Df(c).

19. Let f be continuous on [a, b] with B f > 0 on (a, b). Show that f is increasing on [a, b]. (Hint:
First show this for a function g for which Dg > E > 0 on (a, b). Apply this to the function
g(x) = f(x)+Ex.)

20. Let f and g be real-valued functions on (a, b). Show that

Df+Dg:5 D(f+g) :5 75(f +g) :5 Df+Dgon(a, b).

21. Let f be defined on [a, b] and g a continuous function on [a, 0] that is differentiable at
y E (a, /3) with g(y) = c E (a, b). Verify the following.

(i) Ifg'(y)>0,thenD(f

(ii) If g' (y) = 0 and the upper and lower derivatives off at care finite, then b( f o g) (y) = 0.

22. Show that a strictly increasing function that is defined on an interval is measurable and then
use this to show that a monotone function that is defined on an interval is measurable.
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23. Show that a continuous function f on [a, b] is Lipschitz if its upper and lower derivatives are
bounded on (a, b).

24. Show that for f defined in the last remark of this section, f' is not integrable over [0, 1].

6.3 FUNCTIONS OF BOUNDED VARIATION: JORDAN'S THEOREM

Lebesgue's Theorem tells us that a monotone function on an open interval is differentiable
almost everywhere. Therefore the difference of two increasing functions on an open interval
also is differentiable almost everywhere. We now provide a characterization of the class
of functions on a closed, bounded interval that may be expressed as the difference of
increasing functions, which shows that this class is surprisingly large: it includes, for instance,
all Lipschitz functions.

Let f be a real-valued function defined on the closed, bounded interval [a, b] and
P = {xo, ... , xk} be a partition of [a, b]. Define the variation off with respect to P by

k

V(f, P) _ If(xi) - f(xi-1)I,
i=1

and the total variation of f on [a, b] by

TV(f) = sup {V(f, P) I Papartitionof[a, b]}.

For a subinterval [c, d] of [a, b], TV( f[c, d]) denotes the total variation of the restriction of
f to [c, d].

Definition A real-valued function f on the closed, bounded interval [a, b] is said to be of
bounded variation on [a, b] provided

TV(f)<oo.

Example Let f be an increasing function on [a, b]. Then f is of bounded variation on [a, b]
and

TV(f) = f(b) - f(a).
Indeed, for any partition P = {xo, ... , xk} of [a, b],

k k

V(f, P)If(xi)-f(xi-1)I =2,[f(xi)-f(xi-1)]=f(b)-f(a).
i=1 i=1

Example Let f be a Lipschitz function on [a, b]. Then f is of bounded variation of [a, b],
andTV(f) <c (b-a),where

If(u) - f(v)I <clu - viforall u,vin[a, b].

Indeed, for a partition P = (xo, ... , xk} of [a, b],

k k

V(f, P)If(xi)-f(xi-1)I 5 c.I[xi-xi_1]=c.[b-a].
i=1 i=1
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Thus, c [b - a] is an upper bound of the set of all variations off with respect to a partition
of [a, b] and hence TV(f) < c [b - a].

Example Define the function f on [0, 1] by

x cos(?r/2x) if 0 <x < 1

0 ifx 0

Then f is continuous on [0, 1]. But f is not of bounded variation on [0, 1]. Indeed, for
a natural number n, consider the partition P,, = {0, 1/2n, 1/[2n -1], ..., 1/3, 1/2, 1) of
[0, 1]. Then

V(f, Pa)=1+1/2+...+1/n.
Hence f is not of bounded variation on [0, 1], since the harmonic series diverges.

Observe that if c belongs to (a, b), P is a partition of [a, b], and P is the refinement of
P obtained by adjoining c to P, then, by the triangle inequality, V (f , P) < V(f , P). Thus,
in the definition of the total variation of a function on [a, b], the supremum can be taken
over partitions of [a, b] that contain the point c. Now a partition P of [a, b] that contains the
point c induces, and is induced by, partitions Pt and P2 of [a, c] and [c, b], respectively, and
for such partitions

V(f[a,b], P)=V(f[a,c], P1)+V(f[c,b], P2)

Take the supremum among such partitions to conclude that

(19)

TV(f[a,b]) = TV( f[a,,])+TV(f[c b]). - (20)

We infer from this that if f is of bounded variation on [a, b], then

TV(f[a,v])-TV(f[Q,,,])=TV(f[,,,])>Oforall a<u<v<b. (21)

Therefore the function x H TV( f[a, x]), which we call the total variation function for f, is a
real-valued increasing function on [a, b]. Moreover, for a < u < v < b, if we take the crudest
partition P = {u, v} of [u, v], we have

f(u)-f(v)<If (v)-f(u)I=V(f[u,v], P)<TV(f[u,v])=TV(f[a,v])-TV(f[a,u]).

Thus

f (v) + TV(f[a, v]) > f(u)+TV(f[a,u])forall a<u<v<b. (22)

We have established the following lemma.

Lemma 5 Let the function f be of bounded variation on the closed, bounded interval [a, b].
Then f has the following explicit expression as the difference of two increasing functions on
[a, b] :

f(x)=[f(x)+TV(f[a,x])]-TV(f[a,x])forallxE[a,b]. (23)

Jordan's Theorem A function f is of bounded variation on the closed, bounded interval
[a, b] if and only if it is the difference of two increasing functions on [a, b].
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Proof Let f be of bounded variation on [a, b]. The preceding lemma provides an explicit
representation of f as the difference of increasing functions. To prove the converse, let
f = g - h on [a, b], where g and h are increasing functions on [a, b]. For any partition
P = fxo, ... , xk} of [a, b],

k

V(f, P) = Y, If(xi)-f(xi-1)I
i=1

k

_ I I[g(xi)-g(xi-1)]+[h(xi-1)-h(xi)]I
i=1

k k

2 Ig(xi)-g(xi-1)I+Y, Ih(xi-1)-h(xi)I
i=1 i=1

k k

_ [g(xi) - g(xi-1)] + [h(xi) - h(xi-1)]
i=1 i=1

= [g(b) - g(a)] + [h(b) - h(a)].

Thus, the set of variations of f with respect to partitions of [a, b] is bounded above by
[g(b) - g(a)] + [h(b) - h(a)] and therefore f is of bounded variation of [a, b].

We call the expression of a function of bounded variation f as the difference of
increasing functions a Jordan decomposition of f.

Corollary 6 If the function f is of bounded variation on the closed, bounded interval [a, b],
then it is differentiable almost everywhere on the open interval (a, b) and f' is integrable over
[a, b].

Proof According to Jordan's Theorem, f is the difference of two increasing functions on
[a, b]. Thus Lebesgue's Theorem tells us that f is the difference of two functions whichare
differentiable almost everywhere on (a, b). Therefore f is differentiable almost everywhere
on (a, b). The integrability of f' follows from Corollary 4.

PROBLEMS

25. Suppose f is continuous on [0, 1]. Must there be a nondegenerate closed subinterval [a, b]
of [0, 1] for which the restriction off to [a, b] is of bounded variation?

26. Let f be the Dirichlet function, the characteristic function of the rationals in [0, 1]. Is f of
bounded variation on [0, 1]?

27. Define f (x) = sin x on [0, 21r]. Find two increasing functions h and g for which f = h - g on
[0, 21r].

28. Let f be a step function on [a, b]. Find a formula for its total variation.

29. (a) Define

f(x) = r x2 cos(1/x2) ifx#O,xE[-1, 1]
0 ifx=0.

Is f of bounded variation on [-1, 1]?
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(b) Define

x2 COS(1/x) ifx#0,xE[-1, 1]
g(x)

0 ifx=0.

Is g of bounded variation on [-1, 1]?

30. Show that the linear combination of two functions of bounded variation is also of bounded
variation. Is the product of two such functions also of bounded variation?

31. Let P be a partition of [a, b] that is a refinement of the partition P'. For a real-valued function
f on [a, b], show that V(f, P') < V(f, P).

32. Assume f is of bounded variation on [a, b]. Show that there is a sequence of partitions {Pn}
of [a, b] for which the sequence {TV( f, P,)) is increasing and converges to TV(f ).

33. Let { fn} be a sequence of real-valued functions on [a, b] that converges pointwise on [a, b] to
the real-valued function f. Show that

TV(f) liminf TV(fn).

34. Let f and g be of bounded variation on [a, b]. Show that

TV(f + g) TV(f) + TV(g) andTV(af) _ IaITV(f ).

35. For a and /3 positive numbers, define the function f on [0, 1] by

f(x) - x"sin(1/x13) for0 <x < 1

10 forx=0.

Show that if a > /3 , then f is of bounded variation on [0, 1], by showing that f' is integrable
over [0, 11. Then show that if a < /3, then f is not of bounded variation on [0, 1].

36. Let f fail to be of bounded variation on [0, 1]. Show that there is a point xo in [0, 1] such that
f fails to be of bounded variation on each nondegenerate closed subinterval of [0, 1] that
contains xo.

6.4 ABSOLUTELY CONTINUOUS FUNCTIONS

Definition A real-valued function f on a closed, bounded interval [a, b] is said to be
absolutely continuous on [a, b] provided for each c > 0, there is a S > 0 such that for every
finite disjoint collection {(ak, bk)}k=1 of open intervals in (a, b),

n n

if 7, [bk - ad < S, then I If (bk) - f (ak) I < E.
k=1 k=1

The criterion for absolute continuity in the case the finite collection of intervals consists
of a single interval is the criterion for the uniform continuity of f on [a, b]. Thus absolutely
continuous functions are continuous. The converse is false, even for increasing functions.
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Example The Cantor-Lebesgue function p is increasing and continuous on [0, 1], but it
is not absolutely continuous (see also Problems 40 and 48). Indeed, to see that p is not
absolutely continuous, let n be a natural number. At the n-th stage of the construction of
the Cantor set, a disjoint collection {[ck, dk]}1<k<" of 2" subintervals of [0, 1] have been
constructed that cover the Cantor set, each of which has length (1/3)". The Cantor-Lebesgue
function is constant on each of the intervals that comprise the complement in [0, 1] of this
collection of intervals. Therefore, since cp is increasing and (p(1) - v (O) = 1,

E [dk - ck] = (2/3)" while E [gq(dk) - co(ck)] =1.
1<k<21 1<k<2"

There is no response to the e = 1 challenge regarding the criterion for p to be absolutely
continuous.

Clearly linear combinations of absolutely continuous functions are absolutely continu-
ous. However, the composition of absolutely continuous functions may fail to be absolutely
continuous (see Problems 43,44, and 45).

Proposition 7 If the function f is Lipschitz on a closed, bounded interval [a, b], then it is
absolutely continuous on [a, b].

Proof Let c > 0 be a Lipschitz constant for f on [a, b], that is,

I f(u)- f(v)I <clu-vIforallu,ve[a, b].

Then, regarding the criterion for the absolute continuity of f, it is clear that S = e/c responds
to any e > 0 challenge.

There are absolutely continuous functions that fail to be Lipschitz: the function f on
[0, 1], defined by f (x) = lx- for 0 < x < 1, is absolutely continuous but not Lipschitz (see
Problem 37).

Theorem 8 Let the function f be absolutely continuous on the closed, bounded interval
[a, b]. Then f is the difference of increasing absolutely continuous functions and, in particular,
is of bounded variation.

Proof We first prove that f is of bounded variation. Indeed, let S respond to the e = 1
challenge regarding the criterion for the absolute continuity of f. Let P be a partition of
[a, b] into N closed intervals ([ck, dk])k 1, each of length less than S. Then, by the definition
of Sin relation to the absolute continuity of f, it is clear that TV( f[ck, dk]) < 1, for 1 < k < n.
The additivity formula (19) extends to finite sums. Hence

N

TV(f) = I TV(f[ck,dk]) < N.
k=1

Therefore f is of bounded variation. In view of (23) and the absolute continuity of sums
of absolutely continuous functions, to show that-f is the difference of increasing absolutely
continuous functions it suffices to show that the total variation function for f is absolutely
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continuous. Let c > 0. Choose 6 as a response to the E/2 challenge regarding the criterion
for the absolute continuity of f on [a, b]. Let {(ck, dk)}k=1 be a disjoint collection of open
subintervals of (a, b) for which Ek=1[dk - ck] < S. For 1 < k < n, let Pk be a partition of
[ck, dk]. By the choice of 6 in relation to the absolute continuity of f on [a, b],

n

I TV(f[ck,dl, Pk) <E/2.
k=1

Take the supremum as, for 1 < k < n, Pk vary among partitions of [ck, dk], to obtain

n

I TV(flck, dkl) < E/2 < E.
k=1

We infer from (21) that, for 1 < k < n, TV (f[,, dkl) = TV (f[a, dk]) - TV (fla ckl ). Hence

if J:[dk -ck] <8, then TV(f[a dk]) -TV(fla,ckl)I <E.
k=1 k=1

(24)

Therefore the total variation function for f is absolutely continuous on [a, b].

Theorem 9 Let the function f be continuous on the closed, bounded interval [a, b]. Then
f is absolutely continuous on [a, b] if and only if the family of divided difference functions
(Diffh f)ooh<1 is uniformly integrable over [a, b].

Proof First assume (Diffh f)o<h<1 is uniformly integrable over [a, b]. Let c > 0. Choose
S > 0 for which

J IDiffhfI<E/2if m(E)<Sand 0<h<1.
E

We claim that S responds to the c challenge regarding the criterion for f to be absolutely
continuous. Indeed, let {(ck, dk)}k=1 be a disjoint collection of open subintervals of (a, b)
for which 2k=1[dk - ck] < S. For 0 < h < 1 and 1 < k < n, by (14),

dk

AVh
f(dk)

- AVh f (ck) =
J

Diffh f.
ck

Therefore
n n dk f

Y, I Avh f(dk) - Avh f (ck) I< I Diffh f l=
J

I Diffh fl,
k=1 k=1 Ck E

where E = Uk=1(ck, dk) has measure less than S. Thus, by the choice of S,

n

I IAvh f(dk)-Avh f(ck) I <E/2 forall0<h <1.
k=1

Since f is continuous, take the limit as h -* 0+ to obtain

n

IIf(dk)-f(ck)I <E/2<E.
k=1
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Hence f is absolutely continuous.

To prove the converse, suppose f is absolutely continuous. The preceding theorem tells
us that f is the difference of increasing absolutely continuous functions. We may therefore
assume that f is increasing, so that the divided difference functions are nonnegative. To
verify the uniformly integrability of {Diffh f }o<h<l, let c > 0. We must show that there is a
S > 0 such that for each measurable subset E of (a, b),

f
Diffh f < E if m (E) < 5 and 0 < h < 1. (25)

E

According to Theorem 11 of Chapter 2, a measurable set E is contained in a G5 set G
for which m (G - E) = 0. But every GS set is the intersection of a descending sequence of
open sets. Moreover, every open set is the disjoint union of a countable collection of open
intervals, and therefore every open set is the union of an ascending sequence of open sets,
each of which is the union of a finite disjoint collection of open intervals. Therefore, by the
continuity of integration, to verify (25) it suffices to find a S > 0 such that for {(ck, dk)}k1 a=
disjoint collection of open subintervals of (a, b),

JE
Diffh f < c/2 if m (E) < S, where E = U (ck, dk), and 0 < h < 1. (26)

k=1

Choose S > 0 as the response to the E/2 challenge regarding the criterion for the absolute
continuity of f on [a, b + 1]. By a change of variables for the Riemann integral and
cancellation,

fV 1 h

Diffh f =.J g(t)dt, whereg(t)= f(v+t)-f(u+t)for0<t<landa<u<v<b.
h o

Therefore, if {(ck, dk)}k=1 is a disjoint collection of open subintervals of (a, b),

g(t) dt,JE D hf=
h o

where
n n

E = U(ck, dk) and g(t) _ E +t) - f(ck +t)] for all 0 < t < 1.
k=1 k=1

n n

If 2[dk-ck]<8,then, for0<t<1,
1

[(dk+t)-(ck+t)}<6, and therefore g(t) < c/2.
k=1 k=1

Thus

IE

/ph

Diffhf=- . g(t)dt<E/2.

Hence (26) is verified for this choice of S.

Remark For a nondegenerate closed, bounded interval [a, b], let.FLip, FAC, and .Fey denote
the families of functions on [a, b] that are Lipschitz, absolutely continuous, and of bounded
variation, respectively. We have the following strict inclusions:

.FLi p C .FAC C .FB y. (27)



Section 6.4 Absolutely Continuous Functions 123

Proposition 7 tells us of the first inclusion, and the second inclusion was established in Theorem
7. Each of these collections is closed with respect to the formation of linear combinations.
Moreover a function in one of these collections has its total variation function in the same
collection. Therefore, by (23), a function in one of these collections may be expresed as the
difference of two increasing functions in the same collection (see Problem 46).

PROBLEMS

37. Let f be a continuous function on [0, 1] that is absolutely continuous on [e, 1] for each
0<e<1.
(i) Show that f may not be absolutely continuous on [0, 1].

(ii) Show that f is absolutely continuous on [0, 1] if it is increasing.

(iii) Show that the function f on [0, 1], defined by f (x) = fx for 0 < x < 1, is absolutely
continuous, but not Lipschitz, on [0, 1].

38. Show that f is absolutely continuous on [a, b] if and only if for each E > 0, there is a S > 0
such that for every countable disjoint collection {(ak, bk)}k'=1 of open intervals in (a, b),

00 00

I If(bk)-f(ak)I <E[bk-ak]<
k=1 k=1

39. Use the preceding problem to show that if f is increasing on [a, b], then f is absolutely
continuous on [a, b] if and only if for each E, there is a 6> 0 such that for a measurable subset
E of [a, b],

m*(f(E)) <Eifm(E) <S.
40. Use the preceding problem to show that an increasing absolutely continuous function f

on [a, b] maps sets of measure zero onto sets of measure zero. Conclude that the Cantor-
Lebesgue function (p is not absolutely continuous on [0, 1] since the function iG, defined by
4i(x) = x + qp(x) for 0 < x < 1, maps the Cantor set to a set of measure 1 (page 52).

41. Let f be an increasing absolutely continuous function on [a, b]. Use (i) and (ii) below to
conclude that f maps measurable sets to measurable sets.
(i) Infer from the continuity of f and the compactness of [a, b] that f maps closed sets to

closed sets and therefore maps Fo sets to Fo sets.

(ii) The preceding problem tells us that f maps sets of measure zero to sets of measure zero.
42. Show that both the sum and product of absolutely continuous functions are absolutely

continuous.

43. Define the functions f and g on [-1, 1] by f (x) = x] for -1 < x < 1 and

x2 cos(a/2x) ifx00,xE[-1, 1]
8(x)

0 ifx=0.

(i) Show that both f and g are absolutely continuous on [-1, 1].

(ii) For the partition Pn = {-1, 0, 1/2n, 1/[2n - 1], ..., 1/3, 1/2, 1} of [-1, 1], examine
V(.f o8, Pn).

(iii) Show that f o g fails to be of bounded variation, and hence also fails to be absolutely
continuous, on [-1, 11.
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44. Let f be Lipschitz on R and g be absolutely continuous on [a, b]. Show that the composition
fog is absolutely continuous on [a, b].

45. Let f be absolutely continuous on R and g be absolutely continuous and strictly monotone
on [a, b]. Show that the composition f o g is absolutely continuous on [a, b].

46. Verify the assertions made in the final remark of this section.

47. Show that a function f is absolutely continuous on [a, b] if and only if for each e > 0, there is
a S > 0 such that for every finite disjoint collection {(ak, bk)}k=1 of open intervals in (a, b),

n
7E[f(bk)-f(ak)]

k=1

n

<cif I[bk-ak]GS.
k=1

6.5 INTEGRATING DERIVATIVES: DIFFERENTIATING INDEFINITE INTEGRALS

Let f be a continuous function on the closed, bounded interval [a, b]. In (14), take a = u and
b = v to arrive at the following discrete formulation of the fundamental theorem of integral
calculus:

f
b

Difff =Avbf(b)

Since f is continuous, the limit of the right-hand side ash -+ 0+ equals f (b) - f (a). We now
show that if f is absolutely continuous, then the limit of the left-hand side as h -* 0+ equals
f b f' and thereby establish the fundamental theorem of integral calculus for the Lebesgue
integral .4

Theorem 10 Let the function f be absolutely continuous on the closed, bounded interval
[a, b]. Then f is differentiable almost everywhere on (a, b), its derivative f' is integrable over
[a, b], and

jaf/=f(b)_f(a).
(28)

Proof We infer from the discrete formulation of the fundamental theorem of integral
calculus that

b

lim fa Diff1/nf]=f(b)-f(a). (29)n ioo

Theorem 8 tells us that f is the difference of increasing functions on [a, b] and therefore, by
Lebesgue's Theorem, is differentiable almost everywhere on (a, b). Therefore {Diff1/n f}
converges pointwise almost everywhere on.(a, b) to f'. On the other hand, according to
Theorem 9, {Diffl/n f} is uniformly integrable over [a, b]. The Vitali Convergence Theorem
(page 95) permits passage of the limit under the integral sign in order to conclude that

b 1 f
n oo J

Diff1/n f
J

= rtlim Diff1/n .f
jb

f. (30)
-+ 00a

Formula (28) follows from (29) and (30).

4This approach to the proof of the fundamental theorem of integral calculus for the Lebesgue inte-
gral is taken in a note by Patrick Fitzpatrick and Brian Hunt in which Theorem 9 is proven (see www-
users.math.umd.edu/ pmf/huntpmf).
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In the study of calculus, indefinite integrals are defined with respect to the Riemann
integral. We here call a function f on a closed, bounded interval [a, b] the indefinite integral
of g over [a, b] provided g is Lebesgue integrable over [a, b] and

f(x) = f(a)+ f gfor all xE[a, b]. (31)x
a

Theorem 11 A function f on a closed, bounded interval [a, b] is absolutely continuous on
[a, b] if and only if it is an indefinite integral over [a,, b].

Proof First suppose f is absolutely continuous on [a, b]. For each x E (a, b], f is absolutely
continuous over [a, x] and hence, by the preceding theorem, in the case [a, b] is replaced by
[a, x],

f(x)=f(a)+ ff'.
a

Thus f is the indefinite integral of f' over [a, b].

Conversely, suppose that f is the indefinite integral over [a, b] of g. For a disjoint
collection {(ak, bk )}k=1 of open intervals in (a, b), if we define E = Uk=1(ak, bk), then, by
the monotonicity and additivity over domains properties of the integral,

n n

Y, If(bk)-f(ak)I = Ii
k=1 k=1

t'ak

%
bk

si fakl%I= f I%I
k=1 bk E

(32)

Let e > 0. Since IgI is integrable over [a, b], according to Proposition 23 of Chapter 4, there
is a S > 0 such that f E IgI <,E if E C [a, b] is measurable and m (E) < S. It follows from (32)
that this same S responds to the a challenge regarding the criterion for f to be absolutely
continuous on [a, b].

Corollary 12 Let the function f be monotone on the closed, bounded interval [a, b]. Then f
is absolutely continuous on [a, b] if and only if

a
f

b

f' = f (b) - f (a). (33)

Proof Theorem 10 is the assertion that (33) holds if f is absolutely continuous, irrespective
of any monotonicity assumption. Conversely, assume f is increasing and (33) holds. Let x
belong to [a, b]. By the additivity over domains of integration,

0 = fbf
- [1(b) - 1(a)] =

{
IT xf'-[f(x)-f(a)]1+S If b1'-[f(b)-f(x)]1.

According to Corollary 4,

bLxf'-[f(x)-f(a)] 0and f
x
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If the sum of two nonnegative numbers is zero, then they both are zero. Therefore

f(x)=f(a)+ LXI!.

Thus f is the indefinite integral of f. The preceding theorem tells us that f is absolutely
continuous.

Lemma 13 Let f be integrable over the closed, bounded interval [a, b]. Then

f (x) = 0 for almost all x E [a, b] (34)

if and only if

J
xz f = 0 for all (xl, xz) 9 [a, b]. (35)

x1

Proof Clearly (34) implies (35). Conversely, suppose (35) holds. We claim that

f = 0 for all measurable sets E C [a, b].
JE

(36)

Indeed, (36) holds for all open sets contained in (a, b) since integration is countably additive
and every open set is the union of countable disjoint collection of open intervals. The
continuity of integration then tells us that (36) also holds for all GS sets contained in (a, b)
since every such set is the intersection of a countable descending collection of open sets. But
every measurable subset of [a, b] is of the form G - E0, where G is a GS subset of (a, b) and
m( Eo) = 0 (see page 40). We conclude from the additivity over domains of integration that
(36) is verified. Define

E+={xE[a, b] I f(x)>0} andE-={xE[a, b] I f(x) <0}.

These are two measurable subsets of [a, b] and therefore, by (36),

LbI+ j +
f(_r)=_f

According to Proposition 9 of Chapter 4, a nonnegative integrable function with zero integral
must vanish almost everywhere on its domain. Thus f+ and f- vanish almost everywhere
on [a, b] and hence so does f.

Theorem 14 Let f be integrable over the closed, bounded interval [a, b]. Then

[LXd f = f(x) for almost all x E (a, b). (37)
d

Proof Define the function F on [a, b] by F(x) = fax f for all x E [a, b]. Theorem 18 tells us
that since F is an indefinite integral, it is absolutely continuous. Therefore, by Theorem 10, F
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is differentiable almost everywhere on (a, b) and its derivative F' is integrable. According to
the preceding lemma, to show that the integrable function F' - f vanishes almost everywhere
on [a, b] it suffices to show that its integral over every closed subinterval of [a, b] is zero.
Let [x1, x2] be contained in [a, b]. According to Theorem 10, in the case [a, b] is replaced
by [xl, x2], and the linearity and additivity over domains properties of integration,

x2

fx1

X2 x2 x2f [F'-f]=F1 - f .f=F(x2)-F(xi)- f f
xl xl xl

x2 l x2f- fl f=0.= f f-fax

A function of bounded variation is said to be singular provided its derivative vanishes
almost everywhere. The Cantor-Lebesgue function is a non-constant singular function. We
infer from Theorem 10 that an absolutely continuous function is singular if and only if it is
constant. Let f be of bounded variation on [a, b]. According to Corollary 6, f is integrable
over [a, b]. Define

g(x) fxf'andh(x)=f(x)- fxf'forall xE[a,b],
a a

so that
f = g + h on [a, b].

According to Theorem 11, the function g is absolutely continuous. We infer from Theorem 14
that the function h is singular. The above decomposition of a function of bounded variation
f as the sum g + h of two functions of bounded variation, where g is absolutely continuous
and h is singular, is called a Lebesgue decomposition of f.

PROBLEMS

48. The Cantor-Lebesgue function (p is continuous and increasing on [0, 1]. Conclude from
Theorem 10 that p is not absolutely continuous on [0, 1]. Compare this reasoning with that
proposed in Problem 40.

49. Let f be continuous on [a, b] and differentiable almost everywhere on (a, b). Show that

fbif

and only if

f b l
lim Dlfft/n f

J
= nhm I [b Diffl/ fl .

50. Let f be continuous on [a, b] and differentiable almost everywhere on (a, b). Show that if
{Diffl/n f} is uniformly integrable over [a, b], then

a
f bf'=f(b)-f(a).
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51. Let f be continuous on [a, b] and differentiable almost everywhere on (a, b). Suppose there
is a nonnegative function g that is integrable over [a, b] and

Diff11 f g a.e. on [a, b] for all n.

Show that

f bf'=f(b)-f(a)-
Q

52. Let f and g be absolutely continuous on [a, b]. Show that

Pb

a

b

f g'= f(b)g(b) - f(a)g(a)
-f

f'. g.
n

53. Let the function f be absolutely continuous on [a, b]. Show that f is Lipschitz on [a, b] if
and only if there is a c > 0 for which If 'I < c a.e.on [a, b].

54. (i) Let f be a singular increasing function on [a, b]. Use the Vitali Covering Lemma to show
that f has the following property: Given e > 0, S > 0, there is a finite disjoint collection
{ (ak, bk) }k-1 of open intervals in (a, b) for which

n n
77E[bk-ak]<&and J[f(bk)-f(ak)1>f(b)-f(a)-e.

k=1 k=1

(ii) Let f be an increasing function on [a, b] with the property described in part (i). Show
that f is singular.

(iii) Let {f n } be a sequence of singular increasing functions on [a, b] for which the series
T,n° 1 f, (x) converges to a finite value for each x E [a, b]. Define

00

f(x)=I fn(x)forxE[a,b].
n=1

Show that f is also singular.

55. Let f be of bounded variation on [a, b], and define v(x) = TV(f1Q zi) for all x E [a, b].
(i) Show that I f'I < v' a.e on [a, b], and infer from this that

fb fl

(ii) Show that the above is an equality if and only if f is absolutely continuous on [a, b].

(iii) Compare parts (i) and (ii) with Corollaries 4 and 12, respectively.

56. Let g be strictly increasing and absolutely continuous on [a, b].
(i) Show that for any open subset 0 of (a, b),

m(g(O)) = fg'(x)dx.

(ii) Show that for any G8 subset E of (a, b),

m(g(E)) = jg'(x)dx.
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(iii) Show that for any subset E of [a, b] that has measure 0, its image g(E) also has measure
0, so that

g(x)dx.m(g(E))=0=J
E

(iv) Show that for any measurable subset A of [a, b],

m(g(A)) = f g'(x)dx.
A

(v) Let c = g(a) and d = g(b). Show that for any simple function rp on [c, d],

f
d

W(Y)dY= f
b

(V(g(x))8 (x)dx.
a

(vi) Show that for any nonnegative integrable function f over [c, d],

fd

.f(Y)dy= f
b

.f(g(x))S (x)dx.
c a

(vii) Show'that part (i) follows from (vi) in the case that f is the characteristic function of 0
and the composition is defined.

57. Is the change of variables formula in the last part of the preceding problem true if we just
assume g is increasing, not necessarily strictly?

58. Construct an absolutely continuous strictly increasing function f on [0, 1] for which f = 0 on
a set of positive measure. (Hint: Let E be the relative complement in [0, 1] of a generalized
Cantor set of positive measure and f the indefinite integral of XE. See Problem 39 of Chapter
2 for the construction of such a Cantor set.)

59. For a nonnegative integrable function f over [c, d], and a strictly increasing absolutely
continuous function g, on [a, b] such that g([a, b]) C [c, d], is it possible to justify the change
of variables formula

f
g(b) b

g(a)
.f(Y)dy=f f(g(x))8(x)dx

by showing that

g(x) x

dt = 0 for almost all z E a, b)?f f(s)d, - f f(g(t))g'(t) ( )?
g(a) a

60. Let f be absolutely continuous and singular on [a, b]. Show that f is constant. Also show
that the Lebesgue decomposition of a function of bounded variation is unique if the singular
function is required to vanish at x = a.
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6.6 CONVEX FUNCTIONS

Throughout this section (a, b) is an open interval that may be bounded or unbounded.

Definition A real-valued function cp on (a, b) is said to be convex provided for each pair of
points xi, x2 in (a, b) and each A with 0 < A < 1,

p(Axi+(1-A)x2) <40(x1)+(1-A)gP(x2). (38)

If we look at the graph of cp, the convexity inequality can be formulated geometrically by
saying that each point on the chord between (xi, cp(xi)) and (x2, gp(x2)) is above the graph
of gyp.

Observe that for two points xj < x2 in (a, b), each point x in (xi, x2) may be expres-
sed as

x=Axi+(1-A)x2whereA= x2 -x
X2 - x1

Thus the convexity inequality may be written as

cp(x)<Lx2-xJp(xl)+Lx-xiJrp(x2)forxl<x<x2in(a,b).
x2-x1 Lx2-xl

Regathering terms his inequality may also be rewritten as

'p(x)-cp(xl) < cp(x2)-(P(x)
forxi <x<x2in(a, b). (39)x - xi x2-x

Therefore convexity may also be formulated geometrically by saying that for xi <x <x2, the
slope of the chord from (xi, p(xi)) to (x, p(x)) is no greater than the slope of the chord
from (x, p(x)) to (x2, p(x2)).

Proposition 15 If cp is differentiable on (a, b) and its derivative gyp' is increasing, then p is
convex. In particular, p is convex if it has a nonnegative second derivative gyp" on (a, b).

Proof Let xi, x2 be in (a, b) with xi < x2, and let x belong to (xi, x2). We must show that

(P(x) - _P(xi) < _P(x2) - _(x)
x-x1 - x2-x

However, apply the Mean Value Theorem to the restriction of p to each of the intervals
[xi, x] and [x, x2] to choose points ci E (xi, x) and c2 E (x, x2) for which

P(ci) (P(x)-(P(xt)
x - xi x2-x

Thus, since rp' is increasing,

'P(x) -(P(xi)
_ 0'(ci) <<P (c2) _ (P(x2)

x-x1 x2-x
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Example Each of the following three functions is convex since each has a nonnegative
second derivative:

p(x) = xP on (0, oo) for p > 1; p(x) = ex on (-oo, oo); rp(x) = ln(1/x) on (0, oo).

The following final geometric reformulation of convexity will be useful in the estab-
lishment of differentiability properties of convex functions.

The Chordal Slope Lemma Let cp be convex on (a, b). If xl < x < x2 belong to (a, b), then
forpl = (xl, co(xt)), P = (x, (P(x)), P2 = (x2, 4P(x2)),

x, x X2

Slope of Pip < slope of 1 < slope of pp2.

Proof Regather terms in the inequality (39) to rewrite it in the following two equivalent
forms:

(p(x1)-(p(x)
< Ip(x2)-(P(xl) forxl <x<x2in(a, b);

X1 -X - x2-xl
(P(x2)-w(xl) < (P(x2)-(P(x) forxl <x<x2in(a, b).

X2 - xl - x2 - x

For a function g on an open interval (a, b), and point xo E (a, b), if

g(xo+h)-g(xo) exists and is finite,lim
< o hh -+

we denote this limit by g'(xo) and call it the left-hand derivative of g at xo. Similarly, we
define g' (xo) and call it the right-hand derivative of g at xo. Of course, g is differentiable at
xo if and only if it has left-hand and right-hand derivatives at xo that are equal. The continuity
and differentiability properties of convex functions follow from the following lemma, whose
proof follows directly from the Chordal Slope Lemma.

Lemma 16 Let cp be a convex function on (a, b). Then cp has left-hand and right-hand
derivatives at each point x E (a, b). Moreover, for points u, v in (a, b) with u < v, these
one-sided derivatives satisfy the following inequality:

(P (u ) :5 P (u+) :!s (v) - u(u) < -P (V-):5 V(v+) (40)
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Corollary 17 Let p be a convex function on (a, b). Then (P is Lipschitz, and therefore
absolutely continuous, on each closed, bounded subinterval [c, d] of (a, b).

Proof According to the preceding lemma, for c < u < v < d,

,P (c+) < qP (u+)
co(v) (P(u)

c (v ) < ('(d) (41)-
and therefore

Irp(u)-cp(v)I <MIu - viforall u,vE [c, d],
where M = max{

I I I ). Thus the restriction of (P to [u, v] is Lipschitz. A
Lipschitz function on a closed, bounded interval is absolutely continuous.

We infer from the above corollary and Corollary 6 that any convex function defined
on an open interval is differentiable almost everywhere on its domain. In fact, much more
can be said.

Theorem 18 Let cp be a convex function on (a, b). Then cp is differentiable except at a
countable number of points and its derivative gyp' is an increasing function.

Proof We infer from the inequalities (40) that the functions

x --, f'(x-) andxy f'(x+)

are increasing real-valued functions on (a, b). But, according to Theorem 1, an increasing
real-valued function is continuous except at a countable number of points. Thus, except
on a countable subset C of (a, b), both the left-hand and right-hand derivatives of (P are
continuous. Let xo belong to (a, b) - C. Choose a sequence of points greater than
xo that converges to xo. Apply Lemma 16, with xo = u and x, = v, and take limits
to conclude that

(P(xo) - (P,(xo)<(v(xo)
Then cp'(x5) = p'(xo) so that p is differentiable at xo. To show that gyp' is an increasing
function on (a, b) - C, let u, v belong to (a, b) - C with u < v. Then by Lemma 16,

(P (u) <
<P(u) -,P(v)

<'P (v)u - v
Let cp be a convex function on (a, b) and xo belong to (a, b). For a real number in,

the line y = m(x - xo) + cp(xo), which passes through the point (xo, (p(xo)), is called a
supporting line at xo for the graph of rp provided this line always lies below the graph of gyp,
that is, if

cp(x)>m(x-xo)+cp(xo)forall xE(a, b).
It follows from Lemma 16 that such a line is supporting if and only if its slope m lies between
the left- and right-hand derivatives of p at xo. Thus, in particular, there is always at least one
supporting line at each point. This notion enables us to give a short proof of the following
inequality:
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Jensen's Inequality Let rp be a convex function on (-oo, oo), f an integrable function over
[0, 1], and rp o f also integrable over [0, 1]. Then

4API

f lf(x)dx I < f 1(q,o.f)(x)dx. (42)

Proof Define a = fo f (x) dx. Choose m to he between the left-hand and right-hand
derivative of cp at the point a. Then y = m (t - a) + cp(a) is the equation of a supporting line
at (a, (p(a)) for the graph of gyp. Hence

.p(t)>m(t-a)+rp(a)forall tER.

Since f is integrable over [0, 1], it is finite a.e.on [0, 1] and therefore, substituting f (x) for t
in this inequality, we have

rp(f (x)) > m(f (x) - a) + rp(a) for almost all x E [0, 1].

Integrate across this inequality, using the monotonicity of the Lebesgue integral and the
assumption that bothjf and cp o f are integrable over [a, b], to obtain

f 1cc(.f(x))dx>
rl[m(.f(x)-a)+cp(a)]dx

=m4 f 1 f(x)dx-aJ+,p(a)=cp(a)
0

1-1

A few words regarding the assumption, for Jensen's Inequality, of the integrability of
cp o f over [0, 1] are in order. We have shown that a convex function is continuous and
therefore Proposition 7 of Chapter 3 tells us that the composition p o f is measurable if p is
convex and f is integrable. If p o f is nonnegative, then it is unnecessary to assume the ' o f
is integrable since equality (42) trivially holds if the right-hand integral equals +oo. In the
case (p o f fails to be nonnegative, if there are constants cl and c2 for which

k0(x)1 <c1+c2IxI forallxER, (43)

then we infer from the integral comparison test that p o f is integrable over [0, 1] if f is. In
the absence of the growth assumption (43), the function ' o f may not be integrable over
[0, 1] (see Problem 71).

PROBLEMS

61. Show that a real-valued function cp on (a, b) is convex if and only if for points xl, ..., x in
(a, b) and nonnegative numbers A , such that Ek=1 Ak = 1,

API Akxk <l L, Akcp(xk)
\k=1 / k=1

Use this to directly prove Jensen's Inequality for f a simple function.
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62. Show that a continuous function on (a, b) is convex if and only if

(x1
2

x2) < W(xl)

2
(V(x2) for all xl, x2 E (a, b).

63. A function on a general interval I is said to be convex provided it is continuous on I and (38)
holds for all xl, x2 E I. Is a convex function on a closed, bounded interval [a, b] necessarily
Lipschitz on [a, b]?

64. Let (p have a second derivative at each point in (a, b). Show that rp is convex if and only if rp'
is nonnegative.

65. Suppose a > 0 and b > 0. Show that the function (p(t) = (a + bt)P is convex on [0, co) for
1<p<00

66. For what functions cp is Jensen's Inequality always an equality?

67. State and prove a version of Jensen's Inequality on a general closed, bounded interval [a, b].

68. Let f be integrable over [0, 1]. Show that

exp[f f(x)dx] <Jlexp(f(x))dx
Lo 0

69. Let {an } be a sequence of nonnegative numbers whose sum is 1 and { } a sequence of positive
numbers. Show that

00 00

11 'nn -< I an G.
n=1 n=1

70. Let gbeapositivemeasurablefunctionon [0, 1]. Show that log (fog(x) dx) > fo log (g(x)) dx
whenever each side is defined.

71. (Nemytskii) Let (p be a continuous function on R. Show that if there are constants for which
(45) holds, then cp o f is integrable over [0, 1] whenever f is. Then show that if p o f is
integrable over [0, 1] whenever f is, then there are constants c1 and c2 for which (45) holds.
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Completeness of the real numbers may be formulated by asserting that if {an} is a sequence
of real numbers for which limn,m-,oo Ian - am I = 0, there is a real number a for which
limn-+oc Ian - al = 0. There is a corresponding completeness property for the Lebesgue
integral. For E measurable and 1 < p < oo, define LP(E) to be the collection of measurable
functions f for which If I P is integrable over E; thus L l (E) is the collection of integrable
functions. If (fn} is a sequence of functions in LP( E) for which

nlim

there is a function f belonging to LP(E) for which

nhmoo 1 I fn - .f I P = 0.
E

This is the Riesz-Fischer Theorem, the centerpiece of this chapter. A collection.F of functions
in LP(E) is said to be dense in LP(E) provided for each gin LP(E) and E > 0, there is a
function f belonging to F for which fE I g - f I P < E. We prove that there is a countable
collection of functions that is dense in LP(E), and that both the continuous functions and
the simple functions are dense in LP(E). The proofs of the Riesz-Fischer Theorem and the
denseness results are framed in the context of normed linear spaces of functions. In order
to construct this frame we prove two basic inequalities, Holder's Inequaliy and Minkowski's
Inequality.

7.1 NORMED UNEAR SPACES

Throughout this chapter E denotes a measurable set of real numbers. Define F to be the
collection of all measurable extended real-valued functions on E that are finite a.e. on E.
Define two functions f and g in F to be equivalent, and write f = g, provided

f(x)=g(x)foralmost allxEE.
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This is an equivalence relation, that is, it is reflexive, symmetric, and transitive. Therefore
it induces a partition of .F into a disjoint collection of equivalence classes, which we denote
by Y/ - There is a natural linear structure on F/=: given two functions f and g in F, their
equivalence classes [f] and [g] and real numbers a and (3, we define the linear combination
a- [f] +P. [g] to be the equivalence class of the functions inF that take the value a f (x)+(3g(x )
at points x in E at which both f and g are finite. These linear combinations are properly
defined in that they are independent of the choice of representatives of the equivalence
classes. The zero element of this linear space is the equivalence class of functions that vanish
a.e. on E.

A subset of a linear space is called a subspace provided it is closed with respect to the
formation of linear combinations. There is a natural family {LP(E)}I<P<oo of subspaces of
.F/.. For 1 < p < oc, we define LP(E) to be the collection of equivalence classes [f] for
which

I, if 1P <oc.

This is properly defined since if f = g, then fE If IP = fE IgVP For any two numbers a and b,

Ia + bl lal + IbI < 2 max{Ial, IbI},

and hence
la+bIP <2P{laIP+IbIP}. (1)

We infer from this inequality, together with the linearity and monotonicity of integration,
that if [f ] and [g] belong to LP(E), so also does the linear combination a [f] + S [g].
Therefore LP(E) is a linear space. Of course, LI(E) comprises equivalence classes of
integrable functions.

We call a function f e Jr essentially bounded provided there is some M > 0, called an
essential upper bound for f, for which

I f (x) I< M for almost all x E E.

We define L00 ( E) to be the collection of equivalence classes [f] for which f is essentially
bounded. It is easy to see that this is properly defined and L00 (E) also is a linear subspace
of .F/=

For simplicity and convenience, we refer to the equivalence classes in .F/= as functions
and denote them by f rather than [f ]. Thus to write f = g means that f - g vanishes a.e. on
E. This simplification imposes the obligation to check consistency when defining concepts
for the LP(E) spaces. For instance, it is meaningful to assert that a sequence { fn} in LP(E)
converges pointwise a.e. on E to a function f e LP(E) since if gn = f,,, for all n and f = g,
then, since the union of a countable collection of sets of measure zero also is of measure
zero, the sequence {gn} also converges pointwise a.e. on E to g. To state that a function f
in LP[a, b] is continuous means that there is a continuous function that agrees with f a.e.
on [a, b]. Since complements of sets of measure zero are dense in R, there is only one such
continuous function and it is often convenient to consider this unique continuous function
as the representative of [f ].

In the late nineteenth century it was observed that while real-valued functions of one or
several real variables were the rudimentary ingredients of classical analysis, it is also useful
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to consider real-valued functions that have as their domain linear spaces of functions: such
functions were called functionals. It became apparent that in order to systematically study
such fruitful concepts as convergence of a sequence (and maintain the linearity property of
convergent sequences) and thereby define the concept of continuous functional, it would
be useful to extend the concept of absolute value from the real numbers to general linear
spaces.' The notion' that emerged from these investigations is called a norm.

Definition Let X be a linear space. A real-valued functional II II on X is called a norm
provided for each f and g in X and each real number a,

(The Triangle Inequality)

Ilf+gll <_ Ilfll+Ilsll

(Positive Homogeneity)

IIaf11=lalllf11

(Nonnegativity)

11111>0and 11f11=0if and only if f = 0.

By a normed linear space we mean a linear space together with a norm. If X is a linear
space normed by II II we say that a function in X is a unit function provided II f II = 1. For
any f E X, f # 0, the function fl II f II is a unit function: it is a scalar multiple off which we
call the normalization of f .

Example (the Normed Linear Space L1(E)) For a function fin L' (E ), define

IlfI11= fE 1fl.

Then II 11, is a norm on L' (E). Indeed, for f, g E L' (E), since f and g are finite a.e. on E,
we infer from the triangle inequality for real numbers that

If+gl <_ IfI+Igla.e.onE.

Therefore, by the monotonicity and linearity of integration,

Ilf+glll=
fE

If+gIs f [IfI+191]=
fE

Ifl+ fE Igl=llfIli+Ilglli.
E

Clearly, II 11 1 is positively homogeneous. Finally, if f E L' (E) and II f 11 1 = 0, then f = 0 a.e.
on E. Therefore [f] is the zero element of the linear space L' (E) C -.F/,, that is, f = 0.

Example (the Normed Linear Space L00 (E)) For a function f in LI(E), define II f Ilom to
be the infimum of the essential upper bounds for f. We call Il f 11 0 the essential supremum

'We will see later that continuity can also be examined in relation to metric structures, or, more generally,
topological structures, on a domain and range of a mapping.
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of f and claim that II II,, is a norm on LO0(E). The positivity and positive homogeneity
properties follow by the same arguments used in the preceding example. To verify the
triangle inequality, we first show that Il f II c is an essential upper bound for f on E, that is,

If I IIf II0 a.e. on E.

Indeed, for each natural number n, there is a subset En of E for which

I f E

Hence, if we define E00 = Un°1 En,

IfI <_ IIfII00on E' E.andm(E00)=0.

(2)

Thus the essential supremum of f is the smallest essential upper bound for f, that is, (2)
holds. Now for f, g E L' (E),

If(x)+g(x)I <_ If(x)I +Ig(x)I <_ IIfII0+IIgIl0foralmost allxEE.

Therefore, II f II. + IISIIoo is an essential upper bound for f + g and hence

Ilf+gll00 <_ IIIII°o+HOW.

Example (The Normed Linear Spaces 21 and .t00) There is a collection of normed linear
spaces of sequences that have simpler structure but many similarities with the LP(E) spaces.
For 1 < p < oo, define L P to be the collection of real sequences a = (al, a2 , ...) for which

00

I, IakIP < 00-
k=1

Inequality (1) shows that the sum of two sequences in LP also belongs to VP and clearly a real
multiple of a sequence in tP also belongs to V. Thus V is a linear space. We define L°O to be
the linear space of real bounded sequences. For a sequence a = (al, a2, ...) in 11, define

00

II{ak}Ii1= 1; lakl
k=1

This is a norm on 21. For a sequence {ak} in fl, define

II{ak}Ilo° = suP1<k<00IakI

It is also easy to see that II II 00 is a norm on Z°°.

Example (The Normed Linear Space C[a, b]) Let [a, b] be a closed, bounded interval.
Then the linear space of continuous real-valued functions on [a, b] is denoted by C[a, b].
Since each continuous function on [a, b] takes a maximum value, for E C[a, b], we can define

IlflImax = max If(x)I
x E [a, b]

We leave it as an exercise to show that this defines a norm that we call the maximum norm.
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1. For fin C[a, b], define

PROBLEMS

IIfIl1= Ifl-
a

Show that this is a norm on C[a, b]. Also show that there is no number c > 0 for which

ll f Ilmax _< cII f II I for allf in C[a, b],

but there is a c > 0 for which

II f 111 5 clI f llmax for all f in C[a, b].

2. Let X be the family of all polynomials with real coefficients defined on R. Show that this
is a linear space. For a polynomial p, define IIPII to the sum of the absolute values of the
coefficients of p. Is this a norm?

3. For fin L1 [a, b], define II f II = fb x21 f (x) I dx. Show that this is a norm on L1 [a, b].

4. For fin L' [a, b], show that

Ilfll.=min{M m{xin [a, b] I If(x)I>M}=0}

and if, furthermore, f is continuous on [a, b], that

llfll00 = Ilfllmax

5. Show that 100 and E1 are normed linear spaces.

7.2 THE INEQUALITIES OF YOUNG, HOLDER, AND MINKOWSKI

In the preceding section we introduced the linear spaces LP(E) for 1 < p < oo and E a
measurable set of real numbers. In the cases p = 1 and p = oo, we defined a norm on these
spaces. We now define a norm on LP(E) for 1 < p < oo.

Definition For E a measurable set, 1 < p < oo, and a function f in LP(E), define

I 1/p

IIfIIp = I f Iflp
IE

We will show that the functional II IIp is a norm on LP(E). Indeed, positive homogeneity is
clear. Moreover, according to Proposition 9 of Chapter 4, 11f 11p = 0 if and only if f vanishes
a.e. on E. Therefore [f ] is the zero element of the linear space L' (E) 9 .Fl., that is, f = 0.
It remains to establish the Triangle Inequality, that is, to show that

Ilf + gllp 5 IIf IIp + IIgIIp for all f, gin L"(E).

This inequality in not obvious. It is called Minkowski's Inequality.
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Definition The conjugate of a number p E (1, oo) is the number q = p/ (p - 1), which is the
unique number q E (1, oo) for which

1 1-+-=1.
p q

The conjugate of 1 is defined to be oo and the conjugate of oo defined to be 1.

Young's Inequality For 1 < p < oc, q the conjugate of p, and any two positive numbers a
and b,

ab <
aP

+
b9

p q

Proof The function g, defined by g(x) = [1/p]xP+1/q-x forx>0, has a positive derivative
on (1, oo), a negative derivative on (0, 1), and takes the value 0 at x = 1. The function g
therefore is nonnegative on (0, oc), that is,

x < [1/p]xP+1/gifx>0.
In particular,

a
xo 5 [1/p] xo + 1/q if xo = _1.

However, this inequality is equivalent to Young's Inequality, since, because p(q -1) = q, it
is the inequality obtained by dividing each side of Young's Inequality by b9.

Theorem 1 Let E be a measurable set, 1 < p < co, and q the conjugate of p. If f belongs to
LP (E) and g belongs to L9 (E ), then their product f g is integrable over E and

Holder's Inequality

jlf.l s llf llp llgllq. ; (3)

Moreover, if f # 0, the function I f* = II f li
p

I-P sgn(f) If IP-1 belongs to L9(X, µ),

L andllf*Ilq=1. (4)

Proof First consider the case p = 1. Then Holder's Inequality follows from the monotonicity
of integration and the observation (2) that II f 1100 is an essential upper bound for f on E.
Observe that since f* = sgn(f ), (4) holds with p = 1, q = oo. Now consider p > 1. Assume
f # 0 and g # 0, for otherwise there is nothing to prove. It is clear that if Holder's Inequality
is true when f is replaced by its normalization fl II f Ilp and g is replaced by its normalization
g/ 118119, then it is true for f and g. We therefore assume that 11f IIP = Ilgllq = 1, that is,

fIgl=1,
JE

2The function sgn(f) takes the value 1 if f (x) > 0 and -1 if f (x) < 0. Therefore sgn(f) f = J f l a.e. on E
since f is finite an. on E.
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in which case Holder's Inequality becomes

f
E

Since If I P and Iglq are integrable over E, f and g are finite a.e. on E. Thus, by Young's
Inequality,

I.flp+Islq a.e.onE.
P q

We infer from the linearity of integration and the integral comparison test that f - g is
integrable over E and

f PfE
i

Ifip+1 fE Iglq=1+1=1.
E p qq

It remains to prove (4). Observe that

f f* = llfllP p - fE Iflp = llfllP p llfllP = Ilfllp.

Since q(P-1) =p, IIf*IIq =1.

It is convenient, for fELP(E), f 96 0, to call the function f* defined above the
conjugate function of f.

Minkowski's Inequality Let E be a measurable set and 1 < p < oo. If the functions f and g
belong to LP(E ), then so does their sum f + g and, moreover,

Iif+gllp < IIflip+ligllp.

Proof In the preceding section we considered the cases p = 1 and p = oo. So we here
consider the case p E (1, oo). We already inferred from (1) that f + g belongs to LP(E).
Assume f + g 96 0. Consider (f + g)*, the conjugate function of f + g. We infer from the
linearity of integration and Holder's Inequality that

f+g) (f+g)*IIf+gllp=
fE

(

f (f+g)*+ f g- (f+g)*= fE
E

Ilfllp II(f +g)*IIq+ IIBIIP II(f +g)*IIq

= Ilfllp+ Ilgllp
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The special case of Holder's Inequality when p = q = 2 has its own name.

The Cauchy-Schwarz Inequality Let E be a measurable set and f and g measurable functions
on E for which f2 and g2 are integrable over E. Then their product f g also is integrable over
E and

jIfI VfE r
E

Co rollary 2 Let E be a measurable set and 1 < p < oo. Suppose .F is a family of functions in
LP (E) that is bounded in LP (E) in the sense that there is a constant M for which

11f 11p < M for all f in.F.

Then the family .F is uniformly integrable over E.

Proof Let E > 0. We must show there is a S > 0 such that for any fin F,

fA If I < E if ACE is measurable and m(A) < S.

Let A be a measurable subset of E of finite measure. Consider LP(A) and Lq(A) where q is
the conjugate of p. Define g to be identically equal to 1 on A. Since m(A) < oo, g belongs
to Lq(A). We infer from Holder's Inequality, applied to this g and the restriction off to A,
that

ll1/p
1/q

IgigI IfI= fAIfIPJ .[jA
I

But for all f in F,

l1/p
1/p

ll1/q

[IA
If[JE IfiI M and [fA gI] = [m(A)]1/

Therefore, for all f in.F,

f If 1 5 M [m(A)]1/q

Therefore for each o5 > 0, 8 = [E/M]q responds to the c challenge regarding the criterion for
.F to be uniformly integrable. 0

Corollary 3 Let E be a measurable set of finite measure and 1 < p1 < P2 < 00. Then
LP2 (E) C LPi (E). Furthermore,

IIfIIp1 :!S cIIfIIp2forall f inLP2(E), (5)

where c = [m (E )] PlP2 if p2 < oo and c = [m (E )] P1 if P2 = oo.
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Proof We leave the case P2 = oo as an exercise. Assume p2 < oo. Define p = P2/p1 > 1 and
let q be the conjugate of p. Let f belong to LF2(E). Observe that fPl belongs to LP(E) and
g = XE belongs to Lq (E) since m (E) < oo. Apply Holder's Inequality. Then

[JE

l1/q

f IfIP'= JEll I' . g Ill IIP, I gIl

Take the 1/P1 power of each side to obtain (5).

Example In general, for E of finite measure and 1 < p1 < p2 < oo, LF2(E) is a proper
subspace of L Pl (E ). For instance, let E = (0, 1] and f be defined by f (x) =x" for O <x < 1,

where -l/p1 <a< -l/P2. Then f E LP1(E) ^- LP2 (E).

Example In general, for E of infinite measure, there are no inclusion relationships among
the LP (E) spaces. For instance, for E = (1, oo) and f defined by

S 1/2

f(x)= forx>1,l+lnx

f belongs to LP (E) if and only if p = 2.

PROBLEMS

6. Show that if Holder's Inequality is true for normalized functions it is true in general.

7. Verify the assertions in the above two examples regarding the membership of the function f
in LP(E).

8. Let f and g belong to L2(E). From the linearity of integration show that for any number A,

A2 JEf2+2A fEf.g+ fEg2= fE(Af+g)2>0.

From this and the quadratic formula directly derive the Cauchy-Schwarz Inequality.

9. Show that in Young's Inequality there is equality if and only if a = b = 1.

10. Show that in Holder's Inequality there is equality if and only if there are constants a and (3,
not both zero, for which

alfVP=Rlglga.e.onE.

11. For a point x = (x1, x2, ... , x,, ) in R, define Tx to be the step function on the interval
[1, n + 1) that takes the value xk on the interval [k, k + 1), for 1 < k < n. For p > 1, define
IIxIIP = II TXIIP, the norm of the function Tx in LP[l, n + 1). Show that this defines a norm on
R. State and prove the Holder and Minkowski Inequalities for this norm.

12. For 1 < p < oo and a sequence a = (a1, a2, ...) E BP, define Ta to be the function on the
interval [1, oo) that takes the value ak on [k, k + 1), for k =1, 2. .... Show that Ta belongs
to LP[l, oo) and that IIxIIP = IITalip. Use this to state and prove the Holder and Minkowski
Inequalities in PP.

13. Show that if f is a bounded function on E that belongs to LP' (E), then it belongs to LP2 (E)
for any P2 > Pt
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14. Show that if f (x) = ln(1/x) for x E (0, 11, then f belongs to LP(0, 1] for all 1 < p < oo but
does not belong to L' (0, 1].

15. Formulate and prove an extension of Holder's Inequality for the product of three functions.

16. Suppose that { fn} is bounded in L1[0, 1]. Is { fn} uniformly integrable over [0, 1]?

17. For 1 < p < oo, suppose that { f} is bounded in LP(R). Is { fn} tight?

18. Assume m (E) < oo. For f E LI(E), show that limp, 00 I l f 1 1 p = 1 1 f1 1 0 0 .

19. For 1 c p < oo, q the conjugate of p, and f E LP(E), show that

11f 11P gELq(E),IgIq<1JE.f g

20. For 1 < p < oo, q the conjugate of p, and f E LP (E), show that f = 0 if and only if

J
f g =0 for allgEL4(E).

E

21. For 1 < p < oo, find the values of the parameter A for which

flim 1 f= 0 for all f E Lp[0, 1].
E*O+EA

22. (Riesz) For 1 < p < oo, show that if the absolutely continuous function F on [a, b] is the
indefinite integral of an LP[a, b] function, then there is a constant M > 0 such that for any
partition {x0, ... , xn } of [a, b],

IF(xk) - F(xk-1)IP < M.
k=1 IXk -Xk_ilp-1

7.3 LP IS COMPLETE: THE RIESZ-FISCHER THEOREM

The concepts of convergent sequence and Cauchy sequence are defined for a sequence in
a normed linear space in exactly the same way they are for sequences in R, normed by the
absolute value.

Definition A sequence {f, } in a linear space X that is normed by II II is said to converge to f
in X provided

lim IIf-fn11=O.
n -+oo

We write
{ fn } -+ f in X or line fn =fin X

n ->oo

to mean that each fn and f belong to X and limn ..+ 0 11 f - fn 11 = 0.
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It is clear that for a sequence If, } and function f in C[a, b], { fn } -* f in C[a, b], normed
by the maximum norm, if and only if If, } -* f uniformly on [a, b]. Furthermore, since the
essential supremum of a function in L°O(E) is an essential upper bound, for a sequence { fn}
and function f in L00 (E) , If, } -+ f in L°° (E) if and only if If,,) f uniformly on the com-
plement of a set of measure zero. For a sequence If,,) and function fin Lp(E),1 < p < oo,
If,,) fin VIE)(E) if and only if

- flp=O.
n goo f1p = 0.00

A sequence If,) in a linear space X that is normed by II II is said to be Cauchy in
X provided for each c > 0, there is a natural number N such that

IIfn - fmll <Eforallm,n>N.

A normed linear space X is said to be complete provided every Cauchy sequence in X
converges to a function in X. A complete normed linear space is called a Banach space.

The completeness axiom for the real numbers is equivalent to the assertion that R,
normed by the absolute value, is complete. This immediately implies that each Euclidean
space Rn also is complete. In a first course in mathematical analysis it is always proven that
C[a, b], normed by the maximum norm, is complete (see Problem 31). The same argument,
together with the measurability of pointwise limits of measurable functions, shows that
LOD (E) also is complete (see Problem 33).

Proposition 4 Let X be a normed linear space. Then every convergent sequence in X is
Cauchy. Moreover, a Cauchy sequence in X converges if it has a convergent subsequence.

Proof Let f fn) -* f in X. By the triangle inequality for the norm,

IIfn-fmII=II[fn-f]+[f-fm]IIsIIfn-fll+Ilfm-fllforall m, n.

Therefore { fn } is Cauchy.

Now let {f,} be a Cauchy sequence in X that has a subsequence {f",) which converges
in X to f. Let E > 0. Since { fn } is Cauchy, we may choose N such that IIfn - fm 11p <E/2 for all
n, m > N. Since {fnk } converges to f we may choose k such that nk > N and Of k - f IIp < e/2.
Then, by the triangle inequality for the norm,

IIfn-PIP =IIfn-fnk]+[fnk-f]IIp
=IIfn -fnkIIp+Ilink-flip<Eforn>N.

Therefore { fn } -+ f in X

In view of the above lemma, a useful strategy to establish the completeness of a
particular normed linear space is to show that a particular type of Cauchy sequence, tailored
to the properties of the space, converges and also show that every Cauchy sequence has
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a subsequence of this particular type (see Problems 30 and 32). In the LP(E) spaces,
1 < p < oo, so-called rapidly Cauchy sequences,3 defined as follows, are useful.

Definition Let X be a linear space normed by II II . A sequence (fn } in X is said to be rapidly
Cauchy provided there is a convergent series of positive numbers 21 ek for which

II fk+1 - fk II : Ek for all k.

It is useful to observe that if if,) is a sequence in a normed linear space and the
sequence of nonnegative numbers (ak} has the property that

II fk+1- fk II < ak for all k,

then, since
n+k-1

fn+k - fn = E, [fj+l - fj] for all n, k,
j=n

n+k-1 00

II fn+k - fn II E II fj+1- fj II E a j for all n, k. (6)
j=n j=n

Proposition 5 Let X be a normed linear space. Then every rapidly Cauchy sequence in X is
Cauchy. Furthermore, every Cauchy sequence has a rapidly Cauchy subsequence.

Proof Let (fn ) be a rapidly Cauchy sequence in X and Ek 1 Ci a convergent series of
nonnegative numbers for which

II fk+1- fk II < ek for all k. (7)

We infer from (6) that

00II fn+k - fn II :5 2 ej for all n, k. (8)
j=n

Since the Series Y,k 1 Ek converges, the series 2k e also converges. We infer from (8)
that (fn) is Cauchy. Now assume that (fn} is a Cauchy sequence in X. We may inductively
choose a strictly increasing sequence of natural numbers {nk} for which

II fnk+1 - All II < (1/2)k for all k.

The subsequence (fnk } is rapidly Cauchy since the geometric series with ratio 1/. converges.
0

Theorem 6 Let E be a measurable set and 1 < p < oo. Then every rapidly Cauchy sequence
in LP (E) converges both with respect to the LP (E) norm and pointwise a.e. on E to a function
in LP(E).

31n the article "Rethinking the Lebesgue Integral" (American Math Monthly, December, 2009), Peter Lax
singles out pointwise limits of sequences of continuous functions that are rapidly Cauchy with respect to the L1
norm as primary objects in the construction of the complete space Ll. He defends the viewpoint that the principal
object of desire in the program to use theorems about Banach spaces in the study of integration is the identification
of L1. Lax constructs functions in L1 as limits of rapidly Cauchy sequences of continuous functions without first
making a separate study of measure theory.
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Proof We leave the case p = oo as an exercise (Problem 33). Assume 1 < p < oo. Let (fn} be
a rapidly convergent sequence in LP(E). By possibly excising from E a set of measure zero,
we may assume that each of the fn's takes real values. Choose ELI Ek to be a convergent
series of positive numbers such that

II fk+i - fkIIp s Ek for all k,

and therefore

JE

(9)

Ifk+1 - fk I p < Ekp for all k. (10)

Fix a natural number k. Since, for x e E, I fk+l (x) - fk (x) I > Ek if and only if Ifk+l (x) -
fk (x) I P > EP , we infer from (10) and Chebychev's Inequality that

m{xEE I Ifk+1(x)-fk(x)I>Ek}=m{xEE Ifk+1(x)-fk(x)IP>Ek}

s
1

n ' EIfk+1 - fkI1'
Ek

< Ek.

Since p > 1, the series 2k1 EP converges. The Borel-Cantelli Lemma tells us that there is a
subset Eo of E that has measure zero and for each x E E' E0, there is an index K(x) such that

Ifk+1(x)- fk(x)I <Ekforallk> K(x).

Let x belong to E ^- E0. Then

n+k-1

Ifn+k(x) - fn(x)I s 1 Ifj+1(x) - fj(x)I
j=n

00

sEEjforalln>K(x)andall k. (11)
j=n

The series 1 e j converges, and therefore the sequence of real numbers (fk (x)) is Cauchy.
The real numbers are complete. Denote the limit of { fk(x)} by f (x). It follows from (9) and
(6) that

JE

for all n, k. (12)
j=n

Since { fn } -+ f pointwise a.e. on E, take the limit ask -> oo in this inequality and infer from
Fatou's Lemma that

fIf - Alps

lP

00 1

2 E
1=n

P

for all n.
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Since the series Yk° Ek converges, f belongs to LP(E) and (fn} -+ f in Lp(E ). The proof
is complete since we constructed f as the pointwise limit a.e. on E of (fn}.

The Riesz-Fischer Theorem Let E be a measurable set and 1 < p < oo. Then LP(E) is a
Banach space. Moreover, if {fn} -* f in LP(E), a subsequence of (fn} converges pointwise
a. e. on E to f.

Proof Let {fn} be a Cauchy sequence LP(E). According to Proposition 5, there is a
subsequence {fnk } of If,) that is rapidly Cauchy. The preceding theorem tells us that (fnk )
converges to a function f in LP(E) both with respect to the LP(E) norm and pointwise a.e.
on E. According to Proposition 4 the whole Cauchy sequence converges to f with respect to
the LP(E) norm.

As the following example shows, a sequence (f,,} in LP (E) that converges pointwise
a.e. on E to fin LP(E) will not in general converge in LP(E).

Example For E = [0, 1], 1 < p < oo, and each natural number n, let fn = n11PX(O, 11n]. The
sequence converges pointwise on [0, 1] to the function that is identically zero but does not
converge to this function with respect to the LP[O, 1] norm.

The next two theorems provide necessary and sufficient conditions for convergence in LP(E)
for a sequence that converges pointwise.

Theorem 7 Let E be a measurable set and 1 < p < oo. Suppose If,,) is a sequence in LP(E)
that converges pointwise a.e. on E to the function f which belongs to LP(E). Then

{fn}-* finL"(E)ifandonly nh
m fE If1P=J if 1P.

E

Proof By possibly excising from E a set of measure zero, we may assume f and each fn
is real-valued and the convergence is pointwise on all of E. We infer from Minkowski's
Inequality that, for each n, 1 II fn 11p - 11f II p I s II fn - f 11p. Hence, if { f, } -+ fin Lp (E ), then
hmn oo fE I fn IP= fE I fn Ip To prove the converse, assume limn, oo fE I fn Ip= fE I fn I p
Define 0(t) = tP for all t. Then 0 is convex since its second derivative is nonnegative and thus

\a
2

bbl

O(a)
2

O(b) for all a, b.

Hence
ap p a 6 p

0< I 1

21b1

- I 2
for all a, b.

Therefore, for each n, a nonnegative measurable function hn is defined on E by

hn(x)= Ifn(x)I"+If(x)I" -Ifn(x)-f(x) p forallxEE.
2 2
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Since {hn } - If I P pointwise on E,rwe infer from Fatou's Lemma that

LIP <liminf[fEhn
I

=liminfIf Ifn(x)IP+If(x)IP _ fn(x)-f(x)I )1
LE 2 2

1

= fEIfIP - limsupf fE .fn(x)
2

-f (x) i
L J

Thus

JE

fn (x) - f(x)
2

that is,{fn}-* f in LP (E). 11

Theorem 8 Let E be a measurable set and 1 < p < oo. Suppose { fn } is a sequence in LP(E)
that converges pointwise a.e. on E to the function f which belongs to LP(E). Then

{fn}-* fin LP(E)
if and only if

(If IP) is uniformly integrable and tight over E.

Proof The sequence of nonnegative integrable functions {Ifn - f I P) converges pointwise a.e.
on E to zero. According to Corollary 2 of Chapter 5, a corollary of the Vitali Convergence
Theorem,

lim f Ifn - f I P = 0 if and only if {Ifn - fIP} is uniformly integrable and tight over E.n+oo E

However, we infer from the inequality (1) that for all n,

Ifn - fIP < 2P{IfnIP+IfIP}andlf.IP <2P(Ifn-fIP+IfIP}a.e.onE.

By assumption, I f I P is integrable over E, and therefore (Ifn - fIP} is uniformly integrable
and tight over E if and only if the sequence {IfnIP} is uniformly integrable and tight over E.

0

PROBLEMS

23. Provide an example of a Cauchy sequence of real numbers that is not rapidly Cauchy.

24. Let X be normed linear space. Assume that (fn } -+ f in X, (gn } -* g in X, and a and /3 are
real numbers. Show that

{afn+/3gn}-+af +3g in X.

25. Assume that E has finite measure and 1 < pt < pZ < oo. Show that if If,) -* fin LP2 (E),
then if,) -* fin L P1 (E).
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26. (The LP Dominated Convergence Theorem) Let {fn} be a sequence of measurable functions
that converges pointwise a.e. on E to f. For 1 < p < oo, suppose there is a function g in
LP(E) such that for all n, Ifn I < g a.e. on E. Prove that f f,,) -+ fin LP(E).

27. For E a measurable set and 1 < p < oo, assume { fn} --* fin LP(E). Show that there is a
subsequence {fnk } and a function g e LP (E) for which I fnk I < g a.e. on E for all k.

28. Assume E has finite measure and 1 < p < oo. Suppose { fn} is a sequence of measurable
functions that converges pointwise a.e. on E to f. For 1 < p <oo, show that { fn } -* fin LP(E)
if there is a 9 > 0 such that { fn} belongs to and is bounded as a subset of LPG( E).

29. Consider the linear space of polynomials on [a, b] normed by
II Ilmax norm. Is this normed

linear space a Banach space?

30. Let {f,) be a sequence in C[a, b] and E', ak a convergent series of positive numbers such
that

II fk+i - fk llmax 5 ak for all k.

Prove that

I fn+k (x) - fk (x) I < II fn+k - fk llmax a j for all k, n and all x E [a, b].
j=n

Conclude that there is a function f e C[a, b] such that { fn } -+ f uniformly on [a, b]

31. Use the preceding problem to show that C[a, b], normed by the maximum norm, is a Banach
space.

32. Let { fn} be a sequence in Lam( E) and 7,'1 ak a convergent series of positive numbers such
that

I1fk+1- fklloo 5 ak for all k.

Prove that there is a subset E0 of E which has measure zero and

00

Ifn+k (x) - fk (x) 15 II fn+k - fk ll oo 5 E a j for allk, n and all x E E ^- Eo.
j=n

Conclude that there is a function f E Loo ( E) such that {fn } -* f uniformlyon E ti E0.

33. Use the preceding problem to show that LOG(E) is a Banach space.

34. Prove that for 1 < p < oo, lP is a Banach space.

35. Show that the space of c of all convergent sequences of real numbers and the space co of all
sequences that converge to zero are Banach spaces with respect to the 11 norm.

7.4 APPROXIMATION AND SEPARABILITY

We here elaborate on the general theme of Littlewood's second principle, namely, the
approximation of functions in one class by ones in a better class. We consider approximation
with respect to the LP (E) norm. It is useful to introduce the general concept of denseness.

Definition Let X be a normed linear space with norm II II. Given two subsets .7 and G of X
with F C G, we say that .F is dense in G, provided for each function g in G and e > 0, there is a
function f in F for which 11 f - g 11 < e.
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It is not difficult to see that the set F is dense in G if and only if for each g in G there is a
sequence { ff } in F for which

lim fn =gin X.
n-+ oo

Moreover, it is also useful to observe that for .T C c C 9-l C X,

if .T is dense in g and g is dense in 7-l, then F is dense in H. (13)

We have already encountered dense sets: the rational numbers are dense in R, as are
the irrational numbers. Moreover, the Weierstrass Approximation Theorem4 may be stated
in our present vocabulary of normed linear spaces as follows: the family of polynomials
restricted to [a, b] is dense in the linear space C[a, b], normed by the maximum norm.

Proposition 9 Let E be a measurable set and 1 < p < oo. Then the subspace of simple
functions in LP(E) is dense in LP(E).

Proof Let g belong to LP(E). First consider p = oo. There is a subset Eo of E of measure
zero for which g is bounded on E ^- E0. We infer from the Simple Approximation Lemma
that there is a sequence of simple functions on E ^- Eo that converge uniformly on E ^- Eo
to g and therefore with respect to the LOO(E) norm. Thus the simple functions are dense in
L°O(E).

Now suppose 1 < p < oo. The function g is measurable and therefore, by the Simple
Approximation Theorem, there is a sequence {cpn} of simple functions on E such that
(cpn) -+ g pointwise on E and

J (p, 1 5 I g I on E for all n.

It follows from the integral comparison test that each con belongs to LP(E). We claim that
{cpn } -* gin L P (E ). Indeed, for all n,

Icon - 91P < 2P{IcpnI'+ IgIP} 5 2P+lIgIP on E.

Since IgIP is integrable over E, we infer from the Lebesgue Dominated Convergence
Theorem that {cpn} _+ g in LP(E).

Proposition 10 Let [a, b] be a closed, bounded interval and 1 < p < oo. Then the subspace
of step functions on [a, b] is dense in LP[a, b].

Proof The preceding proposition tells us that the simple functions are dense in LP[a, b].
Therefore it suffices to show that the step functions are dense in the simple functions, with
respect to the II IIP norm. Each simple function is a linear combination of characteristic
functions of measurable sets. Therefore, if each such characteristic function can be arbitrarily
closely approximated, in the II IIP norm, by a step function, since the step functions are a
linear space, so can any simple function. Let g = XA, where A is a measurable subset of
[a, b] and let e > 0, and seek a step function f on [a, b] for which II! - gIIP < e. According
to Theorem 12 of Chapter 2, there is a finite disjoint collection of open intervals, {Ik}k_t, for

4See Patrick Fitzpatrick's Advanced Calculus [FitO9] for a proof.
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which, if we define U Uk-1 Ik, then the symmetric difference A AU = [A ^- U] U [U n A]
has the property that

m(AAU) <e'.

Since U is the union of a finite disjoint collection of open intervals, Xu is a step function.
Moreover,

IIXA - Xull p = [m(Ai U)]1"p. (14)

Therefore IIXA - XU 11p < e and the proof is complete.

Definition A normed linear space X is said to be separable provided there is a countable
subset that is dense in X.

The real numbers are separable since the rational numbers are a countable dense
subset. For [a, b] a closed, bounded interval, C[a, b], normed by the maximum norm, is
separable since we infer from the Weierstrass Approximation Theorem that the polynomials
with rational coefficients are a countable set that is dense in C[a, b].

Theorem 11 Let E be a measurable set and I< p < oo. Then the normed linear space LP(E)
is separable.

Proof Let [a, b] be a closed, bounded interval and S[a, b] the collection of step functions
on [a, b]. Define S'[a, b] to be subcollecti on of S[a, b] comprising step functions 0 on [a, b]
that take rational values and for which there is a partition P = (xo, ..., xn) of [a, b] with
41 constant on (xk_1, xk), for 1 < k < n, and xk rational for 1 < k < n -1. We infer from
the density of the rational numbers in the real numbers that S'[a, b] is dense in S[a, b], with
respect to the LP (E) norm. We leave it as an exercise to verify that S'[a, b] is a countable set.
There are the following two inclusions, each of which is dense with respect to the LP[a, b]
norm:

S'[a, b] C S[a, b] C LP[a, b].

Therefore, by (13), S'[a, b] is dense in LP[a, b]. For each natural number n, define F,1 to
be the functions on R that vanish outside [-n, n] and whose restrictions to [-n, n] belong
to S'[-n, n]. Define F = UnEN fn. Then.F is a countable collection of functions in LP(R).
By the Monotone Convergence Theorem,

f Iflp= f I.fIpforallfELP(R).n-i00 [_n n] Rlini

Therefore, by the choice of each Fn, F is a countable collection of functions that is dense in
LP (R). Finally, let E be a general measurable set. Then the collection of restrictions to E of
functions in T is a countable dense subset of LP(E), and therefore LP(E) is separable.

As the following example shows, in general L00 (E) is not separable.

Example Let [a, b] be a nondegenerate closed, bounded interval. We claim that the normed
linear space L00[a, b] is not separable. To verify this claim, we argue by contradiction.
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Suppose there is a countable set (f,)11 that is dense in L°O[a, b]. For each number
x E [a, b], select a natural number q(x) for which

IIX[a,xl - f,,(x) Iloo < 1/2.

Observe that

II X [a, xl] - X[a, x2] II oo = 1 if a< x1 < x2 < b.

Therefore rl is a one-to-one mapping of [a, b] onto a set of natural numbers. But a set of
natural numbers is countable and [a, b] is not countable. We conclude from this contradiction
that L' [a, b] is not separable.

For a measurable subset E of R, we denote by CA(E) the linear space of continuous
real-valued functions on E that vanish outside a bounded set. In the proof of the above
theorem, for 1 < p < oo, we presented a dense subset F of LP(R) with the property that
for each f E F, there is a closed, bounded interval [a, b] for which the restriction of f
to [a, b] is a step function and f vanishes outside [a, b]. It is not difficult to see that each
f E F is the limit in LP(R) of a sequence of continuous, piecewise linear functions, each
of which vanish outside a bounded set. Define F' to be the union of all such approximating
sequences of functions in .F. Then .F' is dense in LP (R ). Moreover, for E a measurable set,
the collection of restriction to E of functions belonging to F' is a dense subset of LP(E)
consisting of continuous functions on E that vanish outside a bounded set. This proves the
following theorem.

Theorem 12 Let E be a measurable set and 1 < p < oo. Then C,(E) is dense in LP(E).

PROBLEMS

36. Let S be a subset of a normed linear space X. Show that S is dense in X if and only if each
g E X is the limit of a sequence in S.

37. Verify (13).

38. Prove that the collection of polynomials with rational coefficients is countable.

39. Let E be a measurable set, 1 < p < oo, q the conjugate of p, and S a dense subset of L9(E).
Show that if g E LP(E) and fE f g = O for all f E S, then g = 0.

40. Verify the details in the proof of Theorem 11.

41. Let E be a measurable set of finite measure and 1 < P1 < P2 < oo. Consider the linear space
LP2 (E) normed by II "P1 . Is this normed linear space a Banach space?

42. Exhibit a measurable set E for which LO0 (E) is separable. Show that L0O (E) is not separable
if the set E contains a nondegenerate interval.

43. Suppose that X is a Banach space with norm II II. Let X0 be a dense subspace of X. Assume
that Xo, when normed by the_ norm it inherits from X, is also a Banach space. Prove that
X=Xo.

44. For 1 < p < oo, show that the sequence space eP is separable. Show that the collection of sets
of natural numbers is uncountable and conclude that t°O is not separable.
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45. Prove Theorem 12.

46. Show that for 1 < p < oo and any two numbers a and b,

sgn(a) . lall/P - sgn(b) . Ibl1/PIP < 2P la - bl.

47. Show that for 1 < p < oo and any two numbers a and b,

Isgn(a) . IalP - sgn(b) IbVPi < p la - bl(lal + lbl )P-1.

48. (Mazur) Let E be a measurable set and 1 < p < oo. For fin L 1(E ), define the function 4F(f )
on E by

1(f)(x) = sgn(.f{x))lf(x)I11P_

Show that 4)(f) belongs to L P (E ). Moreover, use Problem 46 to show that

II1(f)-t(g)llp <2P.Ilf-gill for all f, gmL1(E).

From this conclude that 4) is a continuous mapping of L1(E) into LP(E) in the sense that
if { f} fin L1(E), then c(f) in LP(E). Then show that F is one-to-one and
its image is LP(E). Find a formula for the inverse mapping. Use the preceding problem to
conclude that the inverse mapping 0-1 is a continuous mapping from LP( E) to L1( E).

49. Use the preceding problem to show that the separability of L1( E) implies the separability of
LP(E), for 1 < p < oo.

50. For [a, b] a nondegenerate closed, bounded interval, show that there is no continuous
mapping from L1 [a, b] onto L00[a, b].

51. Use Lusin's Theorem to prove Theorem 12.
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For a measurable set E, 1 < p < oo, and q conjugate to p, let g belong to Lq(E). Define the
real-valued functional T on LP(E) by

T(f)=f f gforall f ELP(E).
E

(i)

Holder's Inequality tells us that f g is integrable and therefore T is properly defined. The
functional T inherits linearity from the linearity of integration. Furthermore, there is a M >_ 0
for which

IT(f)I 5M IIfIIPforall f E LP(E). (ii)

Indeed, by Holder's Inequality, this holds for M = IlgIIq The Riesz Representation Theorem
asserts that if T is any real-valued linear functional on LP(E) with the property that there
is an M for which (ii) holds, then there is a unique g in Lq (E) for which T is given by (i).
A sequence (fn) of functions in LP (E) to said to converge weakly to a function fin LP(E)
provided

lim
JI f g = J f g for all g E Lq(E). (iii)n- oo E E

We use the Riesz Representation Theorem and a theorem of Helley to show that, for
1 < p < oo, any bounded sequence in LP(E) has a weakly convergent subsequence. As
an example of just one of the many consequences of this result, we prove the existence of
minimizers for certain convex functionals.

8.1 THE RIESZ REPRESENTATION FOR THE DUAL OF LP,1 < P < oo

Definition A linear functional on a linear space X is a real-valued function T on X such that
for g and h in X and a and p real numbers,

T(ag+0 h)=aT(g)+/3T(h).
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It is easy to verify that the linear combination of linear functionals, defined pointwise,
is also linear. Thus the collection of linear functionals on a linear space is itself a linear space.

Example Let E be a measurable set, 1 < p < oo, q the conjugate of p, and g belong to
Lq(E). Define the functional Ton LP(E) by

T(f)=J g- ffor all fELP(E).
E

(1)

Holder's Inequality tells us that for f E LP(E), the product g f is integrable over E so the
functional T is properly defined. By the linearity of integration, T is linear. Observe that
Holder's Inequality is the statement that

IT(f)I <_ Ilgllq - II.fIllforall f ELP(E). (2)

Example Let [a, b] be a closed, bounded interval and the function g be of bounded variation
on [a, b]. Define the functional T on C[a, b] by

T(f)=J6f(x)dg(x)forall fEC[a,b],
a

(3)

where the integral is in the sense of Riemann-Stieltjes. The functional T is properly defined
and linear.' Moreover, it follows immediately from the definition of this integral that

IT(f )I 5 TV(g) Ilfllmax for all f EC[a, b], (4)

where TV(g) is the total variation of g over [a, b].

Definition For a normed linear space X, a linear functional T on X is said to be bounded
provided there is an M > 0 for which

all fEX. (5)

The infimum of all such M is called the norm of T and denoted by IITII.

The inequalities (2) tell us that the linear functional in the first example is bounded,
while inequalities (4) do the same for the second example.

Let T be a bounded linear functional on the normed linear space X. It is easy to see
that (5) holds for M = II TII. Hence, by the linearity of T,

IT(f) -T(h)I s 11 T11* llf -hll for all f,hEX.

From this we infer the following continuity property of a bounded linear functional T:

if{f}-+ finX, then T(f).

(6)

(7)

'See Chapter 2 of Richard Wheedon and Antoni Zygmund's book Measure and Integral [WZ77] regarding
Riemann-Stieltjes integration.
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We leave it as an exercise to show that

IITII*=sup{T(ffEX, 11f11<_1 (8)

and use this characterization of II II* to prove the following proposition.

Proposition 1 Let X be a normed.linear space. Then the collection of bounded linear
functionals on X is a linear space on which II II: is a norm. This normed linear space is called
the dual space of X and denoted by X*.

Proposition 2 Let E be a measurable set, 1 < p < oo, q the conjugate of p, and g belong to
Lq(E). Define the functional Ton LP(E) by

T(f)=J g f for all f ELP(E).
E

Then T is a bounded linear functional on LP(E) and IITII* = 11911q-

Proof We infer from (2) that T is a bounded linear functional on LP(E) and II T11" < ll gllq On
the other hand, according to Theorem 1 of the preceding chapter (with p and q interchanged),

the conjugate function of g, g* = Ilgllq-1 sgn(g)lglq-1, belongs to LP(E),

T(g*)=11gllgandllg*llp=1.

It follows from (8) that IITII* = Ilgllq

Our goal now is to prove that for 1 <_ p < oo, every bounded linear functional on
LP(E) is given by integration against a function in Lq (E), where q is the conjugate of p.

Proposition 3 Let T and S be bounded linear functionals on a normed linear space X. If
T = Son a dense subset X0 of X, then T = S.

Proof Let g belong to X. Since Xo is dense in X, there is a sequence in X0 that converges
in X to g. We infer from (7) that S(g) and {T (g )) -+ T (g ). But T(g)
for all n, and hence S(g) = T (g ).

Lemma 4 Let E be a measurable set and 1 < p < oo. Suppose the function g is integrable
over E and there is an M > 0 for which

I fE
Mll f II P for every simple function fin LP(E ). (9)

Then g belongs to Lq(E), where q is the conjugate of p. Moreover, Ilgllq < M.
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Proof Since g is integrable over E, it is finite a.e. on E. By possibly excising a set of measure
zero from E, we assume g is finite on all of E. We first consider the case p > 1. Since Igl is a
nonnegative measurable function, according to the Simple Approximation Theorem, there
is a sequence of simple functions {cpn} that converges pointwise on E to Igl and 0 < V. IgI

on E for all n. Since {cpn } is a sequence of nonnegative measurable functions that converges
pointwise on E to Iglq, by Fatou's Lemma, to show that Iglq is integrable over E and
IIg11q < M it suffices to show that

Mq for all n. (10)
JE

Fix a natural number n. To verify (10) we estimate the functional values of q on E as
follows:

Wn = (Pn
(Pn-1

<- IgI -
(Pn-1

= g . sin (g) - cpn-1 on E. (11)

We define the simple function fn by

fn = slin(g)' On-1 on E.

The function cpn is integrable over E since it is dominated on E by the integrable function g.
Therefore, since (Pn is simple, it has finite support, and hence fn belongs to LP(E). We infer
from (11) and (9) that

f 'pn f g. fn <- MII fn I1 p (12)
E E

Since q is the conjugate of p, p(q - 1) = q and therefore

f Ifnlp =
fP(_1)

= jq
E

We rewrite (12) as
r 1/p

fEcPn <M. J con1

Since IrPln is integrable over E, we may regather this integral inequality as

1-1/p

[fEd]
< M,

which, since 1-1/p =1/q, is a restatement of (10).

It remains to consider the case p = 1. We must show that M is an essential upper
bound for g. We argue by contradiction. If M is not an essential upper bound, then, by the
continuity of measure, there is some e > 0, for which the set EE = {x E E I lg(x) I > M + E}
has nonzero measure. If we let f be the characteristic function of a measurable subset of EE
that has finite positive measure, we contradict (9). 0
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Theorem 5 Let [a, b] be a closed, bounded interval and 1 < p < 00. Suppose T is a bounded
linear functional on LP[a, b]. Then there is a function gin L4 [a, b], where q is the conjugate
of p, for which

T(f) = f g f for all f in LP[a, b].I
Proof We consider the case p > 1. The proof of the case p = 1 is similar. For x in [a, b],
define

c(x) = T(X[a,x))
We claim that this real-valued function t is absolutely continuous on [a, b]. Indeed, by the
linearity of T, for each [c, d] C [a, b], since X[c,d) = X[a, d) - X[a, c),

(D(d)-F(c) = T(X[a,d)) - T(X[a,c)) =T(x[c,d)).

Thus if {(ak, bk)}k=1 is a finite disjoint collection of intervals in (a, b), by the linearity of T,

n n l
I(D(bk)-(D(ak)I =I Ek'X[ak,bk) I

k=1 k=1 k=1 /

(13)

where each Ek = sgn[4(bk) - '(ak)]. Moreover, for the simple function f = Ek X[ak, bk)'
k=1

ll
1/P

IT(f)I 5 IITII* Ilflip and Ilfllp = j (bk -ak)J
k=1

Thus

I I(D(bk) -4(ak)I 5 IITII* I ±(bk -ak)
k=1 k=1

Il/p

Therefore, S = (E/ II T II *) P responds to any e > 0 challenge regarding the criterion for to
be absolutely continuous on [a, b].

According to Theorem 10 of Chapter 6, the function g = 4' is integrable over [a, b]
and

cb(x) =
fx

g forallxe[a, b].

Therefore, for each [c, d] C (a, b),

bT(x[c,d))=(D(d)-(D(c)= fa g X[c,d).

Since the functional T 2 and the functional f H fb g f are linear on the linear space of step
functions, it follows that

b

T (f) = f g f for all step functions f on [a, b].
a

2The functional T must respect the equivalence relation of equalitya.e. on [a, b] among functions in LP[a, b].
In particular, for a <c 5 d 5 b, T(X[c,d)) =T(X(c,d)) =T(X[c,d])
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By Proposition 10 of the preceding chapter and its proof, if f is a simple function on [a, b],
there is a sequence of step functions {cp } that converges to fin LP[a, b] and also is uniformly
pointwise bounded on [a, b]. Since the linear functional T is bounded on LP[a, b], it follows
from the continuity property (7) that

alm T((gn)=T(.f)
*oo

On the other hand, by the Lebesgue Dominated Convergence Theorem,

b b

n1 f f
Therefore

Since T is bounded,

b

J
gf

a

L

b

T(f) = g f for all simple functions f on [a, b].

= IT(f) I < II T II . IIf II p for all simple functions f on [a, b].

According to Lemma 4, g belongs to Lq[a, b]. It follows from Proposition 2 that the linear
functional f + fa g f is bounded on LP[a, b]. This functional agrees with the bounded
functional T on the simple functions, which, by Proposition 9 of the preceding chapter, is a
dense subspace of LP[a, b]. We infer from Proposition 3 that these two functionals agree on
all of LP[a, b].

The Riesz Representation Theorem for the Dual of LP(E) Let E be a measurable set,
1 < p < oo, and q the conjugate of p. For each g E Lq(E), define the bounded linear functional
7Zg on LP(E) by

7Zg(f) = JEg f for all f in Li(E). (14)

Then for each bounded linear functional T on LP(E), there is a unique function g E Lq(E)
for which

Rg = T, and IITII. = Ilgllq (15)

Proof Proposition 2 tells us that for each g E Lq(E), 1Zg is a bounded linear functional on
LP(E) for which 117Zg11. = Ilgllq By the linearity of integration, for each gl, $2 E Lq(E),

Rg1 - Rg2 = Rg1-g2'

Thus if Rgi = R82, then 'R9,-92 = 0 and hence Ilgl - g2llq = 0 so that g, = $2. Therefore, for
a bounded linear functional T on LP(E), there is at most one function g E Lq(E) for which
Rg = T. It remains to show that for each bounded linear functional T on LP(E), there is a
function g E Lq (E) for which T = Rg. The preceding theorem tells us that this is so for E
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a closed, bounded interval. We now verify this for E = R and then for general measurable
sets E.

Let T be a bounded linear functional on LP(R). Fix a natural number n. Define the
linear functional Tn on LP[-n, n] by

Tn (f) = T(f) for all f E LP[-n, n],

where f is the extension of f to all of R that vanishes outside [-n, n]. Then, since
11f IIP = II!llp,

ITn(f)I IITII*Ilfllp for all f ELP[-n, n].

Thus IITII* IITII.. The preceding theorem tells us there is a function gn ELq[-n, n]
for which

nTn(f) = feLP[-n, n] andllgnllq=IITII*SIITII* (16)
n

By the remarks regarding uniqueness at the beginning of this proof, the restriction ofgn+t to
[-n, n] agrees with gn a.e. on [-n, n]. Define g to be a measurable function on R which, for
each n, agrees with gn a.e. on [-n, n]. We infer from the definitions of T. and gn, together
with the left-hand equality in (16), that for all functions f E LP(R) that vanish outside a
bounded set,

T(f) =

By the right-hand inequality in (16),

f n Iglq < (IITII*)gforall n
n

and hence, by Fatou's Lemma, g belongs to Lq(R). Since the bounded linear functionals Rg
and T agree on the dense subspace of LP(R) comprising the LP(R) functions that vanish
outside a bounded set, it follows from Proposition 3 that Rg agrees with Ton all of LP(R).

Finally, consider a general measurable set E and T a bounded linear functional on
LP(E). Define the linear functional T on LP(R) by T(f) = T(flE). Then T is a bounded
linear functional on LP(R). We have just shown that there is a function g E Lq(R) for which
T is represented by integration over R against g. Define g to be the restriction ofg to E.
Then T = Rg.

Remark In the second example of this section, we exhibited Lebesgue-Stieltjes integration
against a function of bounded variation as an example of a bounded linear functional on
C[a, b]. A theorem of Riesz, which we prove in Chapter 21, tells us that all the bounded
linear functionals on C[a, b] are of this form. In Section 5 of Chapter 21, we characterize the
bounded linear functionals on C(K), the linear space of continuous real-valued functions on
a compact topological space K, normed by the maximum norm.

Remark Let [a, b] be a nondegenerate closed, bounded interval. We infer from the linearity of

integration and Holder's Inequality that if f belongs to L 1 [a, b], then the functionalgy f ab f 9
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is a bounded linear functional on L°O[a, b]. It turns out, however, that there are bounded
linear functionals on L°O[a, b] that are not of this form. In Section 3 of Chapter 19, we prove
a theorem of Kantorovitch which characterizes the dual of L.

PROBLEMS

1. Verify (8).

2. Prove Propositon 1.

3. Let T be a linear functional on a normed linear space X. Show that T is bounded if and only
if the continuity property (7) holds.

4. A functional T on a normed linear space X is said to be Lipschitz provided there is a c > 0
such that

IT(g)-T(h)I <clig-hllforallg,hEX.
The infimum of such c's is called the Lipschitz constant for T. Show that a linear functional is
bounded if and only if it is Lipschitz, in which case its Lipschitz constant is II TI!..

5. Let E be a measurable set and 1 < p < oo. Show that the functions in LP(E) that vanish
outside a bounded set are dense in LP(E). Show that this is false for L°O(R).

6. Establish theRiesz Representation Theorem in the case p = 1 by first showing, in the notation
of the proof of the theorem, that the function (D is Lipschitz and therefore it is absolutely
continuous. Then follow the p > 1 proof.

7. State and prove a Riesz Representation Theorem for the bounded linear functionals on 1P,
1 <p<oo.

8. Let c be the linear space of real sequences that converge to a real number and co the subspace
of c comprising sequences that converge to 0. Norm each of these linear spaces with the C°O
norm. Determine the dual space of c and of co.

9. Let [a, b] be a closed, bounded interval and C[a, b] be normed by the maximum norm. Let
xo belong to [a, b]. Define the linear functional T on C[a, b] by T (f) = f (xo ). Show that
T is bounded and is given by Riemann-Stieltjes integration against a function of bounded
variation.

10. Let f belong to C[a, b]. Show that there is a function g that is of bounded variation on [a, b]
for which

f bfdg=lIfllmaxandTV(f)=1.

a

11. Let [a, b] be a closed, bounded interval and C[a, b] be normed by the maximum norm. Let
T be a bounded linear functional on C[a, b]. For X E [a, b], let gx be the member of C[a, b]
that is linear on [a, x] and on [x, b] with gx(a) = 0, gx(x) = x - a and gx(b) = x - a. Define
F(x) = T (g,) for x E [a, b]. Show that 1 is Lipschitz on [a, b].

8.2 WEAK SEQUENTIAL CONVERGENCE IN LP

The Bolzano-Weierstrass Theorem for the real numbers is the assertion that every bounded
sequence of real numbers has a convergent sequence. This property immediately extends
to bounded sequences in each Euclidean space R. This property fails in an infinite
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dimensional normed linear space.3 In particular, the following example shows that for
1 < p < oo, there are bounded sequences in LP[O, 1] that fail to have any subsequences that
converge in LP[O, 1]. The functions defined in the following example are called Radamacher
functions.

Example For I = [0, 1] and a natural number n, consider the step function fn defined
on I by

fn(x)= (-1)kfork/2n <x<(k+1)/2n where 0<k<2n-1.
Fix 1 < p < oo. Then If,) is a bounded sequence in LP (I) : indeed, II fn II P : 1 for every
index n. On the other hand, since, for n :f in, I fn - fm I takes the value 2 on a set of measure
1/2, II fn - fm 11 p ? (2)1- 11P. Therefore no subsequence of (fn) is Cauchy in LP (I) and hence
no subsequence can converge in LP(I). We also note that no subsequence can converge
pointwise almost everywhere on I since, for 1 < p < oo, if there were such a subsequence,
by the Bounded Convergence Theorem it would converge in LP(I ).

Definition Let X be a normed linear space. A sequence If,) in X is said to converge weakly
in X to fin X provided

lim T(fn)=T(f)forallTEX*.n-oo
We write

{fn}-> finX

to mean that f and each fn belong to X and { fn} converges weakly in X to f.

We continue to write { fn) f in X to mean that limn , oo II fn - f II = 0 and, to
distinguish this mode of convergence from weak convergence, often refer to this mode of
convergence as strong convergence in X. Since

-f11for all TEX*,

if a sequence converges strongly, then it converges weakly. The converse is false.

Proposition 6 Let E be a measurable set, 1 < p < oo, and q the conjugate of p. Then {f n } f
in LP(E) if and only if

nlimo Jg'fn=f
E

Proof The Riesz Representation Theorem tellsus that every bounded linear functional on
LP(E) is given by integration against a function in L9(E).

For E a measurable set and 1 < p < oo, a sequence in LP(E) can converge weakly to
at most one function in LP(E). Indeed, suppose (fn} converges weakly in LP(E) to both ft
and f2. Consider the conjugate function of ft - f2, (ft - fz)*. Then

j(f1_f2)*.f2=5nf(f1_f2)*.ffl=f(fl_fz)*.fl.

3Riesz's Theorem, which we prove in Section 3 of Chapter 13, tellsus that in every infinite dimensional normed
linear space X, there is a bounded sequence that has no subsequence that converges in X.
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Therefore

I1fi-f211p= fE(fl-f2)*(fl-f2)=0.

Thus fl = f2 and therefore weak sequential limits are unique.

Theorem 7 Let E be a measurable set and 1 < p < oo. Suppose If,,) , f in LP(E). Then

f fn } is bounded in LP(E) and II f 11p < lim inf II ff II,,. (17)

Proof Let q be the conjugate of p and f * the conjugate function of f. We first establish the
right-hand inequality of (17). We infer from Holder's Inequality that

ff*.fn <- Ilf*IIq . IIfnhIp = Ilfnllp for all n.

Since If,, I converges weakly to f and f* belongs to Lq(E),

IlfIIp=

We argue by contradiction to show that {fn} is bounded in LP(E). Assume {Ilfnllp} is
unbounded. Without loss of generality (see Problem 18), by possibly taking scalar multiples
of a subsequence, we suppose

1 1 f , 11 p = n 3n for all n. (18)

We inductively select a sequence of real numbers [Ed for which Ek = ±l/3k for each k.
Define El = 1/3. If n is a natural number for which El, ... , c, have been defined, define

n

En+l = 1/3n+1 if f I Ek (fn )* I fn+1 ? 0,
E Lk=1

and En+1 = -1/3n+1 if the above integral is negative. Therefore, by (18) and the definition
of conjugate function,

f [±Ek1k*].mnh/3fhhfnhhp=nandhhen.unrhh4=1/3nforalln. (19)
E k_1

Since IIEk (fk )*IIq =1/3k for all k, the sequence of partial sums of the series 7,k l Ek (fk )*
is a Cauchy sequence in Lq(E). The Riesz-Fischer Theorem tells us that L4 (E) is complete.
Define the function g e Lq (E) by

00

k=1
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Fix a natural number n. We infer from the triangle inequality, (19), and Holder's Inequal-
ity that

f.fn I I Ek'(fk)* 'fn
E k=1

n
f lf [Ek.(fk)*].ffl_f
L

Ek'(fk)*1 'fn
E k=1 E k=n+1

>n - f lf I I Ek ' (.fk)*l ' .fn
E

n -
L

E 1/3klIIfnIIp
k=00n+1

n/2.

This is a contradiction because, since the sequence {fn} converges weakly in LP(E) and
g belongs to L'(E), the sequence of real numbers {fEg fn} converges and therefore is
bounded. Hence { fn} is bounded in L.

Corollary 8 Let E be a measurable set, 1 < p < oo, and q the conjugate of p. Suppose {fn)
converges weakly to f in LP(E) and {gn I converges strongly to g in L' (E ). Then

nli m fE gn fn = fE9-f- (20)

Proof For each index n,

JEg'f= JE -g]. In + fEg'fn - fEg'f

According to the preceding theorem, there is a constant C > 0 for which

II fn
11p s C for all n.

Therefore, by Holder's Inequality,

fgnfn-fgf g'fn - f g'fl for all n.:S C II8n-9IIq+I
fE E

From these inequalities and the fact that both

n i i m Ilgn - gIlq = O and nllm0 g f n -
E
g f+oo fE

it follows that (20) holds.
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By the linear span of a subset S of a linear space X we mean the linear space consisting
of all linear combinations of functions in S, that is, the linear space of functions of the form

n

f=I,ak'fk,
k=1

where each ak is a real number and each fk belongs to S.

Proposition 9 Let E be a measurable set, 1 < p < oo, and q the conjugate of p. Assume F
is a subset of L" (E) whose linear span is dense in Lq(E). Let {fn} be a bounded sequence in
LP(E) and f belong to LP(E). Then f fn}

ff

in LP(E) if and only if

lim (21)
E

Proof Proposition 6 characterizes weak convergence in LP(E ). Assume (21) holds. To verify
weak convergence, let g0 belong to Lq(E). We show that limn fE fn ' g0 = fE E .f ' go. Let
c > 0. We must find a natural number N for which

ffno_ff.go<Eifn>N. (22)

Observe that for any g E V (E) and natural number n,

jfno_jfgo=j(fn_f).(go_g)+f(fn_f).g,

and therefore, by Holder's Inequality,

n 'go-
fE

f'go1:511 n- fllp'II9-gollq+
fE

f ffn.gff.g
Since f fn } is bounded in LP (E) and the linear span off is is dense in Lq ( E), there is a function
g in this linear span for which

Ilfn - flip' IIg - goIIq < E/2 foralln.

We infer from (21), the linearity of integration, and the linearity of convergence for sequences
of real numbers, that

lim f fn'g= f f'g.
E E

Therefore there is a natural number N for which

jfn.g_ff.g < E/2 if n > N.

By the preceding estimates it is clear that (22) holds for this choice of N.
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According to Proposition 9 of the preceding chapter, for 1 < q < oo, the simple
functions in Lq(E) are dense in Lq(E), and these functions have finite support if q < cc.
Moreover, Proposition 10 of the same chapter tells us that for a closed, bounded interval
[a, b] and 1 < q < oo, the step functions are dense in Lq[a, b]. Therefore the following two
characterizations of weak continuity follow from the preceding proposition.

Theorem 10 Let E be a measurable set and 1 < p < oo. Suppose {fn } is a bounded sequence in
LP(E) and f belongs to LP(E). Then { fn} fin LP(E) if and only if for every measurable
subset A of E,

lim
J fn = f f (23)n,oo A A

If p > 1, it is sufficient to consider sets A of finite measure.

Theorem 11 Let [a, b] be a closed, bounded interval and 1 < p < oo. Suppose f f') is a
bounded sequence in LP[a, b] and f belongs to LP[a, b]. Then If.) - f in LP[a, b] if and
only if

nli m f x fn = f x f for all x in [a, b]. (24)
a a

Theorem 11 is false for p =1, since the step functions are not dense in LO0[a, b]: see Problem 44.

Example (the Riemann-Lebesgue Lemma) Let I = [-IT, 7r] and 1 < p < oo. For each
natural number n, define fn (x) = sin nx for x in I. Then I fn I < 1 on I for each n, so {fn }
is a bounded sequence in LP(I). The preceding corollary tells us that the sequence f f')
converges weakly in LP(1) to f = 0 if and only if

x

lim
J sin nt dt = 0 for all x c: I.n-+00 n

Explicit calculation of these integrals shows that this is true. On the other hand, observe that
for each n,

ir
7rflsinnr2dt = f sin2ntdt=7T.

Thus no subsequence of (fn } converges strongly in L2(I) to f = 0. A similar estimate shows
no subsequence converges strongly in any LP(I). Therefore by the Bounded Convergence
Theorem, no subsequence of if, } converges pointwise almost everywhere on I to f = 0.

Example For a natural number n, define f, = n X(0, j/.] on [0, 1]. Define f to be
identically zero on [0, 1]. Then { fn } is a sequence of unit functions in L1[0, 1] that converges
pointwise to f on [0, 11. But if,) does not converge weakly to f in L1[0, 1] since, taking
g = X[0, 1] E L00[0, 1],

1 1 1 1

lim.
n fg.fnn1 Jffl=lwhilefg.f=Jf1.

-+ 00

Example Define the tent function fo on R to vanish outside (-1, 1), be linear on the
intervals [-1, 0] and [0, 1] and take the value 1 at x = 0. For each natural number n, define
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fn (x) = fo (x - n) and let f = 0 on R. Then (fn) -* f pointwise on R. Let 1 < p < oo. The
sequence If,) is bounded in LP(R). We leave it as an exercise in the use of continuity of
measure to show that for a set of finite measure A,

Jfa=ff,
n

A An -lim
(25)

and thereby infer from Theorem 10 that, for 1 < p < oc, {fn) - f in LP(R). But {fn) does
not converge weakly to fin Ll (R) since for g ° 1 on R, g belongs to L' (R), while { fR fn}
does not converge to fR f.

The preceding two examples exhibit bounded sequences in Ll (E) that converge
pointwise to a function in Ll (E) and yet do not converge weakly in Ll (E). This does not
occur inLp(E)ifI <p<oo.

Theorem 12 Let E be a measurable set and 1 < p < oo. Suppose {f,, } is a bounded sequence
in LP(E) that converges pointwise a.e. on E to f. Then If,,) , fin LP(E).

Proof We infer from Fatou's Lemma, applied to the sequence {Ifnlp}, that f belongs to
LP(E). Theorem 11 tells us that to verify weak sequential convergence it is necessary and
sufficient to show that for each measurable subset A of E of finite measure,

lim J A = IA f
A

Let A be such a set. According to Corollary 2 of the preceding chapter, since the sequence
If,,) is bounded in LP (E), it is uniformly integrable over E. But m (A) < oo. Therefore, by
the Vitali Convergence Theorem, (26) holds.

The Radon-Riesz Theorem Let E be a measurable set and 1 < p < oo. Suppose If,) - f in
LP(E). Then

If,) --> f in LP(E) if and only if nlim Ilfnllp=llfllp
00

Proof It is always that case, in any linear space X normed by II II, that strong convergence
implies convergence of the norms. Indeed, this follows from the following consequence of
the triangle inequality:

IIIBII - Ilhlll <- IIg - hll for all g,hinX.

It remains to show that in the L P (E) spaces,1 < p < oo, weak convergence and convergence
of the norms implies strong convergence in Lp(E). We present the proof for the case p = 2.4
Let {f,} be a sequence in L2(E) for which

r
{ fn } - fin L2 (E) and

rtlim J
f,2 = r f2.

-oo E E

4For the proof for general p > 1, a substitute is needed for the identity (a - b)2 = a2 - tab + b2. A detailed
proof is provided in Frigyes Riesz and B81a Sz.-Nagy's Functional Analysis [RSN90], pages 78-80.
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Observe that for each n,

Ilfn-fII2 f Ifn-fI2= f (fn-f)2 f fn f+ f Ifl2.
E E E E E

Since f belongs to Lq(E) = L2(E),

nli fjf_ff2Therefore

If,,) -* fin L2(E).

Corollary 13 Let E be a measurable set and 1 < p < oo. Suppose If,, } , f in LP(E). Then
a subsequence of (fn } converges strongly in LP( E) to f if and only if

11f lip = liminf Ilfn IIp.

Proof If II f II p = lim inf 11f, IIp, then there is a subsequence {fnk } for which limk -+ 00 II fnk lip =
II f II p. The Radon-Riesz Theorem tells us that {fnk } converges strongly to f in LP (E). Con-
versely, if there is a subsequence {fnk } that converges strongly to f, then limk - oo II fnk II p =
11 f IIp . Thus lim inf 11 fn 11 p < 11 f 11 p. The right-hand inequality in (17) is this inequality in the
opposite direction.

As the following example shows, the Radon-Riesz Theorem does not extend to the
case p = 1.

Example For each natural number n, define In (x) =1 + sin(nx) on I = [-ar, IF]. It follows
from the Riemann-Lebesgue Lemma that the sequence { fn } converges weakly in L1 (I) to the
function f =1. Since each f, is nonnegative, we therefore also have limn -+ II In 11 1 = II f 111.

Since {sin(nx) } does not converge strongly in L1(I ), {fn } does not converge strongly in L1(I ).

Remark For E a measurable set, 1 < p < 00, f E LP(E), and f* the conjugate function of
f, define T E (LP(E))* by

T(h) = f
E

Rewrite (17) as

T(f)=IlfllpandIITII*=1. (27)

In Section 2 of Chapter 14, we prove the Hahn-Banach Theorem and as a corollary of this
theorem show that if X is any normed linear space and f belonging to X, there is a bounded
linear operator T in X* for which T(f) = IIf1I and IITII* = 1. For the LP(E) spaces, the
conjugate function is a concrete presentation of this abstract functional.

PROBLEMS

12. Show that the sequence defined in the first example of this section does not converge strongly
to f ° 0 in LP[0, 1] for all 1 < p < oo.
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13. Fix real numbers a and P. For each natural number n, consider the step function fn defined
on I = [0, 1] by

fn(x)=(1-(-1)k)a/2+(1+(-1)k)/3/2fork/2n <x<(k+1)/2a, 0<k<2n-1.

For 1 < p < oo, show that If, } converges weakly in LP(I) to the constant function that takes
the value (a+/3)/2. For a#/3, show that no subsequence of f fn) converges strongly in LP(I ).

14. Let h be a continuous function defined on all of R that is periodic of period T and f o h = 0. Let
[a, b] be a closed, bounded interval and for each natural number n, define the function fn on
[a, b] by fn(x) = h (nx). Define f--0on[a, b]. Show that fort < p<oo, {fn}- finLP[a, b].

15. Let1<p<ooand fo belong to L P (R). For each natural number n, define fn(x)= fo(x-n)
for all x. Define f -- 0 on R. Show that { fn} fin LP(R). Is this true for p = 1?

16. Let E be a measurable set, {f,} a sequence in L2 (E) and f belong to L2(E). Suppose

/r z _ /r z
ffn - f =) J

fn -
J

fnhm
E E E

Show that If, I converges strongly to fin L2(E).

17. Let E be a measurable set and 1 < p < oo. Suppose {fn} is a bounded sequence in LP(E)
and f belongs to LP( E). Consider the following four properties: (i) { fn} converges pointwise
to f almost everywhere on E, (ii) { f} , fin LP(E), (iii) {Ilfnllp} converges to {Ilfnllp}, and
(iv) {ff} -p f in LP(E). If (fn) possesses two of these properties, does a subsequence possess
all four properties?

18. Let X be a normed linear space and { fn } -> fin X. Suppose (11f, II } is unbounded. Show that,
by possibly taking a subsequence and relabeling, we may suppose II fn II ? an = n 3' for all
n. Then show that, by possibly taking a further subsequence and relabeling, we may suppose
{Ilfnll/an}-a E [1, oo]. Define gn = an/Ilfnll f, for each n. Show that {gn} converges
weakly and II gn II = n 3' for all n.

19. For 1 < p < oo, let be a bounded sequence in fP and belong in EP. Show that
in IP if and only if it converges componentwise, that is, for each index k,

lim
n

, where n = and

20. Let 1 < pl < Pz < oo, { fn} be a sequence in LP2[0, 1] and f belong to LP2[0, 1]. What is the
relationship between If, I - fin LP2[0, 1] and (fn} - fin LPl[0, 1]?

21. For 1 < p < oo and each index n, let en E EP have nth component 1 and other components
vanish. Show that if p > 1, then {en} converges weakly to 0 in IP, but no subsequence
converges strongly to 0. Show that {en } does not converge weakly in E

22. State and prove the Radon-Riesz Theorem in 12.

23. Let [a, b] be a closed, bounded interval. Suppose { fn} - f in C[a, b]. Show that If,)
converges pointwise on [a, b] to f.

24. Let [a, b] be a closed, bounded interval. Suppose If,) - fin L' [a, b]. Show that

lim
fXfJ

f for all E [b].
a
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25. Let X be a normed linear space. Suppose that for each f E X there is bounded linear functional
Te X* for which T(f) = hf II and IITl = 1.
(i) Prove that if { fn } converges weakly in X to both fl and f2, then fl = f2.

(ii) Prove that if { fn) ,fin X, then I I f II < lim inf I I fn 11.

26. (Uniform Boundedness Principle) Let E be a measurable set, 1 < p < oo, and q the conjugate
of p. Suppose { f,) is a sequence in L P ( E) such that for each g E L9 (E ), the sequence {f E g f }
is bounded. Show that If,] is bounded in LP(E).

8.3 WEAK SEQUENTIAL COMPACTNESS

As we observed in the beginning of the preceding section, for [a, b] a closed, bounded
interval and 1 < p < oo, there are bounded sequences in LP[a, b] that fail to have any
strongly convergent subsequences. However, for 1 < p < oo, there is the following seminal
theorem regarding weak sequential convergence.

Theorem 14 Let E be a measurable set and 1 < p < oo. Then every bounded sequence in
LP(E) has a subsequence that converges weakly in LP(E) to a function in LP(E).

Our proof of this weak sequential compactness result is based on the following
theorem.5

Helley's Theorem Let X be a separable normed linear space and {Tn } a sequence in its dual
space X* that is bounded, that is, there is an M > 0 for which

ITn(f)I :5M.Ilfllforall finXandalln.

Then there is a subsequence (Tnk) of {Tn} and Tin X* for which

lim Tnk (f) = T(f) for all f in X.
k +00

(28)

(29)

Proof Let { 1 be a countable subset of X that is dense in X. We infer from (28) that
the sequence of real numbers {Tn(fl )) is bounded. Therefore, by the Bolzano-Weierstrass
Theorem, there is a strictly increasing sequence of integers {s(1, n)} and a number al for
which

nh Ts(l,n)(fl) = al.

We again use (28) to conclude that the sequence of real numbers {TS(l,n)(f2)} is bounded,
and so again by the Bolzano-Weierstrass Theorem, there is a subsequence {s(2, n)} of
{s (1, n)) and a number a2 for which

j.n Ts(2,n)(f2)=a2 for all

5This theorem was proved by Eduard Helley in 1912 for the special case X = C[a, b], normed by the maximum
norm. In his 1932 book, Stefan Banach observed, providing a one-sentence proof, that the result holds for any
separable normed linear space.
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We inductively continue this selection process to obtain a countable collection of strictly
increasing sequences of natural numbers {{s( j, n)}ff 1 and a sequence of real numbers (aj)
such that for each j,

{s(j + 1, n)) is a subsequence of {s(j, n)},

and

lm T0(j,n)(fj)=aj.
n-400

For each index k, define nk = s(k, k). Then for each j, {nk}k
J is a subsequence of {s(j, k)}

and hence
lim Tnk (fj) = a j for all j.

k 00

Since {Tnk } is bounded in X* and {Tnk (f ) } is a Cauchy sequence for each f is a dense subset
of X, {Tnk (f )} is Cauchy for all f in X. The real numbers are complete. Therefore we may
define

T(f)=klim Tnk(f)foIall fEX.

Since each Tnk is linear, the limit functional T is linear. Since

ITnk(f)I <_ M M. IIf11 for all kand all f EX,

IT(f)I =k"M ITnk(f)I:5 fEX.
+00

Therefore T is bounded.

Proof of Theorem 14 Let q be the conjugate of p. Let { fn} be a bounded sequence in LP(E).
Define X = L'( E ). Let n be a natural number. Define the functional Tn on X by

Tn(g)= f
E

Proposition 2, with p and q interchanged and the observation that p is the conjugate of q,
tells us that each Tn is a bounded linear functional on X and II Tit 11* = 11 fn II p. Since f fn } is
a bounded sequence in LP(E), {Tn} is a bounded sequence in X*. Moreover, according to
Theorem 11 of Chapter 6, since 1 < q < oo, X = Lq (E) is separable. Therefore, by Helley's
Theorem, there is a subsequence {Tnk} and T E X* such that

klim Tnk(g) = T(g) for all g in X = L9(E). (30)
+oo

The Riesz Representation Theorem, with p and q interchanged, tells us that there is a
function fin LP(E) for which

T(g) = f
E

But (30) means that

kl

According to Proposition 6, { fnk} converges weakly to fin LP(E)
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As we see in the following example, for [a, b] a nondegenerate closed, bounded
interval, a bounded sequence in L1 [a, b] may fail to have a weakly convergent subsequence.

Example For I = [0, 1] and a natural number n, define in = [0, 1/n] and f,, = n Xin.
Then (fn} is a bounded sequence in L1[0, 1] since Ilfnlll = 1 for all n. We claim that { fn}
fails to have a subsequence that converges weakly in L'[0, 1]. Indeed, suppose otherwise.
Then there is a subsequence {fn,} that converges weakly in L1[0, 1] to f E L1[0, 1]. For each
[c, d] C [0, 1], integration against X[c, d] is a bounded linear functional on Ll[0, 1]. Thus

f f= klml
Fink.

Therefore

r f=0forall0<c<d<1.

It follows from Lemma 13 of Chapter 5 that f = 0 almost everywhere on [0, 1]. Therefore

1

f1
k ffnk=1.0=J J =lim

Definition A subset K of a normed linear space X is said to be weakly sequentially compact
in X provided every sequence {fn} in K has a subsequence that converges weakly to f E K.

Theorem 15 Let E be a measurable set and 1 < p < oo. Then

{ f E LP (E) 1 II,f IIp 5 1} is weakly sequentially compact in LP(E).

Proof Let { fn} be a sequence in LP(E) for which Il fn ll p < 1 for all n. Theorem 14 tells us
that there is a subsequence {fn,) which converges weakly to f E LP (E). Moreover, Il.f IIp 51
since, by (17),

Ilfllp<_lmi fllfnllp<1.

Remark While a general bounded sequence in L1(E), does not have a weakly convergent
subsequence, a theorem of Dunford and Pettis, which we prove in Section 5 of Chapter 19,
tells us that any bounded sequence in Ll (E) that is uniformly integrable possesses a weakly
convergent subsequence.

PROBLEMS

27. Let [a, b] be a nondegenerate closed, bounded interval. In the Banach space C[a, b], normed
by the maximum norm, find a bounded sequence that fails to have any strongly convergent
subsequence.

28. For 1 < p < oo, find a bounded sequence in V that fails to have any strongly convergent
subsequence.
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29. Let E be a measurable set that contains a nondegenerate interval. Show that there is a
bounded sequence in L1(E) that fails to have a weakly convergent subsequence. Exhibit
a measurable set E for which every bounded sequence in L1(E) has a weakly convergent
subsequence.

30. Let X be a normed linear space, {Tn} be a sequence in X*, and T belong to X*. Show that
[T,) -* T with respect to the II II * norm if and only if

lim Tn (f) = T (f) uniformly on If E X I Ill II 11 .n- 00

31. Is the sequence defined in the last example of this section uniformly integrable?

32. For p = 1, at what point does the proof of Theorem 14 fail?

33. Show that in £P,1 < p < oo, every bounded sequence in U has a weakly convergent
subsequence.

34. Let { fn} be a sequence of functions on [0, 1], each of which is of bounded variation and for
which {TV( fn )) is bounded. Show that there is a subsequence {fn,} with the property that

for each continuous function g on [0, 1], the sequence of integrals { fo g(x) d fnk(x) dx} is
Cauchy.

35. Let X be a normed linear space and {Tn} a sequence in X* for which there is an M > 0 such
that IITnll* M for all n. Let S be a dense subset of X such that {TT(g)} is Cauchy for all
gES.
(i) Show that {T n (g) ) is Cauchy for all g E X.

(ii) Define T (g) = limn T, (g) for all g E X. Show that T is linear. Then show that T is
bounded.

36. Show that the conclusion of Helley's Theorem is not true for X = L°O[0, 1].

37. Let E have finite measure and 1 < p < oo. Suppose (fn) is a bounded sequence in LP(E)
and f belongs to LP(E). If one of the following properties holds, determine, for each of the
other properties, if a subsequence has that other property. The cases p = 1 and p > 1 should
be considered.
(i) {fn}-* finLP(E).

(ii) {fn}- fin LP(E).
(iii) f f,) -a f pointwise a.e. on E.

(iv) {fn)-* fin measure.

8.4 THE MINIMIZATION OF CONVEX FUNCTIONALS

The LP spaces were introduced by Frigyes Riesz as part of a program to formulate for
functionals and mappings defined on infinite dimensional spaces appropriate versions of
properties possessed by functionals and mappings defined on finite dimensional spaces. The
initial goal was to provide tools with which to analyze integral equations. This program
was particularly successful for linear functionals and mappings and indeed the subject of
linear algebra matured into the subject called linear functional analysis. However, beyond
linear functionals, just as convex functions defined on convex sets of real numbers possess
quite special properties, convex functionals defined on convex subsets of the LP spaces also
possess special features. In this section we consider a minimization principle for such convex
functionals.
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Let E be a measurable set and 1 < p < oo. We have exhibited sequences in LP(E)
that converge weakly but have no subsequences that converge strongly. In view of this, the
following theorem is somewhat surprising.

The Banach-Saks Theorem Let E be a measurable set and 1 < p < oo. Suppose (fn} - f
in LP(E). Then there is a subsequence {fn,) for which the sequence of arithmetic means
converges strongly to f in LP(E), that is,

k o

k
im fn' + fn' "' + fn' = f strongly in Lp(E).

Proof We present the proof for the case p = 2.6 By replacing each fn with fn - f, we
suppose f = 0. Theorem 7 tells us that {f,} is bounded in L2(E). Choose M > 0 for which

J

Define n1 = 1. Since (fn} converges weakly in L2(E) to 0 and fnl belongs to L2(E) (here,

of course, p = q = 2), we can choose a natural number n2 > n1 for which I f E Al ' A21 < 1.

Suppose we have chosen natural numbers n1 < n2 < ... < nk such that

f (fn1+...+fnj )2 < 2j + Mj for j = 1, ..., k.

Since fn1 + ... + fnk belongs to L2(E) and f fn) converges weakly in L2(E) to 0, we may
choose a natural nk+1 > nk for which

(31)

However,

IElk+1L(lk)2
1r 2+2f (fn l + ... + fnk) . fnk+1 +

JE fnk+1'

and therefore

JE1k+1)2 <2k+Mk+2+M=2(k+1)+M(k+l).

The subsequence {fnk } has been inductively chosen so that

f rfnl+fn2+ +fnk12< (2 kM) for all k,
E J

Therefore the sequence of arithmetic means of (fnk} converges strongly to f =0 in L2( E).

6For the proof for p # 2, see the original paper by S. Banach and S. Saks in Studia Math., vol 2,1930.
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Definition A subset C of a linear space X is said to be convex provided whenever f and g
belong to C and A E [0, 1], then A f + (1- A)g also belongs to C.

Definition A subset C of a normed linear space X is said to be closed provided whenever {f, }

is a sequence in X that converges strongly in X to f , then if each fn belongs to C, the limit f
also belongs to C.

Example Let E be a measurable set, 1 < p < oo, and g nonnegative function in LP(E),
define

C = { f measurable on E I If 15 g a.e. on El.

We claim that C is a closed, convex subset of LP(E). Indeed, we infer from the integral
comparison test that each function in C belongs to LP(E). It is clear that C is convex. To
verify that C is closed, let (f,) be a sequence in LP(E) that converges in LP(E) to f. By
the Riesz-Fischer Theorem, there is a subsequence of { f } that converges pointwise almost
everywhere on E to f. From this pointwise convergence it follows that f belongs to C.

Example Let E be a measurable set and 1 < p < oo. Then B = if E LP (E) 111 f II p 5 1} is
closed and convex. To see it is convex just observe that if f and g belong to B and A E [0, 1],
then, by the Minkowski Inequality,

llAf+(1-A)gllp sAllfl1p+(1-A)IlglIp51.

To see that B is closed observe that if f fn) is a sequence in B that converges in LP(E) to
f E LP(E), then it follows from Minkowski's Inequality that for each n, Illf,11p - If IIpI 5
Ilfn - fIlp, so that fllfnllp} converges to IlfIIp Thus IIfIIp 51.

Definition A real-valued functional T defined on a subset C of a normed linear space X is
said to be continuous provided whenever a sequence (fn } in C converges strongly to f E C,
then {T(fn)}-+T(f).

In the very special case of a linear functional, continuity is equivalent to boundedness.
In general, these concepts are unrelated.

Definition A real-valued functional T defined on a convex subset C of a normed linear space
X is said to be convex provided whenever f and g belong to C and A E [0, 1],

T(Af + (1- A)g) 5 AT(f) + (1- A)T(g).

In any normed linear space, the triangle inequality is equivalent to the convexity of the
norm.

Example Let E be a measurable set and 1 5 p < oo. Suppose w is a continuous, convex real-
valued function defined on R for which there are constants a and b such that I cp(s) 15 a+bI sI P
for all real numbers s. Define the functional Ton LP(E) by

T(f)=JE(po fforall fELP(E).
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We leave it as an exercise (see Problem 42) to show that T is properly defined, continuous,
and convex.

Lemma 16 Let E be a measurable set and 1 < p < oo. Suppose C is a closed, bounded convex
subset of LP(E) and T is a continuous convex functional on C. If {fn} is a sequence in C that
converges weakly in LP (E) to f, then f also belongs to C.,Moreover,

T(f) <hmmfT(fn)

Proof By the Banach-Saks Theorem, there is a subsequence of (f,,) whose sequence of
arithmetic means converges strongly in LP (E) to f. The arithmetic means belong to C since
C is convex and therefore, since C is closed, the function f belongs to C. Moreover, there
is a further subsequence of {T( fn) } that converges to a = lim inf T( fn ). Therefore, we may
choose a subsequence such that

lf" + f'2
k

... + A'
_ f strongly in LP(E)

k

and

lim.
k

T (fiek) =a.

Since the functional T is continuous,

T ( f ) = lim T
Al + fn2 + + fnk

k-+oo k

Moreover, the arithmetic means of a convergent sequence of real numbers converge to the
same limit and therefore

lim
T(fnl)+T(fn2)+...+T(.fnk) =a.

k-.oo k

On the other hand, since T is convex, for each k,

T(2+< T(fnl)+T(fn2)+...+T(fnk)
k k

Thus

T(f)= lim T
fnl+fn2+.... fnk

k oo k )

lim
T(.fnl)+T(fn2)+...+T(.fnk) =a.

k->oo k

0

Theorem 17 Let E be a measurable set and 1 < p < oo. Suppose C is a closed, bounded
convex subset of LP(E) and T is a continuous convex functional on C. Then T takes on a
minimum value on C, that is, there is a function fo E C such that

T(fo) < T (f) for all f E C.
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Proof We first show that the image T(C) is bounded below. Indeed, otherwise there is a
sequence f ff} in C such that limp T( f,,) = -oo. Since C is bounded, by possibly taking
a subsequence, we use Theorem 14 to suppose that { fp} converges weakly in LP(E) to a
function f in LP (E). We infer from the preceding lemma that f belongs to C and that

T(f) < lim inf T (f,,) = -oo.

This is a contradiction. Thus T is bounded below on C. Define

c=inf{T(f)I fEC}.

Choose a sequence f fp} in C such that limp, T(fp) = c. Again, by possibly taking a
subsequence we may invoke Theorem 14 to suppose that {f,) converges weakly in LP(E) to
a function fo in LP(E). We infer from the preceding lemma that fo belongs to C and

T (fo) < lim inf T (f,) = c.

Thus T(fo) = c.

Corollary 18 Let E be a measurable set of finite measure and 1 < p < no. Suppose (P is a
real-valued continuous convex function on R for which there are constants cl > 0 and c2 > 0
such that

I,p(s)1 <- cl +c2. IsIP for all s. (32)

Then there is a function fo E LP (E) with II fo llp < 1 for which

r (P o fo =
f E LP

min
llv<l g q, o f. (33)

Proof If f is a measurable real-valued function on E, since cp is continuous, the composition
cp o f is measurable. Let f belong to LP (E). Since f is finite a.e. on E, we infer from (32) that

l ofl

Thus, by the integral comparison test, rP o f is integrable over E. Define the functional T on
LP(E) by

T(f)=J cpo ffor all fELP(E).
t:

Then T is properly defined and it inherits convexity from rp. We already noted that the
set C = (f E LP(E) I Il.f IIP 5 1} is strongly closed, bounded, and convex. The existence of
a minimizer for T on C will be a consequence of the preceding theorem if we show that
T is continuous in LP(E). Let {f,} be a sequence in LP(E) that converges strongly to f
in LP(E). By taking a subsequence if necessary and relabeling, we suppose (fp} is rapidly
Cauchy. Therefore, according to Theorem 6 of Chapter 7, { f, } converges pointwise a.e. on
E to f. Since p is continuous, (rp o converges pointwise a.e. on E to cp o f. Moreover, by
the completeness of Lq(E), since { fp} is rapidly Cauchy in LP(E), the function

00

8=Y, IfkI
k=1
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belongs to LP(E). It is clear that

I fn I < g a.e. on E for all n,

and hence, by the inequality (33),

I(P 0fn1 Cl+C2-IfnlP<c1+c2-gPa.e.onEforall n.

We infer from the Dominated Convergence Theorem that

lim
J

(p o fn = J tp o f.
n aoo E E

Therefore T is continuous on LP(E).

Remark We proved the Bolzano-Weierstrass Theorem in Chapter 1: every bounded sequence
of real numbers has a convergent subsequence. This theorem is the basis of the argument
that every continuous real-valued function on a closed, bounded interval takes a minimum
value. In the mid nineteenth century it was uncritically assumed that a similar argument was
valid for establishing minimum values of real-valued functionals on spaces of functions. Karl
Weierstrass observed the fallacy in this argument. Given a sequence of continuous functions
If,,) on [0, 1] for which

1

I fn I2 < I for all n,

there may not exist a subsequence ffnk} and f E L2[0, 1] for which

1

llm flfnk_f12=0:

(see Problem 45). Many mathematicians, including David Hilbert, turned their attention to
investigating specific classes of functionals for which it is possible to prove the existence of
minimizers.7 Theorem 17 exhibits one such class of functionals.

PROBLEMS

38. For 1 < p < oo and each index n, let en E fP have nth component 1 and other components 0.
Show that {en } converges weakly to 0 in EP, but no subsequence converges strongly to 0. Find
a subsequence whose arithmetic means converge strongly to 0 in V.

39. Show that if a sequence of real numbers {an) converges to a, then the sequence of arithmetic
means also converges to a.

40. State and prove the Banach-Saks Theorem in j2.

41. Let E be a measurable set and 1 < p < oo. Let T be a continuous linear functional on LP[a, b]
and K = If E LP(E) 111 f Il p 51). Find a function fo E K for which

T(fo)>T(f)for all finK.

7Hilbert's article On the Dirichlet Principle is translated in A Source Book in Classical Analysis by Garrett
Birkhoff (Harvard University Press, 1973).
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42. (Nemytskii) Let E be a measurable set and P1, P2 belong to [1, oo). Suppose rp is a
continuous real-valued function defined on R for which there are constants cl and c2 such that
I1P(s)1 5 ci +c2Is1P1/P2 for all real numbers s. Let If,) be a sequence in LP' (E). Show that

if {fn}-fin LP1(E), then {rpo fn}-* o finLP2.

43. (Beppo Levi) Let E be a measurable set,1 < p < oo, and C a closed bounded convex subset
of LP(E). Show that for any function fo E LP(E), there is a function go in C for which

Ilgo - follp 5 Ilg - follpforallginC.

44. (Banach-Saks) For a natural number n, define the function fn on [0, 1] by setting

fn(x)=1fork/2"+1/22i+1 <x<(k+1)/2"and0<k<2"-1,

and f , (x) =1- 2}1 elsewhere on [0, 1]. Define f ° 0 on [0, 1].

(i) Show that

and therefore

L1ox1n <_ 1/2" for all x E [0, 1] and all n,

lim f fn =
J

x f for all x E [0, 1].

(ii) Define E to be the subset of [0, 1] on which fn =1 for all n. Show that

f fn=m(E)>0forall n.
E

(iii) Show that II f" II t <_ 2 for all n. Infer from part (ii) that { fn) is a bounded sequence
in L1[0, 1] that does not converge weakly in L1[0, 1] to f. Does this and part (i)
contradict Theorem 11.

(iv) For 1 < p < oo, infer from part (ii) that If,,) is a sequence in LP[0, 1] that does not
converge weakly in LP[0, 1] to f. Does this and part (i) contradict Theorem 11?

45. Find a sequence {gn} in L2[0, 1] that has no Cauchy subsequence. Use this subsequence
and the denseness of the continuous functions in L2[0, 1] to find a sequence of continuous
functions on [0, 1] for which no subsequence converges in L2[0, 1] to a function in L2[0, 1].
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In Chapter 1 we established three types of properties of the real numbers. The first type are
the algebraic properties related to addition and multiplication. The second are the properties
of the positive numbers by way of which the concepts of order and absolute value are defined.
Using the algebraic and order properties, the distance between two real numbers is defined
to be the absolute value of their difference. The final property possessed by the real numbers
is completeness: the Completeness Axiom for the real numbers is equivalent to the property
that every Cauchy sequence of real numbers converges to a real number. In the study of
normed linear spaces, which was begun in Chapter 7, the algebraic structure of the real
numbers is extended to that of a linear space; the absolute value is extended to the concept of
a norm, which induces a concept of distance between points; and the order properties of the
real numbers are left aside. We now proceed one step further in generalization. The object
of the present chapter is to study general spaces called metric spaces for which the notion
of distance between two points is fundamental. There is no linear structure. The concepts of
open set and closed set in Euclidean space extend naturally to general metric spaces, as do
the concepts of convergence of a sequence and continuity of a function or mapping. We first
consider these general concepts. We then study metric spaces which possess finer structure:
those that are complete, compact, or separable.

9.1 EXAMPLES OF METRIC SPACES

Definition Let X be a nonempty set. A function p : X X X -+ R is called a metric provided for
all x, y, and z in X,

(i) p(x, y) > 0;
(ii) p(x, y) = 0 if and only if x = y;
(iii) p(x, y) = p(y, x);

(iv) P(x, Y) P(x, Z) + p(z, A.

A nonempty set together with a metric on the set is called a metric space.
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We often denote a metric space by (X, p). Property (iv) is known as the triangle
inequality for the metric. The quintessential example of a metric space is the set R of all real
numbers with p(x, y) = Ix - yl.

Normed Linear Spaces In Section 7.1 we extended the concept of absolute value to a
general linear space. Recall that a nonnegative real-valued function 11 II on a linear space X
is called a norm provided for each u, v E X and real number a,

(i) Il u 11 = 0 if and only if u = 0.

(u) IIu + VII 5 Hull + IIv11

(in) Ilaull = Ialllull.

We called a linear space with a norm a normed linear space. A norm 11 II on a linear space
X induces a metric p on X by defining

p(x,y) = llx-yll for all x,yEX. (1)

Property (ii) of a norm is called the triangle inequality for the norm. It is equivalent to the
triangle inequality for the induced metric. Indeed, for x, y, z E X, set u = x - z and v = z - y
and observe that

IIu+vII 5 Ilull + 11vll if and only ifp(x, y) <p(x, z)+p(z, y).

Three prominent examples of normed linear spaces are Euclidean spaces R", the LP(E)
spaces, and C[a, b]. For a natural number n, consider the linear space R" whose points are
n-tuples of real numbers. For x = (xt, ... , x,) in R" the Euclidean norm of x, Ilxll, is defined
by

IIx11= [xi +...+xn]1/2.

We devoted Chapters 7 and 8 to the study of the normed linear spaces LP( E ), for 1 < p 5 00
and E a Lebesgue measurable set of real numbers. For 1 < p < coo, the triangle inequality
for the LP(E) norm is called the Minkowski Inequality. For a closed bounded interval of
real numbers [a, b], consider the linear space C[a, b] of continuous real-valued functions on
[a, b]. The maximum norm II Iimax is defined for f E C[a, b] by

Il.fllmax =max{If(x)I I xE[a, b]}.

The triangle inequality for the maximum norm follows from this inequality for the absolute
values on the real numbers.

The Discrete Metric For any nonempty set X, the discrete metric p is defined by
settingp(x, y) = 0 if x = y and p(x, y)=1ifx#y.

Metric Subspaces For a metric space (X, p), let Y be a nonempty subset of X. Then
the restriction of p to Y X Y defines a metric on Y and we call such a metric space a
metric subspace. Therefore every nonempty subset of Euclidean space, of an LP(E) space,
1 < p < 00, and of C[a, b] is a metric space.
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Metric Products For metric spaces (X1, P1) and (X2, p2), we define the product
metric T on the Cartesian product X, X X2 by setting, for (x1, x2) and (Y1, Y2) in X1 X X2,

T ((xl, x2 ), (Y1, Y2)) = {[pl (x1, Yl )]2 + [P2 (x2, ),2 )12}1/2 .

It is readily verified that T has all the properties required of a metric. This construction
extends to countable products (see Problem 10).

A particularly interesting and useful example of a metric space that is not directly
presented as a metric subspace of a normed linear space is the Nikodym metric on the
collection of measurable subsets of a Lebesgue measurable subset of R (see Problem 5).

On any nonempty set X consisting of more than one point there are different metrics.
For instance, if X is a nonempty collection of continuous functions on the closed, bounded
interval [a, b], then X is a metric space with respect to the discrete metric, with respect to
the metric induced by the maximum norm and, for 1 < p < no, with respect to the metric
induced by the LP[a, b] norm. The following relation of equivalence between metrics on a
set is useful.

Definition Two metrics p and o- on a set X are said to be equivalent provided there are positive
numbers cl and c2 such that for all x1, x2 E X,

cl.o'(xl,x2) P(x1,x2)<c2'o-(xl,x2).

Definition A mapping f from a metric space (X, p) to a metric space (Y, o) is said to be an
isometry provided it maps X onto Y and for all x1, x2 E X,

-(f (X1), f(x2)) =P(xl,x2)

Two metric spaces are called isometric provided there is an isometry from one onto the
other. To be isometric is an equivalence relation among metric spaces. From the viewpoint
of metric spaces, two isometric metric spaces are exactly the same, an isometry amounting
merely to a relabeling of the points.

In the definition of a metric p on a set X it is sometimes convenient to relax the
condition that p(x, y) = 0 only if x = y. When we allow the possibility that p(x, y) = 0 for
some x # y, we call p a pseudometric and (X, p) a pseudometric space. On such a space,
define the relation x = y provided p(x, y) = 0. This is an equivalence relation that separates
X into a disjoint collection of equivalence classes X/ - . For equivalence classes [x] and [y],
define p ([x], [y]) = p(x, y). It is easily seen that this properly defines a metric p on X/ =-.
Similar considerations apply when we allow the possibility, in the definition of a norm, that
11 u 11 = 0 for u # 0. Some examples of pseudometrics and pseudonorms are considered in
Problems 5, 7, 9, and 49.

PROBLEMS

1. Show that two metrics p and T on the same set X are equivalent if and only if there is a c > 0
such that for all u, VEX,

IT(U, V) < p(U, V) <CT(U, v).
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2. Show that the following define equivalent metrics on Rn:

P*(x, Y) = Ixl - Y11 + + Ixn - YnI;

P+(x, y) = max{Ixl - Y11, ... , Ixn - Yn1}.

3. Find a metric on RI that fails to be equivalent to either of those defined in the preceding
problem.

4. For a closed, bounded interval [a, b], consider the set X = C[a, b] of continuous real-valued
functions on [a, b]. Show that the metric induced by the maximum norm and that induced by
the L'[a, b] norm are not equivalent.

5. The Nikodym Metric. Let E be a Lebesgue measurable set of real numbers of finite measure,
X the set of Lebesgue measurable subsets of E, and m Lebesgue measure. For A, B E X,
define p(A, B) = m(AAB), where AAB = [A^-B] U [B^-A], the symmetric difference of A
and B. Show that this is a pseudometric on X. Define two measurable sets to be equivalent
provided their symmetric difference has measure zero. Show that p induces a metric on the
collection of equivalence classes. Finally, show that for A, B E X,

p(A, B) = J Ixn - XBI,
E

where XA and XB are the characteristic functions of A and B, respectively.

6. Show that for a, b, c > 0,

ifa<b+c, then
1+a < 1+b+1+c.

7. Let E be a Lebesgue measurable set of real numbers that has finite measure and X the set of
Lebesgue measurable real-valued functions on E. For f, g E X, define

P(f,g)=J If - gI
E l+If-gII

Use the preceding problem to show that this is a pseudometric on X. Define two measurable
functions to be equivalent provided they are equal a.e. on E. Show that p induces a metric on
the collection of equivalence classes.

8. For 0 < p < 1, show that

(a+b)P <aP+b' for all a,b>0.

9. For E a Lebesgue measurable set of real numbers, 0 < p < 1, and g and h Lebesgue measurable
functions on E that have integrable pth powers, define

p (h, g) =
J

Ig - h1l.
E

Use the preceding problem to show that this is a pseudometric on the collection of Lebesgue
measurable functions on E that have integrable pth powers. Define two such functions to
be equivalent provided they are equal a.e. on E. Show that pp(., ) induces a metric on the
collection of equivalence classes.
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10. Let {(X., p, )}n lbe a countable collection of metric spaces. Use Problem 6 to show that p,
defines a metric on the Cartesian product IIn° 1Xn, where for pointsx = {xn} and y = {y,} in
nn-1Xn,

00
1 Pn(xn, Yn)

P* (X'
Y) = 1 2n

n=1Z 1+Pn(xn, Yn

11. Let (X, p) be a metric space and A any set for which there is a one-to-one mapping f of A
onto the set X. Show that there is a unique metric on A for which f is an isometry of metric
spaces. (This is the sense in which an isometry amounts merely to a relabeling of the points
in a space.)

12. Show that the triangle inequality for Euclidean space Rn follows from the triangle inequality
for L2[0, 1].

9.2 OPEN SETS, CLOSED SETS, AND CONVERGENT SEQUENCES

Many concepts studied in Euclidean spaces and general normed linear spaces can be naturally
and usefully extended to general metric spaces. They do not dependon linear structure.

Definition Let (X, p) be a metric space. For a point x in X and r > 0, the set

B(x, r){x'EX I p(x, x) <r}

is called the open ball centered at x of radius r. A subset O of X is said to be open provided for
every point x E 0, there is an open ball centered at x that is contained in 0. For a point x E X,
an open set that contains x is called a neighborhood of x.

We should check that we are consistent here, namely, that an open ball is open. By the
definition of open set, to show that B(x, r) is open it suffices to show that

if x'EB(x, r) and r' = r - p(x', x), then B(x', r')CB(x, r).

To verify this, let y E B(x', r'). Then p(y, x') < r', so that, by the triangle inequality,

x ' ): S

Therefore B(x', r') C B(x, r).

Proposition 1 Let X be a metric space. The whole set X and the empty-set 0 are open; the
intersection of any two open subsets of X is open; and the union of any collection ofopen
subsets of X is open.

Proof It is clear that X and 0 are open and the union of a collection of open sets is open.
Let 01 and 02 be open subsets of X. If these two sets are disjoint, then the intersection
is the empty-set, which is open. Otherwise, let x belong to 01 n 02. Since 01 and 02 are
open sets containing x, there are positive numbers 61 and 62 for which B(x, S1) C 01 and
B(x, 82) C 02. Define S = min{S1, 82}. Then the open ball B(x, S) is contained Ot n 02.
Therefore 01 n 02 is open.
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The following proposition, whose proof we leave as an exercise, provides a description,
in the case the metric space X is a subspace of the metric space Y, of the open subsets of X
in terms of the open subsets of Y.

Proposition 2 Let X be a subspace of the metric space Y and E a subset of X. Then E is open
in X if and only if E = X n O, where 0 is open in Y.

Definition For a subset E of a metric space X, a point x E X is called a point of dosure of E
provided every neighborhood of x contains a point in E. The collection of points of closure of
E is called the closure of E and is denoted by E.

It is clear that we always have E C If E contains all of its points of closure, that is,
E = E, then the set E is said to be dosed. For a point x in the metric space (X, p) and r > 0,

the set B(x, r) _ (X' E X p(x', x) < r} is called the dosed ball centered at x of radius r. It
follows from the triangle inequality for the metric that B(x, r) is a closed set that contains
B(x, r). In a normed linear space X we refer to B(0, 1) as the open unit ball and B(0, 1) as
the closed unit ball.

Proposition 3 For E a subset of a metric space X, its closure E is closed. Moreover, E is the
smallest closed subset of X containing E in the sense that if F is closed and E C F, then E C F.

Proof The set E is closed if it contains all its points of closure. Let x be a point of closure
of E. Consider a neighborhood UX of x. There is a point X E E n U. Since x' is a point of
closure of E and Ux is a neighborhood of x', there is a point x" E E n U. Therefore every
neighborhood of x contains a point of E and hence x E E. So the set E is closed. It is clear
that if A C B, then A C B, and hence if F is closed and contains E, then E C F = F.

Proposition 4 A subset of a metric space X is open if and only if its complement in X is
closed.

Proof First suppose E is open in X. Let x be a point of closure of X - E. Then x cannot
belong to E because otherwise there would be a neighborhood of x that is contained in
E and thus disjoint from X - E. Thus x belongs to X - E and hence X - E is closed. Now
suppose X - E is closed. Let x belong to E. Then there must be a neighborhood of x that is
contained in E, for otherwise every neighborhood of x contains points in X - E and therefore
x is a point of closure of X " E. Since X - E is closed, x also belongs to X' E. This is a
contradiction.

Since X - [X - E] = E, it follows from the preceding proposition that a set is closed if
and only if its complement is open. Therefore, by De Morgan's Identities, Proposition 1 may
be reformulated in terms of closed sets as follows.

Proposition 5 Let X be a metric space. The empty-set 0 and the whole set X are closed; the
union of any two closed subsets of X is closed; and the intersection of any collection pf closed
subsets of X is closed.
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We have defined what it means for a sequence in a normed linear space to converge.
The following is the natural generalization of convergence to metric spaces.

Definition A sequence {x } in a metric space (X, p) is said to converge to the point x E X
provided

n P(xn, x) = 0,

that is, for each e > 0, there is an index N such that for every n > N, p(x,,, x) < C. The point
to which the sequence converges is called the limit of the sequence and we often write {xn } -+ x
to denote the convergence of {xn } to x.

A sequence in a metric space can converge to at most one point. Indeed, given two
points u, v in a metric space X, set r = p(u, v)/2. We infer from the triangle inequality for
the metric p that B(u, r) and B(v, r) are disjoint. So it is not possible for a sequence to
converge to both u and v. Moreover, convergence can be rephrased as follows: a sequence
{xn } converges to the limit x provided that for any neighborhood 0 of X, all but at most
finitely many terms of the sequence belong to 0. Naturally, for a subset E of X and a
sequence such that x belongs to E for all n, we say that is a sequence in E.

Proposition 6 For a subset E of a metric space X, a point x E X is a point of closure of E if
and only if x is the limit of a sequence in E. Therefore, E is closed if and only if whenever a
sequence in E converges to a limit x E X, the limit x belongs to E.

Proof It suffices to prove the first assertion. First suppose x belongs to E. For each natural
number n, since B(x,1/n) f1 E # 0, we may choose a point, which we label xn, that belongs
to B(x,1/n) fl E. Then {xn} is a sequence in E and we claim that it converges to x. Indeed,
let e > 0. Choose an index N for which 1/N < e. Then

p(xn,x)<1/n<1/N<eifn>N.

Thus {xn} converges to x. Conversely, if a sequence in E converges to x, then every ball
centered at x contains infinitely many terms of the sequence and therefore contains points
in E. Sox EE.

In general, a change in the metric on a set will change what it means for a subset to be
open and therefore what it means for a subset to be closed. It will also change what it means
for a sequence to converge. For instance, for the discrete metric on a set X, every subset is
open, every subset is closed, and a sequence converges to a limit if and only if all but a finite
number of terms of the sequence are equal to the limit. The following proposition, the proof
of which we leave as an exercise, tells us that for equivalent metrics on a set, the open sets
are the same, and therefore the closed sets are the same and convergence of a sequence is
the same.

Proposition 7 Let p and v be equivalent metrics on a nonempty set X. Then a subset of X is
open in the metric space (X, p) if and only if it is open in the metric space (X, o-).
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PROBLEMS

13. In a metric space X, is it possible for r > 0 and two distinct points u and v in X to have
B(u, r) = B(v, r)? Is this possible in Euclidean space R"? Is it possible in a nonmed linear
space?

14. Let(X, p) be a metric space and{vn}-> v).

15. Let X be a metric space, x belong to X and r > 0.
(i) Show that B(x, r) is closed and contains B(x, r).

B(x, r) is the closure of the open(ii) Show that in a normed linear space X the closed ball
ball B(x, r), but this is not so in a general metric space.

16. Prove Proposition 2.

17. Prove Proposition 7.

18. Let X be a subspace of the metric space Y and A a subset of X. Show that A is closed in X if
and only if A = X fl F, where F is closed in Y.

19. Let X be a subspace of the metric space Y.

(i) If 0 is an open subset of the metric subspace X, is 0 an open subset of Y? What if X is
an open subset of Y?

(ii) If F is a closed subset of the metric subspace X, is F a closed subset of Y? What if X is a
closed subset of Y?

20. For a subset E of a metric space X, a point x E X is called an interior point of E provided
there is an open ball centered at x that is contained in E: the collection of interior points of E
is called the interior of E and denoted by int E. Show that int E is always open and E is open
if and only if E = int E.

21. For a subset E of a metric space X, a point x E X is called an exterior point of E provided
there is an open ball centered at x that is contained in X ^- E: the collection of exterior points
of E is called the exterior of E and denoted by ext E. Show that ext E is always open. Show
that E is closed if and only if X - E = ext E.

22. For a subset E of a metric space X, a point x E X is called a boundary point of E provided
every open ball centered at x contains points in E and points in X E: the collection of
boundary points of E is called the boundary of E and denoted by bd E. Show (i) that bd E is
always closed, (ii) that E is open if and only if E fl bd E = 0, and (iii) that E is closed if and
only if bd E C E.

23. Let A and B be subsets of a metric space X. Show that if A C B, then A C B. Also, show that
(AU B) = AUBand(AnB)CAnB.

24. Show that for a subset E of a metric space X, the closure of E is the intersection of all closed
subsets of X that contain E.

9.3 CONTINUOUS MAPPINGS BETWEEN METRIC SPACES

The following is the natural generalization of continuity for real-valued functions of a real
variable.

Definition A mapping f from a metric space X to a metric space Y is said to be continuous
at the point x E X provided for any sequence {xn } in X,

if then {f(xn)}-) f(x).
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The mapping f is said to be continuous provided it is continuous at every point in X.

The following three propositions are generalizations of corresponding results for real-
valued functions of a real variable and the proofs of the general results are essentially the
same as the special cases.

The a-S Criterion for Continuity A mapping f from a metric space (X, p) to a metric space
(Y, a) is continuous at the point x E X if and only if for every c > 0, there is a S > 0for which
if p(x, x') < S, then o-(f (x), f(x'))<E,that is,

f(B(x, S)) C B(f(x), c).

Proof First suppose f : X -* Y is continuous at x. We establish the c-S criterion by ar-
guing by contradiction. Suppose there is some co > 0 for which there is no positive
number S for which f(B(x, 5)) C B(f(x), co). In particular, if n is a natural num-
ber, it is not true that f(B(x, 1/n)) C B(f(x), Eo). This means that there is a point
in X, which we label x,,, such that p(x, xn) < 1/n while o-(f (x), f (xn)) > co. This de-
fines a sequence {xn} in X that converges to x, but whose image sequence {f(xn)} does
not converge to f (x). This contradicts the continuity of the mapping f : X -* Y at the
point x.

To prove the converse, suppose the c-S criterion holds. Let {xn } be a sequence in
X that converges to x. We must show that If (xn ) } converges to f (x). Let E > 0. We
can choose a positive number S for which f (B(x, S)) C B(f (x), c). Moreover, since the
sequence {xn} converges to x, we can select an index N such that xn E B(x, 5) for n > N.
Hence f (xn) E B(f (x), c) for n > N. Thus the sequence If (xn) } converges to f (x) and
therefore f : X--> Y is continuous at the point x.

Proposition 8 A mapping f from a metric space X to a metric space Y is continuous if and
only if for each open subset 0 of Y, the inverse image under f of 0, f -1(0), is an open subset
of X.

Proof First assume the mapping f is continuous. Let 0 be an open subset of Y. Let
x be a point in f -1(0); we must show that an open ball centered at x is contained
in f-1(0). But f(x) is a point in 0, which is open in Y, so there is some positive
number r for which B((f(x), r)) C 0. Since f: X-+ Y is continuous at the point x, by
the E-S criterion for continuity at a point, we can select a positive number S for which
f (B(x, S)) C B(f (x), r) C 0. Thus B(x, S) C f-1(0) and therefore f-1(0) is open in X.

To prove the converse, suppose the inverse image under f of each open set is open. Let
x be a point in X. To show that f is continuous at x, we use the c-S criterion for continuity.
Let c > 0. The open ball B(f (x), c) is an open subset of Y. Thus f-1(B(f (x), E)) is open
in X. Therefore we can choose a positive number S with B(x, S) C f-1(B(f(x), c)), that
is, f(B(x, 8))CB(.f(x), E).

Proposition 9 The composition of continuous mappings between metric spaces, when defined,
is continuous.
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Proof Let f : X -+ Y be continuous and g: Y -* Z be continuous, where X, Y, and Z are
metric spaces. We use the preceding proposition. Let 0 be open in Z. Since g is continuous,
9_1 (0) is open in Y and therefore, since f is continuous, f-1(g-1 (0)) = (go f)-1(O) is
open in X. Therefore go f is continuous.

Definition A mapping from a metric space (X, p) to a metric space (Y, (T) is said to be
uniformly continuous, provided for every E > 0, there is a S > 0 such that for u, v E X,

if p(u, v) <8, then o(f(u), f(v)) <e.

We infer from the E-S criterion for continuity at a point that a uniformly continuous
mapping is continuous. The converse is not true.

Example A mapping f from a metric space (X, p) to a metric space (Y, v) is said to be
Lipschitz provided there is a c > 0 such that for all u, v E X,

-(.f(u), .f(v)) _< c. P(u, V).

A Lipschitz mapping is uniformly continuous since, regarding the criterion for uniform
continuity, fi = E/c responds to any c > 0 challenge.

PROBLEMS

25. Exhibit a continuous mapping that is not uniformly continuous and a uniformly continuous
mapping that is not Lipschitz.

26. Show that every mapping from a metric space (X, p) to a metric space (Y, o-) is continuous
if p is the discrete metric.

27. Suppose there is a continuous, one-to-one mapping from a metric space (X, p) to a metric
space (Y, a-), where o, is the discrete metric. Show that every subset of X is open.

28. For a. metric space (X, p), show that the metric p: X X X -* R is continuous, where X X X has
the product metric.

29. Let z be a point in the metric space (X, p). Define the function f : X -+ R by f (x) = p(x, z).
Show that f is uniformly continuous.

30. Show that the composition of uniformly continuous mappings between metric spaces, when
defined, is uniformly continuous.

31. Show that a continuous mapping between metric spaces remains continuous if an equivalent
metric is imposed on the domain and an equivalent metric is imposed on the range.

32. For a nonempty subset E of the metric space (X, p) and a point x E X, define the distance
from x to E, dist(x, E), as follows:

dist(x, E) = inf {p(x, y) I y E E).

(i) Show that the distance function f : X -), R defined by f (x) = dist(x, E), for X E X, is
continuous.

(ii) Show that {x E X I dist(x, E) = 0} = E.

33. Show that a subset E of a metric space X is open if and only if there is a continuous real-valued
function f on X for which E = {x E X I f (X) > 0.}.
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34. Show that a subset E of a metric space X is closed if and only if there is a continuous
real-valued function f on X for which E = f-1(0).

35. Let X and Y be metric spaces. Prove that f: X- Y is continuous if and only if f-1(C) is
closed in X whenever C is closed in Y.

36. Let X = C[a, b]. Define the function cli: X -* R by

rb
i(f)= J f(x)dx for each fin X.

a

Show that is Lipschitz on the metric space X, where X has the metric induced by the
maximum norm.

9.4 COMPLETE METRIC SPACES

By itself, the structure of a metric space is too barren to be fruitful in the study of interesting
problems in mathematical analysis. It is remarkable, however, that by considering metric
spaces that possess just one additional property, namely completeness, we can establish
an abundance of interesting and important results. We devote the next chapter to three
fundamental theorems for complete metric spaces.

Definition A sequence {xn } in a metric space (X, p) is said to be a Cauchy sequence provided
for each E > 0, there is an index N for which

ifn,m > N, then p(xn,x,n) <E.

This generalizes the concept of Cauchy sequence we first considered, in Chapter 1, for
sequences of real numbers and then, in Chapter 7, for sequences in a normed linear space.
For general metric spaces, as in the case of a normed linear space, a convergent sequence is
Cauchy and a Cauchy sequence is bounded (see Problem 37).

Definition A metric space X is said to be complete provided every Cauchy sequence in X
converges to a point in X.

The completeness axiom for the real numbers is equivalent to the completeness of the
metric space R. From this we infer that each Euclidean space Rn is complete. Moreover, the
Riesz-Fischer Theorem, proved in Section 7.3, tells us that for E a Lebesgue measurable set
of real numbers and 1 < p:5 oo, LP(E) is complete.

Proposition 10 Let [a, b] be a closed, bounded interval of real numbers. Then C[a, b], with
the metric induced by the maximum norm, is complete.

Proof Let {f,} be a Cauchy sequence in C[a, b]. First suppose there is a convergent series
Eki ak such that

II fk+1 - fk II max ak for all k. (2)

Since
n+k-1

fn+k - fn= E, [fj+l-fj]forall n, k,
j=n
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n+k-1 00

Ilfn+k - fnlimax <- I 11fj+1- fjllmax <- 1 aj for all n, k.
j=n j=n

Let x belong to [a, b]. Then

I fn+k (x) - fn (x) I < E a j for all n, k.0"
j=n

(3)

The series E' 1 ak converges, and therefore {f ,(x)} is a Cauchy sequence of real numbers.
The real numbers are complete. Denote the limit of {fn (x)} by f(x). Take the limit as
k -* oc in (3) to conclude that

If(x) - fn(x)I <Eajforall nandallxE[a,b].00
j=n

We infer from this estimate that { fn } converges uniformly on [a, b] to f. Since each fn is
continuous, so is f . The general case follows from the particular case by noting that a Cauchy
sequence converges if is has a convergent sequence and every Cauchy sequence in C[a, b]
has a subsequence for which (2) holds.

In general, a subspace of a complete metric space is not complete. For instance, an
open, bounded interval of real numbers is not complete, while R is complete. However,
there is the following simple characterization of those subspaces that are complete.

Proposition 11 Let E be a subset of the complete metric space X. Then the metric subspace
E is complete if and only if E is a closed subset of X.

Proof First suppose E is a closed subset of X. Let (xn} be a Cauchy sequence in E. Then
{xn} can be considered as a Cauchy sequence in X and X is complete. Thus (xn} converges
to a point x in X. According to Proposition 6, since E is a closed subset of X, the limit of
a convergent sequence in E belongs to E. Thus x belongs to E and hence E is a complete
metric space.

To prove the converse, suppose E is complete. According to Proposition 6, to show
E is a closed subset of X we must show that the limit of a convergent sequence in E also
belongs to E. Let {xn } be a sequence in E that converges to x E X. But a convergent sequence
is Cauchy. Thus, by the completeness of E, {xn} converges to a point in E. But a convergent
sequence in a metric space has only one limit. Thus x belongs to E.

Theorem 12 The following are complete metric spaces:

(i) Each nonempty closed subset of Euclidean space R.
(ii) For E a measurable set of real numbers and 1 < p < oo, each nonempty closed subset

of LP(E).
(iii) Each nonempty closed subset of C[a, b].
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Definition For a nonempty subset E of a metric space (X, p), we define the diameter of E,
diam E, by

diam E =sup {p(x, y) I x, y E E} .

We say E is bounded provided it has finite diameter. A descending sequence [E,)', of
nonempty subsets of X is called a contracting sequence provided

lim diam(En) = 0.n-00

The Nested Set Theorem of Chapter 1 tells us that the intersection of a contracting
sequence of nonempty closed sets of real numbers consists of a single point. This generalizes
as follows.

The Cantor Intersection Theorem Let X be a metric space. Then X is complete if and only if
whenever {Fn}n°

1
is a contracting sequence of nonempty closed subsets of X, there is a point

x E X for which (l° 1 Fn = {x}.

Proof First assume X is complete. Let (Fn }
1 be a contracting sequence of nonempty closed

subsets of X. For each index n, select xn E F. We claim that {xn} is a Cauchy sequence.
Indeed, let e > 0. There is an index N for which diam FN < c. Since {Fn}n 1 is descending,
if n, m > N, then xn and x n belong to FN and therefore p(xn, x,n) _S diam FN < E. Thus
{xn } is a Cauchy sequence. Since X is complete, this sequence converges to some x EX.
However, for each index n, Fn is closed and xk E F. fork > n so that x belongs to F. Thus x
belongs to (ln_1 F. It is not possible for the intersection to contain two points for, if it did,
limn , . diam Fn # 0.

To prove the converse, suppose that for any contracting sequence {Fn 1 of nonempty
closed subsets of X, there is a point x E X for which fl 1 Fn = {x}. Let {xn} be a Cauchy
sequence in X. For each index n define Fn to be the closure of the nonempty set (xk I k > n).
Then (Fn) is a descending sequence of nonempty closed sets. Since (xn} is Cauchy, the
sequence {Fn} is contracting. Thus, by assumption, there is a point x in X for which
{x} _ fl 1 Fn. For each index n, x is a point of closure of (Xk I k > n) and therefore any
ball centered at x has nonempty intersection with {xk I k > n}. Hence we may inductively
select a strictly increasing sequence of natural numbers (nk) such that for each index k,
p(x,xnk) < 1/k. The subsequence {xnk} converges to x. Since {xn} is Cauchy, the whole
sequence {xn} converges to x (see Problem 38). Therefore X is complete.

A very rough geometric interpretation of the Cantor Intersection Theorem is that a
metric space fails to be complete because it has "holes." If X is an incomplete metric space,
it can always be suitably minimally enlarged to become complete. For example, the set of
rational numbers is not complete, but it is a dense metric subspace of the complete space R.
As a further example, let X = C[a, b], now considered with the norm II 111, which it inherits
from L1[a, b]. The metric space (X, pi) is not complete. But it is a dense metric subspace
of the complete metric space L1[a, b]. These are two specific examples of a construction
that has a quite abstract generalization. We outline a proof of the following theorem in
Problem 49.
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Theorem 13 Let (X, p) be ametric space. Then there is a complete metric space (X , p) for
which X is a dense subset of X and

p(u, v)= p(u, v)forallu,vEX.

We call the metric space described above the completion of (X, p). In the context of
metric spaces the completion is unique in the sense that any two completions are isometric
by way of an isometry that is the identity mapping on X.

PROBLEMS

37. In a metric space X, show (i) that a convergent sequence is Cauchy and (ii) that a Cauchy
sequence is bounded.

38. In a metric space X, show that a Cauchy sequence converges if and only if it has a convergent
subsequence.

39. Suppose that {xn } is a sequence in a complete metric space (X, p) and for each index
n, p(xn, xn+i) < 1/2n. Show that {xn} converges. Does converge if for each index n,
P(xn, xn+l) < 1/n?

40. Provide an example of a descending countable collection of closed, nonempty sets of real
numbers whose intersection is empty. Does this contradict the Cantor Intersection Theorem?

41. Let p and o, be equivalent metrics on a nonempty set X. Show that (X, p) is complete if and
only if (X, o,) is complete.

42. Prove that the product of two complete metric spaces is complete.

43. For a mapping f of the metric space (X, p) to the metric space (Y, o,), show that f is
uniformly continuous if and only if for any two sequences {un} and (vn} in X,

if n P(un, vn) =O, then nlim o,(e.l (u,,), .l (v,,))) =0.
00

44. Use the outline below to prove the following extension property for uniformly continuous
mappings: Let X and Y be metric spaces, with Y complete, and f a uniformly continuous
mapping from a subset E of X to Y. Then f has a unique uniformly continuous extension to
a mapping 7 of E to Y.
(i) Show that f maps Cauchy sequences in E to Cauchy sequences in Y.

(ii) For X E E, choose a sequence {xn } in E that converges to x and define 7(x) to be the
limit of (f (xn ) }. Use Problem 43 to show that Ax) is properly defined.

(iii) Show that 7 is uniformly continuous on E.

(iv) Show that the above extension is unique since any two such extensions are continuous
mappings on E that take the same values on the dense subset E of E.

45. Consider the countable collection of metric spaces f( X,, p,)}n
1. For the Cartesian product

of these sets Z jj n° i Xn , define a- on Z X Z by setting, for x = {xn }, y = { yn },

0
-(X, y) _ 2 2-n pn (xn, yn) where each pn Pn / (1 + Pn )

n=1

(i) Show that v is a metric.

(ii) Show that (Z, a-) is complete if and only if each (Xn, pn) is complete.
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46. For each index n, define f, (x) = ax" +Acos(x/n) for 0 < x < 1. For what values of the
parameters a and R is the sequence f fn) a Cauchy sequence in the metric space C[0, 1]?

47. Let D be the subspace of C[0, 1] consisting of the continuous functions f : [0, 1] -). R that are
differentiable on (0, 1). Is D complete?

48. Define L to be the subspace of C[0, 1] consisting of the functions f : [0, 1] -+ R that are
Lipschitz. Is C complete?

49. For a metric space (X, p), complete the following outline of a proof of Theorem 13:
(i) If {xn} and {y,, } are Cauchy sequences in X, show that {p(xn, y,, )} is a Cauchy sequence

of real numbers and therefore converges.

(ii) Define X' to be the set of Cauchy sequences in X. For two Cauchy sequences in X, {xn}
and {y"}, define p'({xn}, {yn}) = limp(xn, y,, ). Show that this defines a pseudometric p'
on X'.

(iii) Define two members of X', that is, two Cauchy sequences {xn} and {y"} in X, to be
equivalent, provided p'({xn}, {y,,}) = 0. Show that this is an equivalence relation in X'

and denote by X the set of equivalence classes. Define the distance p between two
equivalence classes to be the p' distance between representatives of the classes. Show
that p is properly defined and is a metric on X.

(iv) Show that the metric space (X, p) is complete. (Hint: If {xn} is a Cauchy sequence
from X, we may assume [by taking subsequences] that p(xn, xn+l) < 2-" for all n.
If {{xn,,n}n° 1}m

1 is a sequence of such Cauchy sequences that represents a Cauchy
sequence in X, then the sequence {xn,n}1,°1 is a Cauchy sequence from X that represents

the limit of the Cauchy sequences from X.)

(v) Define the mapping h from X to X by defining, for x E X, h(x) to be the equivalence
class of the constant sequence all of whose terms are x. Show that h(X) is dense in X
and that p(h(u), h(v)) = p(u, v) for all u, vE X.

(vi) Define the set X to be the disjoint union of X and X -. h (X ). For u, v E X, define p (u, v)
as follows: p(u, v) = p(u, v) if u, v_EX; p(u, v) = p(u, v) for u, and
p (u, v) = p (h (u ), v) for u E X, V E X - h (X ). From the preceding two parts conclude
that the metric space (X, p) is a complete metric space containing (X, p) as a dense
subspace.

50. Show that any two completions of a metric space X are isometric by way of an isometry that
is the identity mapping on X.

9.5 COMPACT METRIC SPACES

Recall that a collection of sets {Ex},SEA is said to be a cover of a set E provided E C UAEA EA.
By a subcover of a cover of E we mean a subcollection of the cover which itself also is a
cover of E. If E is a subset of a metric space X, by an open cover of E we mean a cover of
E consisting of open subsets of X. The concept of compactness, examined in Chapter 1 for
sets of real numbers, generalizes as follows to the class of metric spaces.

Definition A metric space X is called compact provided every open cover of X has a finite
subcover. A subset K of X is called compact provided K, considered as a metric subspace of
X, is compact.
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An open subset of the subspace K of a metric space X is the intersection of K with an
open subset of X. Therefore a subset K of a metric space X is compact if and only if each
cover of K by a collection of open subsets of X has a finite subcover.

If T is a collection of open subsets of a metric space X, then the collection F of
complements of sets in T is a collection of closed sets. Moreover, T is a cover if and only if F
has empty intersection. Thus, by De Morgan's Identities, a metric space X is compact if and
only if every collection of closed sets with a nonempty intersection has a finite subcollection
whose intersection also is nonempty. A collection F of sets in X is said to have the finite
intersection property provided any finite subcollection of F has a nonempty intersection.
Thus we may formulate compactness in terms of collections of closed setsas follows.

Proposition 14 A metric space X is compact if and only if every collection Y of closed subsets
of X with the finite intersection property has nonempty intersection.

Definition A metric space X is said to be totally bounded provided for eachE > 0, the space
X can be covered by a finite number of open balls of radius E. A subset E of X is called totally
bounded provided that E, considered as a subspace of the metric space X, is totally bounded.

For a subset E of a metric space X, by an c-net for Ewe mean a finite collection of open
balls {B(xk, E)}k_i with centers xk in X whose union covers E. We leave it as an exercise to
show that the metric subspace E is totally bounded if and only if for each c > 0, there is a
finite c-net for E. The point of this observation is that regarding the criterion for a metric
subspace E to be totally bounded it is not necessary to require that the centers of the balls
in the net belong to E.

If a metric space X is totally bounded, then it is bounded in the sense that its diameter
is finite. Indeed, if X is covered by a finite number of balls of radius 1, then we infer from
the triangle inequality that diam X < c, where c = 2 + d, d being the maximum. distance
between the centers of the covering balls. However, as is seen in the following example, a
bounded metric space need not be totally bounded.

Example Let X be the Banach space j2 of square summable sequences. Consider the
closed unit ball B = {{xn} E e21 II{xn}112 < 1}. Then B is bounded. We claim that B is not
totally bounded. Indeed, for each natural number n, let en have nth component 1 and other
components 0. Then I I en - em 112 = if m #n. Then B cannot be contained in a finite number
of balls of radius r < 1/2 since one of these balls would contain two of the en's, which are
distance apart and yet the ball has diameter less than 1.

Proposition 15 A subset of Euclidean space Rn is bounded if and only if it is totally bounded.

Proof It is always the case that a totally bounded metric space is bounded. So let E be a
bounded subset of R1. For simplicity take n = 2. Let c > 0. Since E is bounded, we may take
a > 0 large enough so that E is contained in the square [-a, a] X [-a, a]. Let Pk be a partition
of [-a, a] for which each partition interval has length less than 1/k. Then Pk X Pk induces a
partition of [-a, a] X [-a, a] into closed rectangles of diameter at most 12-1k. Choose k such
that 12-1k < E. Consider the finite collection of balls of radius E with centers (x, y) where
x and y are partition points of Pk. Then this finite collection of balls of radius E covers the
square [-a, a] X [-a, a] and therefore also covers E.
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Definition A metric space X is said to be sequentially compact provided every sequence in
X has a subsequence that converges to a point in X.

Theorem 16 (Characterization of Compactness for a Metric Space) For a metric space X,
the following three assertions are equivalent:

(i) X is complete and totally bounded;

(ii) X is compact;

(iii) X is sequentially compact.

For clarity we divide the proof into three propositions.

Proposition 17 If a metric space X is complete and totally bounded, then it is compact.

Proof We argue by contradiction. Suppose (OA}AEA is an open cover of X for which there
is no finite subcover. Since X is totally bounded, we may choose a finite collection of open
balls of radius less than 1/2 that cover X. There must be one of these balls that cannot be
covered by a finite subcollection of (OA}AEA. Select such a ball and label its closure Fl. Then
F1 is closed and diam F1 < 1. Once more using the total boundedness of X, there is a finite
collection of open balls of radius less than 1/4 that cover X. This collection also covers Fl.
There must be one of these balls whose intersection with F1 cannot be covered by a finite
subcollection of {OA}AEA. Define F2 to be the closure of the intersection of such a ball with
Fl. Then F1 and F2 are closed, F2 C F1, and diam F1 < 1, diam F2 < 1/2. Continuing in
this way we obtain a contracting sequence of nonempty, closed sets (F,} with the property
that each F cannot be covered by a finite subcollection of {OA}AEA But X is complete.
According to the Cantor Intersection Theorem there is a point xo in X that belongs to the
intersection n 1 F,, . There is some A0 such that OA0 contains xo and since OAo is open, there
is a ball centered at xo, B(xo, r), such that B(xo, r) C O. Since limp diam F = 0 and
xp E nn° 1 Fn, there is an index n such that FF C O. This contradicts the choice of Fp as
being a set that cannot be covered by a finite subcollection of (OA)AEA. This contradiction
shows that X is compact.

Proposition 18 If a metric space X is compact, then it is sequentially compact.

Proof Let (xp} be a sequence in X. For each index n, let Fn be the closure of the nonempty
set (xk I k > n). Then IF,) is a descending sequence of nonempty closed sets. A ccordine to
the Cantor Intersection Theorem there is a point xo in X that belongs to the intersection
nn ,j F. Since for each n, xo belongs to the closure of {xk I k > n}, the ball B(xo, 1/k) has
nonempty intersection with fxk I k > n}. By induction we may select a strictly increasing
sequence of indices (nk} such that for each index k, p(xo, xnk) < 1/k. The subsequence {xpk }
converges to x0. Thus X is sequentially compact.

Proposition 19 k f a metric space X is sequentially compact, then it is complete and totally
bounded.

Proof We argue by contradiction to establish total boundedness. Suppose X is not totally
bounded. Then for some e > 0 we cannot cover X by a finite number of open balls of radius E.
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Select a point xl in X. Since X is not contained in B(xl, E), we may choose x2 E X for which
p(xl, x2) > E. Now since X is not contained in B(xj, E) U B(x2, E), we may choose x3 E X
for which p(x3, x2) > E and p(x3, xi) > E. Continuing in this way we obtain a sequence
in X with the property that p(x,,, xk) > E for n > k. Then the sequence can have no
convergent subsequence, since any two different terms of any subsequence are a distance c
or more apart. Thus X is not sequentially compact. This contradiction shows that X must be
totally bounded.

To show that X is complete, let {xn } be a Cauchy sequence in X. Since X is sequentially
compact, a subsequence of {x,, } converges to a point x E X. Using the Cauchy property it is
not difficult to see that the whole sequence converges to x. Thus X is complete.

These three propositions complete the proof of the Characterization of Compactness
Theorem.

Since Euclidean space R' is complete, each closed subset is complete as a metric
subspace. Moreover, Proposition 15 asserts that a subset of Euclidean space is bounded
if and only if it is totally bounded. Therefore from our Characterization of Compactness
Theorem we have the following characterization of compactness for a subspace of Euclidean
space.

Theorem 20 For a subset K of R", the following three assertions are equivalent:

(i) K is closed and bounded;

(ii) K is compact;

(iii) K is sequentially compact.

Regarding this theorem, the equivalence of (i) and (ii) is known as the Heine-Borel
Theorem and that of (i) and (iii) the Bolzano-Weierstrass Theorem. In Chapter 1, we proved
each of these in R = R1, because we needed both of them for the development of the
Lebesgue integral for functions of a real variable.

Proposition 21 Let f be a continuous mapping from a compact metric space X to a metric
space Y. Then its image f (X) also is compact.

Proof Let {OA }AEI bean open covering of f (X ). Then, by the continuity off, {f _j (Oa) }AEA
is an open cover of X. By the compactness of X, there is a finite subcollection [f-1(0A,),...,
f-1( OA, )I that also covers X. Since f maps X onto f (X), the finite collection {Oa...... OAS }
covers f (X).

One of the first properties of functions of a real variable that is established in a calculus
course and which we proved in Chapter 1 is that a continuous function on a closed, bounded
interval takes maximum and minimum values. It is natural to attempt to classify the metric
spaces for which this extreme value property holds.

Theorem 22 (Extreme Value Theorem) Let X be a metric space. Then X is compact if and
only if every continuous real-valued function on X takes a maximum and a minimum value.
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Proof First assume X is compact. Let the function f : X R be continuous. The preceding
proposition tells us that f (X) is a compact set of real numbers. According to Corollary
20, f (X) is closed and bounded. We infer from the completeness of R that a closed and
bounded nonempty set of real numbers has a largest and smallest member.

To prove the converse, assume every continuous real-valued function on X takes
a maximum and minimum value. According to Theorem 20, to show that X is compact
it is necessary and sufficient to show it is totally bounded and complete. We argue by
contradiction to show that X is totally bounded. If X is not totally bounded, then there is
an r > 0 and a countably infinite subset of X, which we enumerate as (xn}n 1, for which
the collection of open balls (B(xn, r)}n° 1 is disjoint. For each natural number n, define the
function fn : X -+ R by

fn(x)
r/2-P(x, xn) if P(x, xn) :S r12
0 otherwise.

Define the function f : X -+ R by

00

f (x) = 1: n fn (x) for all x E X.
n=1

Since each fn is continuous and vanishes outside B(xn, r/2) and the collection (B(xn, r)}n°1
is disjoint, f is properly defined and continuous. But for each natural number n, f (xn) =
n r/2, and hence - f is unbounded above and therefore does not take a maximum value. This
is a contradiction. Therefore X is totally bounded. It remains to show that X is complete. Let
(xn} be a Cauchy sequence in X. Then for each x E X, we infer from the triangle inequality
that {p(x, xn )} is a Cauchy sequence of real numbers that, since R is complete, converges to
a real number. Define the function f : X -* R by

f (x) = nlirn p(x, x,,) for all x E X.
+OC

Again by use of the triangle inequality we conclude that f is continuous. By assumption,
there is a point x in X at which f takes a minimum value. Since (xn} is Cauchy, the infmum
of f on X is 0. Therefore f (x) = 0 and hence (xn} converges to x. Thus X is complete.

If {OA}AEA is an open cover of a metric space X, then each point x E X is contained in a
member of the cover, OA, and since OA is open, there is some e > 0, such that

B(x,E)COA. (4)

In general, the a depends on the choice of x. The following proposition tells us that for
a compact metric space this containment holds uniformly in the sense that we can find E
independently of x E X for which the inclusion (4) holds. A positive number a with this
property is called a Lebesgue number for the cover (OA)AEA

The Lebesgue Covering Lemma Let (OA}AEA bean open cover of a compact metric space X.
Then there is a number e > 0, such that for each x E X, the open ball B(x, e) is contained in
some member of the cover.
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Proof We argue by contradiction. Assume there is no such positive Lebesgue number. Then
for each natural number n, 1/n fails to be a Lebesgue number. Thus there is a point in X,
which we label x,,, for which B(x,,, 1/n) fails to be contained in a single member of the
cover. This defines a sequence fx,, } in X. By the Characterization of Compactness Theorem,
X is sequentially compact. Thus a subsequence {x k) converges to a point xo E X. Now there
is some Ao E A for which OA, contains xo and since OAS is open, there is a ball centered at xo,
B(xo, ro), for which

B(xo, ro)COA0.

We may choose an index k for which p(xo, ro/2 and 11nk < ro/2. By the triangle
inequality, 11nk) C OAO and this contradicts the choice of xnk as being a point for
which B(xk, 11nk) fails to be contained in a single member of the cover.

Proposition 23 A continuous mapping from a compact metric space (X, p) into a metric
space (Y, or) is uniformly continuous.

Proof Let f be a continuous mapping from X to Y. Let E > 0. By the E-S criterion for
continuity at a point, for each x E X, there is a Sx > 0 for which if p(x, x') < Sx, then
o-(f (x), f (x')) < E/2. Therefore, setting Ox = B(x, Sx ), by the triangle inequality for a-,

0-(.f(u), f(v)) <o(.f(u), f(x))+o(f(x), f(v)) <Eifu,vEOx. (5)

Let S be a Lebesgue number for the open cover {Ox}x E x. Then for u, v E X, if p(u, v) < S
there is some x for which u E B (v, S) C Ox and therefore, by (5), o-(f (u), f (v)) < E.

PROBLEMS

51. Consider the metric space Q consisting of the rational numbers with the metric induced by
the absolute value. Which subspaces of Q are complete and which are compact?

52. Let B = B(x, r) be an open ball in Euclidean space R. Show that B fails to be compact by
(i) showing B is not sequentially compact, (ii) finding an open cover of B without any finite
subcover, and (iii) showing B is not closed.

53. When is a nonempty set X with the discrete metric a compact metric space?

54. Let p and a, be equivalent metrics on a nonempty set X. Show that the metric space (X, p) is
compact if and only if the metric space (X, a-) is compact.

55. Show that the Cartesian product of two compact metric spaces also is compact.

56. Show that the Cartesian product of two totally bounded metric spaces also is totally bounded.

57. For E contained in a metric space X, show that the subspace E is totally bounded if and only
if for each c > 0, E can be covered by a finite number of open balls (open in X) of radius E
which have centers belonging to X.

58. Let E be a subset of the compact metric space X. Show the metric subspace E is compact if
and only if E is a closed subset of X.

59. (Fr6chet Intersection Theorem). Let be a descending countable collection of
nonempty closed subsets of a compact metric space X. Show that f n i F # 0.

60. For a subset E of a metric space X, show that E is totally bounded if and only if its closure E
is totally bounded.
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61. For a subset E of a complete metric space X, show that E is totally bounded if and only if its
closure E is compact.

62. Let B = {{xn} E B2 I 1 x.2 < 1} be the closed unit ball in e2. Show that B fails to be compact
n=1

by (i) showing B is not sequentially compact, (ii) finding an open cover of B without any finite
subcover, and (iii) showing B is not totally bounded.

63. Let B = If E L2[a, b] I I If1 12 < 11 be the closed unit ball in L2[a, b]. Show that B fails to be
compact by (i) showing B is not sequentially compact, (ii) finding an open cover of B without
any finite subcover, and (iii) showing B is not totally bounded.

64. Let X be a totally bounded metric space.
(i) If f is a uniformly continuous mapping from X to a metric space Y, show that f (X) is

totally bounded.

(ii) Is (i) still true if f is only required to be continuous?

65. Let p be a metric on a set X. Define

v)r(u, v) = 1
p(u, v)

forallu, VEX.

Verify that T is a bounded metric on X and convergence of sequences with respect to the
p metric and the r metric is the same. Conclude that sets that are closed with respect to
the p metric are closed with respect to the T metric and that sets that are open with respect to
the p metric are open with respect to the T metric. Are the metrics p and 'r equivalent?

66. Let E be a subset of Euclidean space R. Assume every continuous real-valued function of
E takes a minimum value. Prove that E is closed and bounded.

67. Let E be a subset of Euclidean space R. Assume every continuous real-valued function of
E is uniformly continuous. Prove that E is closed and bounded.

68. Suppose f is a continuous real-valued function on Euclidean space RI with the property that
there is a number c such that I f (x) I ? c I Ix1I for all x E R. Show that if K is a compact set of
real numbers, then its inverse image under f, f-1(K), also is compact. (Mappings with this
property are called proper.)

69. For a compact metric space (X, p), show that there are points U, V E X for which p(u, v) _
diam X.

70. Let K be a compact subset of the metric space (X, p) and xo belong to X. Show that there is
a point z E K for which

P(z, xo) :S P(x, xo)forall xEK.

71. Let K be a compact subset of the metric space X. For a point x E X - K, show that there is a
open set U containing K and an open set 0 containing x for which U n 0 = 0.

72. Let A and B be subsets of a metric space (X, p). Define

dist(A, B) =inf {p(u, v) I UEA,vEB}.

If A is compact and B is closed, show that A n B = 0 if and only if dist(A, B) > 0.

73. Let K be a compact subset of a metric space X and 0 an open set containing K. Use the
preceding problem to show that there is an open set U for which K C U C U C 0.
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9.6 SEPARABLE METRIC SPACES

Definition A subset D of a metric space X is said to be dense in X provided every nonempty
open subset of X contains a point of D. A metric space X is said to be separable provided
there is a countable subset of X that is dense in X.

Observe that D is dense in X if and only if every point in X is a point of closure of D,
that is, D = X. One of the first results of mathematical analysis is that the rational numbers
are countable and dense in R (see Theorem 2 of Chapter 1). Therefore R is separable. From
this we infer that every Euclidean space R" is separable. The Weierstrass Approximation
Theorem tells us that the polynomials are dense in C[a, b]. Thus the set of polynomials
with rational coefficients is countable and dense in C[a, b]. Therefore C[a, b] is separable.
Theorem 11 of Chapter 7 tells us that for E a Lebesgue measurable set of real numers and
1 < p < oo, the normed linear space LP(E) is separable. We showed that L°O[0, 1] is not
separable.

Proposition 24 A compact metric space is separable.

Proof Let X be a compact metric space. Then X is totally bounded. For each natural number
n, cover X by a finite number of balls of radius 1/n. Let D be the collection of points that are
centers of one of this countable collection of covers. Then D is countable and dense.

Proposition 25 A metric space X is separable if and only if there is a countable collection
{On}n°

1 of open subsets of X such that any open subset of X is the union of a subcollection of
{On }0n°

1'

Proof First suppose X is separable. Let D be a countable dense subset of X. If D is finite,
then X = D. Assume D is countably infinite. Let (xn} be an enumeration of D. Then
(B(xn, 1/m )}n,m E N is a countable collection of open subsets of X. We claim that every open
subset of X is the union of a subcollection of {B(xn, 1/M) ),,mE N. Indeed, let 0 be an open
subset of X. Let x belong to O. We must show there are natural numbers n and m for which

x E B(Xn, 1/m) C O. (6)

Since 0 is open, there is a natural number m for which B(x, 1/m) is contained in O. Since
x is a point of closure of D, we may choose a natural number n for which x, belongs to
D f1 B(x, 1/2m). Thus (6) holds for this choice of n and m.

To prove the converse, suppose there is a countable collection (On }n°
1

of open sets
such that any open subset of X is the union of a subcollection of {On }n°1. For each index
n, choose a point in On and label it xn. Then the set {xn}1

1
° 1 is countable and is dense since

every nonempty open subset of X is the union of a subcollection of (On) n
1

and therefore
contains points in the set {xn }n l .

Proposition 26 Every subspace of a separable metric space is separable.

Proof Let E be a subspace of the separable metric space X. By the preceding proposition,
there is a countable collection {0n}n°l of open sets in X for which each open set in X
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is a union of some subcollection of 1. Thus {O fl E}n°1 is a countable collection
of subsets of E, each one of which, by Proposition 2, is open. Since each open subset of
E is the intersection of E with an open subset of X, every open subset of E is a union
of a subcollection of {O n E}n°1. We infer from the preceding proposition that E is
separable.

Theorem 27 The following are separable metric spaces:

(i) Each nonempty subset of Euclidean space R".

(ii) For E a Lebesgue measurable set of real numbers and 1 < p < oo, each nonempty
subset of LP (E).

(iii) Each nonempty subset of C[a, b].

PROBLEMS

74. Let X be a metric space that contains a finite dense subset D. Show that X = D.

75. Show that for a subset D of a metric space X, D is dense in the subspace D.

76. Show that if two continuous mappings defined on a metric space X take the same values on a
dense subset, then they are equal.

77. Show that the product of two separable metric spaces is again separable.

78. Let p and or be equivalent metrics on a nonempty set X. Show that (X, p) is separable if and
only if (X, o) is separable.

79. Show that on any uncountable set X there is a metric on X with respect to which X is not
separable.
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In this chapter we establish three theorems that are widely used in mathematical analysis.
These theorems will be essential tools in our later study of linear operators between Banach
spaces and Hilbert spaces and of integration on general measure spaces.

10.1 THE ARZELA-ASCOLI THEOREM

In many important problems in analysis, given a sequence of continuous real-valued functions
it is useful to know that there is a subsequence that converges uniformly. In this section,
our main result is the Arzela-Ascoli Theorem, which provides a criterion for a uniformly
bounded sequence of continuous real-valued functions on a compact metric space X to have
a uniformly convergent subsequence. After we prove this theorem, we relate it to the general
problem of finding criteria for a subset of a metric space to be compact.

For a metric space X, we denote by C(X) the linear space of continuous real-valued
functions on X. If X is compact, according to Theorem 22 of the preceding chapter, every
continuous function on X takes a maximum value. For a function fin C(X ), define

Illllmax = maxIf(x)I.
XEX

This defines a norm, as it did in the special case X = [a, b] we first considered in Chapter 7.
This maximum norm induces a metric by

Pmax(g, h) = IIg-hllmaxforallg,hEC(X).

We call this metric the uniform metric because a sequence in C(X) converges with respect
to this metric if and only if it converges uniformly on X. A sequence that is Cauchy with
respect to this metric is called uniformly Cauchy. The proof of the completeness of C(X) for
a general compact metric space X is no different than the proof for the case X = [a, b] (see
the proof of Proposition 10 of the preceding chapter).

Proposition 1 If X is a compact metric space, then C(X) is complete.
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Definition A collection .T of real-valued functions on a metric space X is said to be
equicontinuous at the point x E X provided for each e > 0, there is a S > 0 such that for every
f F and x' E X,

ifp(x', x) <S, then If(x') - f(x)I <E.

The collection .T is said to be equicontinuous on X provided it is equicontinuous at everypoint
in X.

Of course, each function in an equicontinuous collecton of functions is continuous
and any finite collection of continuous functions is equicontinuous. In general, an infinite
collection of continuous functions will not be equicontinuous. For instance, for each natural
number n, define fn (x) = x" for 0 < x < 1. Then { fn } is a countable collection of continuous
functions on [0, 11 that is not equicontinuous at x = 0 and is equicontinuous at the other
points in [0, 1].

Example For M > 0, let F be the collection of continuous real-valued functions on the
closed, bounded interval [a, b] that are differentiable on the open interval (a, b) and for
which

If'I_Mon(a,b).
We infer from the the Mean Value Theorem that

If (u) - f(v)I viforall u,vE[a, b].

Therefore F is equicontinuous since, regarding the criterion for equicontinuity at each point
in X, S = E/M responds to the c > 0, challenge.

A sequence { fn} of real-valued functions on a set X is said to be pointwise bounded
provided for each x E X, the sequence {fn (x)) is bounded and is said to be uniformly bounded
on X provided there is some M > 0 for which

IfnI <<MonXforalln.

Lemma 2 (The Arzela-Ascoli Lemma) Let X be a separable metric space and If"} an
equicontinuous sequence in C(X) that is pointwise bounded. Then a subsequence of (f,)
converges pointwise on all of X to a real-valued function f on X.

Proof Let (X}1 be an enumeration of a dense subset D of X. The sequence of real numbers
defined by n H fn (xl) is bounded. Therefore, by the Bolzano-Weierstrass Theorem, this
sequence has a convergent subsequence, that is, there is a strictly increasing sequence of
integers {s(1, n )j and a number a1 for which

n l fs(l,n)(xl)=al.+00

Using the same argument, the sequence defined by n H fs(l,n) (X2) is bounded and therefore
there is a subsequence (s(2, n) } of {s(1, n) } and a number a2 for which limn --> oo fs(2,n) (x2) =
a2. We inductively continue this selection process to obtain a countable collection of strictly
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increasing sequences of natural numbers ({s(j, n )fl 1 and a sequence of numbers {a j} such
that for each j,

{s(j + 1, n)} is a subsequence of Es(j, n)} and lim fs(j,n)(xj)=aj.
n + oo

For each index j, define f (x j) = a j. Consider the "diagonal" subsequence If.,] obtained
by setting nk = s(k, k) for each index k. For each j, {nk}k°1 is a subsequence of the j-th
subsequence of natural numbers selected above and therefore

=aj = f(xj).

Thus (fnk } converges pointwise on D to f .

For notational convenience, assume the whole sequence of (fn] converges pointwise
on D to f . Let x0 be any point in X. We claim that f fn (xo )} is Cauchy. Indeed, let E > 0. By
the equicontinuity of { fn } at x0, we may choose S > 0 such that I fn (x) - fn (xo) I < c/3 for all
indices n and all x E X for which p(x, xo) < 8. Since D is dense, there is a point x E D such
that p(x, x0) < S. Moreover, since (fn (x) j converges, it must be a Cauchy sequence, and so
we may choose N so large that

Ifn(x) - fm(x)I <E/3 for all m,n>N.

Then for all m, n > N,

IA(x0) - fm(x0)I I.fn(xo) -fn(x)I+Ifn(x) - fm(x)I
+Ifm(x0)-fm(x)I <E/3+E/3+E/3=E.

Thus (f, (xo) } is a Cauchy sequence of real numbers. Since R is complete, (f, (xo) ) converges.
Denote the limit by f (xo ). The sequence { fn } converges pointwise on all of X to f : X -* R.

0

We proved that a continuous real-valued function or! a compact metric space is
uniformly continuous. The exact same proof shows that if X is a compact metric space
and F is an equicontinuous collection of real-valued functions on X, then F is uniformly
equicontinuous in the sense that for each c > 0, there is a S > 0 such that for u, v E X and
any f E Y,

if p(u, v) <S, thenIf(u) - f(v)I <E.

The Arzela-Ascoli Theorem Let X be a compact metric space and (f,) a uniformly bounded,
equicontinuous sequence of real-valued functions on X. Then (f,) has a subsequence that
converges uniformly on X to a continuous function f on X.

Proof Since X is a compact metric space, according to Proposition 24 of the preceding
chapter, it is separable. The Arzelh-Ascoli Lemma tells us that a subsequence of J fn)
converges pointwise on all of X to a real-valued function f. For notational convenience,
assume the whole sequence [f, } converges pointwise on X. Therefore, in particular, for each
x in X, {fn (x)} is a Cauchy sequence of real numbers. We use this and equicontinuity to
show that f fn } is a Cauchy sequence in C(X ).
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Let c > 0. By the uniform equicontinuity of (fn } on X, there is a S > 0 such that for all n,

Ifn(u)-fn(v)I<E/3 for all u,vEXsuchthatp(u, v)<S. (1)

Since X is a compact metric space, according to Theorem 16 of the preceding chapter, it is
totally bounded. Therefore there are a finite number of points xl, ..., xk in X for which X is
covered by (B(xi, 5))ki=1 For 1 < i < k, If, (xi )} is Cauchy, so there is an index N such that

Ifn(xi)-fm(xi)I <E/3for1 <i <kandall n,m>N. (2)

Now for any x in X, there is an i, 1 < i < k, such that p(x, x ) < , and therefore for n, m > N,

Ifn(x) - fm(x)I < Ifn(x) - fn(xi)I+Ifn(xi) - fm(xi)I

+ Ifm(xi) - fm(x)I <E/3+E/3+E/3 = E.

Thus (fn} is uniformly Cauchy. Therefore, since C(X) is complete, {fn} converges uniformly
on X to a continuous function.

We proved that a metric space is compact if and only if it is sequentially compact.
Furthermore, for a subspace K of Euclidean space Rn, the Heine-Borel Theorem tells us
that K is compact if and only if K is a closed, bounded subset of W. In a general metric
space, being closed and bounded is a necessary condition for compactness (see Problem 1),
but it is not sufficient. For example, the closed unit ball If E C[0, 1] 1 Ill Ilmax 51) of C[0, 1]
is a closed, bounded subset of C[0, 1] which fails to be sequentially compact. Indeed, the
sequence (fn}, defined by f, (x) = xn on [0, 1] for all n, fails to have a subsequence that
converges uniformly to a continuous function on [0, 1]. The Arzela-Ascoli Theorem may be
reformulated as a criterion for the determination of the closed, bounded subsets of C(X)
that are compact.

Theorem 3 Let X be a compact metric space and.F a subset of C(X ). Then F is a compact
subspace of C(X) if and only if F is closed, uniformly bounded and equicontinuous.

Proof First suppose that .1= is closed, bounded, and equicontinuous. Let { fn } be a sequence
in F. According to the Arzela-Ascoli Theorem, a subsequence of If, } converges uniformly
to a function in f E C(X ). Since F is closed, f belongs to Y. Thus F is a sequentially
compact metric space and therefore is compact.

Now assume .T is compact. We leave it as an exercise to show that F is bounded and
is a closed subset of C(X). We argue by contradiction to show that .F is equicontinuous.
Suppose that .T is not equicontinuous at a point x in X. Then there is an co > 0 such that for
each natural number n, there is a function in .F that we label f,, and a point X we label xn
for which

I fn (xn) - fn (x) I > co while p (xn , x) < 1/n. (3)

Since.F is a compact metric space, it is sequentially compact. Therefore there is a subsequence
If,, } that converges uniformly on X to a continuous function f. Choose an index K such
that pmax(f, fnk) < Eo/3 fork > K. We infer from (3) that fork > K,

I f (xnk) - f (x) l > Eo/3 while p(xnk , x) < link. (4)

This contradicts the continuity of f at the point x. Therefore .F is equicontinuous.
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Remark The proof of the Arzeld-Ascoli Lemma is very similar to the proof we provided
in Chapter 7 of Helley's Theorem. The common technique underlying both proofs is called a
Cantor diagonalization argument (see Problem 14).

Remark The forthcoming Riesz's Theorem of Chapter 13 tells us that the closed unit ball of a
normed linear space is compact if and only if the linear space is finite dimensional. Therefore,
given a particular infinite dimensional normed linear space, it is interesting to characterize
the closed, bounded subsets that are compact. The compactness criterion provided by the
Arzeld-Ascoli Theorem for subsets of C(X) has a lP counterpart. It is not difficult to show
that, for 1 < p < oo, a closed, bounded subset of fP is compact if and only if it is equisummable
in the sense that for each e > 0, there is an index N for which

00

E I xk I P < E for all x = {Xn } E S.
k=N

PROBLEMS

1. Let E be a compact subspace of a metric space Y. Show that E is a closed, bounded subset of Y.

2. Show that an equicontinuous sequence of real-valued functions on a compact metric space is
pointwise bounded if and only if it is uniformly bounded.

3. Show that an equicontinuous family of continuous functions on a compact metric space is
uniformly equicontinuous.

4. Let X be a metric space and (fn} a sequence in C(X) that converges uniformly on X to
f E C(X ). Show that f fn } is equicontinuous.

5. A real-valued function f on [0, 1] is said to be Holder continuous of order a provided there
is a constant C for which

If(x)-f(Y)I CIx - ylaforall x,yE[0, 1].

Define the Holder norm

Illlla=max{If(x)I+I1(x)-f(Y)I/IX -Yla I x,yE[0, 1],x#y}.
Show that for 0 < a < 1, the set of functions for which Ilflla 1 has compact closure as a
subset of C[0,1].

6. Let X be a compact metric space and F a subset of C(X). Show that F is equicontinuous
if and only if its closure in C(X ), .F, is equicontinuous. Conclude that a subset of C(X) has
compact closure if and only if it is equicontinuous and uniformly bounded.

7. For a closed, bounded interval [a, b], let (fn } be a sequence in C[a, b]. If (fn } is equicontinuous,
does {f, } necessarily have a uniformly convergent subsequence? If If,) is uniformly bounded,
does {f} necessarily have a uniformly convergent subsequence?

8. Let X be a compact metric space and Y be a general metric space. Denote by C(X, Y) the set
of continuous mappings from X to Y. State and prove a version of the Arzela-Ascoli Theorem
for a sequence in C(X, Y) in which the assumption that (fn) is pointwise bounded is replaced
by the assumption that for each x E X, the closure of the set (fn (x) I n a natural number) is a
compact subspace of Y.

9. Let (fn} be an equicontinuous, uniformly bounded sequence of continuous real-valued
functions on R. Show that there is a subsequence of (fn} that converges pointwise on R to a
continuous function on R and that the convergence is uniform on each bounded subset of R.
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10. For 1 < p < oo, show that a subspace of £P is compact if and only if it is closed, bounded, and
equisummable.

11. For a sequence of nonnegative real numbers [c.), let S be the subset of 12 consisting of those
x = {xn } E f2 such that Ix I < c, for all n. Show that S is equisummable if {c } belongs to P2.

12. For 1 < p < oo, show that the closed unit ball in the Banach space IP is not compact.

13. For 1 < p < oo, show that the closed unit ball in the Banach space LP[0, 1] is not compact.

14. Let S be a countable set and { a sequence of real-valued functions on S that is pointwise
bounded on S. Show that there is a subsequence of f that converges pointwise on S to a
real-valued function.

10.2 THE BAIRE CATEGORY THEOREM

Let E be a subset of a metric space X. A point x E E is called an interior point of E provided
there is an open ball centered at x that is contained in E: the collection of interior points of E
is called the interior of E and denoted by int E. A point x E X ^- E is called an exterior point
of E provided there is an open ball centered at x that is contained in X ^- E: the collection of
exterior points of E is called the exterior of E and denoted by ext E. If a point x E X has the
property that every ball centered at x contains points in E and points in X ^- E, it is called a
bounday point of E: the collection of boundary points of E is called the boundary of E and
denoted by bd E. We leave it as an exercise to verify that for any subset E of X:

X = int E U ext E U bd E and the union is disjoint. (5)

Recall that a subset of A of a metric space X is said to be dense (in X) provided every
nonempty open subset of X contains a point on A. We call a subset of a metric space hollow
(in X) provided it has empty interior.1 Observe that for a subset E of a metric space X,

E is hollow in X if and only if its complement, X E, is dense in X. (6)

For a metric space X, a point x E X and 0 < rl <r2, we have the inclusion B(x, rl) C B(x, r2).
From the continuity of the metric we infer that B(x, Ti) is closed and it contains B(x, rl ).
Thus the closure of B(x, rl) is contained in B(x, r2). Therefore, if 0 is an open subset of
a metric space X, for each point x E 0, there is an open ball centered at x whose closure is
contained in O.

The Baire Category Theorem Let X be a complete metric space.

(i) Let {On )n_i be a countable collection of open dense subsets of X. Then the intersection

noo 1
On also is dense.

(ii) Let (Fn)R° 1 be a countable collection of closed hollow subsets of X. Then the union

1
Fn also is hollow.

Proof A set is dense if and only if its complement is hollow. A set is open if and only if its
complement is closed. We therefore infer from De Morgan's Identities that (i) and (ii) are
equivalent. We establish (i). Let xo belong to X and ro > 0. We must show that B(xo, ro)
contains a point of fn 1 On. The set B(xo, ro) fl Oi is nonempty since Ol is dense in X.

'The adjective "hollow" was suggested by Adam Ross.
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Let x1 belong to the open set B(xo, ro) fl 01. Choose rl, 0 < rl < 1, for which, if we define
B1 = B(xl, rl ), then

B1 C B(xo, ro) n O1. (7)

Suppose n is a natural number and the descending collection of open balls {Bk}k=1 has
been chosen with the property that for 1 < k < n, Bk has radius less than 1/k and
Bk C Ok. The set Bn n 0n+1 is nonempty since On+1 is dense in X. Let xn+1 belong to
the open set B(xn, rn) fl On. Choose rn+1, 0 < rn+1 < 1/(n + 1), for which, if we define
Bn+1 = B(xn+1, rn+1), Bn+l C Bn n °n+l This inductively defines a contracting sequence
of closed sets {Bn}n°

1 with the property that for each n, Bn C O. The metric space X
is complete. We therefore infer from the Cantor Intersection Theorem that n,1 Bn is
nonempty. Let x, belong to this intersection. Then x,, belongs to nn,=1 On. On the other
hand, by (7), x, also belongs to B(xo, ro). This completes the proof of (i).

A subset E of a metric space X is called nowhere dense provided its closure E is hollow.
A subset E of X is nowhere dense if and only if for each open subset 0 of X, E fl 0 is not
dense in 0 (see Problem 16). The Baire Category Theorem has the following equivalent
formulation: In a complete metric space, the union of a countable collection of nowhere
dense sets is hollow.

Corollary 4 Let X be a complete metric space and {F,}'1 a countable collection of closed
subsets of X. If Un° 1 Fn has nonempty interior, then at least one of the Fn's has nonempty
interior. In particular, if X = U'l Fn, then at least one of the Fn's has nonempty interior.

Corollary 5 Let X be a complete metric space and {Fn}n° 1 a countable collection of closed
subsets of X. Then Un° 1 bd Fn is hollow.

Proof We leave it as an exercise to show that for any closed subset E of X, the boundary of
E, bd E, is hollow. The boundary of any subset of X is closed. Therefore, for each natural
number n, bd Fn is closed and hollow. According to the Baire Category Theorem, Un'1 bd Fn
is hollow.

Theorem 6 Let.F be a family of continuous real-valued functions on a complete metricspace
X that is pointwise bounded in the sense that for each x E X, there is a constant Mx for which

I f (x) I < Mx for all f E.F.

Then there is a nonempty open subset 0 of X on which .F is uniformly bounded in the sense
that there is a constant M for which

Ill < M on O for all f E.F. (8)

Proof For each index n, define En = {x E X I I f(x)I < n for all f E.F}. Then E,, is closed
since each function in F is continuous and the interection of a collection of closed sets is
closed. Since.F is pointwise bounded, for each x E X, there is an index n such that I f (x) I < n

for all f E.F; that is, x belongs to En. Hence X = U00 En. Since X is a complete metric space,
n=1

we conclude from Corollary 4 that there is a natural number n for which En contains an open
ball B(x, r). Thus (8) holds for 0 = B(x, r) and M = n.
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We have seen that if a sequence of continuous real-valued functions converges
uniformly, then the limit function is continuous and this is false for pointwise convergence.
However, under pointwise convergence to a real-valued function of a sequence of continuous
real-valued functions on a complete metric space, the limit function is continuous at each
point in a dense subset of its domain.

Theorem 7 Let X be a complete metric space and If,) a sequence of continuous real-valued
functions on X that converges pointwise on X to the real-valued function f. Then there is a
dense subset D of X for which f fn) is equicontinuous and f is continuous at each point in D.

Proof Let m and n be natural numbers, Define

E(m, n) _ {x E X I I f j(x) - fk(x)I < 1/m for all j, k > n} .

Since each function x H I fj (x) - fk (x) I is continuous, the set E(m, n), being the intersection
of a collection of closed sets, is closed. According to Corollary 5,

D = X -L U bd Em,n]
n,mEN

is dense in X. Observe that if n and m are natural numbers and the point x in D belongs to
E(m, n), then x belongs to the interior of E(m, n). We claim that If,) is equicontinuous at
each point of D. Indeed, let xo belong to D. Let E > 0. Choose a natural number m for which
1/m < E/4. Since If, (xo )} converges to a real number, If, (xo )} is Cauchy. Choose a natural
number N for which

I fj (xo) - fk (xo)) I < 1/m for all j, k > N. (9)

Therefore xo belongs to Em, N. As we observed above, xo belongs to the interior of E(m, N).
Choose r > 0 such that B(xo, r) C E(m, N), that is,

Ifj(x) - fk(x)) I <1/m for all j,k>NandallxEB(xo, r). (10)

The function fN is continuous at xo. Therefore there is a S, 0 < S < r, for which

I fN (x) - fN (xo) I < 1/m for all x E B(xo, 3). (11)

Observe that for every point x E X and natural number j,

fj(x) - fj(xo) = [fj(x) - fN(x)]+[fN(x) - fN(x0)]+[fN(x0) - fj(x0)]

We infer from (9), (10), (11), and the triangle inequality that

If(x) - f j(xo)I < 3/m < [3/4]E for all j > N and all x E B(xo, 8). (12)

The finite family of continuous functions { fj}N i1 is clearly equicontinuous at xo. We there-
fore infer from (12) that { fn] is equicontinuous at xo. This implies continuity at xo. Indeed,
take the limit as j -+ oo in (12) to obtain

If(x) - f(xo)I <Eandall xEB(xo, S). (13)

0
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Remark There is standard terminology associated with the ideas of this section. A subset E of
a metric space X is said to be of the first category (or meager) if E is the union of a countable
collection of nowhere dense subsets of X. A set that is not of the first category is said to be of
the second category (or nonmeager), and the complement of a set of first category is called
residual (or co-meager). The Baire Category Theorem may also be rephrased as follows: an
open subset of a complete metric space is of the second category.

Remark The consequences of the Baire Category Theorem are surprisingly varied. In Chapter
13, we use Theorem 6 to prove the Open Mapping Theorem and the Uniform Boundedness
Principle, two cornerstones for the study of linear functionals and operators. In Chapter 18, we
use Theorem 7 to prove the Vitali-Hahn-Saks Theorem regarding the convergence of measures,
an essential ingredient in the description of weak convergence in Ll (E). In Problems 20 and
21, two interesting properties of continuous and differentiable functions are deduced from the
Baire Category Theorem.

PROBLEMS

15. Let E be a subset of a metric space X. Show that bd E is closed. Also show that if E is closed,
then the interior of bd E is empty.

16. In a metric space X, show that a subset E is nowhere dense if and only if for each open subset
0 of X, E n 0 is not dense in 0.

17. In a complete metric space X, is the union of a countable collection of nowhere dense sets
also nowhere dense?

18. Let 0 be an open subset and F be a closed subset of a metric space X. Show that both O 0
and F ti int F are closed and hollow.

19. In a complete metric space, is the union of a countable collection of sets of the first category
also of the first category?

20. Let F be the subset of C[0, 1] consisting of functions for which there is a point xo in [0, 1]
such that I f (x) - f (x0) J <- n I x - xoI for all x c- [0, 1]. Show that F. is closed. Show that F is
hollow by observing that for f E C[0, 1] and r > 0 there a piecewise linear function g E C[0, 1]
for which pmu(f, g) < r and the the left-hand and right-hand derivatives of g on [0, 1] are
greater than n + 1. Conclude that C[0, 1] #Un°

1
F and show that each h E C[0, 1] ^- 1 F

fails to be differentiable at any point in (0, 1).

21. Let f be a real-valued function on a metric space X. Show that the set of points at which f
is continuous is the intersection of a countable collection of open sets. Conclude that there is
not a real-valued function on R that is continuous just at the rational numbers.

22. For each natural number n, show that in [0, 1] there is a nowhere dense closed set that has
Lebesgue measure 1-1/n. Use this to construct a set of the first category in [0, 1] that has
measure 1.

23. A point x in a metric space X is called isolated provided the singleton set {x} is open in X.
(i) Prove that a complete metric space without isolated points has an uncountable number

of points.

(ii) Use part (i) to prove that [0, 1] is uncountable. Compare this with the proof that [0, 1]
is uncountable because it has positive Lebesgue measure.
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(iii) Show that if X is a complete metric space without isolated points and {Fn}n 1 is a
countable collection of closed hollow sets, then X - u0°1 F is dense anduncountable.

24. Let E be a subset of a complete metric space X. Verify the following assertions.
(i) If X - E is dense and F is a closed set contained in E, then F is nowhere dense.

(ii) If E and X ^- E are both dense, then at most one of them is the union of a countable
collection of closed sets.

(iii) The set of rational numbers in [0, 1] is not the intersection of a countable collection of
open sets.

25. Show that under the hypotheses of Theorem 6 there is a dense open set O C X such that each
x E 0 has a neighborhood U on which .F is uniformly bounded.

26. By Holder's Inequality, we have L2[a, b] C Ll[a, b]. Show that the set L2[a, b], considered
as a subset of the complete metric space L1 [a, b], is of the first category.

27. Let f be a continuous real-valued function on R with the property that for each real number
x,limn_, f(nx)=0.Show that limx,,, f(x)=0.

28. Let f be a continuous real-valued function on R that has derivatives of all orders. Suppose
that for each real number x, there is an index n = n (x) for which f (n) (x) = 0. Show that f is
a polynomial. (Hint: Apply the Baire Category Theorem twice.)

10.3 THE BANACH CONTRACTION PRINCIPLE

Definition A point x in X is called a fixed point of the mapping T: X -). X provided
T(x) =x.

We are interested here in finding assumptions on a mapping that ensures it has a fixed
point. Of course, a mapping may or may not have any fixed points. For instance, the mapping
T : R -+ R defined by T (x) = x + 1 certainly has no fixed points.

A fixed point of a real-valued function of a real variable corresponds to a point in the
plane at which the graph of the function intersects the diagonal line y = x. This observation
provides the geometric insight for the most elementary result regarding the existence of
fixed points: Let [a, b] be a closed, bounded interval in R and suppose that the image of
the continuous function f : [a, b] R is contained in [a, b]. Then f : [a, b] -+R has a fixed
point. This follows from the Intermediate Value Theorem by observing that if we define
g(x) = f(x) - x for x in [a, b], then g(a) > 0 and g(b) < 0, so that g(xo) = 0 for some
xo in [a, b], which means that f (xo) = X.

A subset K of Rn is said to be convex provided whenever u and v belong to K, the
segment {tu + (1 - t)v 10 < t < 11 is contained in K. The preceding result generalizes to
mappings on subsets of Euclidean spaces as follows: If K is a compact, convex subset of Rn
and the mapping T : K -+ K is continuous, then T has a fixed point. This is called Brouwer's
Fixed Point Theorem.2 Here we will prove an elementary fixed point result called the Banach
Contraction Principle in which there is a more restrictive assumption on the mapping but a
very general assumption on the underlying space.

2An analytic proof of this theorem may be found in Linear Operators, Part I (pp. 467-469) by Nelson Dunford
and Jacob Schwartz [DS71].
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Definition A mapping T from a metric space (X, p) into itself is said to be Lipschitz provided
there is a number c > 0, called a Lipschitz constant for the mapping, for which

p(T(u), T(v)) <cp(u, v)forallu,vEX.

If c < 1, the Lipschitz mapping is called a contraction.

The Banach Contraction Principle Let X be a complete metric space and the mapping
T : X -> X be a contraction. Then T : X -> X has exactly one fixed point.

Proof Let c be a number with 0 < c < 1 that is a Lipschitz constant for the mapping T. Select
a point in X and label it xo. Now define the sequence (xk ) inductively by defining xl = T (xo )
and, if k is a natural number such that Xk is defined, defining Xk+1 = T (xk ). The sequence {xn }
is properly defined since T(X) is a subset of X. We will show that this sequence converges
to a-fixed point of T.

Indeed, observe that by the definition of the sequence and the Lipschitz constant c, it
follows that

P(x2, x1) = P(T(x1), T(xo)) = P(T(T(xo)), T(xo)) < cp(T(xo), xo),

and that
P(xk+l,xk) =P(T(xk), T(xk-1)) <CP(xk,xk-1)ifk> 2.

Using an induction argument, we infer from these two inequalities that

P (xk+1, xk) < ck p(T (xo ), xo) for every natural number k.

Hence, if m and k are natural numbers with m > k, from the triangle inequality for the metric
p and the geometric sum formula,3 it follows that

P(xm,xk) <P(xm,xm-1)+P(xm-l,xm-2)+...+P(xk+l,xk)

[cm-1 + cin-2 + ... + ck]p(T(xo ), xo )

= ck[1 + c +... + cm-l-k ]p(T(xo
), xo )

k 1 - CM-k=c
1-c .p(T(xo),xo).

Consequently, since 0 < c < 1,

P(xm,xk) < j-. (T(xo),xo)ifm>k.

3

n 1-cntl
ck= 1-c ifc#1.

k=0
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But lurk-x Ck = 0, and hence, from the preceding inequality we conclude that {xk} is a
Cauchy sequence.

By assumption, the metric space X is complete. Thus there is a point x in X to which
the sequence {xk} converges. Since T is Lipschitz, it is continuous. Therefore

T(x) = lim T(xk) = urn xk+1 = x.k- 00 k- oo

Thus the mapping T: X-,X has at least one fixed point. It remains to check that there is
only one fixed point. But if u and v are points in X such that T (u) = u and T (v) = v, then

0:5 p(u, v) = p(T(u), T(v)) .5 cp(u, v),

so that since 0 < c < 1, we must have p(u, v) = 0, that is, u = v. Thus there is exactly one
fixed point.

The above proof of the Banach Contraction Principle actually proves substantially
more than the existence of a unique fixed point. It provides an algorithm for approximating
the fixed point. Indeed, under the assumptions of the Banach Contraction Principle, what
has been proven is that if c is a number with 0 < c < 1 that is a Lipschitz constant for the
mapping T: X-> X, and xo is any point in X, then (i) the sequence {xk} defined recursively
by setting xl = T(xo) and xk+1 = T(Xk) fork > 1 converges to a fixed point x* of T and (ii)

Ck
p(x*, xk) < 1 c . p(T(xo ), xo) for every natural number k.

The Banach Contraction Principle is widely used in the study of nonlinear differential
equations. We provide one example of its use. Suppose 0 is an open subset of the plane
R2 that contains the point (xo, yo ). Given a function g: O-+ R, the problem we pose is to
find an open interval of real numbers I containing the point xo and a differentiable function
f : I -+ R such that

f'(x)= g(x, f(x))forallxEl
f(xo) = yo. (14)

A very special case of the above equation occurs if g is independent of its second
variable, so g(x, y) = h(x). Even in this case, if the image of the function h: I-->R fails
to be an interval, there is no solution of equation (14) (see Problems 42 and 43). On the
other hand, if h is continuous, then it follows from the Fundamental Theorem of Differential
Calculus that equation (14) has a unique solution given by

f (x) =yo+Jh(t)dtforallxEI.X

XO

Therefore for a general continuous real-valued function of two variables g, if a continuous
function f : I - R has the property that (x, f (X)) E O for each x E I, then f is a solution of
(14) if and only if

f(x)=yo+Jxg(t, f(t))dtforallxEl. (15)
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As we will see in the proof of the next theorem, this equivalence between solutions of the
differential equation (14) and those of the integral equation (15) is the observation that
permits us to use fixed point theorems in the study of differential equations.

The Picard Local Existence Theorem Let 0 bean open subset of the plane R2 containing the
point (xo, yo). Suppose the function g: 0-+ R2 is continuous and there is a positive number
M for which the following Lipschitz property in the second variable holds, uniformly with
respect to the first variable:

Ig(x,y1)-g(x,y2)I SMIy1-y2lforallpoints(x,Y1)and(x,y2)inO. (16)

Then there is an open interval I containing xo on which the differential equation (14) has a
unique solution.

Proof For E a positive number, define It to be the closed interval [xo - f, xo + Z]. In view of
the equivalence noted above between solutions of (14) and (15), it suffices to show that f can
be chosen so that there is exactly one continuous function f : It - R having the property that

f(x) = yo+Jg(t, f (t)) dt for all xEI,.x
xp

Since 0 is open, we may choose positive numbers a and b such that the closed rectangle
R = [xo - a, xo + a] X [yo - b, yo + b] is contained in 0. Now for each positive number f with
f < a, define Xt to be the subspace of the metric space C(lt) consisting of those continuous
functions f : Ie - R that have the property that

If (x) -yol <bforall xEIt;

that is, the continuous functions on Ie that have a graph contained in the rectangle
It X, [yo - b, yo + b].

For f E Xe, define the function T (f) E C(II) by

T(f)(x) = yo+Jxg(t, f(t))dt for all xElt.
xp

A solution of the integral equation (15) is simply a fixed point of the mapping T : Xe --> C(lt ).
The strategy of the proof is as follows: Since C(It) is a complete metric space and Xe is a
closed subset of C(It ), Xe is also a complete metric space. We will show that if I is chosen
sufficiently small, then

T(Xe) C Xe and T : Xe -*Xe is a contraction.

Hence, we infer from the Banach Contraction Principle that T : Xe -+ Xe has a unique
fixed point.

In order to choose f so that T(Xt) C Xe we first use the compactness of the closed,
bounded rectangle R together with the continuity of g to choose a positive number K such that

Ig(x, y)I 5 K for all points (x, y) in R.
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Now for f E Xf and X E It,

IT(f)(x)-Yol = fx'x 8( t, f(t))dt <IK,

so that
T(Xt) C Xt provided eK < b.

Observe that for functions fl, f2 E Xt, and X E It, we may infer from (16) that

18(x, fl(x)) - g(x, f2(x))I < MPm.(f1, f2)

Consequently, using the linearity and monotonicity properties of the integral, we have

IT(fi)(x) - T(f2)(x)I = f x[g(t, fi(t)) - g(t, f2(t))]dt
p

< Ix - XOIMPmax(fl, f2)

< tMPmax(f1, f2).

This inequality, together with the inclusion T(Xt) C Xe providedLK < b, implies that

T : X1- Xt is a contraction provided I K < b and IM < 1.

Define I = min{b/K,1/2M}. The Banach Contraction Principle tells us that the mapping
T : X --3. Xe has a unique fixed point.

PROBLEMS

29. Let p be a polynomial. Show that p: R -> R is Lipschitz if and only if the degree of p is less
than 2.

30. Fix a > 0, define f (x) = ax(1 - x) for x in [0, 11.
(i) For what values of a is f ([0, 1]) C [0, 1]?

(ii) For what values of a is f ([0, 1]) C [0, 11 and f : [0, 1] -> [0, 1] a contraction?

31. Does a mapping of a metric space X into itself that is Lipschitz with Lipschitz constant less
than 1 necessarily have a fixed point?

32. Does a mapping of a complete metric space into itself that is Lipschitz with Lipschitz constant
1 necessarily have a fixed point?

33. Let X be a compact metric space and T a mapping from X into itself such that

p(T(u), T(v)) < p(u, v)forallu, vEX.

Show that T has a unique fixed point.
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34. Define f (x) = a/2 + x - arctan x for all real numbers x. Show that

If(u) - f(v)I <Iu-vlforallu,vER.

Show that f does not have a fixed point. Does this contradict the preceding problem?

35. In Euclidean space R" consider the closed unit ball B = {x E R" 111 x 11 < 1}. Let f map B
into B and be Lipschitz with Lipschitz constant 1. Without using the Brouwer Fixed Point
Theorem, show that f has a fixed point.

36. Suppose that the mapping f : R" R' is a contraction. Define g(x) = x - f (x) for all x in
R'. Show that the mapping g: R' -* R' is both one-to-one and onto. Also show that g and
its inverse are continuous.

37. Let X be a complete metric space containing the point xo and let r be a positive real number.
Define K = {x in X I p(x, xo) < r}. Suppose that the mapping T : K- X is Lipschitz with
Lipschitz constant c. Suppose also that cr + p(T (xo ), xo) < r. Prove that T(K) C K and that
T: has a fixed point.

38. Show that if the function g: R2 -* R has continuous first-order partial derivatives, then for
each point (xO, yo) in R2 there is a neighborhood C) of (xo, yo) on which the Lipschitz
assumption (16) holds.

39. In case the function g: 0 -* R has the form g(x, y) = h(x) +by, where the function h : R -* R
is continuous, prove that the following is an explicit formula for the solution of (14):

f(x) = eb(x-xp)yo + f x eb(x-t)h(t) dt for all x in I.
xo

40. Consider the differential equation

f'(x) 3[f(x)]2/3forall xER
f(0) = 0.

Show that the function f : R -+ R that is identically 0 is a solution and the function f : R -> R
defined by f (x) = 0, if x < 0 and f (x) = x3, if x >_ 0, is also a solution. Does this contradict
the Picard Existence Theorem?

41. For a positive number e, consider the differential equation

f'(x) = (1/e)[1+(f(x))2]forallxER
f(0)= 0.

Show that on the interval I = (-e(a/2 ), e(a/2)) there is a unique solution of this differential
equation that is defined by f (x) = tan(x/e) and there is no solution in an interval strictly
containing I.

42. Let I be an open interval in R and suppose that the function h : I -> R has the property that
there are points xl < x2 in I and a number c such that h (xl) < c < h (x2) but c does not belong
to h(I). Prove that there is no solution to the differential equation (14) by arguing that if
f : I -> R is a solution, then the continuous function f (x) - cx fails to attain a minimum value
on the interval [xl, x2].
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43. Use the preceding exercise to prove the following theorem of Darboux: Let I be an open
interval in R and suppose that the function f : I -> R is differentiable. Then the image of the
derivative f: I R is an interval.

44. State and prove a form of the Picard Existence Theorem for systems of differential equations
in the following context: 0 is an open subset of R X R", g: 0 R" is continuous, the point
(xo, yo) is in 0, and the system of differential equations is

f'(x)=g(x,f(x))forallxel
f(xo) = yo.

(Hint: Approximate g by a Lipschitz mapping and then use the Arzelii-Ascoli Theorem.)
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We devoted the preceding two chapters to the study of metric spaces. In these spaces, we
first used the metric to define an open ball and then used open balls to define open sets. We
found that we were able to express a number of concepts solely in terms of the open sets
associated with the metric. In the present chapter we study spaces for which the notion of an
open set is fundamental: other concepts are defined in terms of open sets. Such spaces are
called topological spaces. They are more general than metric spaces. Perhaps you ask: Why
not stick to metric spaces? From the viewpoint of analysis the main reason is that it is often
necessary to study such concepts as convergence of a sequence or compactness of a set in
a setting more general than that provided by a metric space. One immediate example is to
consider a collection of real-valued functions on a set. The concept of uniform convergence
of a sequence of functions is a metric concept. The concept of pointwise convergence is not a
metric concept. Another prominent example arises for a set X that is a normed linear space.
The set X, with the metric induced by the norm, is a metric space. With respect to this metric,
one has the concept of convergence of a sequence and compactness of a set. But on X there
are important concepts, such as weak convergence of a sequence (we studied this in Chapter
8) and weak compactness of a set, which cannot be formulated in the framework of a metric.
They can be formulated as topological concepts for a topology on a normed linear space called
the weak topology. Furthermore, the comparison of topologies illuminates our understanding
of subtleties that arise when considering different modes of sequential convergence.

11.1 OPEN SETS, CLOSED SETS, BASES, AND SUBBASES

Definition Let X be a nonempty set. A topology T for X is a collection of subsets of X, called
open sets, possessing the following properties:

(i) The entire set X and the empty-set 0 are open;
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(ii) The intersection of any finite collection of open sets is open;

(iii) The union of any collection of open sets is open.

A nonempty set X, together wih a topology on X, is called a topological space. For a point x
in X, an open set that contains x is called a neighborhood of x.

We sometimes denote a topological space by (X, T). Often we are interested in only
one topology for a given set of points, and in such cases we sometimes use the symbol X to
denote both the set of points and the topological space (X, T). When greater precision is
needed, we make explicit the topology.

Proposition l A subset E of a topological space X is open if and only if for each point x in X
there is a neighborhood of x that is contained in E.

Proof This follows immediately from the definition of neighborhood and the property of a
topology that the union of a collection of open sets is again open.

Metric Topology Consider a metric space (X, p). Define a subset 0 of X to be open
provided for each point x E 0 there is an open ball centered at x that is contained in O.
Thus the open sets are unions of collections of open balls. Proposition 1 of Chapter 9 is the
assertion that this collection of open sets is a topology for X. We call it the metric topology
induced by the metric p. As a particular case of a metric topology on a set we have the
topology we call the Euclidean topology induced on R" by the Euclidean metric.1

The Discrete Topology Let X be any nonempty set. Define T to be the collection of
all subsets of X. Then T is a topology for X called the discrete topology. For the discrete
topology, every set containing a point is a neighborhood of that point. The discrete topology
is induced by the discrete metric.

The Trivial Topology Let X be any nonempty set. Define T to be the collection
of subsets of X consisting of 0 and X. Then T is a topology for X called the triv-
ial topology. For the trivial topology, the only neighborhood of a point is the whole
set X.

Topological Subspaces Given a topological space (X, T) and a nonempty subset E
of X, we define the inherited topology S for E to consist of all sets of the form E n O where
O belongs to T. We call the topological space (E, S) a subspace of (X, T).

In elementary analysis we define what it means for a subset of R to be open even if
we have no need to use the word "topology." In Chapter 1, we proved that the topological
space R has the property that every open set is the union of a countable disjoint collection
of open intervals. In a metric space, every open set is the union of a collection of open balls.

1 Unless otherwise stated, by the topological space R" we mean the set R" with the Euclidean topology. In the
problems we introduce more exotic topologies on R and R2 (see Problems 9 for the Sorgenfrey Line and 10 for the
Moore Plane).
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In a general topological space it is often useful to distinguish a collection of open sets called
a base for the topology: they are building blocks for the topology.

Definition For a topological space (X, T) and a point x in X, a collection of neighborhoods
of x, B,x, is called a base for the topology at x provided for any neighborhood U of x, there
is a set B in the collection B,, for which B C U. A collection of open sets B is called a base for
the topology T provided it contains a base for the topology at each point

Observe that a subcollection of a topology is a base for the topology if and only if
every nonempty open set is the union of a subcollection of B. Once a base for a topology is
prescribed, the topology is completely defined: it consists of 0 and unions of sets belonging
to the base. For this reason a topology is often defined by specifying a base. The following
proposition describes the properties that a collection of subsets of X must possess in order
for it to be a base for a topology.

Proposition 2 For a nonempty set X, let B be a collection of subsets of X. Then B is a base
for a topology for X if and only if

(i) B covers X, that is, X = U B E 13 B.

(ii) if Bland B2 are in B and X E Bl n B2, then there is a set B in B for which x E B C Bl n B2.

The unique topology that has B as its base consists of 0 and unions of subcollections of B.

Proof Assume B possesses properties (i) and (ii). Define T to be the collection of unions
of subcollections of B together with 0. We claim that T is a topology for X. Indeed, we infer
from (i) that the set X is the union of all the sets in B and therefore it belongs to T. Moreover,
it is also clear that the union of a subcollection of T is also a union of a subcollection of B
and therefore belongs to T. It remains to show that if Ol and 02 belong to T, then their
intersection Ol n 02 belongs to T. Indeed, let x belong to Ol n 02. Then there are sets Bl and
B2 in B such that x E Bl C Ol and X E B2 C 02. Using (ii), choose Bx in B with x E Bx C Bl n B2.
Then Ot n 02 = U. E o Bx, the union of a subcollection of B. Thus T is a topology for which
B is a base. It is unique. We leave the proof of the converse as an exercise.

A base determines a unique topology. However, in general, a topology has many bases.
For instance, the collection of open intervals is a base for the Euclidean topology on R,
while the collection of open, bounded intervals with rational endpoints also is a base for this
topology.

Example Let (X, T) and (Y, S) be topological spaces. In the Cartesian product X X Y,
consider the collection of sets B consisting of products Ol X 02, where Ol is open in X and
02 is open in Y. We leave it as an exercise to check that B is a base for a topology on X X Y.
The topology is called the product topology on X X Y.

Definition For a topological space (X, T), a subcollection S of T that covers X is called a
subbasefor the topology T provided intersections of finite subcollections of S are a base forT.
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Example Consider a closed, bounded interval [a, b] as a topological space with the topology
it inherits from R. This space has a subbase consisting of intervals of the type [a, c) or (c, b]
fora<c<b.

Any collection of subsets S of a nonempty set X that covers X is a subbase for a unique
topology on X since it is not difficult to see, using Proposition 2, that intersections of finite
subcollections of S is a base.

Definition For a subset E of a topological space X, a point x E X is called a point of closure
of E provided every neighborhood of x contains a point in E. The collection of points of
closure of E is called the closure of E and denoted by E.

It is clear that we always have E C E. If E contains all of its points of closure, that is,
E = E, the set E is said to be closed.

Proposition 3 For E a subset of a topological space X, its closure E is closed Moreover, E
is the smallest closed subset of X containing E in the sense that if F is closed and E C F, then
EC F.

Proof The set E is closed provided it contains all its points of closure. Let x be a point
of closure of E. Consider a neighborhood Ux of x. There is a point X' E E n Ux. Since x'
is a point of closure of E and U is a neighborhood of x', there is a point x" E E n U.
Therefore every neighborhood of X contains a point of E and hence x E E. So the set E
is closed. It is clear that if A C B, then A C B, so that if F is closed and contains E, then
ECF=F.

Proposition 4 A subset of a topological space X is open if and only if its complement in X is
closed.

Proof First suppose E is open in X. Let x be a point of closure of X - E. Then x cannot
belong to E because otherwise there would be a neighborhood x that is contained in E and
therefore does not intersect X - E. Thus x belongs to X' E and hence X - E is closed. Now
suppose X - E is closed. Let x belong to E. Then there must be a neighborhood of x that is
contained in E, for otherwise every neighborhood of x would contain points in X - E and
therefore x would be a point of closure of X - E. Since X - E is closed, x would belong to
X - E. This is a contradiction.

Since X - [X - E] = E, it follows from the preceding proposition that a subset of a
topological space X is closed if and only if its complement in X is open. Therefore, by De
Morgan's Identities, the collection of closed subsets of a topological space possesses the
following properties.

Proposition 5 Let X be a topological space. The empty-set 0 and the whole set X are closed;
the union of any finite collection of closed subsets of X is closed; and the intersection of any
collection of closed subsets of X is closed.
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PROBLEMS

1. Show that the discrete topology for a nonempty set X is a metric topology.

2. Show that the discrete topology on a set has a unique base.

3. Regarding Proposition 2, show that if 13 is a base for a topology, then properties (i) and (ii)
hold.

4. Let Ti and T2 be topologies for a nonempty set X. Show that Tt = T2 if and only if there
are bases Cit for T, and 132 for T2 that are related as follows at each point x in X: for each
neighborhood Nt of x belonging to 81, there is a neighborhood N2 of x belonging to B2 for
which N2 C N1 and for each neighborhood N2 of x belonging to B2, there is a neighborhood
Nl of x belonging to 1 i for which Nt C N2.

5. Let E be a subset of a topological space X.

(i) A point x E X is called an interior point of E provided there is a neighborhood of x that
is contained in E: the collection of interior points of E is called the interior of E and
denoted by int E. Show that int E is always open and E is open if and only if E = int E.

(ii) A point x E X is called an exterior point of E provided there is a neighborhood of x
that is contained in X - E: the collection of exterior points of E is called the exterior
of E and denoted by ext E. Show that ext E is always open and E is open if and only if
E - ECextE.

(iii) A point x E X is called a boundary point of E provided every neighborhood of x contains
points in E and points in X E: the collection of boundary points of E is called the
boundary of E and denoted by bd E. Show that (i) bd E is always closed, (ii) E is open if
and only if E n bd E = 0, and (iii) E is closed if and only if bd E C E.

6. Let A and B be subsets of a topological space X. Show that if A C B, then A C B. Also, show
that (A = Au hand (A 5B)cAnI

7. Let 0 be an open subset of a topological space X. For a subset E of X, show that 0 is disjoint
from E if and only if it is disjoint from E.

8. For a collection S of subsets of a nonempty set X, show that there is a topology Ton X that
contains the collection S and has the property that any other topology that contains S also
contains T: it is the topology with the fewest sets that contains S.

9. (The Sorgenfrey Line) Show that the collection of intervals of the form [a, b), wherea < b,
is a base for a topology for the set of real numbers R. The set of real numbers R with this
topology is called the Sorgenfrey Line.

10. (The Moore Plane) Consider the upper half plane, R2'+ = {(x, y) E R2 I y > 0.} For points
(x, y) with y > 0, take as a basic open neighborhood a usual Euclidean open ball centered at
(X, y) and contained in the upper half plane. As a basic open neighborhood of a point (x, 0)
take the set consisting of the point itself and all the points in an open Euclidean ball in the
upper half plane that is tangent to the real line at (x, 0). Show that this collection of sets is a
base. The set R2,+ with this topology is called the Moore Plane.

11. (Kuratowski 14-subset problem)

(i) Let E be a subset of a topological space X. Show that at most 14 different sets can be
obtained from E by repeated use of complementation and closure.

(ii) Give an example in R2 where there are 14 different sets coming from a suitable E.
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11.2 THE SEPARATION PROPERTIES

In order to establish interesting results for topological spaces and continuous mappings
between such spaces, it is necessary to enrich the rudimentary topological structure. In this
section we consider so-called separation properties for a topology on a set X, which ensure
that the topology discriminates between certain disjoint pairs of sets and, as a consequence,
ensure that there is a robust collection of continuous real-valued functions on X.

We have defined what we mean by a neighborhood of a point in a topological space.
For a subset K of a topological space X, by a neighborhood of K we mean an open set that
contains K. We say that two disjoint subsets A and B of X can be separated by disjoint
neighborhoods provided there are neighborhoods of A and B, respectively, that are disjoint.
For a topological space X, we consider the following four separation properties:

The Tychonoff Separation Property For each two points u and v in X, there is a
neighborhood of u that does not contain v and a neighborhood of v that does not
contain u.

The Hausdorff Separation Property Each two points in X can be separated by
disjoint neighborhoods.

The Regular Separation Property The Tychonoff separation property holds and,
moreover, each closed set and point not in the set can be separated by disjoint
neighborhoods.

The Normal Separation Property The Tychonoff separation property holds and,
moreover, each two disjoint closed sets can be separated by disjoint neighborhoods.

We naturally call a topological space Tychonoff, Hausdorff, regular, or normal, provided it
satisfies the respective separation property.

Proposition 6 A topological space X is a Tychonoff space if and only if every set consisting
of a single point is closed.

Proof Let x be in X. The set {x} is closed if and only if X - {x} is open. Now X - {x} is open
if and only if for each point y in X - {x} there is a neighborhood of y that is contained in
X - {x}, that is, there is a neighborhood of y that does not contain x.

Proposition 7 Every metric space is normal.

Proof Let (X, p) be a metric space. Define the distance between a subset F of X and point
x in X by

dist(x, F) = inf {p(x, x') I x' in F} .

Let Ft and F2 be closed disjoint subsets of X. Define

01 = {x in X I dist(x, Fl) < dist(x, F2 )J and 02 = {x in X I dist(x, F2) < dist(x, F1)} .
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Since the complement of a closed set is open, dist(x, F) > 0 if F is closed and x does
not belong to F. Therefore F1 C Ot and F2 C 02 and clearly, 0t n 02 = 0. Moreover, using
the triangle inequality for the metric, it is not difficult to see that 01 and 02 are open.

Using obvious notation, the preceding two propositions provide the following string of
inclusions between families of topologies on a set X:

?metric C Tnormal C Tregular C THausdorff C TTychonoff

We close this brief section with the following very useful reformulation of normality in
terms of nested neighborhoods of closed sets.

Proposition 8 Let X be a Tychoneff topological space. Then X is normal if and only if
whenever U is a neighborhood of a closed subset F of X, there is another neighborhood of F
whose closure is contained in U, that is, there is an open set 0 for which

FCOCOCU.

Proof First assume X is normal. Since F and X - U are disjoint closed sets, there are disjoint
open sets 0 and V for which F C 0 and X- U C V. Thus 0 C X-V C U. Since 0 C X-V
and X-V is closed, 0 C X-V C U.

To prove the converse, suppose the nested neighborhood property holds. Let A and B
be disjoint closed subset of X. Then A C X - B and X- B is open. Thus there is an open set
0 for which A C 0 C 0 C X- B. Therefore 0 and X- 0 are disjoint neighborhoods of A
and B, respectively.

PROBLEMS

12. Show that if F is a closed subset of a normal space X, then the subspace F is normal. Is it
necessary to assume that F is closed?

13. Let X be a topological space. Show that X is Hausdorff if and only if the diagonal D =
{(xl,x2)EXxXIx1 =x2}isaclosed subset ofXxX.

14. Consider the set of real numbers with the topology consisting of theempty-set and sets of the
form (-oo, c), c E R. Show that this space is Tychonoff but not Hausdorff.

15. (Zariski Topology) In R" let B be the family of sets {x E R" I p(x) 00}, where p is a polynomial
inn variables. Let T be the topology on X that has B as a subbase. Show that T is a topology
for R" that is Tychonoff but not Hausdorff.

16. Show the Sorgenfrey Line and the Moore Planeare Hausdorff (see Problems 9 and 10).

11.3 COUNTABILITY AND SEPARABILITY

We have defined what it means for a sequence in a metric space to converge. The following
is the natural generalization of sequential convergence to topological spaces.

Definition A sequence {xn} in a topological space X is said to converge to the point x E X
provided for each neighborhood U of x, there is an index N such that if n >_ N, then x" belongs
to U. The point x is called a limit of the sequence.
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In a metric space, a sequence cannot converge to two different points so we refer to
the limit of a sequence. In a general topological space, a sequence can converge to different
points. For instance, for the trivial topology on a set, every sequence converges to every
point. For a Hausdorff space, a sequence has a unique limit.

Definition A topological space X is said to be first countable provided there is a countable
base at each point. The space X is said to be second countable provided there is a countable
base for the topology.

It is clear that a second countable space is first countable.

Example Every metric space X is first countable since for x E X, the countable collection of
open balls {B(x, 1/n)}n° 1 is a base at x for the topology induced by the metric.

We leave the proof of the following proposition as an exercise.

Proposition 9 Let X be a first countable topological space. For a subset E of X, a point x E X
is a point of closure of E if and only if x is a limit of a sequence in E. Therefore a subset E of X
is closed if and only if whenever a sequence in E converges to x E X, the pointy belongs to E.

In a topological space that is not first countable, it is possible for a point to be a point
of closure of a set and yet no sequence in the set converges to the point (see Problem 22).

Definition A subset E of topological space X is said to be dense in X provided every open set
in X contains a point of E. We call X separable provided it has a countable dense subset.

It is clear that a set E is dense in X if and only if every point in X is a point of closure
of E, that is, E = X.

In Chapter 9, we proved that a metric space is second countable if and only if it
is separable. In a general topological space, a second countable space is separable, but
a separable space, even one that is first countable, may fail to be second countable (see
Problem 21).

A topological space is said to be metrizable provided the topology is induced by a
metric. Not every topology is induced by a metric. Indeed, we have seen that a metric space is
normal, so certainly the trivial topology on a set with more than one point is not metrizable.
It is natural to ask if it is possible to identify those topological spaces that are metrizable. By
this we mean to state criteria in terms of the open sets of the topology that are necessary
and sufficient in order that the topology be induced by a metric. There are such criteria.2 In
the case the topological space X is second countable, there is the following simple necessary
and sufficient criterion for metrizability.

The Urysohn Metrization Theorem Let X be a second countable topological space. Then X
is metrizable if and only if it is normal.

We already have shown that a metric space is normal. We postpone until the next
chapter the proof, for second countable topological spaces, of the converse.

2The Nagata-Smimov-Bing Metrization Theorem is such a result; See page 127 of John Kelley's General
Topology [Ke155].
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PROBLEMS

17. A topological space is said to be a Lindelof space or to have the Lindelof pro-
perty provided each open cover of X has a countable subcover. Show that if X is sec-
ond countable, then it is Lindelof.

18. Let X be an uncountable set of points, and let T consist of 0 and all subsets of X that have
finite complements. Show that T is a topology for X and that the space (X, T) is not first
countable.

19. Show that a second countable space is separable and every subspace of a second countable
space is second countable.

20. Show that the Moore Plane is separable (see Problem 10). Show that the subspace R X {0} of
the Moore Plane is not separable. Conclude that the Moore Plane is not metrizable and not
second countable.

21. Show that the Sorgenfrey Line is first countable but not second countable and yet the rationals
are dense (see Problem 9). Conclude that the Sorgenfrey Line is not metrizable.

22. Let X1 = N X N, where N denotes the set of natural numbers and take X = X1 U {w}, where
w does not belong to X1. For each sequence s = {ink} of natural numbers and natural number
n, define

BS,,,={w}U{(j, k) : j>mkall k>n}.

Show that the sets BS,,, together with the singleton sets f( j, k)) forma base for a topology
on X.

(ii) Show that w is a point of closure of X1 even though no sequence {x } from X1 converges
tow.

(iii) Show that the space X is separable but is not first countable and so is not second
countable.

(iv) Is X a Lindelof space?

11.4 CONTINUOUS MAPPINGS BETWEEN TOPOLOGICAL SPACES

We defined continuity for mappings between metric spaces in terms of convergent sequences:
A mapping f is continuous at a point x provided whenever a sequence converges to x the
image sequence converges to f(x). We then showed that this was equivalent to the a-S
criterion expressed in terms of open balls. The concept of continuity extends to mappings
between topological spaces in the following natural manner.

Definition For topological spaces (X, T) and (Y, S), a mapping f : X-+ Y is said to be
continuous at the point xo in X provided for any neighborhood 0 of f(xo), there is a
neighborhood U of xo for which f (U) C O. We say f is continuous provided it is continuous
at each point in X.

Proposition 10 A mapping f : X Y between topological spaces X and Y is continuous if and
only if for any open subset 0 in Y, its inverse image under f, f-1(0), is an open subset of X.

Proof First suppose that f is continuous. Let 0 be open in Y. According to Proposition 1, to
show that f -1(0) is open it suffices to show that each point in f -1(0) has a neighborhood
that is contained in f-1(0). Let x belong to f-1(0). Then by the continuity of f at x
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there is a neighborhood of x that is mapped into 0 and therefore is contained in f-1(O).
Conversely, if f -1 maps open sets to open sets, then it is immediate that f is continuous on
all of X.

For a continuous mapping f of a topological space X to a topological space Y, by the
definition of the subspace topology, the restriction of f to a subspace of X also is continuous.
We leave the proof of the next proposition as an exercise.

Proposition 11 The composition of continuous mappings between topological spaces, when
defined, is continuous.

Definition Given two topologies Tj and T2 for a set X, if T2 C T1, we say that T2 is weaker
than T j and that T, is stronger than T2-

Given a cover S of a set X, it is useful to understand the topologies for X with respect
to which the cover S is open. Of course, S is open with respect to the discrete topology on
X. In fact, there is a weakest topology for X with respect to which this cover is open: it is the
unique topology that has S as a subbase. We leave the proof of the following proposition as
an exercise.

Proposition 12 Let X be a nonempty set and S any collection of subsets of X that covers X.
The collection of subsets of X consisting of intersections of finite subcollections ofS is a base
for a topology T for X. It is the weakest topology containing S in the sense that if T' is any
other topology for X containing S, then T C V.

Definition Let X be a nonempty set and consider a collection of mappings F = If,,: X -+
Xa is a topological space. The weakest topology for X that contains the

collection of sets

F=Sfa1(Oa) f.eF, 0. open inXa}

is called the weak topology for X induced by Y. 1

Proposition 13 Let X be a nonempty set and .T = { fA: X XA}A E A a collection of mappings
where each XA is a topological space. The weak topology for X induced by F is the topology
on X that has the fewest number of sets among the topologies on X for which each mapping
fA: X -+ XA is continuous.

Proof According to Proposition 10, for each A in A, fA : X XA is continuous if and only if
the inverse image under fA of each open set in XA is open in X.

Definition A continuous mapping from a topological space X to a topological space Y is
said to be a homeomorphism provided it is one-to-one, maps X onto Y, and has a continuous
inverse f -1 from Y to X.

It is clear that the inverse of a homeomorphism is a homeomorphism and that the
composition of homeomorphisms, when defined, is a homeomorphism. Two topological
spaces X and Y are said to be homeomorphic if there is a homeomorphism between them.
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This is an equivalence relation among topological spaces, that is, it is reflexive, symmetric,
and transitive. From a topological point of view two homeomorphic topological spaces are
indistinguishable since, according to Proposition 10, for a homeomorphism f of X onto Y, a
set E is open in X if and only if its image f (E) is open in Y. The concept of homeomorphism
plays the same role for topological spaces that isometry plays for metric spaces and, say,
group isomorphism plays for groups. But some care is needed here. In the next example
we show that, for E a Lebesgue measurable set of real numbers, Ll (E) is homeomorphic
to L2(E) 3

Example (Mazur) Let E be a Lebesgue measurable set of real numbers. For fin L1(E),
define the function' (f) on E by 1(f) (x) = sgn (f (x)) I f (x) I1/2. Then F(f) belongs to
L2 (E). We leave it as an exercise to show that for any two numbers a and b,

I sgn (a) Ial1/2 - sgn (b)
IbI1/21

2
< 2 la - bl,

and therefore
II,D(f)-D(g)I12 <2.Ilf-glli for all f,ginL1(E).

From this we conclude that 4 is a continuous one-to-one mapping of L 1 (E) into L2 (E). It also
maps L 1(E) onto L2 (E) and its inverse-1 is defined by 4)-1(f) (x) = sgn (f (x)) I f (X) I2
for fin L2(E). Use Problem 38 to conclude that the inverse mapping 4I is a continuous
mapping from L2 (E) to L 1(E ). Therefore L 1(E) is homeomorphic to L2 (E ), where each
of these spaces is equipped with the topology induced by its LP norm.

PROBLEMS

23. Let f be a mapping of the topological space X to the topological space Y and S be a subbase
for the topology on Y. Show that f is continuous if and only if the inverse image under f of
every set in S is open in X.

24. Let X be a topological space.
(i) If X has the trivial topology, find all continuous mappings of X into R.

(ii) If X has the discrete topology, find all continuous mappings of X into R.

(iii) Find all continuous one-to-one mappings from R to X if X has the discrete topology.

(iv) Find all continuous one-to-one mappings from R to X if X has the trivial topology.

25. For topological spaces X and Y, let f map X to Y. Which of the following assertions are
equivalent to the continuity of f? Verify your answers.
(i) The inverse image under f of every closed subset of Y is closed in X.

(ii) If 0 is open in X, then f (O) is open in Y.

(iii) If F is closed in X, then f (F) is closed in Y.

(iv) For each subset A of X, f (A) C f (A).

3The same type of argument shows that any two LP(E) spaces, for 1 < p < oo, are homeomorphic. There is a
remarkable theorem due to M.I. Kadets which tells us that any two separable infinite dimensional complete normed
linear spaces are homeomorphic ("A Proof of the Topological Equivalence of All Separable Infinite Dimensional
Banach Spaces," Functional Analysis and Applications, 1, 1967). From the topological point of view, L2[0, 1] is
indistinguishable from C[0, 1]. These spaces look very different from many other angles of vision.
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26. Prove Proposition 11.

27. Prove Proposition 12.

28. Prove that the sum and product of two real-valued continuous functions defined on a
topological space X are themselves continuous.

29. Let F be a collection of real-valued functions on a set X. Find necessary and sufficient
conditions on F in order that X, considered as a topological space with the weak topology
induced by F, is Tychonoff.

30. For topological spaces X and Y, let the mapping f : X -- Y be one-to-one and onto. Show
that the following assertions are equivalent.
(i) f is a homeomorphism of X onto Y.

(ii) A subset E of X is open in X if and only if f (E) is open in Y.

(iii) A subset E of X is closed in X if and only if f (E) is closed in Y.

(iv) The image of the closure of a set is the closure of the image, that is, for each subset A of

X,f(A)=f(A)
31. For topological spaces X and Y, let f be a continuous mapping from X onto Y. If X is

Hausdorff, is Y Hausdorff? If X is normal, is Y normal?

32. Let pt and P2 be metrics on the set X that induce topologies T1 and T2, respectively. If
Ti = T2, are the metrics necessarily equivalent?

33. Show that the inverse of a homeomorphism is a homeomorphism and the composition of two
homeomorphisms, when defined, is again a homeomorphism.

34. Suppose that a topological space X has the property that every continuous real-valued
function on X takes a minimum value. Show that any topological space that is homeomorphic
to X also possesses this property.

35. Suppose that a topological space X has the property that every continuous real-valued function
on X has an interval as its image. Show that any topological space that is homeomorphic to X
also possesses this property.

36. Show that R is homeomorphic to the open bounded interval (0, 1), but is not homeomorphic
to the closed bounded interval [0, 1].

37. Let X and Y be topological spaces and consider a mapping f from X to Y. Suppose X = XI UX2
and the restrictions of f to the topological subspaces X1 and to X2 are continuous. Show
that f need not be continuous at any point in X. Show that f is continuous on X if X1 and
X2 are open. Compare this with the case of measurable functions and the inheritance of
measurability from the measurability of restrictions.

38. Show that for any two numbers a and b,

Isgn (a)

11.5 COMPACT TOPOLOGICAL SPACES

We have studied compactness for metric spaces. We provided several characterizations of
compactness and established properties of continuous mappings and continuous real-valued
functions defined on compact metric spaces. The concept of compactness can be naturally
and usefully extended to topological spaces.
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Recall that a collection of sets {EA}AEA is said to be a cover of a set E provided
E C UAEA EA. If each EA is contained in a topological space, a cover is said to be open
provided each set in the cover is open.

Definition A topological space X is said to be compact provided every open cover of X has
a finite subcover. A subset K of X is called compact provided K, considered as a topological
space with the subspace topology inherited from X, is compact.

In view of the definition of the subspace topology, a subset K of X is compact provided
every covering of K by a collection of open subsets of X has a finite subcover.

Certain results regarding compactness in a topological space carry over directly from
the metric space setting; for example, the image of a compact topological space under a
continuous mapping also is compact. Other properties of compact metric spaces, for example,
the equivalence of compactness and sequential compactness, carry over to the topological
setting only for spaces that possess some additional topological structure. Other properties
of compact metric spaces, such as total boundedness, have no simple correspondent in the
topological setting.

Recall that a collection of sets is said to have the finite intersection property provided
every finite subcollection has nonempty intersection. Since a subset of a topological space X is
closed if and only if its complement in X is open, we have, by De Morgan's Identities, the fol-
lowing extension to topological spaces of a result we previously established for metric spaces.

Proposition 14 A topological space X is compact if and only if every collection of closed
subsets of X that possesses the finite intersection property has nonempty intersection.

Proposition 15 A closed subset K of a compact topological space X is compact.

Proof Let {OA}AEA be an open cover for K by open subsets of X. Since X - K is an open
subset of X, [X - F] U {OA}AEA is an open cover of X. By the compactness of X this cover
has a finite subcover, and, by possibly removing the set X - K from this finite subcover, the
remaining collection is a finite subcollection of {OA}AEA that covers K. Thus K is compact.

We proved that a compact subspace K of a metric space X must be a closed subset of
X. This is also true for topological spaces that are Hausdorff.

Proposition 16 A compact subspace K of a Hausdorff topological space X is a closed subset
of K.

Proof We will show that X - K is open so that K must be closed. Let y belong to X - K.
Since X is Hausdorff, for each x E K there are disjoint neighborhoods Ox and Ux of x and
y, respectively. Then {Ox}x E K is an open cover of K, and so, since K is compact, there is a
finite subcover {Oxl , Oxz, ... , Ox.). Define N = fl 1 U,,,. Then N is a neighborhood of y
which is disjoint from each Ox; and hence is contained in X - K. Therefore X - K is open.

Definition A topological space X is said to be sequentially compact provided each sequence
in X has a subsequence that converges to a point of X.
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We have shown that a metric space is compact if and only if it is sequentially compact.
The same holds for topological spaces that are second countable.

Proposition 17 Let X be a second countable topological space. Then X is compact if and
only if it is sequentially compact.

Proof First assume X is compact. Let {x,, } be a sequence in X. For each index n, let F
be the closure of the nonempty set {xk I k > n}. Then {F} is a descending sequence of
nonempty closed sets. Since has the finite intersection property, by Proposition 14,
nn°1 F t 0:, choose a point xo in this intersection. Since X is second countable, it is first
countable. Let {Bn }n° 1 be a base for the topology at the point xo. We may assume that each
Bi+1 C B. Since xo belongs to the closure of {xk I k > n}, for each n, the neighborhood B
has nonempty intersection with {xk I k >_ n}. Therefore we may inductively select a strictly
increasing sequence of indices Ink) such that for each index k, Xnk E Bk. Since for each
neighborhood 0 of x0, there is an index N for which B C 0 for n > N, the subsequence
{x k } converges to xo. Thus X is sequentially compact.

Now suppose X is sequentially compact. Since X is second countable, every open cover
has a countable subcover. Therefore, to show that X is compact it suffices to show that every
countable open cover of X has a finite subcover. Let {On }n°

1
be such a cover. We argue by con-

tradiction. Assume there is no finite subcover. Then for each indexn, there is an index m (n) >
n for which On(n) - U 1 Oi # 0. For each natural number n, choose x E Om(n) - U" 1 Oi.
Then, since X is sequentially compact, a subsequence of {x,, } converges to xo EX. But
{On }n°

1 is an open cover of X, so there is some ON that is a neighborhood of x0. Therefore,
there are infinitely many indices n for which x belongs to ON. This is not possible since

Theorem 18 A compact Hausdorff space is normal.

Proof Let X be compact and Hausdorff. We first show it is regular, that is, each closed
set and point not in the set can be separated by disjoint neighborhoods. Let F be a closed
subset of X and x belong to X - F. Since X is Hausdorff, for each y E F there are disjoint
neighborhoods Oy and U of x and y, respectively. Then {l f y}yE F is an open cover of F.
But F is compact. Thus here is a finite subcover {uy,, UyZ, ... , Uy, I. Define N = fly 1 Oy;.
Then H is a neighborhood of y which is disjoint from u"1 Uy,, a neighborhood of F.
Thus X is regular. A repeat of this argument, now using regularity, shows that X is
normal.

Proposition 19 A continuous one-to-one mapping f of a compact space X onto a Hausdorff
space Y is a homeomorphism.

Proof In order to show that f is a homeomorphism it is only necessary to show that it carries
open sets into open sets or equivalently closed sets into closed sets. Let F be a closed subset
of X. Then F is compact since X is compact. Therefore, by Proposition 20, f (F) is compact.
Hence, by Proposition 16, since Y is Hausdorff, f (F) is closed.

Proposition 20 The continuous image of a compact topological space is compact.
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Proof Let f be a continuous mapping of compact topological space X to a topological space
Y. Let be a covering of f (X) by open subsets of Y. Then, by the continuity of
f, { f-1(0a)}AEA is an open cover of X. By the compactness of X, there is a finite subcol-
lection {f' (0A1), ..., f-'(OA,)) that also covers X. The finite collection {0A1, ..., Oxn}
covers f (X).

Corollary 21 A continuous real-valued function on a compact topological space takes a
maximum and minimum functional value.

Proof Let X be compact and f : X -+ R be continuous. By the preceding proposition, f (X)
is a compact set of real numbers. Thus f(X) is closed and bounded. But a closed and
bounded set of real numbers contains a smallest and largest member.

A topological space is said to be countably compact provided every countable open
cover has a finite subcover. We explore some properties of such spaces in Problems 39 and 40.

PROBLEMS

39. For a second countable space X, show that X is compact if and only if it is countably compact.

40. (Frechet Intersection Theorem) Let X be a topological space. Prove that X is countably
compact if and only if whenever is a descending sequence of nonempty closed subsets of
X, the intersection fln_1 F,, is nonempty.

41. Let X be compact Hausdorff and 1 be a descending collection of closed subsets of X.
Let 0 be a neighborhood of the intersection fln__1 F,,. Show there is an index N such that

42. Show that it is not possible to express a closed, bounded interval of real numbers as the
pairwise disjoint union of a countable collection (having more than one member) of closed,
bounded intervals.

43. Let f be a continuous mapping of the compact space X onto the Hausdorff space Y. Show
that any mapping g of Y into Z for which g o f is continuous must itself be continuous.

44. Let (X, T) be a topological space.
(i) Prove that if (X, T) is compact, then (X, Ti) is compact for any topology T1 weaker

than T.

(ii) Show that if (X, T) is Hausdorff, then (X, T2) is Hausdorff for any topology T2 stronger
than T.

(iii) Show that if (X, T) is compact and Hausdorff, then any strictly weaker topology is not
Hausdorff and any strictly stronger topology is not compact.

45. (The Compact-Open Topology) Let X and Y be Hausdorff topological spaces and YX the
collection of maps from X into Y. On YX we define a topology, called the compact-open
topology, by taking as a subbase sets of the form UK,O = If : X -+ Y I f (K) C 0), where K
is a compact subset of X and 0 is an open subset of Y. Thus the compact-open topology is the
weakest topology on YX such that the sets UK,O are open.
(i) Let If,) be a sequence in YX that converges with respect to the compact-open topology

to f E YX. Show that If, I converges pointwise to f on X.
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(ii) Now assume that Y is a metric space. Show that a sequence if,,) in Yx converges with
respect to the compact-open topology to f E Yx if and only if {f, } converges to f
uniformly on each compact subset K of X.

46. (Dini's Theorem) Let {f, } be a sequence of continuous real-valued functions on a countably
compact space X. Suppose that for each x E X, the sequence if, (x)) decreases monotonically
to zero. Show' that { f } converges to zero uniformly.

11.6 CONNECTED TOPOLOGICAL SPACES

Two nonempty open subsets of a topological space X are said to separate X if they are
disjoint and their union is X. A topological space which cannot be separated by such a pair
is said to be connected. Since the complement of an open set is closed, each of the open sets
in a separation of a space is also closed. Thus a topological space is connected if and only if
the only subsets that are both open and closed are the whole space and the empty-set.

A subset E of X is said to be connected provided it is a connected topological subspace.
Thus a subset E of X is connected if there do not exist open subsets 01 and 02 of X for which

OtnE#O, 02nE#O, ECO1UO2 and EnO1nO2=0.

Proposition 22 Let f be a continuous mapping of a connected space X to a topological space
Y. Then its image f (Y) is connected.

Proof Observe that f is a continuous mapping of X onto the topological space f (X), where
f (X) has the subspace topology inherited from Y. We argue by contradiction. Suppose
f(X) is not connected. Let 0 and 02 be a separation of f(X).Then f-1(01)and f-1(02)
are disjoint nonempty open sets in X whose union is X. Thus this pair is a separation of X in
contradiction to the connectedness of X.

We leave it as an exercise to show that for a set C of real numbers, the following are
equivalent:

(i) C is an interval; (ii) C is convex; (iii) C is connected. (1)

Definition A topological space X is said to have the intermediate value property provided the
image of any continuous real-valued function on X is an interval.

Proposition 23 A topological space has the intermediate value property if and only if it is
connected.

Proof According to (1), a connected set of real numbers is an interval. We therefore infer
from Proposition 22 that a connected topological space has the intermediate value property.
To prove the converse, we suppose that X is a topological space that is not connected
and conclude that it fails to have the intermediate value property. Indeed, since X is not
connected, there is a pair of nonempty open subsets of X, 01 and 02, for which X = 01 U 02.
Define the function f on X to take the value 0 on 01 and 1 on 02. Then f is continuous since
f -1(A) is an open subset of X for every subset A of R and hence, in particular, for every
open subset of R. On the other hand, f fails to have the intermediate value property.
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If a topological space is not connected, then for any separation of the space, a subspace
that has nonempty intersection with each of the sets in the separation also fails to be
connected. Moreover, the image under a continuous map of an interval of real numbers
is connected. Thus a topological space X is connected if for each pair of points u, v E X,
there is a continuous map f : [0,1] -+ X for which f (0) = u and f (1) = v. A topological
space possessing this property is said to be arcwise connected. While an arcwise-connected
topological space is connected, there are connected spaces that fail to be arcwise connected
(see Problem 49). However, for an open subset of a Euclidean space R", connectednes is
equivalent to arcwise connectedness (see Problem 50).

PROBLEMS

47. Let {CA}AEA be a collection of connected subsets of a topological space X and suppose that
any two of them have a point in common. Show that the union of {CA}A E A also is connected.

48. Let A be a connected subset of a topological space X, and suppose A C B C A. Show that B is
connected.

49. Show that the following subset of the plane is connected but not arcwise connected.

X = y) I x=0, -1 <y<1}U{(x, y) I y=sinl/x, 0<x<1}.

50. Show that an arewise connected topological space X is connected. Also show that each
connected open subset 0 of a Euclidean space R" is arcwise connected. (Hint: Let x belong
to 0. Define C to be the set of points in 0 that can be connected in 0 to x by a piecewise
linear arc. Show that C is both open and closed in 0.)

51. Consider the circle C = {(x, y) I x2 + y2 = 1) in the plane R2. Show that C is connected.

52. Show that R" is connected.

53. Show that a compact metric space (X, p) fails to be connected if and only if there are two
disjoint, nonempty subsets A and B whose union is X and E > 0 such that p(u, v) > E for all
u E A, V E B. Show that this is not necessarily the case for noncompact metric spaces.

54. A metric space (X, p) is said to be well chained provided for each pair of points u, v E X
and each c > 0, there is a finite number of points in X, u = xo, xt, ..., x,,_t, x" = v such that
p(x;_t, x) < E, for l < i < n.
(i) Show that if X is connected, then it is well chained, but the converse is not true.

(ii) Show that if X is compact and well chained, then it is connected.

(iii) Show that if an open subset of R" is well chained, then it is connected.

55. Show that for any point (x, y) in the plane R2, the subspace R2 - {(x, y)} is connected. Use
this to show that R is not homeomorphic to R2.

56. Verify the equivalence of the three assertions in (1).
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In the preceding chapter we considered several different topological concepts and examined
relationships between these concepts. In this chapter we focus on three theorems in topology
that, beyond their intrinsic interest, are indispensible tools in several areas of analysis.

12.1 URYSOHN'S LEMMA AND THE TIETZE EXTENSION THEOREM

On a metric space (X, p) there is an an abundance of continuous real-valued functions.
Indeed, for a nonempty closed subset C of X, the function dc, called the distance to C and
defined by

dc(x) = inf p(x', x) for all xEX,
x'EC

is continuous and C is the inverse image under dc of 0. Continuity follows from the triangle
inequality. Moreover, if A and B are disjoint closed subsets of X, there is a continuous
real-valued function f on X for which

f(X)C[0, 1], f =0onAand f =1onB.

The function f is given by
dAf= on X.

dA + dB

This explicit construction of f depends on the metric on X. However, the next fundamental
lemma tells us that there exist such functions on any normal topological space and, in
particular, on any compact Hausdorff space.

Urysohn's Lemma Let A and B be disjoint closed subsets of a normal topological space
X. Then for any closed, bounded interval of real numbers [a, b], there is a continuous
real-valued function f defined on X that takes values in [a, b], while f = a on A and
f =bon B.

This lemma may be considered to be an extension result: Indeed, define the real-valued
function f on A U B by setting f = a on A and f = b on B. This is a continuous function
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on the closed subset A U B of X which takes values in [a, b]. Urysohn's Lemma asserts that
this function can be extended to a continuous function on all of X which also takes values in
[a, b]. We note that if a Tychonoff topological space X possesses the property described in
Urysohn's Lemma, then X must be normal. Indeed, for A and B nonempty disjoint closed
subsets of X and a continuous real-valued function f on X that takes the value 0 on A and 1
on B, if Il and 12 are disjoint open intervals containing 0 and 1, respectively, then f-'(I,)
and f-1(11) are disjoint neighborhoods of A and B, respectively.

The proof of Urysohn's Lemma becomes clearer if we introduce the following concept
and then establish two preliminary results.

Definition Let X be a topological space and A a set of real numbers. A collection of open
subsets of X indexed by A, {OA}AE A, is said to be normally ascending provided for any
Al,A2EA,

OA1 C OA2 if Al < A2.

Example Let f be a continuous real-valued function on the topological space X. Let A be
any set of real numbers and define, for A E A,

OA={xEXI f(x)<A}.

By continuity it is clear that if AI < A2, then

6A1C{xEXI f(x)<Al }CIX EXI f(x)<A2}=OA2

and therefore the collection of open sets {OA}AEA is normally ascending.

We leave the proof of the following lemma as an exercise.

Lemma 1 Let X be a topological space. For A a dense subset of the open, bounded interval
of real numbers (a, b), let {OA }AEA be a normally ascending collection of open subsets of X.
Define the function f : X -+ R by setting f = b on X UA E A OA and otherwise setting

f(x)=inf{AEAI xEOA}. (1)

Then f : X -+ [a, b] is continuous.

We next provide a strong generalization of Proposition 8 of the preceding chapter.

Lemma 2 Let X be a normal topological space, F a closed subset of X, and U a neighborhood
of F. Then for any open, bounded interval (a, b), there is a dense subset A of (a, b) and a
normally ascending collection of open subsets of X, {OA}A E A, for which

FCOACOACUforallAEA. (2)

Proof Since there is a strictly increasing continuous function of (0, 1) onto (a, b) we may
assume that (a, b) _ (0, 1). For the dense subset of (0, 1) we choose the set of dyadic
rationals belonging to (0, 1) :

A = {m/2" I m and n natural numbers, 1 < m < 2" -1} .
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For each natural number n, let A" be the subset of A whose elements have denominator
2". We will inductively define a sequence of collections of normally ascending open sets
{OA}A E A., where each indexing is an extension of its predecessor.

By Proposition 8 of the preceding chapter, we may choose an open set 01/2 for which

FC01/2901/2CU.

Thus we have defined {OA}A E Al. Now we use Proposition 8 twice more, first with F the same
and U = 01/2 and then with F = 012 and U the same, to find open sets 01/4 and 03/4 for
which

FC01/4C01/4C01/2C01/2903/49 03/4CU.

Thus we have extended the normally ascending collection {OA }A E Al to the normally ascending
collection {OA}A E A2 It is now clear how to proceed inductively to define for each natural
number n, the normally ascending collection of open sets {OA}A E A,, Observe that the union
of this countable collection is a normally ascending collection of open sets parametrized by
A, each of which is a neighborhood of F that has compact closure contained in U.

Proof of Urysohn's Lemma By Lemma 2, applied with F = A and U = X - B, we can
choose a dense subset A of (a, b) and a normally ascending collection of open subsets of X,
{OA}A E A, for which

ACOACX - BforallAEA.

Define the function f : X-+ [a, b] by setting f = b on X UAE A OA and otherwise setting

f(x) =inf {AEA I XEOA}.

Then f = a on A and f = b on B. Lemma 1 tells us that f is continuous.

We mentioned above that Urysohn's Lemma may be considered to be an extension
result. We now use this lemma to prove a much stronger extension theorem.

The Tietze Extension Theorem Let X be a normal topological space, F a closed subset of X,
and f a continuous real-valued function on F that takes values in the closed, bounded interval
[a, b]. Then f has a continuous extension to all of X that also takes values in [a, b].

Proof Since the closed, bounded intervals [a, b] and [-1, 1] are homeomorphic, it is
sufficient, and also convenient, to consider the case [a, b] = [-1, 1]. We proceed by
constructing a sequence (g,,) of continuous real-valued functions on X that has the following
two properties: for each index n,

Ign 15 (2/3)n on X

and

(3)

If - [gl +... +gn]I 5 (2/3)" on F. (4)

Indeed, suppose, for the moment, that this sequence of functions has been constructed.
Define, for each index n, the real-valued functions,, on X by

n

sn(x) _ I gn(x) forx in X.
k=1
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We infer from the estimate (3) that, for each x in X, Is,, (x)} is a Cauchy sequence of real
numbers. Since R is complete, this sequence converges. Define

g(x)= lim sn(x)forxinX.
n - 00

Since each gn is continuous on X, so is each sn. We may infer from the estimate (3) that {sn}
converges to g uniformly on X and therefore g is continuous. From the estimate (4) it is clear
that f = g on F. Thus the theorem is proved provided we construct the sequence I& J. We
do so by induction.

Claim: For each a > 0 and continuous function h : F -+ R for which Ih 1 < a on F, there is a
continuous function g: X -+ R such that

IgI < (2/3)aonXandIh-gI :5 (2/3)a on F. (5)

Indeed, define

A = {x in F I h(x) < -(1/3)a} and B = {x in F I h(x) > (1/3)a} .

Since h is continuous on F and F is a closed subset of X, A and B are disjoint closed subsets
of X. Therefore, by Urysohn's Lemma, there is a continuous real-valued function g on X for
which

I8I 5 (1/3)a on X, g(A) _ -(1/3)a andg(B) = (1/3)a.

It is clear that (5) holds for this choice of g. Apply the above approximation claim with h = f
and a = 1 to find a continuous function gl : X -* R for which

1 g ,1 5 (2/3) on X and If - gi 1 5 (2/3) on F.

Now apply the claim once more with h = f - gl and a = 2/3 to find a continuous function
g2: X --) R for which

18215(2/3)2on X and If -[8i+g2]I5(2/3)2 on F.

It is now clear how to proceed to inductively choose the sequence (g,,) which possesses
properties (3) and (4).

The Tietze Extension Theorem has a generalization to real-valued functions on X that
are not necessarily bounded (see Problem 8).

As a second application of Urysohn's Lemma, we present the following necessary and
sufficient criterion for the metrizability of a second countable topological space.

The Urysohn Metrization Theorem Let X be a second countable topological space. Then X
is metrizable if and only if it is normal.

Proof We have already shown that a metric space is normal..Now let X be a second countable
and normal topological space. Choose a countable base {Un }n E N for the topology. Let A be
the subset of the product N X N defined by

A={(n, m)inNXN U.J.ZfnC



Section 12.1 Urysohn's Lemma and the Tietze Extension Theorem 243

Since X is normal, according to Urysohn's Lemma, for each pair (n, m) in A, there is a
continuous real-valued function fn,m : X -a [0, 1] for which

fn,m = 0 on Un and fn,m = 1 on X - Um.

For x, yin X, define

P(x, Y) = 2
1

2n+m I fn,m(x) - fn,m(Y)I (6)
(n,m)EA

The set A is countable so this sum converges. It is not difficult to see that this is a metric. We
claim that the topology induced by p is the given topology on X. To verify this it is necessary
to compare bases. Specifically, it is necessary to verify the following two properties at each
point xEX:

(i) If Un contains x, then there is an c > 0 for which Bp(x, E) C Un.
(ii) For each c > 0, there is a Un that contains x and Un C Bp(x, E).

We leave the verification of these assertions as an exercise.

PROBLEMS

1. Let C be a closed subset of a metric space (X, p). Show that the distance to C function do is
continuous and dc (x) = 0 if and only if x belongs to C.

2. Provide an example of a continuous real-valued function on the open interval (0, 1) that
is not extendable to a continuous function on R. Does this contradict the Tietze Extension
Theorem?

3. Deduce Urysohn's Lemma as a consequence of the Tietze Extension Theorem.

4. State and prove a version of the Tietze Extension Theorem for functions with values in R.

5. Suppose that a topological space X has the property that every continuous, bounded real-
valued function on a closed subset has a continuous extension to all of X. Show that if X is
Tychonoff, then it is normal.

6. Let (X, T) be a normal topological space and .T the collection of continuous real-valued
functions on X. Show that T is the weak topology induced by .T.

7. Show that the function p defined in the proof of the Urysohn Metrization Theorem is a metric
that defines the same topology as the given topology.

8. Let X be a normal topological space, F a closed subset of X, and f a continuous real-valued
function on F. Then f has a continuous extension to a real-valued function f on all of X.
Prove this as follows:

(i) Apply the Tietze Extension Theorem to obtain a continuous extension h : X -+ [0, 1] of
the function f (1 + if I)-1: F [0, 1];

(ii) Once more, apply the Tietze Extension Theorem to obtain a function 0: X -+ [0, 1] such
that 0 = 1 on F and 0 = 0 on h-1 (1);

(iii) Consider the function f = 0 h/(1 - 0 h).

9. Show that a mapping f from a topological space X to a topological space Y is continuous if
and only if there is a subbase S for the topology on Y such that the preimage under f of each
set in S is open in X. Use this to show that if Y is a closed, bounded interval [a, b], then f
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is continuous if and only if for each real number c E (a, b), the sets {x E X I f (X) < c} and
(x E X I f (x) > c} are open.

10. Use the preceding problem to prove Lemma 1.

12.2 THE TYCHONOFF PRODUCT THEOREM

For a collection of sets indexed by a set A, {XA}AEA, we defined the Cartesian product
rIA E AXA to be the collection of mappings from the index set A to the union UAE A XA such
that each index k E A is mapped to a member of XA. For a member x of the Cartesian product
and an index A E A, it is customary to denote x(A) by xA and call xA the A-th component of
x. For each parameter A0 E A, we define the Ap projection mapping irk: IIA E AXA -+ XAO by

?TAO (x) =XAO forxErIAEAXA

We have defined the product metric on the Cartesian product of two metric spaces.
This extends in an obvious manner to a metric on the Cartesian product of a finite number
of metric spaces. Moreover, there is a natural metric on the Cartesian product of a countable
number of metric spaces (see Problem 16).

There is a natural definition of a topology on the Cartesian product of a finite collection
of topological spaces. Given a collection ((Xk, Tk )}k-1 of topological spaces, the collection
of products

01 X ... Ok ... X On,

where each Ok belongs to Tk, is a base for a topology on rI1 <k <,Xk. The topology on the
Cartesian product consisting of unions of these basic sets is called the product topology on
I1 <k <nXk

What is novel for topological spaces is that a product topology can be defined on an
arbitrary Cartesian product rlA E AXA of topological spaces. The index set is not required to
be finite or even countable.

Definition Let ((XA, TA))A E A be a collection of topological spaces indexed by a set A. The
product topology on the Cartesian product 11AE AXA is the topology that has as a base sets of
the form rIA E AOA, where each OA ETA and OA = XA, except for finitely many A.

If all the XA's are the same space X, it is customary to denote rIAEAXA by XA. In
particular, if N denotes the set on natural numbers, then XN is the collection of sequences in
X while Rx is the collection of real-valued functions that have domain X. If X is a metric
space and A is countable, then the product topology on XA is induced by a metric (see
Problem 16). In general, if X is a metric space but A is uncountable, the product topology
is not induced by a metric. For example, the product topology on RR is not induced by a
metric (see Problem 17). We leave it as an exercise to verify the following two propositions.

Proposition 3 Let X be a topological space. A sequence { fn : A -+ X) converges to f in the
product space XA if and only if (fn (A)) converges to f (A) for each A in A. Thus, convergence
of a sequence with respect to the product topology is pointwise convergence.

Proposition 4 The product topology on the Cartesian product of topological spaces rIA E AXA
is the weak topology associated to the collection of projections (IrA: rIA E AXA -*X AIA E A,
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that is, it is the topology on the Cartesian product that has the fewest number of sets among the
topologies for which all the projection mappings are continuous.

The centerpiece of this section is the Tychonoff Product Theorem, which tells us that
the product IIAE AXA of compact topological spaces is compact. There are no restrictions on
the index space A. In preparation for the proof of this theorem we first establish two lemmas
regarding collections of sets that possess the finite intersection property.

Lemma 5 Let A be a collection of subsets of a set X that possesses the finite intersection
property. Then there is a collection 8 of subsets of X which contains A, has the finite
intersection property, and is maximal with respect to this property; that is, no collection of
subsets of X that properly contains 8 possesses the finite intersection property.

Proof Consider the family F of all collections of subsets of X containing A and possessing
the finite intersection property. Order F by inclusion. Every linearly ordered subfamily Yo
of .F has an upper bound consisting of the sets belonging to any collection in Yo. According
to Zorn's Lemma, there is maximal member of F. This maximal member is a collection of
sets that has the properties described in the conclusion of the lemma.

Lemma 6 Let 8 be a collection of subsets of X that is maximal with respect to the finite
intersection property. Then each intersection of a finite number of sets in B is again in B, and
each subset of X that has nonempty intersection with each set in B is itself in B.

Proof Let 8' be the collection of all sets that are finite intersections of sets in B. Then B'
is a collection having the finite intersection property and containing B. Thus B' = B by the
maximality, with respect to inclusion, of B.' Now suppose that C is a subset of X that has
nonempty intersection with each member of B. Since B contains each finite intersection of
sets in B, it follows that 8 U {C} has the finite intersection property. By the maximality, with
respect to inclusion, of 13, B U {C} = B, and so C is a member of B.

The Tychonoff Product Theorem Let {XA}AE A be a collection of compact topological spaces
indexed by a set A. Then the Cartesian product IIA E AXA, with the product topology, also is
compact.

Proof Let F be a collection of closed subsets of X = IIA E AXA possessing the finite
intersection property. We must show .F has nonempty intersection. By Lemma 5, there is
a collection B of (not necessarily closed) subsets of X that contains .T and is maximal with
respect to the finite intersection property. Fix A E A. Define

BA={?TA(B) I BE 131.

Then BA is a collection of subsets of the set XA that has the finite intersection property, as
does the collection of closures of members of BA. By the compactness of XA there is a point
xA E X k for which

xA E n TTA(B).
BEB
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Define x to be the point in X whose A-th coordinate is xA. We claim that

xE nF.
FEY

(7)

Indeed, the point x has the property that for each index A, xA is a point of closure of arA(B)
for every B E B. Thus 1

every subbasic neighborhood Nx of x has nonempty intersection

with every set B in B. (8)

From the maximality of B and Lemma 6, we conclude that every subbasic neighborhood of
x belongs to B. Once more using Lemma 6, we conclude that every basic neighborhood of x
belongs to B. But 8 has the finite intersection property and contains the collection Y. Let F
be a set in F. Then every basic neighborhood of x has nonempty intersection with F. Hence
x is a point of closure of the closed set F, so that x belongs to F. Thus (7) holds.

PROBLEMS

11. Show that the product of an arbitrary collection of Tychonoff spaces, with the product
topology, also is Tychonoff.

12. Show that the product of an arbitrary collection of Hausdorff spaces, with the product
topology, also is Hausdorff.

13. Consider the Cartesian product of n copies of R,

n

Rn=RXRx...xR.

Show that the product topology is the same as the metric topology on Rn induced by the
Euclidean metric.

14. Let (X, P1) and (Y, P2) be metric spaces. Show that the product topology on X X Y, where
X and X have the topologies induced by their respective metrics, is the same as the topology
induced by the product metric

P((xl, Y1), (x2, Y2)) _ [P1(x1, x2 )]2 + [P2 (Y1, y2 )]2.

15. Show that if X is a metric space with metric p, then

P`(x, Y)
(+P(x Y)

also is a metric on X and it induces the same topology as the metric p.

16. Consider the countable collection of metric spaces {(X5, pn)}n° 1. For the Cartesian product
of these sets X = rj n i X, define p: X X X -* R by

00
Pn(xn,Yn)

P(x,Y) 21[1+Pn(xn,Yn)]n=l

tIt is convenient here to call an open set 0 set of the form 0 = II1 e AOA, where each OA is an open subset of
XA and OA = XA except for one A, a subbasic set and the finite intersection of such sets a basic set.
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Use the preceding problem to show that p is a metric on X = II n°t X which induces the
product topology on X, where each X has the topology induced by the metric p,,.

17. Consider the set X = RR with the product topology. Let E be the subset of X consisting of
functions that take the value 0 on a countable set and elsewhere take the value 1. Let fo be
the function that is identically zero. Then it is clear that fo is a point of closure of E. But
there is no sequence { in E that converges to fo, since for any sequence If, I in E there is
some xp E R such that 1 for all n and so the sequence { does not converge
to fo(xo). This shows, in particular, that X = RR is not first countable and therefore not
metrizable.

18. Let X denote the discrete topological space with two elements. Show that XN is homeomorphic
to the Cantor set.

19. Using the Tychonoff Product Theorem and the compactness of each closed, bounded interval
of real numbers prove that any closed, bounded subset of R" is compact.

20. Provide a direct proof of the assertion that if X is compact and I is a closed, bounded interval,
then X X I is compact. (Hint: Let U be an open covering of X X I, and consider the smallest
value of t E I such that for each t' < t the set X x [0, t'] can be covered by a finite number of
sets in U. Use the compactness of X to show that X x [0, t] can also be covered by a finite
number of sets in U and that if t < 1, then for some t" > t, X x [0, t"] can be covered by a finite
number of sets in U.)

21. Prove that the product of a countable number of sequentially compact topological spaces is
sequentially compact.

22. A product IA of unit intervals is called a (generalized) cube. Prove that every compact
Hausdorff space X is homeomorphic to a closed subset of some cube. (Let .E be the family
of continuous real-valued functions on X with values in [0, 1]. Let Q = II fE yI f. Then, since
X is normal, the mapping g of X onto Q that takes x into the point whose f-th coordinate is
f (x) is one-to-one, continuous, and has closed image.)

23. Let Q = IA be a cube, and let f be a continuous real-valued function on Q. Then, given E > 0,
there is a continuous real-valued function g on Q for which If - gI < E and g is a function
of only a finite number of coordinates. (Hint: Cover the range of f by a finite number of
intervals of length c and look at the inverse images of these intervals.)

12.3 THE STONE-WEIERSTRASS THEOREM

The following theorem is one of the jewels of classical analysis.

The Weierstrass Approximation Theorem Let f be a continuous real-valued function on a
closed, bounded interval [a, b]. Then for each E > 0, there is a polynomial p for which

If(x)-p(x)I<EforallxE[a,b].

In this section we provide a far-reaching extension of this theorem. For a compact
Hausdorff space X, consider the linear space C(X) of continuous real-valued functions
on X with the maximum norm. The Weierstrass Approximation Theorem tells us that the
polynomials are dense in C[a, b].

Now C(X) has a product structure not possessed by all linear spaces, namely, the
product f g of two functions f and g in C(X) is again in C(X ). A linear subspace A of C(X )
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is called an algebra provided the product of any two functions in A also belongs to A. A
collection A of real-valued functions on X is said to separate points in X provided for any
two distinct points u and v in X, there is an fin A for which f (u) # f (v ). Observe that since
X is compact and Hausdorff, according to Theorem 18 of the preceding chapter, it is normal
and therefore we may infer from Urysohn's Lemma that the whole algebra C(X) separates
points in X.

The Stone-Weierstrass Approximation Theorem Let X be a compact Hausdorff space.
Suppose A is an algebra of continuous real-valued functions on X that separates points in X
and contains the constant functions. Then A is dense in C(X).

Observe that this is a generalization of the Weierstrass Approximation Theorem
since the closed, bounded interval [a, b] is compact and Hausdorff and the collection of
polynomials is an algebra that contains the constant functions and separates points.

Before we prove the theorem, a few words concerning strategy are in order. 2 Since X is
compact and Hausdorff, it is normal. We infer from Urysohn's Lemma that for each pair of
disjoint closed subsets A and B of X and E E (0, 1/2), there is a function f E C(X) for which

f =E/2 on A, f =1-E/2 on B, andE/2< f <1-E/2 on X.

Therefore, if Ih - f I < E/2 on X,

h<EonA,h>1-EonB, and0<h <1onX. (9)

The proof will proceed in two steps. First, we show that for each pair of disjoint closed
subsets A and B of X and E E (0, 1/2), there is a function h belonging to the algebra A for
which (9) holds. We then show that any function f in C(X) can be uniformly approximated
by linear combinations of such h's.

Lemma 7 Let X be a compact Hausdorff space and A an algebra of continuous functions on
X that separates points and contains the constant functions. Then for each closed subset F of
X and point xo belonging to X " F, there is a neighborhood U of xo that is disjoint from F
and has the following property: for each c > 0, there is a function h E A for which

h<con U, h>1-eonF, andO<h<lonX. (10)

Proof We first claim that for each point y E F, there is a function gy in A for which

gy(xo) = 0, gy(y) > 0, and 0 < gy < 1 on X. (11)

Indeed, since A separates points, there is a function f E A for which f (xo) :f- f (y). The
function

2

L

f-f(xo)
J

gyL
11f - f(x0)Jimax J

2The proof we present is due to B. Brasowski and F. Deutsch, Proceedings of the American Mathematical Society,
81 (1981). Many very different-looking proofs of the Stone-Weierstrass Theorem have been given since the first
proof in 1937 by Marshal Stone.
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belongs to A and satisfies (11). By the continuity of gy, there is a neighborhood Ny of y on
which gy only takes positive values. However, F is a closed subset of the compact space X and
therefore F itself is compact. Thus we may choose a finite collection of these neighborhoods
{N,,t, ... , Nyn } that covers F. Define the function g E A by

1 n

g=n2gyr

=1

Then
g(xo) = 0, g>0onF, and0<g<1onX. (12)

But a continuous function on a compact set takes a minimum value, so we may choosec > 0
for which g > con F. By possibly multiplying g by a positive number, we may suppose c < 1.
On the other hand, g is continuous at xo, so there is a neighborhood U ofxo for which g < c/2
on U. Thus g belongs to the algebra A and

g<c/2 on U, g>conF, and0<g<1onX. (13)

We claim that (10) holds for this choice of neighborhood U. Let c > 0. By the Weierstrass
Approximation Theorem, we can find a polynomial p such that3

p<Eon[0,c/2], p > 1 - E on [c, 1], and0<p<1on[0,1]. (14)

Since p is a polynomial and f belongs to the algebra A, the composition h = p o g also
belongs to A. From (13) and (14) we conclude that (10) holds.

Lemma 8 Let X be a compact Hausdorff space and A an algebra of continuous functions
on X that separates points and contains the constant functions. Then for each pair of disjoint
closed subsets A and B of X and c > 0, there is a function h belonging to A for which

h<EonA, h > 1 - c on B,and0<h<lonX. (15)

Proof By the preceding lemma in the case F = B, for each point x E A, there is a
neighborhood Nx of x that is disjoint from B and has the property (10). However, A is
compact since it is a closed subset of the compact space X, and therefore there is a finite
collection of neighborhoods {Nxt , ..., Nxn } that covers A. Choose co for which 0 < co < E
and (1 - co/n )n > 1 - E. For 1 < i < n, since Nxi has property (10) with B = F, we choose
h, E A such that

hi<Eo/n onA(x,, hi>1-eo/n on B, and0<hi <lonX.

Define

h = h1 . h2 ... hn on X.

Then h belongs to the algebra A. Since for each i, 0 < hi < 1 on X, we have 0 < h < 1 on X.
Also, for each i, hi > 1- Eo/n on B, so h > (1- Eo/n )n > 1-Eon B. Finally, for each point
x in A there is an index i for which x belongs to Nxi. Thus hi(x) < Eo/n < E and since for the
other indices j, 0 < he(x) < 1, we conclude that h(x) < E.

3Rather than using the Weierstrass Approximation Theorem here, one can show that (14) holds for a polynomial
of the form p(x) =1- (1 - x" )m, where n and m are suitably chosen natural numbers.
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Proof of the Stone-Weierstrass Theorem Let f belong to C(X ) . Set c = f l l Imax If we can
arbitrarily closely uniformly approximate the function

f+c
Ilf +Cllmax

by functions in A, we can do the same for f. Therefore we may assume that 0 < f < 1 on X.
Let n > 1 be a natural number. Consider the uniform partition {0,1/n, 2/n,..., (n -1)/n, 1)
of [0, 1] into n intervals, each of length 1/n. Fix j, 1 < j < n. Define

Aj={xinX I f(x) <(j-1)/n} andBj={xinXI f(x)> j/n}.

Since f is continuous, both A j and B j are closed subsets of X and, of course, they are disjoint.
By the preceding lemma, with A = A j, B = B j, and c = 1/n, there is a function g j in the
algebra A for which

gj(x)<1/n if f(x) <(j-1)/n, gj(x)>1-1/n if f(x)> j/n and 0 < gj < 1 on X. (16)

Define
1 ng= - Ig

=1

Then g belongs to A. We claim that

IIf - gl Imax < 3/n. (17)

Once we establish this claim the proof is complete since, given E > 0, we simply select n such
that 3/n < E and therefore I If - gl Imax < E. To verify (17), we first show that

if 1 < k < n and f (x) < k/n, then g(x) < k/n + 1/n. (18)

Indeed, for j=k+1,...,n,since f(x) <k/n, f(x) <(j-1)/n and therefore g1(x) <1/n.
Thus

n

n I gj < (n - k)/n2 < 1/n.
j=k+1

Consequently, since each gj(x) < 1, for all j,

1 n 1 k n k

g(x)=-I g1 =-I gj+ - E gj <-I gj+1/n <k/n+1/n.
n j=1 n j=1 n j=k+1 n j=1

Thus (18) holds. A similar argument shows that

if 1 < k < n and (k -1)/n < f (x), then (k -1)/n -1/n < g(x). (19)

For x e X, choose k, 1 < k < n, such that (k -1)/n < f(x) < k/n. From (18) and (19) we
infer that I f (x) - g(x) I < 3/n.
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We conclude this chapter with the following elegant consequence of Urysohn's Lemma
and the Stone-Weierstrass Theorem.

Riesz's Theorem Let X be a compact Hausforff topological space. Then C(X) is separable
if and only if X is metrizable.

Proof First assume X is metrizable. Let p be a metric that induces the topology on X. Then
X, being a compact metric space, is separable. Choose a countable dense subset (xn ) of X. For
each natural number n, define fn (x) = p(x, xn) for all x E X. Since p induces the topology,
fn is continuous. We infer from the denseness of (xn} that (fn) separates points in X. Define
fo -- 1 on X. Now let A to be the collection of polynomials, with real coefficients, in a finite
number of the fk, 0 < k < oo. Then A is an algebra that contains the constant functions,
and it separates points in X since it contains each fk. According to the Stone-Weierstrass
Theorem, A is dense in C(X ). But the collection of functions f in A that are polynomials
with rational coefficients is a countable set that is dense in A. Therefore C(X) is separable.

Conversely, suppose C(X) is separable. Let (g,,) be a countable dense subset of
C(X ). For each natural number n, define On = (x E X I gn(x) > 1/2). Then (On}1<n<a is a
countable collection of open sets. We claim that every open set is the union of a subcollection
of (On }1 <n<oc, and therefore X is second countable. But X is normal, since it is compact and
Hausdorff. The Urysohn Metrization Theorem tells us that X is metrizable. To verify second
countability, let the point x belong to the open set O. Since X is normal, there is an open set
U for which x E U C Ll C O. By Urysohn's Lemma, there is a gin C(X) such that g(x) = 1
on U and g = 0 on X-0. By the denseness of (gn} in C(X), there is a natural number n for
which Ig - gn I < 1/2 on X. Therefore X E On C O. This completes the proof.

PROBLEMS

24. Suppose that X is a topological space for which there is a collection of continuous real-valued
functions on X that separates points in X. Show that X must be Hausdorff.

25. Let X be a compact Hausdorff space and A C C(X) an algebra that contains the constant
functions. Show that A is dense in C(X) if and only if A separates points in X.

26. Let A be an algebra of continuous real-valued functions on a compact space X that contains
the constant functions. Let f E C(X) have the property that for some constant function c and
real number a, the function a(f + c) belongs to A. Show that f also belongs to A.

27. For f, g e C[a, b], show that f = g if and only if f .'b xn f (x) dx = f ' xng(x) dx for all n.

28. For f E C[a, b] and e > 0, show that there are real numbers co, cl, ... , cn for which

I f(x) - eo - E ek ekxl < e for allx E [a, b].
k=1

29. For f E C[0, vr] and e > 0, show that there are real numbers co, cl, ... , cn for which

n

all xE[0,IT].
k=1
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30. Let f be a continuous real-valued function on R that is periodic with period 2a. For e > 0,
show that there are real numbers, co, at, ... , an, bl, ..., bn, such that

n

If(x)-co-I[akcoskx+bksinkx]I <cforall xER.
k=1

(Hint: A periodic function may be identified with a continuous function on the unit circle in
the plane and the unit circle is compact and Hausdorff with the topology it inherits from the
plane.)

31. Let X and Y be compact Hausdorff spaces and f belong to C(X X Y). Show that for each
e > 0, there are functions f1, ... , fn in C(X) and $1, ... , gn in C(Y) such that

n

If(x,y)-I fk(x).gk(y)I<,e forall(X,y)EXXY.
k=1

32. Rather than use the Weierstrass Approximation Theorem in the proof of the Stone-
Weierstrass Theorem, show that there are natural numbers m and n for which the polynomial
p(x) = 1- (1- xn )' satisfies (14). (Hint: Since p(0) = 0, p(1) = 1 and p' > 0 on (0, 1), it
suffices to choose m and n such that p(c12) <,e and p(c) > 1 - e.)

33. Let A be a collection of continuous real-valued functions on a compact Hausdorff space X that
separates the points of X. Show that every continuous real-valued function on X can be uni-
formly approximated arbitrarily closely by a polynomial in a finite number of functions of A.

34. Let A be an algebra of continuous real-valued functions on a compact Hausdorff space X.
Show that the closure of A, A, also is an algebra.

35. Let A be an algebra of continuous real-valued functions on a compact Hausdorff space
X that separates points. Show that either A = C(X) or there is a point xo E X for which
A = (f E C(X) I f (xo) = 0). (Hint: If 1 E A, we are done. Moreover, if for each x E X there is
an f E A with f (x) # 0, then there is a g E A that is positive on X and this implies that 1 E A.)

36. Let X be a compact Hausdorff space and A an algebra of continuous functions on X that
separates points and contains the constant functions.
(i) Given any two numbers a and b and points u, v E X, show that there is a function fin A

for which f (u) = a and f (v) = b.

(ii) Is it the case that given any two numbers a and b and disjoint closed subsets A and B of
X, there is a function f in A for which f = a on A and f = b on B?
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We have already examined important specific classes of normed linear spaces. The most
prominent of these are: (i) for a natural number n, Euclidean space R"; (ii) for a Lebesgue
measurable subset E of real numbers and 1 < p < oo, the LP(E) space of Lebesgue
measurable functions for which the pth power is integrable over E; (iii) for X a compact
topological space, the linear space C (X) of continuous real-valued functions on X, normed
by the maximum norm. In this and the following three chapters we study general normed
linear spaces and the continuous linear operators between such spaces. The most interesting
results are obtained for complete normed linear spaces, which we call Banach spaces. The
results we have established in the preceding four chapters for metric and topological spaces
are our basic tools.

13.1 NORMED LINEAR SPACES

A linear space X is an abelian group with the group operation of addition denoted by +, for
which, given a real number a and u E X, there is defined the scalar product a u e X for which
the following three properties hold: for real numbers a and /3 and members u and v in X,

a- v,

A linear space is also called a vector space and, paying respect to R", members of a linear
space are often called vectors. The quintessential example of a linear space is the collection of
real-valued functions on an arbitrary nonempty set D where, for two functions f, g: D -* R
and real number A, addition f +g and scalar multiplication A A. f are defined pointwise on D by

(f+g)(x)= f(x)+g(x)and(A f)(x)=Af(x)forallxeD.
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Recall the concept of norm on a linear space X, which we first studied in Chapter 7; a
nonnegative real-valued function II II defined on a linear space X is called a norm provided
for all u,vEXand aER:

(lull = 0 if and only if u = 0;

Ila+vll Hall +Ilv11;

Ilaull = IaIllull.

As we observed in Chapter 9, a norm on a linear space induces a metric on the space, where
the distance between u and v is defined to be Ilu - v11. When we refer to metric properties of
a normed space, such as boundedness and completeness, we mean with respect to the metric
induced by the norm. Similarly, when we refer to topological properties, such as a sequence
converging or a set being open, closed, or compact, we are referring to the topology induced
by the above metric.1

Definition Two norms II 11, and II 112 on a linear space X are said to be equivalent provided
there are constants cl > 0 and c2 > 0 for which

We immediately see that two norms are equivalent if and only if their induced metrics are
equivalent. Therefore, if a norm on a linear space is replaced by an equivalent norm, the
topological and metric properties remain unchanged.

Concepts from linear algebra in finite dimensional spaces are also important for general
linear spaces.2 Given vectors xl,... , x, in a linear space X and real numbers Al, ... , A5,
the vector

n

x = I AkXk
k=1

is called a linear combination of the x1's. A nonempty subset Y of X is called a linear subspace,
or simply a subspace, provided every linear combination of vectors in Y also belongs to Y.

For a nonempty subset S of X, by the span of S we mean the set of all linear combinations
of vectors in S: we denote the span of S by span[S]. We leave it as an exercise to show that
span[s] is a linear subspace of X, which is the smallest subspace of X that contains S in the
sense that it is contained in any linear subspace that contains S. If Y = span[S] we say that
S spans Y. It will also be useful to consider the closure of the span of S, which we denote
by span [S]. We leave it as an exercise to show that the closure of a linear subspace of X is
a linear subspace. Thus span [S] is a linear subspace of X which is the smallest closed linear
subspace of X that contains S in the sense that it is contained in any closed linear subspace
that contains S. We call span [S] the closed linear span of S.

'In the following chapters we consider topologies on a normed linear space X other than that induced by the
norm and are explicit when we refer to topological properties with respect to these other topologies.

2 We later refer to a few results from linear algebra but require nothing more than knowing that any two bases of
a finite dimensional linear space have the same number of vectors, so dimension is properly defined, and that any
linearly independent set of vectors in a finite dimensional linear space is a subset of a basis: see Peter Lax's Linear
Algebra [Lax97].
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For any two nonempty subsets A and B of a linear space X, we define the sum of A
with B, written A + B, by

A+B={x+yl xEA,yEB}.

In the case B is the singleton set [x0 I, we denote A + {xo} by A +xo and call this set a translate
of A. For A E R, we define AA to be the set of all elements of the form Ax with x E A.
Observe that if Y and Z are subspaces of X, then the sum Y + Z is also a subspace of X. In
the case Y fl z = t 0j we denote Y + Z by Y (D Z and call this subspace of X the direct sum of
Y and Z.

For a normed linear space X, the open ball of radius 1 centered at the origin,
(x c X I llxll < 1}, is called the open unit ball in X and {x E X I Ilxll <_ 1) is called the dosed
unit ball in X. We call a vector x E X for which Ilxll = 1 a unit vector.

Almost all the important theorems for metric spaces require completeness. Therefore
it is not surprising that among normed linear spaces those that are complete with respect to
the metric induced by the norm will be the most important.

Definition A normed linear space is called a Banach space provided it is complete as a metric
space with the metric induced by the norm.

The Riesz-Fischer Theorem tells us that for E a measurable set of real numbers
and 1 < p < oo, LP(E) is a Banach space. We also proved that for X a compact
topological space, C(X), with the maximum norm, is a Banach space. Of course, we
infer from the Completeness Axiom for R that each Euclidean space R" is a Banach
space.

PROBLEMS

1. Show that a nonempty subset S of a linear space X is a subspace if and only if S + S = S and

2. If Y and Z are subspaces of the linear space X, show that Y + Z also is a subspace and
Y+Z=span[YUZ].

3. Let S be a subset of a normed linear space X.
(i) Show that the intersection of a collection of linear subspaces of X also is a linear subspace

of X.

(ii) Show that span[S] is the intersection of all the linear subspaces of X that contain S and
therefore is a linear subspace of X.

(iii) Show that span [S] is the intersection of all the closed linear subspaces of X that contain
S and therefore is a closed linear subspace of X.

4. For a normed linear space X, show that the function II 11: X --> R is continuous.

5. For two normed linear spaces (X, II 111) and (Y, II 112), define a linear structure on the
Cartesian product y)=(Ax, Ay)and(xi, Y1)+ (X2, Y2)=(x1+x2, y1+y2).
Define the product norm II II by 11(x, All = 11x111 + I1y112, for x E X and y E Y. Show that this
is a norm with respect to which a sequence converges if and only if each of the two component
sequences converges. Furthermore, show that if X and Y are Banach spaces, then so is X X Y.
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6. Let X be a normed linear space.

(i) Let and be sequences in X such that x and y. Show that for any
real numbers a and 13, {ax + /3y, I - ax + f3y.

(ii) Use (i) to show that if Y is a subspace of X, then its closure Y also is a linear subspace of
X.

(iii) Use (i) to show that the vector sum is continuous from X X X to X and scalar multiplication
is continuous from R X X to X.

7. Show that the set P of all polynomials on [a, b] is a linear space. For P considered as a subset
of the normed linear space C[a, b], show that P fails to be closed. For P considered as a
subset of the normed linear space L 1 [a, b], show that P fails to be closed.

8. A nonnegative real-valued function II II defined on a vector space X is called a pseudonorm
if IIx + yll < Ilxll + IIYII and Ilaxll = lal Ilxll Define x = y, provided Ilx - yll = 0. Show that
this is an equivalence relation. Define X/= to be the set of equivalence classes of X under
and for x E X define [x] to be the equivalence class of x. Show that X/= is a normed vector
space if we define a[x] +(3[y] to be the equivalence class of ax + f3y and define II[x]II = Ilxll
Illustrate this procedure with X = LP[a, b], 1 < p < no.

13.2 LINEAR OPERATORS

Definition Let X and Y be linear spaces. A mapping T : X -+ Y is said to be linear provided
for each u, v E X, and real numbers a and 0,

T(au +(3v) = aT(u) +/3T(v).

Linear mappings are often called linear operators or linear transformations. In linear
algebra one studies linear operators between finite dimensional linear spaces, which, with
respect to a choice of bases for the domain and range, are all given by matrix multiplication.
In our study of the LP(E) spaces for 1 < p < no, we considered continuous linear operators
from LP to R. We called these operators functionals and proved the Riesz Representation
Theorem that characterized them.

Definition Let X and Y be normed linear spaces. A linear operator T : X Y is said to be
bounded provided there is a constant M > 0 for which

11T(u)11 MIIu1I for all u E X. (1)

The infimum of all such M is called the operator norm of T and denoted by 11 T11. The collection
of bounded linear operators from X to Y is denoted by C(X, Y).

Let X and Y be normed linear spaces and T belong to £(X, Y). It is easy to see that
(1) holds for M = II T II . Hence, by the linearity of T,

all u,vEX. (2)
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From this we infer the following continuity property of a bounded linear operator T :

if {un}-+uin X, then {T(un)}-+ T(u) in Y. (3)

Indeed, we have the following basic result for linear operators.

Theorem 1 A linear operator between normed linear spaces is continuous if and only if it
is bounded.

Proof Let X and Y be normed linear spaces and T : X -+ Y be linear. If T is bounded,
(3) tells us that T is continuous. Now suppose T : X -* Y is continuous. Since T is linear,
T (O) 0. Therefore, by the e - S criterion for continuity at u 0, with e 1, we may choose
S > 0 such that IIT(u) - T(0)II < 1 if IIu - 011 < S, that is, IIT(u)II < 1 if lull < S. For any
u E X, u t 0, set A = S/ II u II and observe by the positive homogeneity of the norm, Il Au II S.

Thus II T(Au) II < 1. Since II T (Au) II = A II T(u) 11, we conclude that (1) holds for M =1/S.

Definition Let X and Y be linear spaces. For T : X -+ Y and S : X -+ Y linear operators and
real numbers a, (3 we define aT + (3S: X Y pointwise by

(aT+(3S)(u) =aT(u)+(3S(u) for all u E X. (4)

Under pointwise scalar multiplication and addition the collection of linear operators between
two linear spaces is a linear space.

Proposition 2 Let X and Y be normed linear space. Then the collection of bounded linear
operators from X to Y, L(X, Y), is a normed linear space.

Proof Let T and S belong to L(X, Y). We infer from the triangle inequality for the norm
on Y and (2) that

11 (T+S)(u)11 <-11T(u)11+11S(u)11 <-11Tllllull+11Sllllull=(11TII+IISII)Ilu11foralluEX.

Therefore T + S is bounded and 11 T + S11 11 T11 + Il S11. It is clear that for a real number a;
aT is bounded and II aT II = l a l II T11 and 11 T11 = 0 if and only if T (u) = 0 for all u E X.

Theorem 3 Let X and Y be normed linear spaces. If Y is a Banach space, then so is G(X, Y).

Proof Let {Tn} be a Cauchy sequence in £(X, Y). Let u belong to X. Then, by (2), for all
indices n and m,

IITn(u)-Tm(u)11=II(Tn-Tm)u1l s1ITn-Troll 11ull

Thus IT,, (u) j is a Cauchy sequence in Y. Since, by assumption, Y is complete, the sequence
(T n (u) ) converges to a member of Y, which we denote by T( u ). This defines a mapping
T: X Y. We must show T belongs to £(X, Y) and {Tn} -+ T in £(X, Y). To establish
linearity observe that for each ul, u2 in X, since each Tn is linear,

T(ul)+T(u2)= lim TT(ul)+ lim Tn(u2)= lim TT(ul+u2)=T(ul+u2),
n-+00 n--i00 noo
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and similarly T(Au) = AT (u ).

We establish the boundedness of T and the convergence of {Tn) to T in £(X, Y)
simultaneously. Let c > 0. Choose an index N such that for all n >_ N, k >_ 1, II Tn -Tn+k II <E/2.
Thus, by (2), for all u E X,

IITn(u) - T,+k(u)II = IITn -T,,+k)ull < IITn -Tn+kll -111411 <E/211u11.

Fix n > N and U E X. Since Tn+k(u) = T(u) and the norm is continuous we
conclude that

IIT,,(u) - T(u)II - E/211u11.

In particular, the linear operator TN - T is bounded and therefore, since TN also is bounded,
so is T. Moreover, 11T, - T11 < E for n > N. Thus {T,,) -* T in £(X, Y).

For two normed linear spaces X and Y, an operator T E ,C(X, Y) is called an
isomorphism provided it is one-to-one, onto, and has a continuous inverse. For T in
1(X, Y), if it is one-to-one and onto, its inverse is linear. To be an isomorphism requires
that the inverse be bounded, that is, the inverse belong to C(Y, X). Two normed linear
spaces are said to be isomorphic provided there is an isomorphism between them. This is an
equivalence relation that plays the same role for normed linear spaces that homeomorphism
plays for topological spaces. An isomorphism that also preserves the norm is called an
isometric isomorphism: it is an isomorphism that is alsoan isometry of the metric structures
associated with the norms.

For a linear operator T : X Y, the subspace of X, (x E X I T (x) = 0), is called the
kernel of T and -denoted by ker T. Observe that T is one-to-one if and only if ker T = (0).
We denote the image of T, T(X), by Im T.

PROBLEMS

9. Let X and Y be normed linear spaces and T: X -> Y be linear.
(i) Show that T is continuous if and only if it is continuous at a single point uo in X.

(ii) Show that T is Lipschitz if and only if it is continuous.

(iii) Show that neither (i) nor (ii) hold in the absence of the linearity assumption on T.

10. For X and Y normed linear spaces and T E C(X, Y), show that 11 T11 is the smallest Lipschitz
constant for the mapping T, that is, the smallest number c > 0 for which

1IT(u)-T(v)11

11. For X and Y normed linear spaces and T E ,C(X, Y), show that

IITII = sup {IIT(u)II I U E X, 11u1151}.

12. For X and Y normed linear spaces, let {Tn} -+ T in ,C(X, Y) and {un) -* u in X. Show that
{TT(un)}-* T(u)inY.

13. Let X be a Banach space and T E C(X, X) have IITII < 1.
(i) Use the Contraction Mapping Principle to show that I - T E ,C(X, X) is one-to-one and

onto.

(ii) Show that I - T is an isomorphism.
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14. (Neumann Series) Let X be a Banach space and T E £(X, X) have II TII < 1. Define To = Id.

(i) Use the completeness of £(X, X) to show that Y_ T" converges in £(X, X).00
n=0

(ii) Show that (I - T) = E T".
n=0

15. For X and Y nonmed linear spaces and T E £(X, Y), show that T is an isomporphism if and
only if there is an operator S E L(Y, X) such that for each u E X and V E Y,

S(T(u)) = u and T(S(v)) = v.

16. For X and Y normed linear spaces and T E £(X, Y), show that ker T is a closed subspace of
X and that T is one-to-one if and only if ker T = {0}.

17. Let (X, p) be a metric space containing the point xo. Define Lipo(X) to be the set of
real-valued Lipschitz functions f on X that vanish at xo. Show that Lipo(X) is a linear space
that is normed by defining, for f E Lipo(X),

11f 11 = sup
if (x) - f(Y)l

XAy P(x, Y)

Show that Lipo(X) is a Banach space. For each x E X, define the linear functional Fx
on Lipo(X) by setting Fx(f) = f (x). Show that Fx belongs to L(Lipo(X), R) and that
for x, y E X, IIFx - Fyll = p(x, y). Thus X is isometric to a subset of the Banach space
L(Lipo(X), R). Since any closed subset of a complete metric space is complete, this provides
another proof of the existence of a completion for any metric space X. It also shows that any
metric space is isometric to a subset of a normed linear space.

18. Use the preceding problem to show that every normed linear space is a dense subspace of a
Banach space.

19. For X a normed linear space and T, S E £(X, X), show that the composition S o T also
belongs to £(X, X) and IIS o TII 5 IISII . IITII.

20. Let X be a normed linear space and Y a closed linear subspace of X. Show that
Ilxllt = inf yII defines a pseudonorm on X. The normed linear space induced by
the pseudonorm II Ill (see Problem 8) is denoted by X/Y and called the quotient space of X
modulo Y. Show that the natural map W of X onto X/Y takes open sets into open sets.

21. Show that if X is a Banach space and Y a closed linear subspace of X, then the quotient X/Y
also is a Banach space and the natural map rp: X -* X/Y has norm 1.

22. Let X and Y be normed linear spaces, T E C(X, Y) and ker T = Z. Show that there is a
unique bounded linear operator S from X/Z into Y such that T = S o <p where q: X -* X/Z
is the natural map. Moreover, show that IlTlf = USll

13.3 COMPACTNESS LOST: INFINITE DIMENSIONAL NORMED LINEAR SPACES

A linear space X is said to be f i n i t e dimensional provided there is a subset {et, ... , en) of X

that spans X. If no proper subset also spans,X, we call the set {et, ... , en} a basis for X and call
n the dimension of X. If X is not spannedsy a finite collection of vectors it issaid to be infinite

dimensional. Observe that a basis {et . e,} for X is linearly independent in the sense that

n

if xie, 0, then xi = 0 for all 1 < i < n,
i=t - _
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for otherwise a proper subset of {el,... , en} would span X.

Theorem 4 Any two norms on a finite dimensional linear space are equivalent.

Proof Since equivalence of norms is an equivalence relation on the set of norms on X, it
suffices to select a particular norm II II, on X and show that any norm on X is equivalent to
II II,. Let dim X = n and {e1.... , en} be a basis for X. For any x = x1e1 +... + xnen E X,
define

114, = xi+...+xn

Since the Euclidean norm is a norm on Rn, II II, is a norm on X.

Let II II be any norm on X. We claim it is equivalent to II II,. First we find a cl > 0
for which

Ilxll cl Ilxll, for all x E X. (5)

Indeed, for x = xlei + ... + xnen E X, by the subadditivity and positive homogeneity of the
norm II II, together with the Cauchy-Schwarz inequality on Rn,

n n

Ilxll < Ixillleill < M Ixil = Mf._Ilxll,, where M = max Ileill
i=1 i=1 1<i<n

Therefore (5) holds for cl = M,. We now find a c2 > 0 for which

Ilxll* :5

Define the real-valued function f : Rn -+ R by

f(xl,..., xn) _

n

xiei
i=1

(6)

This function is continuous since it is Lipschitz with Lipschitz constant cl if Rn is considered
as a metric space with the Euclidean metric. Since {el..... en} is linearly independent, f

takes positive values on the boundary of the unit ball, S = {x E Rn I y x, = 1), which is
i=1

compact since it is both closed and bounded. A continuous real-valued function on a compact
topological space takes a minimum value. Let m > 0 be the minimum value of f on S. By
the homogeneity of the norm II II, we conclude that

all xEX.

Thus (6) holds for c2 =1/m.

Corollary 5 Any two normed linear spaces of the same finite dimension are isomorphic.

Proof Since being isomorphic is an equivalence relation among normed linear spaces, it
suffices to show that if X is a normed linear space of dimension n, then it is isomorphic to the
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Euclidean space W. Let f ei , ... , en } be a basis for X. Define the linear mapping T : R' -+ X
by setting, for x = (xi,... , xn) E Rn,

T(x) _ xiei.

Since f ei, ... , e.1 is a basis, T is one-to-one and onto. Clearly T is linear. It remains to show
that T and its inverse are continuous. Since a linear operator is continuous if and only if it
is bounded, this amounts to showing that there are constants ci and c2 such that for each
xeR°,

IIT(x)II < ci IIxII* and IIT(x)II >_ C2 IIxII*,

where II II * denotes the Euclidean norm on R. The existence of these two constants follows
from the observation that x - II T(x) II defines a norm on Rn, which, since all norms on Rn
are equivalent, is equivalent to the Euclidean norm.

Corollary6 Any finite dimensional normed linear space is complete and therefore any finite
dimensional subspace of a normed linear space is closed.

Proof A finite dimensional space of dimension n is isomorphic to the Euclidean space Rn,
which is complete since R is complete. Since completeness is preserved under isomorphisms,
every finite dimensional normed linear space is complete. For a finite dimensional subspace
Y of a normed linear space X, since Y, with the metric induced by the inherited norm, is
complete, Y is a closed subset of the metric space X, where X is considered as a metric space
with the metric induced by the norm.

Corollary 7 The closed unit ball in a finite dimensional normed linear space is compact.

Proof Let X be a normed linear space of dimension n and B be its closed unit ball. Let
T : X -+ Rn be an isomorphism. Then the set T (B) is bounded since the operator T is
bounded and T (B) is closed since T-1 is continuous. Therefore, T(B), being a closed
bounded subset of Rn, is compact. Since compactness is preserved by continuous mappings
and T-1 is continuous, B is compact.

Riesz's Theorem The closed unit ball of a normed linear space X is compact if and only if X
is finite dimensional.

The heart of the proof of this theorem lies in the following lemma.

Riesz's Lemma Let Y be a closed proper linear subspace of a normed linear space X. Then
for each e > 0, there is a unit vector xo E X for which

Ilxo - yll > 1-E for allyEY.

Proof We consider the case E = 1/2 and leave the general case as an exercise. Since Y is a
proper subset of X, we may choose x E X^-Y. Since Y is a closed subset of X, its complement
in X is open and. therefore there is a ball centered at x that is disjoint from Y, that is,

inf{Ilx - y'llI y'EY}=d>0. (7)
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Choose a vector y1 E Y for which

IIx - Y111 < 2d.

Define
x - Yl

x0

__

IIx-Y1II
Then xo is a unit vector. Moreover, observe that for any y E Y,

xo - Y=
x

-Y1 - Y= 1 {x-Y1-IIx-Y111Y}= {x-y'},
IIx-Y11I IIx-Y1II IIx-Y1II

where y' = Y1 + IIx - Yt I I y belongs to Y. Therefore, by (7) and (8),

Ilxo-YII>-Ilxo-Y'IIZforallyEY.
11

Proof of Riesz's Theorem We have already shown that the closed unit ball B in a finite
dimensional normed linear space is compact. It remains to show that B fails to be compact
if X is infinite dimensional. Assume dim X = oo. We will inductively choose a sequence {xn }
in B such that Ilxn - x,,, II > 1/2 for n * m. This sequence has no Cauchy subsequence and
therefore no convergent subsequence. Thus B is not sequentially compact, and therefore,
since B is a metric space, not compact.

It remains to choose this sequence. Choose any vector x1 E B. For a natural number
n, suppose we have chosen n vectors in B, {x1, ... , xn }, each pair of which are more than a
distance 1/2 apart. Let X, be the linear space spanned by these n vectors. Then X,, is a finite
dimensional subspace of X and so it is closed. Moreover, X,, is a proper subspace of X since
dim X = oc. By the preceding lemma we may choose in B such that 11x, - xn+1 II > 1/2
for 1 < i < n. Thus we have inductively chosen a sequence in B any two terms of which are
more than a distance 1/2 apart.

PROBLEMS

23. Show that a subset of a finite dimensional normed linear space X is compact if and only if it
is closed and bounded.

24. Complete the proof of Riesz's Lemma for c # 1/2.

25. Exhibit an open cover of the closed unit ball of X = C2 that has no finite subcover. Then do
the same for X = C[0, 1] and X = L2[0, 11.

26. For normed linear spaces X and Y, let T: X -+ Y be linear. If X is finite dimensional, show
that T is continuous. If Y is finite dimensional, show that T is continuous if and only ifker T
is closed.

27. (Another proof of Riesz's Theorem) Let X be an infinite dimensional normed linear space, B
the closed unit ball in X, and Bo the unit open ball in X. Suppose B is compact. Then the open
cover {x + (1/3)BO}XE5 of B has a finite subcover {xi + (1/3)Bo}1<,<n. Use Riesz's Lemma
with Y = span[{x1, ... , xn}] to derive a contradiction.

28. Let X be a normed linear space. Show that X is separable if and only if there is a compact
subset K of X for which span [K] = X.

(8)
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13.4 THE OPEN MAPPING AND CLOSED GRAPH THEOREMS

In this section, we use the Baire Category Theorem to establish two essential tools, the Open
Mapping Theorem and the Closed Graph Theorem, for the analysis of linear operators
between infinite dimensional Banach spaces. The Baire Category Theorem is used to prove
the following theorem.

Theorem 8 Let X and Y be Banach spaces and the linear operator T : X -- Y be continuous.
Then T (X) is a closed subspace of Y if and only if there is a constant M > 0 for which given
y E T(X), there is an x e X such that

T(x) = y, Ilxll MIA. (9)

Proof First suppose there is a constant M > 0 for which (9) holds. Let {y, } be a sequence
in T (X) that converges to y* e Y. We must show y* belongs to T(X). By selecting a
subsequence if necessary, we may assume

ll yn - yn-1 II < 1/2" for all n > 2.

By the choice of M, for each natural number n > 2, there is a vector un E X for which

T(an)=yn-yn-1 andllnnll<M/2n

Therefore, for n > 2, if we define xn = Y,j=2 then

T(xn)=yn-y1 (10)

and 0
I l xn+k - xn I I < M 11/2J for all k > 1. (11)

i=n

But X is a Banach space and therefore the Cauchy sequence (xn ) converges to a vector X. E X.
Take the limit as n -+ oo in (10) and use the continuity of T to infer that y* = T(x*) - y1.
Since yi belongs to T (X) so does y*. Thus T (X) is closed.

To prove the converse, assume T (X) is a closed subspace of Y. For notational
convenience, assume Y = T(X). Let Bx and By denote the open unit balls in X and Y,
respectively. Since T (X) = Y,

0"

Y has nonempty interior and therefore we infer from the Baire Category
Theorem that there is a natural number n such that the closed set n T (Bx) contains an open
ball, which we write as yo + [Ti By]. Thus

r1ByCnT(Bx)-yo C2nT(Bx).

Hence, if we set r = 2n/ri, since T(Bx) is closed, we obtain By C r T(Bx). Therefore,
since By is the closed unit ball in Y, for each y E Y and E > 0, there is an x E X forwhich

I1 y-T(x)II<6andllxll (12)



264 Chapter 13 Continuous Linear Operators Between Banach Spaces

We claim that (9) holds for M = 2r. Indeed, let y. belong to Y, y" # 0. According to
(12) with e = 1/2 IIY.11 and y = y there is a vector ul E X for which

IIY* - T(ui)II <1/2 11y.11 and 11u,11 :5 r- 11y.11.

Now use (12) again, this time with e = 1/22. IIY.11 and y = y,, - T(ul ). There is a vector u2
in X for which

IIY.-T(ul)-T(u2)11 <1/22.IIY.11and11U211

We continue this selection process and inductively choose a sequence {uk} in X such that for
each k,

Ily - T(ul ) llukll <r/2k

For each natural number n, define xn = Yk=1 uk. Then, by the linearity of T, for each n,

Ily - T(xn)11 <- 1/2n IIY.11,

00

Ilxn+k-xn11:5 and
j=n

By assumption, X is complete. Therefore the Cauchy sequence Ix,) converges to a vector x,,
in X. Since T is continuous and the norm is continuous,

T(x.) = y. and llx.11

Thus (9) holds for M = 2 r. The proof is complete.

A mapping f : X -, Y from the topological space X to the topological space Y is said
to be open provided the image of each open set in X is open in the topological space f (X),
where f (X) has the subspace topology inherited from Y. Therefore a continuous one-to-one
mapping f of X into Y is open if and only if f is a topological homeomorphism between X
and f(X).

The Open Mapping Theorem Let X and Y be Banach spaces and the linear operator
T : X i Y be continuous. Then its image T (X) is a closed subspace of Y if and only if the
operator T is open.

Proof The preceding theorem tells us that it suffices to show that T is open if and only if
there is a constant M > 0 for which (9) holds. Let BX and By denote the open unit balls
in X and Y, respectively. We infer from the homogeneity of T and of the norms that (9) is
equivalent to the inclusion

By f1T(X)CM-T(BX).

By homogeneity, this inclusion is equivalent to the existence of a constant M' for which
By fl T (X) C M' T(B). Therefore, we must show that T is open if and only if there is an
r > 0 for which

(13)
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First assume the operator T is open. Then T (Bx) fl T (X) is an open subset of T (X) which
contains 0. Thus there is an r > 0 for which r By fl T(X) C T(Bx) fl T(X) C T(Bx).
Therefore, (13) holds for this choice of r. To prove the converse, assume (13) holds. Let 0
be an open subset of X and xo belong to O. We must show that T(xo) is an interior point of
T(O). Since xo is an interior point of 0, there is an R > 0 for which xo + R R. Bx C O. We infer
from (13) that the the open ball of radius r R about T(xo) in T(X) is contained in T(O).
Thus T(xo) is an interior point of T(O).

Corollary 9 Let X and Y be Banach spaces and T E £(X, Y) be one-to-one and onto. Then
T-1 is continuous.

Proof The operator T-1 is continuous if and only if the operator T is open.

Corollary 10 Let II 11, and II 112 be norms on a linear space X for which both (X, II 111) and

(X, 11 112) are Banach spaces. Suppose there is a c > O for which

on X.

Then these two norms are equivalent.

Proof Define the identity map Id: X -> X by Id(x) = x for all x E X. By assumption,

Id: (X,11.111)-+(X,11.112)

is a bounded, and therefore continuous, operator between Banach spaces and, of course, it
is both one-to-one and onto. By the Open Mapping Theorem, the inverse of the identity,
Id: (X, II 112) - (X, II 111) also is continuous, that is, it is bounded: there is an M > 0
for which

11.111:5 M- II.112onX.

Therefore the two norms are equivalent.

Definition A linear operator T : X -+ Y between normed linear spaces X and Y is said to be
closed provided whenever {x,,) is a sequence in X

if yo, then T(xo)=yo

The graph of a mapping of T : X --). Y is the set ((x, T (x)) E X X Y I X E X). Therefore
an operator is closed if and only if its graph is a closed subspace of the product space X X Y.

The Closed Graph Theorem Let T : X -+ Y be a linear operator between the Banach spaces
X and Y. Then T is continuous if and only if it is closed.

Proof It is clear that T is closed if it is continuous. To prove the converse, assume T is closed.
Introduce a new norm II II. on X by

IIxII. = 11x11 + IIT(x)Il for all x E X.

The closedness of the operator T is equivalent to the completeness of the normed linear
space (X, II I1.) On the other hand, we clearly have

11.11<II.11.on X.
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Since both (X, II II.) and (X, II II) are Banach spaces it follows from the preceding corollary
that there is a c > 0 for which

X.

Thus for all x E X,

IIT(x)II <- IIxII + IIT(x)II < cflxII.

Therefore T is bounded and hence is continuous.

Remark Let X and Y be Banach spaces and the operator T: X -* Y be linear. To establish
continuity of T it is necessary to show that T(xo) in Y if x0 in X. The
Closed Mapping Theorem provides a drastic simplification in this criterion. It tells us that to
establish continuity of T it suffices to check that {T (x )} -* T(xo) in Y for sequences (x,) such
that xo in X and tT(x )} is Cauchy in Y. The usefulness of this simplification will be
evident in the proof the forthcoming Theorem 11.

Let V be a linear subspace of a linear space X. An argument using Zorn's Lemma
(see Problem 35) shows that there is a subspace W of X for which there is the direct sum
decomposition

X=V®W. (14)

We call W a linear complement of V in X. If a subspace of X has a finite dimensional
linear complement in X, then it is said to have finite codimension in X. For X E X and the
decomposition (14), let x = u + v, for v E V and W E W. Define P(x) = v. We leave it as an
algebraic exercise to show that P: X -+ X is linear,

P2=PonX, P(X)=Vand(Id-P)(X)=W. (15)

We call P the projection of X onto V along W. We leave it as a second algebraic exercise to
show that if P: X X is any linear operator for which P2 = P, then

X = P(X) ® (Id-P)(X). (16)

We therefore call a linear operator P: X -+ X for which P2 = P a projection. If P is a
projection, then (Id -p)2 = Id -P and therefore Id-P also is a projection.

Now assume the linear space X is normed. A closed subspace W of X for which
(14) holds is called a closed linear complement of V in X. In general, it is very difficult to
determine if a subspace has a closed linear complement. Corollary 8 of the next chapter
tells us that every finite dimensional subspace of a normed linear space has a closed linear
complement. Theorem 3 of Chapter 16 tells us that every closed subspace of a Hilbert space
has a closed linear complement. For now we have the following criterion, in terms of the
continuity of projections, for the existence of closed linear complements.

Theorem 11 Let V be a closed subspace of a Banach space X. Then V has a closed linear
complement in X if and only if there is a continuous projection of X onto V.

Proof First assume there is a continuous projection P of X onto V. There is the direct
sum decomposition X = V ® (Id - P) (X). We claim that (Id - P) (X) is closed. This is a
consequence of the continuity of the projection Id -P. To prove the converse, assume there
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is a closed subspace W of X for which there is the direct sum decomposition (14). Define
P to be the projection of X onto V along W. We claim that P is continuous. The Closed
Graph Theorem tells us that to verify this claim it is sufficient to show that the operator P
is closed. Let be a sequence in X for which xo and {P(x )} - yo. Since {P(x )}
is a sequence in the closed set V that converges to yo, the vector yo belongs to V. Since
(Id-P)(x )} is a sequence in the closed set W that converges to x0 - yo, the vector x0 - yo
belongs to W. Therefore P(yo) = yo and P(xo - yo) = 0. Hence yo = P(xo). Thus the
operator P is closed.

In view of Theorem 8 and its corollary, the Open Mapping Theorem, it is interesting
to provide criteria to determine when the image of a continuous linear operator is closed.
The following theorem provides one such criterion.

Theorem 12 Let X and Y be Banach spaces and the linear operator T : X --* Y be continuous.
If T (X) has a closed linear complement in Y, then T (X) is closed in Y. In particular, if T(X)
has finite codimension in Y, then T(X) is closed in Y.

Proof Let Y0 be a closed subspace of Y for which

T(X) ED Yo=Y. (17)

Since Y is a Banach space, so is Y0. Consider the Banach space X X Yo, where the linear
structure on the Cartesian product is defined componentwise and the norm is defined by

II(x, y) 11 = Ilxll+ IIYII for all (x, y) E XXY0.

Then X X Y0 is a Banach space. Define the linear operator S: X X Y0 -+ Y by

S(x, y) = T(x) + y for all (x, y) E X X Y0.

Then S is a continuous linear mapping of the Banach space X X Yo onto the Banach space
Y. It follows from Theorem 8 that there is an M > 0 such that for each y E Y there is an
(x', y') E X X Y0 for which

T(x')+y'=sand llx 11+II II <M IIyll.

Thus, since T (X) fl Yo = {0}, for each y E T(X), there is an x E X for which

T(x) = y and llxll M IIYII

Once more we use Theorem 8 to conclude that T(X) is a closed subspace of Y. Finally,
since every finite dimensional subspace of a normed linear space is closed, if T(X) has finite
codimension, it is closed.

Remark All linear operators on a finite dimensional normed linear space are continuous,
open, and have closed images. The results in the section are only significant for linear operators
defined on infinite dimensional Banach spaces, in which case continuity of the operator does
not imply that the image is closed. We leave it as an exercise to verify that the operator
T: P2 -+ e2 defined by

for E £2

is continuous but does not have closed image and is not open.
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PROBLEMS

29. Let X be a finite dimensional normed linear space and Y a normed linear space. Show that
every linear operator T: X - Y is continuous and open.

30. Let X be a Banach space and P E £(X, X) be a projection. Show that P is open.

31. Let T : X -+ Y be a continuous linear operator between the Banach spaces X and Y. Show
that T is open if and only if the image under T of the open unit ball in X is dense in a
neighborhood of the origin in Y.

32. Let {un) be a sequence in a Banach space X. Suppose that Ek1 Iluk II < oo. Show that there is
an x E X for which

n

lim Iuk=x.
n- 00

k_1

33. Let X be a linear subspace of C[0, 1] that is closed as a subset of L2[0, 1].Verify the following
assertions to show that X has finite dimension. The sequence {fn} belongs to X.
(i) Show that X is a closed subspace of C[0, 11.

(ii) Show that there is a constant M > 0 such that for all f E X we have II f 112 < 11 .f
11

and
11f110: M-11f112.

(iii) Show that for each y E [0, 1], there is a function ky in L2 such that for each f E X we

have f (y) = ff ky(x) f (x) dx.

(iv) Show that if (fn) -* f weakly in L2, then { fn} -* f pointwise on [0,1].

(v) Show {f,} - f weakly in L2, then {fn} is bounded (in what sense?), and hence { fn} - f
strongly in L2 by the Lebesgue Dominated Convergence Theorem.

(vi) Conclude that X, when normed by II 112, has a compact closed unit ball and therefore,
by Riesz's Theorem, is finite dimensional.

34. Let T be a linear operator from a normed linear space X to a finite-dimensional normed
linear space Y. Show that T is continuous if and only if ker T is a closed subspace of X.

35. Suppose X be a Banach space, the operator T E £(X, X) be open and Xo be a closed
subspace of X. The restriction To of T to Xo is continuous. Is To necessarily open?

36. Let V be a linear subspace of a linear space X. Argue as follows to show that V has a linear
complement in X.

(i) If dim X < oo, let {e1 }q 1 be a basis for V. Extend this basis for V to a basis {e,)°+1 for X.
Then define W = span[{en+1. , en+k}].

(ii) If dim X = oo, apply Zorn's Lemma to the collection .F of all subspaces Z of X for which
V n z = {0}, ordered by set inclusion.

37. Verify (15) and (16).

38. Let Y be a normed linear space. Show that Y is a Banach space if and only if there is a Banach
space X and a continuous, linear, open mapping of X onto Y.

13.5 THE UNIFORM BOUNDEDNESS PRINCIPLE

As a consequence of the Baire Category Theorem we proved that if a family of continuous
functions on a complete metric space is pointwise bounded, then there is an open set on
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which the family is uniformly bounded. This has the following fruitful consequences for
families of linear operators.

The Uniform Boundedness Principle For X a Banach space and Y a normed linear space,
consider a family Y C L(X, Y). Suppose the family F is pointwise bounded in the sense that
for each x in X there is a constant Mx > 0 for which

IIT(x)II <MxforallT EY.

Then the family Y is uniformly bounded in the sense that there is a constant M > 0 for which
IITII < M for all T in Y.

Proof For each T E .F, the real-valued function fT: X -> R defined by fT(x) = IITxII is a
real-valued continuous function on X. Since this family of continuous functions is pointwise
bounded on X and the metric space X is complete, by Theorem 6 of Chapter 10, there is an
open ball B(xo, r) in X and a constant C > 0 for which

IIT(x)II < C for all x E B(xo, r) and T E Y.

Thus, for each T E Y,

IIT(x)II = IIT([x+xo]-xo)II < IIT(x+xo)II+IIT(xo)II <_C+Mxoforall xE B(0, r).

Therefore, setting M = (1/r) (C + Mxo ), we have IITII < M for all Tin F.

The Banach-Saks-Steinhaus Theorem Let X be a Banach space, Y a normed linear space,
and [T,: X -+ Y} a sequence of continuous linear operators. Suppose that for each x E X,

lim T,, (x) exists in Y.
n-r00

(18)

Then the sequence of operators {Tn : X - Y} is uniformly bounded. Furthermore, the operator
T: X -> Y defined by

T(x) = lim T,, (x) for all forallx E X
n aoo

is linear, continuous, and
IITII <_ liminf IITII

Proof The pointwise limit of a sequence of linear operators is linear. Thus T is linear.
We infer from the Uniform Boundedness Principle that the sequence {Tn} is uniformly
bounded. Therefore lim inf II Tn II is finite. Let x belong to X. By the continuity of the norm
on Y, limn.w IITT(x)II IIT(x)II. Since, for all n, IITT(x)II < IITII IIxlh, we also have
II T (x) II < lim inf IITII II x II Therefore T is bounded and IITII <_ lim inf II T II A bounded
linear operator is continuous.

In the case that Y is a Banach space, (18) is equivalent to the assertion that for each
x E X, {Tn (x)} is a Cauchy sequence in Y.
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PROBLEMS

39. As a consequence of the Baire Category Theorem we showed that a mapping that is the
pointwise limit of a sequence of continuous mappings on a complete metric space must be
continuous at some point. Use this to prove that the pointwise limit of a sequence of linear
operators on a Banach space has a limit that is continuous at some point and hence, by
linearity, is continuous.

40. Let { be a sequence in L1[a, b]. Suppose that for each g E L°O[a, b], limf, fE g - fn
exists. Show that there is a function in f E Ll[a, b] such that lim,,, fE g fn = fE g f for
all g E LO' [a, b].

41. Let X be the linear space of all polynomials defined on R. For p E X, define 1IpIi to be the
sum of the absolute values of the coefficients of p. Show that this is a norm on X. For each n,
define tr : X -+ R by cr (p) = p(') (0). Use the properties of the sequence in C(X, R)
to show that X is not a Banach space.

42. (i) Use Zorn's Lemma to show that every linear space has a Hamel basis.

(ii) Show that any Hamel basis for an infinite dimensional Banach space must be uncountable.

(iii) Let X be the linear space of all polynomials defined on R. Show that there is not a norm
on X with respect to which X is a Banach space.
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For a normed linear space X, we denoted the normed linear space of continuous linear
real-valued functions of X by X* and called it the dual space of X. In this and the following
chapter, we explore properties of the mapping from X X X* to R defined by

(x, fir) . cr (x) for all x E X, 0 E X*

to uncover analytic, geometric, and topological properties of Banach spaces. The departure
point for this exploration is the Hahn-Banach Theorem. This is a theorem regarding the
extension of certain linear functionals on subspaces of an unnormed linear space to linear
functionals on the whole space. The elementary nature of this theorem provides it with such
flexibility that in this chapter we deduce from it the following three properties of linear
functionals: (i) for a normed linear space X, any bounded linear functional on a subspace of
X may be extended to a bounded linear functional on all of X, without increasing its norm;
(ii) for a locally convex topological vector space X, any two disjoint closed convex sets of
X may be separated by a closed hyperplane; and (iii) for a reflexive Banach space X, any
bounded sequence in X has a weakly convergent subsequence.

14.1 LINEAR FUNCTIONALS, BOUNDED LINEAR FUNCTIONALS,
AND WEAK TOPOLOGIES

Let X be a linear space. We denote by X1 the linear space of linear real-valued functions on
X. For i E Xl, i # 0, and x0 E X for which t/r(xo) * 0, we claim that X may be expressed as
the direct sum

X = [ker Ir] ® span [xo], (1)

where the kernel of i, ker/r, is the subspace {x E X I tlr(x) = 0}. Indeed, clearly
[ker 0] fl span [xo] = {0}. On the other hand, we may write each x E X as

x= fx- ((a) x01+ ) xoand0(x-( ) x01=0.
400 400)
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Observe that for a real number c, if xo belongs to X and cli(xo) = c, then

0-'(C) = {x E X I O(x) = c} = kero+xo

Therefore, by (1), if X is finite dimensional of dimension n and aV is nonzero, then for each
c E R, the level set q-i (c) is the translate of an (n - 1) dimensional subspace of X.

If a linear subspace X o of X has the property that there is some xo E X, x0 # 0 for which
X = Xo ® span [xo], then Xo is said to be of codimension 1 in X. A translate of a subspace
of codimension 1 is called a hyperplane.

Proposition 1 A linear subspace X0 of a linear space X is of codimension 1 if and only if
X0 = ker ,V, for some nonzero 0 E X1.

Proof We already observed that the kernel of a nonzero linear functional is of codimension 1.
Conversely, suppose X0 is a subspace of codimension 1. Then there is a vector x0 # 0 for
which X = X0 e span [xo]. For A E R and X E Xo, define +/r(x + Axo) = A. Then i/i 0, 0 is
linear and ker 0 = Xo.

The following proposition tells us that the linear functionals on a linear space are
plentiful.

Proposition 2 Let Y be a linear subspace of a linear space X. Then each linear functional on
Y has an extension to a linear functional on all of X. In particular, for each x E X, there is a
aV E Xt for which 0(x) ;t 0.

Proof As we observed in the preceding chapter (see Problem 36 of that chapter), Y has a
linear complement in X, that is, there is a linear subspace X0 of X for which there is the
direct sum decomposition

X=Y®X0.

Let 71 belong to Y1. For x E X, we have x = y + x0, where y E Y and X0 E X0. Define
n(x) = rl(y). This defines an extension of q to a linear functional on all of X.

Now let x belong to X. Define rl: span [x] -> R by rl(Ax) = A Ilxll By the first part of
the proof, the linear functional 71 has an extension to a linear functional on all of X.

We are particularly interested in linear spaces X that are normed and subspaces of XI
that are contained in the dual space of X, X*, that is, linear spaces of linear functionals that
are continuous with respect to the topology induced by the norm. If X is a finite dimensional
normed linear space, then every linear functional on X belongs to X* (see Problem 3). This
property characterizes finite dimensional normed linear spaces.

A subset B of a linear space X is called a Hamel basis for X provided each vector in X is
expressible as a unique finite linear combination of vectors in B, We leave it as an exercise to
infer from Zorn's Lemma that every linear space possesses a Hamel basis (see Problem 16).

Proposition 3 Let X be a normed linear space. Then X is finite dimensional if and only if
Xt = X*.
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Proof We leave it as an exercise to show that since all norms on a finite dimensional linear
space are equivalent, all linear functionals on such spaces are bounded. Assume X is infinite
dimensional. Let 13 be a Hamel basis for X. Without loss of generality we assume the vectors
in B are unit vectors. Since X is infinite dimensional, we may choose a countably infinite
subset of 13, which we enumerate as {xk}° 1. For each natural number k and vector x E X,
define tfk(x) to be the coefficient of xk with respect to the expansion of x in the Hamel basis
13. Then each k belongs to Xa and therefore the functional 41: X -* R defined by

00

k=1

also belongs to Xa. This linear functional is not bounded since each Xk is a unit vector for
which t/rk (x) = k.

The following algebraic property of linear functionals is useful in establishing properties
of weak topologies.

Proposition 4 Let X be a linear space, the functional belong to X1, and {iii}"=1 be contained

in Xa. Then 0 is a linear combination of {tl; J'-j if and only if

n

n ker ker i. (2)
i=1

Proof It is clear that if 0 is a linear combination of (tli}° 1, then the inclusion (2) holds.
We argue inductively to prove the converse. For n = 1, suppose (2) holds. We assume
t t- 0, for otherwise there is nothing to prove. Choose xo * 0 for which tl'(xo) = 1. Then
q11(xo) # 0 also since ker 4/1 C ker 0. However, X = ker 411 ® span [xo]. Therefore, if we
define Al = 1/tl1(xo) we see, by direct substitution, that 0 = A101. Now assume that for
linear functionals on any linear space, if (2) holds for n = k -1, then is a linear combination
of 01, ... , k-1

-
Suppose (2) holds for n = k. If i/k = 0, there is nothing to prove. So choose

xo E X with k (xo) = 1. Then X = Y ® span [xo], where Y = ker Ok, and therefore

k-1
n [ker ,i n Y] C ker 0 n Y.
i=1

By the induction assumption, there are real numbers A1, ... , Ak_1 for which

k-1

A1.tli on Y.
i=1

A direct substitution shows that if we define Ak = tli(xo) - jk=1
A, t/; (xo ), then

k

i=1
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Recall that for two topologies T1 and T2 on a set X, we say that T1 is weaker
than T2, or T2 is stronger than T1, provided Ti C T2. Observe that a function on X
that is continuous with respect to a topology on X, then it is also continuous with respect
to any stronger topology on X but may not be continuous with respect to a weaker
topology. If F is any collection of real-valued functions on a set X, the weak topology
on X induced by .F, or the Y-weak topology on X, is defined to be the weakest topology
on X (that is, the topology with the fewest number of sets) for which each function in
F is continuous. A base at x E X for the .T-weak topology on X comprises sets of the
form

NE, },, ..., ,f (x) _ {x' E X I Lfk(x) - fk(x)I < E for l <k < n}, (3)

where E > 0 and { fk }k=1 is a finite subcollection of Y. For a topology on a set, we know what
it means for a sequence in the set to converge, with respect to the topology, to a point in the
set. It is easy to see that a sequence {xn } in X converges to x E X with respect to the F-weak
topology if and only if

lim f(xn) = f(x)forall f E.T. (4)
n- 00

A function on X that is continuous with respect to the F-weak topology is called .T-weakly
continuous. Similarly, we have .F-weakly open sets, .7=-weakly closed sets, and F-weakly
compact sets.

For a linear space X, it is natural and very useful to consider weak topologies induced
on X by linear subspaces W of Xa.

Proposition 5 Let X be a linear space and W a subspace of Xt. Then a linear functional
': X -+ R is W-weakly continuous if and only if it belongs to W.

Proof By the definition of the W-weak topology, each linear functional in W is W-weakly
continuous. It remains to prove the converse. Suppose the linear functional i/i: X -+ R is
W-weakly continuous. By the continuity of +, 1at 0, there is a neighborhood N of 0 for which
141 (x) I = 10(x) - a/,(0) I < 1 if x E N. There is a neighborhood in the base for the W-topology
at 0 that is contained in N. Choose E > 0 and a/11, ..., 41n in W for which NE, N.
Thus

IkV(x)I < l if IIrk(x)I < E for all 1 < k < n.

By the linearity of 0 and the a/,k's, we have the inclusion flk_1ker a/ik g ker q1. According to
Proposition 4, 41 is a linear combination of 01, ... , qln. Therefore, since W is a linear space,
41 belongs to W.

The above proposition establishes a one-to-one correspondence between linear sub-
spaces of Xa and weak topologies on X induced by such subspaces.

Definition Let X be a normed linear space. The weak topology induced on X by the dual
space X* is called the weak topology on X.

A base at x E X for the weak topology on X comprises sets of the form

la/,W-x)I<Efor1<k<n}, (5)
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where c > 0 and f'/rk}k=1 is a finite subcollection of X*. For topological concepts with
respect to the weak topology, we use the adjective "weakly": so we have weakly compact
sets, weakly open sets, etc. Thus a sequence {xn} in X converges weakly to x E X if and
only if

lim ip(xn) = afr(x) for all cli E X*. (6)
n-oo

It is convenient to write {xn I , x in X to mean that {xn } is a sequence in X that converges
weakly to the point x E X.

For X a normed linear space and W a subspace of X*, there is the following inclusion
among topologies on X:

W-weak topology on X C weak topology on X C strong topology on X.

We infer from Proposition 5 that the W-weak topology coincides with the weak topology if
and only if W = X*. Furthermore, the weak topology coincides with the strong topology if
and only if X is finite dimensional (see Problem 6). Frequently, for a normed linear space, we
call the topology induced by the norm the strong topology on X. If no adjective is attached
to a topological concept associated with a normed linear space, it is implicitly assumed that
the reference topology is the strong topology.

For normed linear spaces that are dual spaces, there is a third important topology on
the space besides the weak and the strong topologies. Indeed, for a normed linear space X
and x E X we define the functional J(x) : X* -* R by

J(x)[4i] = O(x) for all cli E X*.

It is clear that the evaluation functional J(x) is linear and is bounded on X* with IIJ(x)II
Ilxll. Moreover, the operator J: X --> (X* )* is linear and therefore J(X) is a linear subspace
of (X*)*.

Definition Let X be a normed linear space. The weak topology on X* induced by J(X) C
(X* )* is called the weak-* topology on X*.

A base at a/r E X* for the weak-* topology on X* comprises sets of the form

NE,x,,...,xn(41) = {0' E X* I I(0'-+f)(xk)I <Eforl <k <n}, (7)

where E > 0 and {xk}k_1 is a finite subset of X. A subset of X** that is open with respect
to the weak-* topology is said to be weak-* open, similarly for other topological concepts.
Thus a sequence {1Orn} in X* is weak-* convergent to cli E X* if and only if

nlim clr(xn) = a/i(x) for all x E X. (8)oo
Therefore weak-* convergence in X* is simply pointwise convergence. For a normed linear
space X, the strong, weak, and weak-* topologies on X* are related by the following
inclusions:

weak- * topology on X* C weak topology on X* C strong topology on X*.
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Definition Let X be a normed linear space. The linear operator J: X -+ (X* )* defined by

J(x)[fr] = O (x) for all x E X, r/i E X*

is called the natural embedding of X into (X*)*. The space X is said to be reflexive provided
J(X) _ (X*)*.

It is customary to denote (X* )* by X** and call X** the bidual of X.

Proposition 6 A normed linear space X is reflexive if and only if the weak and weak-*
topologies on X* are the same.

Proof Clearly if X is reflexive, then the weak and weak-* topologies on X* are the same.
Conversely, suppose these two topologies are the same. Let 'V: X* -+ R be a continuous
linear functional. By definition of the weak topology, tIr is continuous with respect to the
weak topology on X*. Therefore it is continuous with respect to the weak-* topology. We
infer from Proposition 5 that tIr belongs to J(X). Therefore J(X) = X**.

At present, we are not justified in calling J: X -+ X** an "embedding" since we have
not shown that J is one-to-one. In fact, we have not even shown that on a general nonmed
linear space X there are any nonzero bounded linear functionals. We need a variation
of Proposition 2 for linear functionals that are bounded. The forthcoming Hahn-Banach
Theorem will provide this variation and, moreover, show that J is an isometry. Of course, we
have already studied the dual spaces of some particular normed linear spaces. For instance,
if E is a Lebesgue measurable set of real numbers and 1 < p < oo, the Riesz Representation
Theorem characterizes the dual of LP(E).

PROBLEMS

1. Verify the two direct substitution assertions in the proof of Proposition 4.

2. Let X0 be a codimension 1 subspace of a normed linear space X. Show that Xo is closed with
respect to the strong topology if and only if the Xo = ker Eli for some 0 E X*.

3. Show that if X is a finite dimensional normed linear space, then every linear functional on X
is continuous.

4. Let X be a finite dimensional normed linearspace of dimension n. Let lei, ... , en } be a basis
for X. For 1 < i < n, define t/ii E X* by pri(x) = xi forx = xiei + +xnen E X. Show that
101, ... , On } is a basis for X*. Thus dim X* = n.

5. Let X be a finite dimensional linear space. Show that the weak and strong topologies on X
are the same.

6. Show that every nonempty weakly open subset of an infinite dimensional normed linear space
is unbounded with respect to the norm.

7. Let X be a finite dimensional space. Show that the natural embedding J: X -* X** is
one-to-one. Then use Problem 4 to show that J: X -+ X** is onto, so X is reflexive.

8. For a vector v # 0 in Euclidean space Rn, explicitly exhibit a linear functional 0: Rn -+ R for
which O(v) =1.
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9. For a sequence {xn} t 0 in $Z, explicitly exhibit a continuous linear functional': f2 -* R for
which cr ({xn }) = 1.

10. For a function f t- 0 in LP[a, b], 1 < p < oo, explicitly exhibit a continuous linear functional
i/i: LP[a, b] -+ R for which cr(f) = 1.

11. Consider C[a, b] with the maximum norm. For a function f # 0 in C[a, b], explicitly exhibit a
continuous linear functional 0: C[a, b] -* R for which p(f) = 1.

12. For 1 < p < oo, let Y be a closed subspace of LP[a, b] of codimension 1. Show that there is
function g c Lq[a, b], where q is the conjugate of p, for which

Y=rfcLP[a,b]
/a,bl

f gdm =0}.

13. Let X be a normed linear space and 0 belong to XI ..X*. Show that ker qi is dense, with
respect to the strong topology, in X.

14. Let X be the normed linear space of polynomials restricted to [a, b] . For P E X, define q1(p)
to be the sum of the coefficients of p. Show that , is linear. Is , continuous if X has the
topology induced by the maximum norm?

15. Let X be the normed linear space of sequences of real numbers that have only a finite

number of nonzero terms. For x = {xn} E X, define./r(x) _ y_ xn. Show that 0 is linear. Is i/i00
n=1

continuous if X has the topology induced by the e°° norm?

16. Let X be a linear space. A subset E of X is said to be linearly independent provided each
x E E fails to be a finite linear combination of points in E={x}. Define F to be the collection
of nonempty subsets of X that are linearly independent. Order F by set inclusion. Apply
Zorn's Lemma to conclude that X has a Hamel basis.

17. Provide an example of a discontinuous linear operator T from a normed linear space X to a
normed linear space Y for which T has a closed graph. (Hint: Let +y be a discontinuous linear
functional on a normed linear space X and Y = {y E X X R I y = (x, fi(x))), the graph of +y).
Does this contradict the Closed Graph Theorem?

14.2 THE HAHN-BANACH THEOREM

Definition A functional p: X -+ [0, oo) on a linear space X is said to be positively
homogeneous provided

p(Ax)=Ap(x) forallxeX,A>0,

and said to be subadditive provided

p(x + y) < p(x) + p(y) for all x, y E X.

Any norm on a linear space is both subadditive (the triangle inequality) and positively
homogeneous.

The Hahn-Banach Lemma Let p be a positively homogeneous, subadditive functional on the
linear space X and Y a subspace of X on which there is defined a linear functional i for which

a/r<ponY.
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Let z belong to X-Y. Then 41 can be extended to a linear functional i on span [Y+z] for which

/ < p on span [Y + z].

Proof Since every vector in span [Y + z] may be written uniquely as y + Az, for Y E Y and
A E R, it is sufficient to find a number i/r(z) with the property that

4,(Y)+A4,(z)-p(y+Az)forallyEYandAER. (9)

Indeed, for such a number 0(z), define lr(y + Az) = a/r(y) + A,/i(z) for ally in Y and A E R
to obtain the required extension.

For any vectors y1, Y2 E Y, since 41 is linear, .,b < p on Y and p is subadditive,

41(Y2) = 11/(Yl+Y2) <- p(Y1+Y2) = P((Y1 -z)+(y2+z)) <- P(Y1 -z)+P(Y2+z),

and therefore

I'01) -P(Y1 -z) <-402)+P(Y2+z).
As we vary y, and Y2 among all vectors in Y, any number on the left-hand side of this
inequality is no greater than any number on the right. By the completeness of R, if we
define 4,(z) to be the supremum of the numbers on the left-hand side of this inequality, then
41(z) E R. Furthermore, for any y E Y, 4i(y) - p(y - z) < 4,(z), by the choice of 4,(z) as an
upper bound and 4,(z) < -/r(y) + p(y + z) by the choice of 4,(z) as the least upper bound.
Therefore

Ii(Y)-P(Y-z) <i(z) <-4,(Y)+P(Y+z)forallyEY. (10)

Let y belong to Y. For A > 0, in the inequality /i(z) <- -i/,(y) + p(y + z), replace y by
y/A, multiply each side by A, and use the positive homogeneity of both p and 41 to obtain
the desired inequality (9). For A < 0, in the inequality r/i(y) - p(y - z) < bi(z), replace y
by -y/A, multiply each side by -A, and once more use positive homogeneity to obtain the
desired inequality (9). Therefore (9) holds if the number a/,(z) is chosen so that (10) holds.

The Hahn-Banach Theorem Let p be a positively homogeneous, subadditive functional on a
linear space X and Y a subspace of X on which there is defined a linear functional 4, for which

a/r < p on Y.

Then 0 may be extended to a linear functional a,f on all of X for which a/r < p on all of X.

Proof Consider the family F of all linear functionals q7 defined on a subspace Y,1 of X for
which Y C YT1, 71 = 0 on Y, and 77 < p on Y.,. This particular family F of extensions of 4, is
partially ordered by defining X11 < in provided Y,11 C Y,n and r11 = f12 on Y,11.

Let F0 be a totally ordered subfamily of Y. Define Z to be the union of the domains
of the functionals in F0. Since F0 is totally ordered, any two such domains are contained
in just one of them and therefore, since each domain is a linear subspace of X, so is Z.
For Z E Y, choose 71 E F0 such that z E Y,,: define q*(z) = 77(z). Then, again by the total
ordering of Yo, 77* is a properly defined linear functional on Z. Observe that q7* < p on
Z, Y C Z and q* = 4, on Y, since each functional in .F0 has these three properties. Thus
ri < 77* for all 71 E F0. Therefore every totally ordered subfamily of has an upper bound.
Hence, by Zorn's Lemma, F has a maximal member 4r0. Let the domain of 410 be Yo. By
definition, Y C Y0 and i/,o < p on Y0. We infer from the Hahn-Banach Lemma that this
maximal extension 00 is defined on all of X.
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Theorem 7 Let X0 be a linear subspace of a normed linear space X. Then each bounded
linear functional 41 on X0 has an extension to a bounded linear functional on all of X that has
the same norm as 4,. In particular, for each x E X, there is a a/i E X* for which

41(x)=IIxIIandII4,II=1

Proof Let is X0 -* R be linear and bounded. Define

M=II4,II=sup{Io(x)I I xEX0,IIxii<1}.

Define p: X * R by
p(x)=M- IIxII for all xEX.

The functional p is subadditive and positively homogeneous. By the definition of M,

4, <ponXo.

By the Hahn-Banach Theorem, iG may be extended to a continuous linear functional 4'
on all of X and 41(x) < p(x) MIIxII for all x E X. Replacing x by -x we infer that
I4'(x)I < p(x) = MIIxii for allx E X and therefore the extension of 41 to all of X has the
same norm as 4i: X0 -* R.

Now let x belong to X. Define 17: span [x] -+ R by 77(Ax) = A A. IIxII. Observe that
IInfI = 1. By the first part of the proof, the functional n has an extension to a bounded linear
functional on all of X that also has norm 1.

Example Let xo belong to the closed, bounded interval [a, b]. Define

41(f) = 4'(xo) for all f E C[a, b].

We consider C[a, b] as a subspace of LOO [a, b] (see Problem 27). We infer from the preceding
theorem that 41 has an extension to a bounded linear functional 4i: L°O[a, b] -+ R.

Example Define the positively homogeneous, subadditive functional p on Z00 by

p({xn}) = limsup{xn} for all {xn} E 1°°.

Let co C £°O be the subspace of convergent sequences. Define L on co by

L({xn}) = lim xn for all {xn} E co.
n-aoo

Since L is linear and L < p on co, L has an extension to a linear functional L on C°O for which
L < p on t°O. Any such extension is called a Banach limit.

In the preceding chapter we considered whether a closed subspace Xo of a Banach
space X has a closed linear complement in X. The following corollary tells us it does if Xo is
finite dimensional.

Corollary 8 Let X be a normed linear space. If Xo is a finite dimensional subspace of X, then
there is a closed linear subspace X1 of X for which X = Xo ® X1.
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n
Proof Let el, ... , en be a basis for Xo. For 1 < k < n, define fh: Xo -* R by IIrk (I A, - e, )

;_t
= Ak. Since Xo is finite dimensional, the i/ik's are continuous. According to Theorem 7, each
41k has an extension to a continuous functional K on all of X. Therefore each q1k has a
closed kernel so that the subspace X, = flk_lkeripk also is closed. It is easy to check that
X=XO®X1.

Corollary 9 Let X be a normed linear space. Then the natural embedding J: X -* X** is an
isometry.

Proof Let x belong to X. Observe that by the definition of the norm on the dual space

I0(x)I II4iII -
IIxII for all 41 E X*.

Thus
I J(x)(/)I <- IIxII - 114111 for all 1P E X*.

Therefore J(x) is bounded and IIJ(x)II IIxII.On the other hand, according to Theorem 7,
there is a a/r E X* for which II4iII = 1 and J(x)(Ifi) = IIxII. Therefore IIxII 5 IIJ(x)II- We
conclude that J is an isometry.

Theorem 10 Let X0 be a subspace of the normed linear space X. Then a point x in X belongs
to the closure of Xo if and only if whenever a functional 0 E X* vanishes on Xo, it also vanishes
at x.

Proof It is clear by continuity that if a continuous functional vanishes on X0 it also vanishes
on the closure of Xo. To prove the converse, let x0 belong to X^-X0. We must show that
there is a 0 E X* that vanishes on X0 but O(xO) # 0. Define Z = X0 ® [xo] and qi: Z -+ R by

i/r(x+Axo)=Aforall xEXOandAER.

We claim that 41 is bounded. Indeed, since X0 is closed, its complement is open. Thus there
is an r > 0 for which II u - xo II ? r for all u E Yo-. Thus, for X E X0 and A E R,

Ilx+AxoiI = IAII(-1/A-x)-xo11 ? Al I-r.

From this we infer that Ifs: Z - R is bounded with IIxII < 1/r. Theorem 7 tells us that ip
has an extension to a bounded linear functional on all of X. This extension belongs to X*,
vanishes on Xo, and yet l/r(xo) # 0.

We leave the proof of the following corollary as an exercise.

Corollary 11 Let S be a subset of the normed linear space X. Then the linear span of S is
dense in X if and only if whenever 41 E X* vanishes on S, then 41 = 0.

Theorem 12 Let X be a normed linear space. Then every weakly convergent sequence in X is
bounded. Moreover, if (xn} x in X, then

IIxII 5 liminf IlxnD. (12)
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Proof Let {xn } , x in X. Then {J(xn) X* R} is a sequence of functionals that converges
pointwise to J(x): X* -+ R. The Uniform Boundedness Theorem tells us that {J(xn)} is a
bounded sequence of linear functionals on X*. Since the natural embedding J is an isometry,
the sequence {xn } is bounded. To verify (12), according to Theorem 7, there is a functional
aG E X* for which 11011 = 1 and i/i(x) Ilxll. Now

I+Ii(xn)I < IIiII IIxnII = IIxnII foralln.

Moreover, I{ili(xn )}I converges to I/(x)I = Ilxll. Therefore

IIxII = nlim I+/(xn )I <_ liminf IIxnII
11

Remark The Hahn-Banach Theorem has a rather humble nature. The only mathematical
concepts needed for its statement are linear spaces and linear, subadditive, and positively
homogeneous functionals. Besides Zorn's Lemma, its proof relies on nothing more than the
rudimentary properties of the real numbers. Nevertheless, often by making a clever choice of the
functional p, this theorem permits us to create basic analytical, geometric, and topological tools
for functional analysis. We established Theorem 7 by applying the Hahn-Banach Theorem
with the functional p chosen to be a multiple of the norm. In Section 4 of this chapter, we use
the Hahn-Banach Theorem with p the so-called gauge functional associated witha convex set
to separate disjoint convex subsets of a linear space by a hyperplane. In the next chapter, we
use the natural embedding J of a normed linear space into its bidual to prove that the closed
unit ball of a Banach space X is weakly sequentially compact if and only if X is reflexive. 1

PROBLEMS

18. Let X be a normed linear space, 41 belong to X*, and {iin} be in X*. Show that if {41"} converges
weak-* to a/r, then

114111 <_ lim sup Ikfr II .

19. Let X = R" be normed with the Euclidean norm, Y a subspace of X, and r/i: Y - Ra linear
functional. Define Yl to be the linear subspace of R" consisting of vectors orthogonal to Y.
Then R" = Y ® Yl. For x = y + y', y E Y, Y' E Yl, define 4i(x) _ /i(y). Show that this
properly defines 41 E (R")*, is an extension of , on Y, and has the same norm as fil y.

20. Let X = LP = LP[a, b], 1 < p < oof and m be Lebesgue measure. For f # 0 in LP, define

cr(h)=
IIfIIP_1

a,b]

Use Holder's Inequality to show that E (LP)*, 11011 =1 and 4i(f) = Ilfll,.

21. For each point x in a normed linear space X, show that

Ilxll = sup 14,(X) I P E X*, 114,11 < 11.

'An interesting extension of the Hahn-Banach Theorem due to Agnew and Morse and a variety of applications
of the Hahn-Banach Theorem may be found in Peter Lax's Functional Analysis [Lax02].
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22. Let X be a normed linear space and Y a closed subspace of X. Show that for each xo E X-.Y,
there is a i/i E X* such that

11011=1,41=0onYand1(xo)=d, whered=dist(xo, Y)=inf {Ilxo - yll I yEY}.

23. Let Y be a linear subspace of a normed linear space X and z be a vector in X. Show that

dist(z, Y) = sup {u/r(z) I 1111111 = 1, 4i=0onY}.

24. Let X be a vector space. A subset C of X is called a cone provided x + y E C and Ax E C
whenever x, y belong to C and A > 0. Define a partial order in X by defining x < y to mean
y - x c C. A linear functional f on X is said to be positive (with respect to the cone C)
provided f > 0 on C. Let Y be any subspace of X with the property that for each x E X
there is a y c Y with x < y. Show that each positive linear functional on Y may be extended
to a positive linear functional on X. (Hint: Adapt the Hahn-Banach Lemma and use Zorn's
Lemma with respect to the relation < to find a maximal extension.)

25. Let X0 be a subset of a metric space X. Use the Tietze Extension Theorem to show that every
continuous real-valued function on Xo has a continuous extension to all of X if and only if Xo
is closed. Does this contradict Theorem 7?

26. Let (X, p) be a metric space that contains the closed set F. Show that a point x E X belongs
to F if and only if every continuous functional on X that vanishes on F also vanishes at x.
Can this be used to prove Theorem 10?

27. Let [a, b] be a closed, bounded interval of real numbers and consider L00[a, b], now formally
considered as the collection of equivalence classes for the relation of pointwise equality
almost everywhere among essentially bounded functions. Let X be the subspace of L°O[a, b]
comprising those equivalence classes that contain a continuous function. Show that such an
equivalence class contains exactly one continuous function. Thus X is linearly isomorphic
to C[a, b] and therefore, modulo this identification, we may consider C[a, b] to be a linear
subspace L00[a, b]. Show that C[a, b] is a closed subspace of the Banach space L°O[a, b].

28. Define ': C[a, b] -+ R by qi(f) = f (a) for all f E C[a, b]. Use Theorem 7 to extend 0 toa
continuous linear functional on all of L00[a, b] (see the preceding problem). Show that there
is no functional h E L'[a, b] for which

rb
r(f) =

J
h f for all f E L°O[a, b].

a

14.3 REFLEXIVE BANACH SPACES AND WEAK SEQUENTIAL CONVERGENCE

Theorem 13 Let X be a normed linear space. If its dual space X* is separable, then X also is
separable.

Proof Since X* is separable, so is its closed unit sphere S* = (4i E X* 1114111 = 1). Let {4in}n° t
be a countable dense subset of S*. For each index n, choose x E X for which

Define Xo to be the closed linear span of the set {xn I 1 < n < oo}. Then Xo is separable
since finite linear combinations, with rational coefficients, of the x,'s is a countable set that is
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dense in Xo. We claim Xo = X. Indeed, otherwise, by Theorem 10, we may choose a/r* E X*
for which

III*II=1and a/*=0onXo.

Since is
1

is dense in S*, there is a natural number no for which II0* - II < 1/2.
Therefore

I(Ono - 4,*) (xno) I 11 0,, - I/!* II - Ilxno 11 < 1/2 and yet ('rno - lp*) (xno) = 1 inp (xno) > 1/2.

From this contradiction we infer that X is separable.

Corollary 14 A reflexive Banach space is separable if and only if its dual is separable.

Proof Let X be a Banach space. The preceding theorem tells us that if X* is separable so
is X, irrespective of any reflexivity assumption. Now assume that X is reflexive and separable.
Thus J(X) = X** = (X* )* is separable since J is an isometry. According to the preceding
theorem, with X replaced by X*, X* is separable.

Proposition 15 A closed subspace of a reflexive Banach space is reflexive.

Proof Let Xo be a closed subspace of reflexive Banach space X. Define J to be the natural
embedding of X in its bidual X**. Let Jo be the natural embedding of Xo in its bidual X.
To show that J0 is onto, let S belong to X. Define S' E X** by

S'(0) = S(t[ilxo) for all 41 E X*.

Then S': Xo -+ R is linear and it is bounded with IIS'II IISII. By the reflexivity of X, there
is an xo E X for which S' = J(xo). But if a/i E X* vanishes on Xo, then S'(+/) = 0, so that

c(xo) = J(xo)[i] = S'(l) = 0.

Theorem 10 tells us that xo belongs to Xo. Therefore S = Jo(xo).

We record again Helley's Theorem, which we proved in Chapter 8.

Theorem 16 (Helley's Theorem) Let X be a separable normed linear space. Then every
bounded sequence {i/in } in X* has a subsequence that converges pointwise on X to 0 E X*, that
is, (Irn} has a subsequence that converges to 0 with respect to the weak-* topology.

Theorem 17 Let X be a reflexive Banach space. Then every bounded sequence in X has a
weakly convergent subsequence.

Proof Let {xn } be a bounded sequence in X. Define Xo to be the closure of the linear span of
the set {xn I n E N}. Then Xo is separable since finite linear combinations of the xn's, with ra-
tional coefficients, is a countable set that is dense in Xo. Of course Xo is closed, Proposition 15
tells us that Xo is reflexive. Let Jo be the natural embedding of Xo in its bidual Xo**. It fol-
lows from Proposition 15 that Xo also is separable. Then (Jo(xn )} is a bounded sequence of
bounded linear functionals on a separable Banach space X. According to Helley's Theorem,
a subsequence {Jo(xnk )} converges weak-* to S E (Xo)*. Since Xo is reflexive, there is some
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xo E Xo for which S = Jo(xo). Since every functional in X* restricts to a functional in Xo,
the weak-* convergence of to Jo(xo) means precisely that {xnk} converges weakly
to xo.

Corollary 18 Let X be a reflexive Banach space. Then every continuous real-valued linear
functional on X takes a maximum value on the closed unit ball B of X.

Proof Let 0 belong to X*. The supremum of the functional values of 0 on B is 11011. Choose
a sequence in B for which limn O(xn) = 11011. In view of Theorem 17, we may assume
that (xn } converges weakly to xo. According to (12), xo belongs to B. Since

lim ili(xn) = ab(xo),
n-4oo

41 takes a maximum value on B at xo.

Theorem 17 makes it interesting to identify which of the classical Banach spaces
are reflexive.

Proposition 19 Let [a, b] be a closed, bounded interval of real numbers. Then C[a, b],
normed with the maximum norm, is not reflexive.

Proof Assume [a, b] = [0, 1]. For x E [0, 1], define the evaluation functional Ox : C[0, 1]
R by i'rx(f) = f (x). Then fix is a bounded linear functional on C[0, 1]. Therefore, if if, I
converges weakly to f in C[0, 1], then If,) -+ f pointwise on [0, 1]. For a natural number
n, define fn (x) = xn for x E [0, 1]. Then If,) converges pointwise to a function f that is not
continuous. Therefore no subsequence can converge pointwise to a continuous function and
hence no subsequence can converge weakly to a function in C[0, 1]. We infer from Theorem
17 that C[0, 1] fails to be reflexive.

Proposition 20 For 1 < p < oo and E a Lebesgue measurable set of real numbers, LP(E)
is reflexive.

Proof Let q be conjugate to p. Define the Riesz representation mapping R from L" (E) to

(LP(E))* by

R(g)[.f] = f g- f for all g E Lq(E), f E LP(E).
w

The Riesz Representation Theorem tells us that R is an isomorphism of Lq(E) onto
(LP(E))*. Let T be a bounded linear functional on (LP(E))*. We must show that there is a
function f r: LP (E) for which T = J(f ), that is, since R is onto,

T(R(g)) = J(f)[R(g)] = R(g)[f] = fg. f for all g E Lq(E). (13)

However, the composition T o R is a bounded linear functional on Lq(E). The Riesz
Representation Theorem, with p and q interchanged, tells us that there is a function
f E LP(E) for which

(Ton)[g]= f
E
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Thus

T(R(g))=(ToR)[g]=f f.g=
E JE

f for all g E Lq (E),

that is, (13) holds.

In general, neither L1 (E) nor L°° (E) is reflexive. Consider E = [0, 1]. Observe that
L1 [0, 11 is separable while (L1 [0, 1] )* is not separable since it is isomorphic to L°O[0, 1],
which is not separable. We infer from Corollary 14 that L1[0, 1] is not reflexive. Observe
that C[0, 1] is a closed subspace of L00[0, 1] (see Problem 27). By the preceding proposition,
C[0, 1] is not reflexive and therefore Proposition 15 tells us that neither is L1[0, 1].

Remark Some care is needed when establishing reflexivity. R. C. James has given an example
of a Banach space X that is isomorphic to X** but fails to be reflexive.2 Reflexivity requires
not just that X is isomorphic to X**: it requires that the natural embedding J of X into X** is
an isomorphism.

Remark The contrast between reflexivity for spaces of integrable functions and spaces of
continuous functions is striking. The forthcoming Theorem 8 of Chapter 19 tells us that for
1 < p < oo, the most general LP spaces are reflexive. On the other hand, if K is any compact
Hausdorff space and C(K) is normed by the maximum norm, then C(K) is reflexive if and
only if K is a finite set (see Problem 11 of Chapter 15).

PROBLEMS

29. Show that a collection of bounded linear functions is equicontinuous if and only if it is
uniformly bounded.

30. Let X be a separable normed linear space. Show that its closed unit sphere S = {x E X I Ilxll
=11 also is separable.

31. Find a compact metric space X for which C(X ), normed by the the maximum norm, is
reflexive.

32. Let co be the subspace of PO0 consisting of sequences that converge to 0. Show that co is a
closed subspace of k00 whose dual space is isomorphic to 11. Conclude that co is not reflexive
and therefore neither is 1°O.

33. For 1 < p < oo, show that the sequence space eP is reflexive if and only if 1 < p < no. (For
p = no, see the preceding problem.)

34. Consider the functional E (C[-1,, 1])* defined by

4,(h)
=

fi h - fo h for all h E C[-1, 1].
0

Show that p fails to take a maximum on the closed unit ball of C[-1, 1]. Use this to provide
another proof that C[-1, 1] fails to be reflexive.

35. For 1 < p < no, show that a bounded sequence in eP converges weakly if and only if it
converges componentwise.

2"A non-reflexive Banach space isomorphic to its second dual," Proc. Nat. Acad. Sci., 37,1951.
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36. For 1 < p < oo and [a, b] a closed, bounded interval of real numbers, show that a bounded
sequence (f, } in LP[a, b] converges weakly to f if and only if { f E f } -+ f, f for every
Lebesgue measurable subset E of [a, b].

37. For [a, b] a closed, bounded interval of real numbers, show that if a sequence { in C[a, b]
converges weakly, then it converges pointwise.

38. For X and Y normed linear spaces and an operator S E C(X, Y), define the adjoint of S,
S* E ,C(Y*, X*) by

[S*(4r)](x) = ir(S(x)) for all 41 E Y*, X E X.

(i) Show that II S* II = II S II and that S* is an isomorphism if S is an isomorphism.

(ii) For 1 < p < oo and X = LP(E), where E is a measurable set of real numbers, show that
the natural embedding J: X -+ X** may be expressed as the composition

J=[R9]'oRp,

where RP and Rq are the Riesz representing operators.

39. Let X be a reflexive Banach space and T: X -+ X a linear operator. Show that T belongs
to ,C(X, X) if and only if whenever converges weakly to x, converges weakly
to T(x).

14.4 LOCALLY CONVEX TOPOLOGICAL VECTOR SPACES

There is a very nice class of topologies on a vector space X, topologies for which X is said
to be a locally convex topological vector space, which, for our purposes, has two virtues:
This class is large enough so that, for a normed linear space X, it includes both the strong
topology on X induced by a norm and the weak topologies on X induced by any subspace
W of X* that separates points. On the other hand, this class of topologies is small enough so
that for linear spaces with these topologies, if K is a closed convex set that does not contain
the point x0, there is a closed hyperplane passing through xo that contains no point of K.

For two vectors u, v in a linear space X, a vector x that can be expressed as

x = Au + (1 - A) v for 0 < A < 1

is called a convex combination of u and v. A subset K of X is said to be convex provided it
contains all convex combinations of vectors in K. Every linear subspace of a linear space is
convex, and the open and closed balls in a normed space also are convex.

Definition A locally convex topological vector space is a linear space X together with a
Hausdorff topology that possesses the following properties:

(i) Vector addition is continuous, that is, the map (x, y) Hx+y is continuous from X X X
to X;

(ii) Scalar multiplication is continuous, that is, the map (A, x) H A x is continuous from
RXXtoX;

(iii) There is a base at the origin for the topology consisting of convex sets.

For a normed linear space X, a subspace W of X* is said to separate points in X
provided for each u, v E X, there is a c E W for which cui(u) 360(v). Recall that for a subspace
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W of X* and point x E X, a neighborhood base of x with respect to the W-weak topology
comprises sets of the form

JVE,0,,...,0.(x) = {x' E X I <i <n},

where E > 0 and each cliff belongs to W.

Proposition 21 Let X be a normed linear space. Then the linear space X is a locally convex
topological vector space with respect to the topology induced by the norm and also with respect
to the W-weak topology induced by any subspace W of X* that separates points in X.

Proof First consider X with the topology induced by the norm. Since the topology is induced
by a metric, it is Hausdorff. From the subadditivity and homogeneity of the norm we infer
that vector addition and scalar multiplication are continuous. Finally, each open ball centered
at the origin is convex and the collection of such balls is a base at the origin for the topology
induced by the norm.

Now let W be a subspace of X* that separates points. To show that the W-weak topology
is Hausdorff, let u and v be distinct vectors in X. Since W separates points there is a 0 E W such
that Igr(u)-0(v)I = r>0.Then (x E X I10(u)-gr(x)I <r/2)and(x E X I10(v)-O(x)I <r/21
are disjoint W-weak neighborhoods of u and v, respectively. To show that vector addition is
continuous, let xl and x2 belong to X. Consider a W-weak neighborhood NE,q...... q, (xl +x2 )
of xl +x2. Then the W-weak neighborhoods NE12,q,1,...,,,. (Xl) and (x2) of xi and
x2, respectively, have the property that

if (u, v) ENE/2,c1.....ln(xi)X(x2), then u+VE(xl+x2).
Thus vector addition is continuous at (xl, x2) E X X X. A similar argument shows that
scalar multiplication is continuous. Finally, a basic neighborhood of the origin is of the form
NE,q,1,..., p, (0) and this set is convex since each 1k is linear.

Definition Let E be a subset of a linear space X. A point xo E E is said to be an internal point
of E provided for each x E X, there is some A0 > 0 for which xo + A A. x belongs to E if IAI A0.

Proposition 22 Let X be a locally convex topological vector space.

(i) A subset N of X is open if and only if for each xo E X and A 0 0, xo + N and A N
are open.

(ii) The closure of a convex subset of X is convex.

(iii) Every point in an open subset 0 of X is an internal point of 0.

Proof We first verify (i). For xo E X, define the translation map Txo : X -+ X by Txo (x) =
x + x0. Then Txo is continuous since vector addition is continuous. The map T_x0 also is
continuous and is the inverse of Txo. Therefore Txo is a homeomorphism of X onto X. Thus
N is open if and only if N + xo is open. The proof of invariance of the topology under
nonzero scalar multiplication is similar.

To verify (ii), let K be a convex subset of X. Fix A E [0, 1]. Define the mapping
Ik:XXX -+ X by

T(u, v) = Au + (1 - A)v for all u,vE X.
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Since scalar multiplication and vector addition are continuous,'': X x X -* X is continuous,
where X X X has the product topology. A continuous mapping maps the closure of a set into
the closure of the image of the set. Thus 4'(K x K) C 4'(K X K). However, K X K = K X K.
Moreover, since K is convex, T(K X K) C K. Therefore'I'(K X K) C K. Since this holds for
all A e [0, 11, the closure of K is convex.

To verify (iii), let xo belong to O. Define g : R X X X by g(A, x) = A x + xo. Since
scalar multiplication is continuous, the mapping g is continuous. But g(0, 0) = xo and 0 is
a neighborhood of g(0, 0). Thus there is a neighborhood N1 of 0 E R and a neighborhood
No of 0 E X for which g(Nl x N2) C U. Choose A0 > 0 for which [-Ao, Ao] C Art. Then
xo + A x belongs to E if IAI < Ao.

Proposition 23 Let X be a locally convex topological vector space and fir: X R be linear.
Then 1i is continuous if and only if there is a neighborhood of the origin on which 101 is
bounded, that is, there is a neighborhood of the origin, No, and an M > 0 for which

101 < M on No. (14)

Proof First suppose 41 is continuous. Then it is continuous at x = 0 and so, since 41(0) = 0,
there is a neighborhood No of 0 such that Iqi(x)I = Iqi(x) - iIi(0)I < 1 for x E No. Thus IliI
is bounded on No. To prove the converse, let No be a neighborhood 0 and M > 0 be such
that (14) holds. For each A > 0, A A. No is also a neighborhood of 0 and ICI < A M on A No.
To verify continuity of i/i: X -+ R, let xo belong to X and e > 0. Choose A so that A A. M < e.
Then xo + A . No is a neighborhood of xo and if x belongs to xo + A No, then x - xo belongs
to A No so that

I0(x)-4(xo)I =Ii(x-xo)I
For an infinite dimensional normed linear space X, Theorem 9 of the following chapter

tells us that the weak topology on X is not metrizable. Therefore in an infinite dimensional
space, care is needed in using weak sequential convergence arguments to establish weak
topological properties.

Example (von Neumann) For each natural number n, let ea denote the sequence in £2
whose nth component is 1 and other components vanish. Define

E _ {ea + n em I n and m any natural numbers, m > n } .

We leave it as an exercise to show that 0 is a point of closure, with respect to the weak
topology, of E but there is no sequence in E that converges weakly to 0.

Remark Two metrics on a set X induce the same topology if and only if a sequence that is
convergent with respect to one of the metrics is convergent with respect to the other. Things
are quite different for locally convex topological vector spaces. There are linear spaces X that
have distinct locally convex topologies with respect to which the convergence of sequences is
the same. A classic example of this is the sequence space X = C. The space X is a locally
convex topological vector space with respect to the strong topology and with respect to the
weak topology and these topologies are distinct (see Problem 6). However, a lemma of Schur
asserts that a sequence converges weakly in 1l if and only if it converges strongly in 11.3

3See Robert E. Megginson's An Introduction to Banach Space Theory [Meg98].
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Remark A topological vector space is defined to be a linear space with a Hausdorff topology
with respect to which vector addition and scalar multiplication are continuous. In the absence
of local convexity, such spaces can be rather pathological. For instance, if 0 < p < 1, let X be
the linear space of all Lebesgue measurable extended real-valued functions on [0, 1] for which
I f I n is integrable over [0, 1] with respect to Lebesgue measure. Define

P(f, g) = f0,
11

If - gIPdm for all f, g E X.
[

Then, after identifying functions that are equal almost everywhere, p is a metric that induces a
Hausdorff topology on X with respect to which vector addition and scalar multiplication are
continuous. But there are no continuous linear functionals on X besides the zero functional
(see Problem 50). In the next section we show that there are lots of continuous linear functionals
on a topological vector space that is locally convex.

PROBLEMS

40. Let X be a normed linear space and W be a subspace of X*. Show that the W-weak topology
on X is Hausdorff if and only if W separates points in X.

41. Let X be a normed linear space and ': X -+ R be linear. Show that 41 is continuous
with respect to the weak topology if and only if it is continuous with respect to the
strong topology.

42. Let X be a locally convex topological vector space and 41: X -+ R be linear. Show that 41 is
continuous if and only if it is continuous at the origin.

43. Let X be a locally convex topological vector space and +(i: X - R be linear. Show that 41 is
continuous if and only if there is a neighborhood 0 of the origin for which f (0) # R.

44. Let X be a normed'linear space and W a subspace of X* that separates points. For any
topological space Z, show that a mapping f : Z X is continuous, where X has the W-weak
topology, if and only if qr o f : Z -+ R is continuous for all 41 E W.

45. Show that the topology on a finite dimensional locally convex topological vector space is
induced by a norm.

46. Let X be a locally convex topological space. Show that the linear space X' of all linear
continuous functionals qi: X -+ R also has a topology with respect to which it is a locally
convex topological space on which, for each x E X, the linear functional 41 -+ 41(x) is
continuous.

47. Let X and Y be locally convex topological vector spaces and T : X Y be linear, one-to one,
and onto. Show that T is a topological homeomorphism if and only if it maps base at the
origin for the topology on X to a base at the origin for the topology on Y.

48. Let X be a linear space and the function ov: X -+ [0, oo) have the following properties: for all
u,vEX,(i)o'(u+v) < r(u)+o(v); (ii) o,(u) = 0 if and only if u = 0; (iii)o(u)=o(-u).
Define p(u, v) = a (u - v). Show that p is a metric on X.

49. (Nikodym) Let X be the linear space of all measurable real-valued functions on [0, 1]. Define

Q(f) _
J[Q 1] 1 +' for ai f E X.

IfI
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(i) Use Problem 48 to show that p(u, v) = o ,(u - v) defines a metric on X.

(ii) Show that f f,) -+ f with respect to the metric p if and only if {fn} - fin measure.
(iii) Show that (X, p) is a complete metric space.

(iv) Show that the mapping (f, g) N f + g is a continuous mapping of X X X into X.

(v) Show that the mapping (A, f) ti A A. g is a continuous mapping of R X X into X.

(vi) Show that there are no nonzero continuous linear functionals 41 on X. (Hint: Let
a': X -+ R be linear and continuous. Show that there is an n such that ii(f) = 0
whenever f is the characteristic function of an interval of length less than 1/n. Hence
i/r(f) = 0 for all step functions f.)

50. (Day) For 0 < p < 1, let X be the linear space of all measurable (with respect to the Lebesgue
measure m) real-valued functions on [0, 1] for which If I P is integrable. Define

cT(f)= f0,
1]

If IPdm for all f EX.
[

(i) Use Problem 48 to show that p(u, v) = o-(u - v) defines a metric on X.

(ii) Show that the linear space X, with the topology determined by p, is a topological vector
space.

(iii) For a nonzero function f in X and natural number n, show that there is a partition
0 = xo < xl < ... xn = 1 of [0, 1] for which fxk"_1 f =1/n

0f f, for all 1 < k < n.

(iv) For a nonzero function f in X and natural number n, show that there are functions
fl, ... , fn for which p(fk, 0) < 1/n for 1 < k < n and

n

f=I1/n . fn.
k=1

(v) Show that there are no continuous nonzero linear functionals on X.

51. Let S be the space of all sequences of real numbers, and define

v(x) =2 21[1I+IIxnI] for all x = {xn} E S.

Prove the analogues of (i), (iii), (iv), and (v) of the preceding problem. What is the most
general continuous linear functional on S?

14.5 THE SEPARATION OF CONVEX SETS AND MAZUR'S THEOREM

In the first section of this chapter we showed that a hyperplane in a linear space X is the level
set of a nonzero linear functional on X. We therefore say that two nonempty subsets A and
B of X may be separated by a hyperplane provided there is a linear functional 41: X -+ R
and C E R for which

<con Aand ifs>con B.

Observe that if A is the singleton set (xo}, then this means precisely that

O(xo) <xinfgi(x)
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Definition Let K be a convex subset of a linear space X for which the origin is an internal
point. The gauge functiona14 for K, pK : X -* [0, oo), is defined by

pK(x)=inf {A>OI forallxEX.

Note it is precisely because the origin is an internal point of the convex set K that its gauge
functional is finite. Also note that the gauge functional associated with the unit ball of a
normed linear space is the norm itself.

Proposition 24 Let K be a convex subset of a linear space X that contains the origin as
an internal point and PK the gauge functional for K. Then PK is subadditive and positively
homogeneous.

Proof We establish subadditivity and leave the proof of positive homogeneity as an exercise.
Let u, v E X and suppose, for A > 0 and µ > 0, that x E AK and y E uK. Then, since K is
convex,

1 A x N y+tt (x+Y)-A+p. A+A+µ µEK.

Therefore, x + y E (A + µ)K so that pK(x + y) < A + p.. Taking infima, first over all such A
and then over all such µ, we conclude that pK(x+ y) < PK(x) + PK(Y) El

The Hyperplane Separation Lemma Let K1 and K2 be two nonempty disjoint convex subsets
of a linear space X, one of which has an internal point. Then there is a nonzero linear functional
0: X -* R for which

sup +li(x) < inf #(x). (15)
XEKI XEK2

Proof Let xl be an internal point of K1 and x2 any point of K2. Define

z=x2-xlandK=K1+[-K2]+z.

Then K is a convex set that contains the origin as an internal point and does not contain z.
Let p = PK: X R be the gauge functional for K. Define Y = span [z] and the linear
functional f: Y R by ali(Az) = A. Thus iir(z) = 1, and since 1 < p(z) because z 0 K,
we conclude that 0 < p on Y. According to the preceding proposition, p is subadditive and
positively homogeneous. Thus the Hahn-Banach Theorem tells us that rG may be extended
to a linear functional on all of X so that 0 < p on all of X. Let X E K1 and y E K2. Then
X - y + Z E K so that p(x - y + z) < 1 and thus, since rG is linear and rG < p on all of X,

/i(x) -+G(Y)+0(z) =Ox-y+z) <p(x-y+z) < 1.

Since b(z) =1, we have O(x) < dr(y). This hdlds for each'x &Ki and y in K2, so

sup¢>lf)<-inf#(y).
xEKI.a: yEK2

Of course, 0 # 0 since O(z) =1.

4A gauge functional is often called a 4inkowski functional.
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The Hyperplane Separation Theorem Let X be a locally convex topological vector space,
K a nonemply closed convex subset of X, and xo a point in X that lies outside of K. Then K
and xo may be separated by a closed hyperplane, that is, there is a continuous linear functional
i/i: X -+ R for which

1(xo) < i KOF(x). (16)

Proof Since K is closed, X- K is open. Choose a convex neighborhood No of 0 for which

Kn[No+xo]=0.
We may, possibly by replacing No with No n [-No], suppose No is symmetric with respect
to the origin, that is, No = -No. By the Hyperplane Separation Lemma, there is a nonzero
linear functional: X -- > R for which

sup /i(x) < inf r(x). (17)
xEJVO+xo XEK

Since 0 #0, we may choose z E X such that 1(z) >0. According to Proposition 22, an interior
point of a set is an internal point. Choose A > 0 such that A z E No. Since AiJr(z) > 0 and
Az + xo E No + xo, we infer from the linearity of 41 and inequality (17) that

fI(xo) <A+1i(z)++1i(xo) = (Az+xo) < sup ir(x) < uK1r(x).

It remains to show that is continuous. Define M = [infxEKlIi(x)] - i/r(xo). We infer from
(17) that 0 < M on No. Since No is symmetric, ji/ij < M on No. By Proposition 23, is
continuous.

Corollary 25 Let X be a normed linear space, K a nonempty strongly closed convex subset
of X, and xo a point in X that lies outside of K. Then there is a functional 41 E X* for which

c(xo) < inf (18)

Proof According to Theorem 21, the linear space X is a locally convex topological vector
space with respect to the strong topology. The conclusion now follows from the Hyperplane
Separation Theorem.

Corollary 26 Let X be a normed linear space and W a subspace of its dual space X* that
separates points in X. Furthermore, let K be a nonempty W-weakly closed convex subset of X
and xo a point in X that lies outside of K. Then there is a functional I# E W for which

+G(xo) <Xin (x) (19)

Proof According to Theorem 21, the linear space X is a locally convex topological vector
space with respect to the W-weak topology. Corollary 5 tells us that the W-weakly continuous
linear functionals on X belong to W. The conclusion now follows from the Hyperplane
Separation Theorem.

Mazur's Theorem Let K be a convex subset of a normed linear space X. Then K is strongly
closed if and only if it is weakly closed.
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Proof Since each 41 E X* is continuous with respect to the strong topology, each weakly
open set is strongly open and therefore each weakly closed set is strongly closed, irrespective
of any convexity assumption. Now suppose K is nonempty, strongly closed, and convex. Let
xO belong to X^-K. By Corollary 25, there is a i/i E X* for which

1i(xo) <a=s 4i(x).

Then {x E X I als(x) < a) is a weak neighborhood of xo that is disjoint from K. Thus X-K is
weakly open and therefore its complement in X, K, is weakly closed.

Corollary 27 Let K be a strongly closed convex subset of a normed linear space X. Suppose
{x } is a sequence in K that converges weakly to x E X. Then x belongs to K.

Proof The weak limit of a sequence in K is a point of closure of K with respect to the weak
topology. Therefore x belongs to the weak closure of K. But Mazur's Theorem tells us that
the weak closure of K is K itself.

Theorem 28 Let X be a reflexive Banach space. Then each strongly closed bounded convex
subset of X is weakly sequentially compact.

Proof Theorem 17 tells us that every bounded sequence in X has a weakly convergent
subsequence. Therefore, by the preceding corollary, every sequence in K has a subsequence
that converges weakly to a point in K.

The following is a variation of the Banach-Saks Theorem; the conclusion is weaker,
but it holds for general normed linear spaces.

Theorem 29 Let X be a normed linear space and a sequence X that converges weakly
to x E X. Then there is a sequence {z, } that converges strongly to x and each Zn is a convex
combination of {xn, xn+1.... }

Proof We argue by contradiction. If the conclusion is false, then there is a natural number
n and an E > 0 for which, if we define KO to be the set of all convex combinations of
{x,,, xn+l, ...}, then

Ilx - zil >-Eforallz E KO.

Define K to be the strong closure of KO. Then x does not belong to K. The strong closure
of a convex set is convex. Moreover, K is convex since KO is convex. Therefore, by Mazur's
Theorem, K is weakly closed. Since {xn} converges to x with respect to the weak topology,
x is a point of closure of K with respect to the weak topology. But a point of closure of a
closed set belongs to the set. This contradiction concludes the proof.

The following theorem is a generalization of Corollary 18.

Theorem 30 Let K be a strongly closed bounded convex subset of a reflexive Banach space X.
Let the function f : K -+ R be continuous with respect to the strong topology on K and convex
in the sense that for u, v E K and 0 < A < 1,

f(Au+(1-A)v) <Af(u)+(1-A)f(v)
If f is bounded below on K, then f takes a minimum value on K.
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Proof Define m to be the infimum of f (K). Choose a sequence in K such that (f (x,,))
converges to m. According to Theorem 28, K is weakly sequentially compact. We may
assume that converges weakly to x E K. Let c > 0. Choose a natural number N
such that

m < f(xk) <m+E for all k> N. (20)

Theorem 29 tells us that there is a sequence [z.) that converges strongly to x and each z
is a convex combination of (x,,, x ,,+I, ...}. By the continuity off with respect to the strong
topology on K, If (z,,)) -+ f (x). On the other hand, from the convexity of f and (20),

m <_ m + E for all n > N.

Therefore m < f (x) <_ m + E. This holds for all c > 0 and hence f takes its minimum value
on K at the point x. U

PROBLEMS

52. For each natural number n, let e denote the sequence in 12 whose nth component is 1
and other components vanish. Define E = (e + n e,n I n and m any natural numbers, m > n}.
Show that 0 is a point of closure of E but no sequence in E converges weakly to 0. Consider
the topological space X = E U {0} with the weak topology. Find a function f : X --> R that fails
to be continuous at 0 and yet has the property that whenever a sequence in E converges
weakly to 0, its image sequence (f (xn )} converges to f (O).

53. Find a subset of the plane R2 for which the origin is an internal point but not an interior point.
54. Let X be a locally convex topological vector space and V a convex, symmetric with respect

to the origin (that is, V = -V) neighborhood of the origin. If pv is the gauge functional
for V and i is a linear real-valued functional on X such that t/, < pv on X, show that 41 is
continuous.

55. Let X be a locally convex topological vector space, Y a closed subspace of X, and xo belong
to X" Y. Show that there is a continuous functional t/,: X -> R such that

1r(xo)00and41=OonY.

56. Let X be a normed linear space and W a proper subspace of X* that separates points. Let
41 belong to X*-W. Show that ker4, is strongly closed and convex but not W-weakly closed.
(Hint: Otherwise, apply Corollary 26 with K = kert/,.)

57. Let X be a normed linear space. Show that the closed unit ball B* of X* is weak-* closed.
58. Show that the Hyperplane Separation Theorem may be amended as follows: the point xo may

be replaced by a convex set K0 that is disjoint from K and the conclusion is that K and Ko
can be separated by a closed hyperplane if Ko is either compact or open.

59. Show that the weak topology on an infinite dimensional normed linear space is not first
countable.

60. Show that every weakly compact subset of a nonmed linear space is bounded with respect to
the norm.
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61. Let Y be a closed subspace of a reflexive Banach space X. For xo E X-. Y, show that there is a
point in Y that is closest to xo.

62. Let X be normed linear space, W a finite dimensional subspace of X* and ' a functional in
X*^-W. Show that there is a vector x E X such that '(x) # 0 while <p(x) = 0 for all cp in W.
(Hint: First show this is true if X is finite dimensional.)

63. Let X be a normed linear space. Show that any dense subset of B* _ {41 E X* I IIII < 1}
separates points in X.

64. Complete the final part of the proof of Theorem 11.

65. Find an example of a bounded subset A of a normed linear space X, F a set of functionals
in X* containing F0 as a dense subset of F (dense in the sense of the norm topology on X*)
such that F and F0 generate different weak topologies for X, but the same weak topology
for A.

14.6 THE KREIN-MILMAN THEOREM

Definition Let K be a nonempty convex subset of a locally convex topological vector space X.
A nonempty subset E of K is called an extreme subset5 of K provided it is both convex and
closed and whenever a vector x E E is a convex combination of vectors u and v in K, then both
u and v belong to E. A point x E K is called an extreme point of K provided the singleton set
{x} is an extreme subset of K.

We leave it as two exercises to show that if the intersection of a collection of extreme
subsets of K is nonempty, then the intersection is an extreme subset of K and, moreover, if A
is an extreme subset of B and B is an extreme subset of K, then A is an extreme subset of K.

Lemma 31 Let K be a nonempty, compact, convex subset of a locally convex topological
vector space X and fir: X -+ R be linear and continuous. Then the set of points in K at which
fr takes its maximum value on K is an extreme subset of K.

Proof Since K is compact and 0 is continuous, 0 takes a maximum value, m, on K. The
subset M of K on which fr takes its maximum value is closed, since +/r is continuous, and is
convex since 0 is linear. Let X E M be a convex combination of vectors u, v in K. Choose
0 < A < 1 for which x = Au + (1 - A)v. Since

t/r(u) <m,ti(v) <mandm=i/i(x)=Agi(u)+(1-A)i/i(v),

we must have /i(u) = t/r(v) = m, that is, u, v E M.

The Krein-Milman Lemma Let K be a nonempty, compact, convex subset of a locally convex
topological vector space X. Then K has an extreme point.

Proof The strategy of the proof is first to apply Zorn's Lemma to find an extreme subset E
of K that contains no proper subset which also is an extreme subset of K. We then infer from
the Hyperplane Separation Theorem and the preceding lemma that E is a singleton set.

Consider the collection F of extreme subsets of K. Then F is nonempty since it
contains K. We order F by containment. Let Yo C F be totally ordered. Then Yo has the

5An extreme subset of K is also often called a supporting set for K.
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finite intersection property since for any finite subcollection of Fo, because Yo is totally
ordered, one of the subsets of this finite subcollection is contained in all the others and
therefore the intersection is nonempty. Thus Fo is a collection of nonempty closed subsets
of the compact set K which has the finite intersection property. Hence if we let Eo be the
intersection of the sets in .F0, Eo is nonempty. As already observed, Eo is an extreme subset
of K since it is the nonempty intersection of such sets. Thus Eo is a lower bound for Fo.
Therefore every totally ordered subcollection of F has a lower bound and hence, by Zorn's
Lemma, F has a minimal member, that is, there is an extreme subset E of K which contains
no proper extreme subset.

We claim that E is a singleton set. Indeed, otherwise we may select two points u and v in
K. It follows from the Hahn-Banach Theorem that there is a i E X* for which /r(u) < a,(v).
According to Lemma 31, the subset M of E on which takes its maximum value on E is
an extreme subset of E. Since E is an extreme subset of K, M is also an extreme subset of
K. Clearly u 0 M, and therefore M is a proper subset of E. This contradicts the minimality
of E. Thus E is a singleton set and therefore K has an extreme point.

Definition Let K be a subset of a locally convex topological vector space X. Then the closed
convex hull of K is defined to be the intersection of all closed convex subsets of X that
contain K.

We infer from Mazur's Theorem that in a normed linear space, the weakly closed
convex hull of a set equals its strongly closed convex hull. It is clear that the closed convex
hull of a set K is a closed convex set that contains K and that is contained in any other closed
convex set that contains K.

The Krein-Milman Theorem Let K be a nonempty, compact, convex subset of a locally
convex topological vector space X. Then K is the closed convex hull of its extreme points.

Proof By the Krein-Milman Lemma, the set E of extreme points of K is nonempty. Let C
be the closed convex hull of E. If K 96 C, choose xo E K-. C. By the Hyperplane Separation
Theorem, since C is convex and closed, there is a continuous linear functional a /r: X --). R
such that

/r(xo) > maaxa (x) > maExafi(x). (21)

By Lemma 31, if m is the maximum value taken by 41 on K, then M = (x E K I fr(x) = m) is
an extreme subset of K. By the Krein-Milman Lemma, applied now with K replaced by the
nonempty compact convex set M, there is a point z E M that is an extreme point of M. As we
already observed, an extreme point of an extreme subset of K is also an extreme point of K.
We infer from (21) that /r(z) > (xo) > as(z). This contradiction shows that K = C.

There are many interesting applications of the Krein-Milman Theorem.6 In Chapter 22,
this theorem is used to prove the existence of ergodic measure preserving transformations.
Louis de Branges has used this theorem to provide an elegant proof of the Stone-Weirstrass
Theorem (see Problem 53 of Chapter 21).

6See Peter Lax's Functional Analysis [Lax97].
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Remark To apply the Krein-Milman Theorem it is necessary to establish criteria for identifying
which subsets of a locally convex topological space are compact. In particular, to identify
which convex subsets of a normed linear space X are weakly compact and which convex
subsets of its dual space X* are weak-* compact. In the next chapter we prove a theorem of
Alaoglu, which tells us that the closed unit ball of the dual of a normed linear space X is
weak-* compact. Therefore every bounded convex subset of X* that is weak-* closed is weak-*
compact. From Alaoglu's Theorem and Mazur's Theorem we then infer that any strongly
closed bounded convex subset of a reflexive Banach space is weakly compact.

PROBLEMS

66. Find the extreme points of each of the following subsets of the plane R2:
(i) {(x, y) I x2 + y2 =1}; (ii) {(x, y) I Ixl + lyl =1}; (iii) {(x, y) I max{x, y} =1}.

67. In each of the following, B denotes the closed unit ball of a normed linear space X.
(i) Show that the only possible extreme points of B have norm 1.

(ii) If X = LP[a, b], 1 < p < oo, show that every unit vector in B is an extreme point of B.

(iii) If X = L°O[a, b], show that the extreme points of B are those functions f E B such that
Ifl = 1 a.e. on [a, b].

(iv).If X = L1 [a, b], show that B fails to have any extreme points.

(v) If X =1P,1 < p < oo, what are the extreme points of B?

(vi) If X = C(K), where K is a compact Hausdorff topological space and X is normed by the
maximum norm, what are the extreme points of B?

68. A norm on a linear space is said to be strictly convex provided whenever u and v are distinct
unit vectors and 0 < A < 1, then IIAu + (1- A)vII < 1. Show that the Euclidean norm on R"
and the usual norm on LP[a, b], 1 < p < oo are strictly convex.

69. Let X be a reflexive Banach space with a strictly convex norm and K a nonempty closed
convex subset of X. For Z E X^-K, use the reflexivity of X to show that there is a point xo E K
that is closest to z in the sense that

I1z-xo11 5 11x-zllforall xEK.

Then use the strict convexity of the norm to show that xo is unique and is an extreme point
of K.
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We proved a theorem of Riesz which asserts that the closed unit ball of an infinite dimensional
normed linear space fails to be compact with respect to the strong topology induced by
the norm. In this chapter we prove a precise theorem regarding the manner in which, for
an infinite dimensional Banach space, compactness of the closed unit ball is regained with
respect to the weak topology. We prove that if B is the closed unit ball of a Banach space X,
then the following are equivalent:

(i) X is reflexive;

(ii) B is weakly compact;

(iii) B is weakly sequentially compact.

The first compactness result we establish is Alaoglu's Theorem, an extension of Helley's
Theorem to non-separable spaces, which tells us that for a normed linear space X, the closed
unit ball of the dual space X* is compact with respect to the weak-* topology. This direct
consequence of the Tychonoff Product Theorem enables us to use the natural embedding
of a Banach space in its bidual, J: X -+ X**, to prove the equivalences What is
rather surprising is that, for the weak topology on B, sequential compactness is equivalent
to compactness despite the fact that in general the weak topology on B is not metrizable.

15.1 ALAOGLU'S EXTENSION OF HELLEY'S THEOREM

Let X be a normed linear space, B its closed unit ball and B* the closed unit ball of its dual
space X*. Assume X is separable. Choose fxn} to be a dense subset of B and define

0')

1
I(c-rl)(xn)I for all 41,'q E B*.P* n) = I

2n

.

n=1

Then p is a metric that induces the weak-* topology on B* (see Corollary 11). For a metric
space, compactness is the same as sequential compactness. Therefore Helley's Theorem may
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be restated as follows: If X is a separable normed linear space, then the closed unit ball B* of
its dual space X* is weak-* compact. We now use the Tychonoff Product Theorem to show
that the separability assumption is not needed.

Recall a special case of the Tychonoff Product Theorem: Let A be any set. Consider
the collection.F(A) of all real-valued functions on A that take values in the closed, bounded
interval [-1, 1]. Consider .F(A) as a topological space with the product topology. A base at
f E Y(A) for the product topology on F(A) comprise sets of the form

JVE,A...... A,(.f) = tf' E.F(A) I If'(Ak)-f(Ak)I <Efor1 <k <n

where E > 0 and the Ak's belong to A. The Tychonoff Product Theorem implies that the
topological space consisting of Y (A) with the product topology is compact. Therefore every
closed subset Fo(A) of .F(A), with the topology induced by the product topology, also is
compact.

Alaoglu's Theorem Let X be a normed linear space. Then the closed unit ball B* of its dual
space X* is compact with respect to the weak-* topology.

Proof Denote the closed unit balls in X and X* by B and B*, respectively. By the preceding
discussion, the topological space .T(B) consisting of functions from B to [-1, 1], with the
product topology, is compact.

Define the restriction map R: B* -* F(B) by R(/r) = chin for i/s E B*. We claim
that (i) R(B*) is a closed subset of .F(B) and (ii) the restriction map R is a topological
homeomorphism from B*, with the weak-* topology, onto R(B* ), with the product topology.
Suppose, for the moment, that (i) and (ii) have been established. By the preceding discussion,
the Tychonoff Product Theorem tells us that R(B*) is compact. Therefore any space
topologically homeomorphic to R(B*) is compact. In particular, by (ii), B* is weak-*
compact.

It remains to verify (i) and (ii). First observe that R is one-to-one since for i/i,,q E B*,
with i t 17, there is some x E B for which (x) !trl(x) and thus R(4i) # R(77). A direct
comparison of the basic open sets in the weak-* topology with basic open sets in the product
topology reveals that R is a homeomorphism of B* onto R(B* ). It remains to show that
R(B*) is closed with respect to the product topology. Let f : B - [-1, 1] be a point of
closure, with respect to the product topology, of R(B*). To show that f E R(B*) it suffices
(see Problem 1) to show that for all u, v E B and A E R for which u + v and Au also belong to B,

f(u+v)= f(u)+f(v)and f(Au)=Af(u). (1)

However, for any c > 0, the weak-* neighborhood of f, NE,u,v.u+v (f ), contains some R(41,)
and since ie is linear, we have I f (u + v) - f (u) - f (v) I < R. Therefore, the first equality
in (1) holds. The proof of the second is similar.

Corollary 1 Let X be a normed linear space. Then there is a compact Hausdorff space K for
which X is linearly isomorphic to a linear subspace of C(K), normed by the maximum norm.

Proof Let K be the closed unit ball of the dual space, with the weak-* topology. Alaoglu's
Theorem tells us that K is compact and it certainly is Hausdorff. Define (D: X -* C(K) by
(D(x) = J(x)IK. Since the natural embedding J: X - X** is an isometry, so is (D.



300 Chapter 15 Compactness Regained: The Weak Topology

Corollary 2 Let X be a normed linear space. Then the closed unit ball B* of its dual space X*
possesses an extreme point.

Proof We consider X* as a locally convex topological space with its weak-* topology.
According to Alaoglu's Theorem, B* is convex and compact. The Krein-Milman Lemma
tells us that B* possesses an extreme point.

Remark Alaoglu's Theorem does not tell us that the closed unit ball of the dual of a normed
linear space is sequentially compact with respect to the weak-* topology. For instance, for
X = f', B*, the closed unit ball of X*, is not weak-* sequentially compact. Indeed, the
sequence {(Win } C B* defined for each n by

clip ({xk }) = Xn for all {xk } E $O0 ,

fails to have a weak-* convergent subsequence. Alaoglu's Theorem is a generalization of
Helley's Theorem from the viewpoint of compactness, not sequential compactness. By Helley's
Theorem, B* is weak-* sequentially compact if X is separable, and the forthcoming Corollary
6 tells us that B* also is weak-* sequentially compact if X is reflexive.

PROBLEMS

1. For X a normed linear space with closed unit ball B, suppose the function f : B -*
[-1, 1] has the property that whenever u, v, u + v, and Au belong to B, f (u + v) = f (u) +
f (v) and f (Au) = A f (u). Show that f is the restriction to B of a linear functional on all of
X which belongs to the closed unit ball of X*.

2. Let X be a normed linear space and K be a bounded convex weak-* closed subset of X*.
Show that K possesses an extreme point.

3. Show that any nonempty weakly open set in an infinite dimensional normed linear space is
unbounded with respect to the norm.

4. Use the Baire Category Theorem and the preceding problem to show that the weak topology
on an infinite dimensional Banach space is not metrizable by a complete metric.

5. Is every Banach space isomorphic to the dual of a Banach space?

15.2 REFLEXIVITY AND WEAK COMPACTNESS: KAKUTANI'S THEOREM

Proposition 3 Let X be a normed linear space.'Then the natural embedding J: X -* X**
is a topological homeomorphism between the locally convex topological vector spaces X and
J(X ), where X has the weak topology and J(X) has the weak-* topology.

Proof Let xo belong to X. A neighborhood base for the weak topology at xo E X is defined
by sets of the form, for E > O and a//1, ..., fn E X*,

Now [J(x) - J(xo)]t/r; _ j(x - xo) for each x E X and 1 < i < n, and therefore

J(X) nAr ,,,t,...,*n(J(xo))



Section 15.2 Reflexivity and Weak Compactness: Kakutani's Theorem 301

Therefore J maps a base for the weak topology at the origin in X onto a base for the weak-*
topology at the origin in J(X). Thus J is a homeomorphism from X, with the weak topology,
onto J(X), with the weak-* topology.

Kakutani's Theorem A Banach space is reflexive if and only if its closed unit ball is weakly
compact.

Proof Let X be a Banach space. Denote the closed unit balls in X and X** by B and B**,
respectively. Assume X is reflexive. The natural embedding is an isomorphism and therefore
J is a one-to-one map of B onto B**. On the other hand, according to Proposition 3, J is
a homeomorphism from B, with the weak topology, onto B**, with the weak-* topology.
But by Alaoglu's Theorem, applied with X replaced by X*, B** is weak-* compact, so any
topological space homeomorphic to it also is compact. In particular, B is weakly compact.

Now assume B is weakly compact. The continuous image of compact topological
spaces is compact. We infer from Proposition 3 that J(B) is compact with respect to the
weak-* topology. Of course, J(B) is convex. To establish the reflexivity of X, we argue by
contradiction. Assume X is not reflexive. Let T belong to B**S..J(B). Apply Corollary 26 of
the Hyperplane Separation Theorem in the case that X is replaced by X* and W = J(X* ).
Thus there is a functonal / E X* for which II1II = 1 and

T(t/r) < inf sEJ(B)S(IIJ) = infxEBI/J(x).

The right-hand infimum equals -1, since II+GII = 1. Therefore T(/r) < -1. This is a
contradiction since II TII < 1 and 11011 = 1. Therefore X is reflexive.

Corollary 4 Every closed, bounded, convex subset of a reflexive Banach space is weakly
compact.

Proof Let X be a Banach space. According to Kakutani's Theorem, the closed unit ball of
X is weakly compact. Hence so is any closed ball. According to Mazur's Theorem, every
closed, convex subset of X is weakly closed. Therefore any closed, convex, bounded subset
of X is a weakly closed subset of a weakly compact set and hence must be weakly compact.

Corollary 5 Let X be a reflexive Banach space. Then the closed unit ball of its dual space, B*,
is sequentially compact with respect to the weak-* topology.

Proof Since X is reflexive, the weak topology on B* is the same as the weak-* topology.
Therefore, by Alaoglu's Theorem, B* is weakly compact. We infer from Kakutani's Theorem
that X* is reflexive. We therefore infer from Theorem 17 of the preceding chapter that every
bounded sequence in X* has a weak-* convergent subsequence. But B* is weak-* closed.
Thus B* is sequentially compact with respect to the weak-* topology.

PROBLEMS

6. Show that every weakly compact subset of a normed linear space is bounded with respect to
the norm.

7. Show that the closed unit ball B* of the dual X* of a Banach space X has an extreme point.
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8. Let T1 and T2 be two compact, Hausdorff topologies on a set S for which Ti C T2. Show
that T1 = T2-

9. Let X be a normed linear space containing the subspace Y. For A C Y, show that the weak
topology on A induced by Y* is the same as the topology A inherits as a subspace of X with
its weak topology.

10. Argue as follows to show that a Banach space X is reflexive if and only if its dual space X* is
reflexive.

(i) If X is reflexive, show that the weak and weak-* topologies on B* are the same, and infer
from this that X* is reflexive.

(ii) If X* is reflexive, use Problem 8 to show that the weak and weak-* topologies on B* are
the same, and infer from this and Proposition 6 of Chapter 14 that J(X) = X**.

11. For X a Banach space, by the preceding problem, if X is reflexive, then so in X*. Conclude
that X is not reflexive if there is a closed subspace of X* that is not reflexive. Let K be an
infinite compact Hausdorff space and an enumeration of a countably infinite subset of
K. Define the operator T : 11 [C(K)]* by

[T((rjk})](f)=E'qk f(xk)forall hlk}E11and f EC(k).
k=1

Show that T is an isometry and therefore, since 11 is not reflexive, neither is T(11) and
therefore neither is C(K ). Use a dimension counting argument to show that C(K) is reflexive
if K is a finite set.

12. If Y is a linear subspace of a Banach space X, we define the annihilator Yl to be the subspace
of X* consisting of those 41 E X* for which = 0 on Y. If Y is a subspace of X*, we define Yo
to be the subspace of vectors in X for which O(x) = 0 for all 41 E Y.
(i) Show that Yl is a closed linear subspace of X*.

(ii) Show that (Y-)° = Y

(iii) If X is reflexive and Y is subspace of X*, show that Yl = J( Y° )

15.3 COMPACTNESS AND WEAK SEQUENTIAL COMPACTNESS:
THE EBERLEIN-SMULIAN THEOREM

Theorem 6 (Goldstine's Theorem) Let X be a normed linear space, B the closed unit ball of
X, and B** the closed unit ball of X**. Then the the weak-* closure of J(B) is B**.

Proof According to Corollary 9 of the preceding chapter, J is an isometry. Thus J(B) c B**.
Let C be the weak-* closure of J(B). We leave it as an exercise to show that B** is weak-*
closed. Thus C C B**. Since B is convex and J is linear, J(B) is convex. Proposition 22
of the preceding chapter tells us that, in a locally convex topological vector space, the
closure of a convex set is convex. Thus C is a convex set that is closed with respect to the
weak-* topology. Suppose C t B**. Let T belong to B**-C. We now invoke the Hyperplane
Separation Theorem in the case that X is replaced by (X* )* and (X* )* is considered as a
locally convex topological vector space with the weak-* topology; see Corollary 26 of the
preceding chapter. Thus there is some c E X* for which IIcII = 1 and

T(ar) <infsecS(c ) (2)
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Observe that since C contains J(B),

inf secS(+(1) < inf..IEB fi(x) = -1.

Therefore T(0) < -1. This is a contradiction since I1TI1 < 1 and 11011 = 1. Therefore
C J(B) and the proof of is complete.

Lemma 7 Let X be a normed linear space and W a finite dimensional subspace of X*. Then
there is a finite subset F of X for which

114, max (3)

Proof Since W is finite dimensional, its closed unit sphere S* = {/i E W 11141 II = 1} is
compact and therefore is totally bounded. Choose a finite subset {/il, ... , Iin} of S* for which
S* C Uk=1B(i k, 1/4). For 1 < k < n, choose a unit vector xk in X for which Jk(xk) > 3/4.
Let 0 belong to S*. Observe that

O(xk) _ 0k (xk) + [0 - 0k]xk > 314 + [0 - 0k]xk for 1 < k < n.

If we choose k such that 110 - Ok11 < 1/4, then since IIxk11 = 1, IJ(xk) > 1/2 =1/211011. Thus
(3) holds if F = {xl, ... , xk} and 41 E W has 11011 = 1. It therefore holds for all 0 E W.

Theorem 8 (the Eberlein-Smulian Theorem) Let B be the closed unit ball of a Banach space
X. Then B is weakly compact if and only if it is weakly sequentially compact.

Proof We first assume B is compact. Kakutani's Theorem tells us that X is reflexive.
According to Theorem 17 of the preceding chapter, every bounded sequence in X has a
weakly convergent subsequence. Since B is weakly closed, B is weakly sequentially compact.

To prove the converse, assume B is weakly sequentially compact. To show that B is
compact it suffices, by Kakutani's Theorem, to show that X is reflexive.) Let T belong to
B**. Goldstine's Theorem tells us that T belongs to the weak-* closure of J(B). We will use
the preceding lemma to show that T belongs to J(B).

Choose q1 E B*. Since T belongs to the weak-* closure of J(B), we may choose
x1 E B for which J(xl) belongs to Nl,,,1(T ). Define N(1) =1 and W1= span[{T, J(xl) }] C
X**. Let n be a natural number for which there has been defined a natural number
N(n), a subset {xk}1<k<n of B, a subset {'k}1<k<N(n) of X* and we have defined Wn =
span[{T, J(xl ), ... , J(xn)}]. Since T belongs to the weak-* closure of J(B), we may
choose xn+1 E B for which

J(xn+l) E Nl/(n+141,...,1N(n)(T).

Define
Wn+1 = span[{T, J(xl), ..., J(xn+l)}]

(4)

(5)

1This elegant proof that sequential compactness of the closed unit ball implies reflexivity is due to R. J. Whitley,
"An elementary proof of the Eberlein-Smulian Theorem," Mathematische Annalen, 1967.
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We infer from the preceding lemma, in the case X is replaced by X*, that there is a natural
number N(n + 1) > N(n) and a finite subset N1k}N(n)<k<N(n+1) of X* for which

IISII/2 < max S(41k) for all S E Wn+l. (6)
N(n)<k<N(n+1)

We have therefore inductively defined a strictly increasing sequence of natural numbers
(N(n)), a sequence {xn} in B, a sequence {(Jin} in X*, and a sequence {Wn} of subspaces of
X** for which (4) and (6) hold. Since { W } is an ascending sequence for which (6) holds for
every index n,

IISII/2<SUP 1<k<,S(cIrk)for all Se W=span[{T, J(xl), ..., J(xn),...)J.

Since (4) holds for all n,

(7)

I(T-J(xm))[in]1 <1/mifn<N(m). (8)

Since B is sequentially compact, there is a subsequence {xnk } of {xn } that converges weakly
to x E B. Mazur's Theorem tells us that a sequence of convex combinations of the terms of
the sequence {xnk } converges strongly to x. The image under J of this sequence of convex
combinations converges strongly to J(x) in X**. Thus J(x) belongs to W. But T also belongs
to W. Therefore T - J(x) belongs to W. We claim that T = J(x). In view of (7) to verify
this claim it is necessary and sufficient to show that

(T - J (x)) [/in] = O for all n. (9)

Fix a natural number n. Observe that for each index k,

(T - J(x))[iin] = (T - J(xnk))[Jin]+ (J(xnk) - J(x))[I/in]

We infer from (8) that if N(nk) > n, then 1(T - J(xnk) )[4i,,]I < 11nk. On the other hand,

(J(xnk) - J(x) )[lin] = kn (xnk - x) for all k

and {xnk } converges weakly to x. Thus

(T - J(x))[din] = kim (T - J(xnk))[/in]+kli (J(xnk) - J(x))[+/in] = 0.

We gather Kakutani's Theorem and the Eberlein-Smulian Theorem into the following
statement.

Characterization of Weak Compactness Let B be the closed unit ball of a Banach space X.
Then the following three assertions are equivalent:

(i) X is reflexive;

(ii) B is weakly compact;

(iii) B is weakly sequentially compact.
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PROBLEMS

13. In a general topological space that is not metrizable a sequence may converge to more than
one point. Show that this cannot occur for the W-weak topology on a normed linear space X,
where W is a subspace of X* that separates points in X.

14. Show that there is a bounded sequence in L'10, 11 that fails to have a weakly convergent
subsequence. Show that the closed unit ball of C[a, b] is not weakly compact.

15. Let K be a compact, metric space with infinitely many points. Show that there is a bounded
sequence in C(K) that fails to have a weakly convergent subsequence (see Problem 11), but
every bounded sequence of continuous linear functionals on C(K) has a subsequence that
converges pointwise to a continuous linear functional on C(K).

15.4 METRIZABILITY OF WEAK TOPOLOGIES

If the weak topology on the closed unit ball of a Banach space is metrizable, then the
Eberlein-Smulian Theorem is an immediate consequence of the equivalence of compactness
and sequential compactness for a metric space. To better appreciate this theorem, we now
establish some metrizable properties of weak topologies. The first theorem presents a good
reason why analysts should not just stick with metric spaces.

Theorem 9 Let X be an infinite dimensional normed linear space. Then neither the weak
topology on X nor the weak-* topology on X* is metrizable.

Proof To show that the weak topology on X is not metrizable, we argue by contradiction.
Otherwise, there is a metric p: X X X -+ [0, oo) that induces the weak topology on X. Fix a
natural number n. Consider the weak neighborhood {x E X I p(x, 0) < 1/n) of 0. We may
choose a finite subset Fn of X* and En > 0 for which

{XEX I WO <En for all ir0EFn}CIX EXI p(x,0)<1/n}.

Define Wn to be the linear span of F. Then

nqEWnkeI/iCIX EXI p(x,0)<1/n}. (10)

Since X is infinite dimensional, it follows from the Hahn-Banach Theorem that X* also is
infinite dimensional. Choose n E X*-Wn. We infer from Proposition 4 of the preceding
chapter that there is an xn E X for which 0n (xn) 36 0 while O(xn) = 0 for all 41 E Fn. Define
un = n ' un/Ilunll Observe that Ilunll = n and, by (10), that p(un, 0) < 1/n. Therefore {un}
is an unbounded sequence in X that converges weakly to 0. This contradicts Theorem 12 of
the preceding chapter. Therefore the weak topology is not metrizable.

To prove that the weak-* topology on X* is not metrizable, we once more argue
by contradiction. Otherwise, there is a metric p*: X* X X* --+ [0, oo) that induces the
weak-* topology on X*. Fix a natural number n. Consider the weak-* neighborhood
{fir E X* I p*(IV, 0) < 1/n} of 0. We may choose a finite subset An of X and c, > 0 for which

{t// E X* I IIV (x)I < En for all x E An} C {a/! E X* I p*(4,, 0) < 11n).

Define Xn to be the linear span of An. Then

10 E X* I O(x) = 0 for all x E Xn} C {0 E X* I p*(I'f, 0) < 1/n} . (11)
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Since X1, is finite dimensional, it is closed and is a proper subspace of X since X is infinite
dimensional. It follows from Corollary 11 of the preceding chapter that there is a nonzero
functional 0, E X* which vanishes on X,2. Define (pn = n 0,,/ II0n II. Observe that Ilcp II = n
and, by (11), that p*((pn, 0) < 1/n. Therefore {q } is an unbounded sequence in X* that
converges pointwise to 0. This contradicts the Uniform Boundedness Theorem. Thus the
weak-* topology on X* is not metrizable.

Theorem 10 Let X be a normed linear space and W a separable subspace of X* that separates
points in X. Then the W-weak topology on the closed unit ball B of X is metrizable.

Proof Since W is separable, B* fl W also is separable, where B* is the closed unit ball of X*.
Choose a countable dense subset Pk}kk'-1 of B* fl W. Define p: B X B -+ R by

°O 1p(u,v)=I
k. lJk(u-v)Iforallu,vEB.

k=1 2

This is properly defined since each Ok belongs to B*. We first claim that p is a metric on B.
The symmetry and triangle inequality are inherited by p from the linearity of +l'k's. On the
other hand, since W separates points in X, any dense subset of S* fl W also separates points
in X. Therefore, for u, v E B with u # v, there is a natural number k for which 41k (U - v) ;6 0
and therefore p(u, v) > 0. Thus p is a metric on B. Observe that for each natural number n,
since each 'k belongs to B*,

Zn
E 10k(X) 1 s P(x, 0) E 1/2n for all x E B. (12)
k=1 k=1

We leave it as an exercise to infer from these inequalities and the denseness of fok}k 1 in
B* fl W that {x E B I p(x, 0) < l/n}°O 1 is a base at the origin for the W-weak topology on B.
Therefore the topology induced by the metric p is the W-weak topology on B.

Corollary 11 Let X be a normed linear space.

(i) The weak topology on the closed unit ball B of X is metrizable if X* is separable.

(ii) The weak-* topology on the closed unit ball B* of X* is metrizable if X is separable.

Theorem 12 Let X be a reflexive Banach space. Then the weak topology on the closed unit
ball B is metrizable if and only if X is separable.

Proof Since X is reflexive, Theorem 14 of the preceding chapter tells us that if X is
separable, so is X*. Therefore, by the preceding corollary, if X is separable, then the weak
topology on B is metrizable. Conversely, suppose the weak topology on B is metrizable. Let
p: B X B (0, oo) be a metric that induces the weak topology on B. Let n be a natural
number. We may choose a finite subset F of X* and En > 0 for which

{x E B I En for all 0 E &1 9 {x E B I p(x, 0) < 1/n}.

Therefore

nkera/r nBCIX EBI p(x,0)<1/n}. (13)
¢,EF
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Define Z to be the closed linear span of Un° 1 F. Then Z is separable since finite linear
combinations, with rational coefficients, of functionals in U' 1 F is a countable dense subset
of Z. We claim that Z = X*. Otherwise, Corollary 11 of the preceding chapter tells us that
there is a nonzero S E (X*)*, which vanishes of Z. Since X is reflexive, there is some xo E X
for which S = J(xo). Thus xo # 0 and Ok (xo) = 0 for all k. According to (13), p(xo, 0) < 1/n
for all n. Hence x0 # 0 but p(xo, 0) = 0. This is a contradiction. Therefore X* is separable.
Theorem 13 of the preceding chapter tells us that X also is separable.

PROBLEMS

16. Show that the dual of an infinite dimensional normed linear space also is infinite dimensional.

17. Complete the last step of the proof of Theorem 10 by showing that the inequalities (12) imply
that the metric p induces the W-weak topology.

18. Let X be a Banach space, W a closed subspace of its dual X*, and 410 belong to X*^-W. Show
that if either W is finite dimensional or X is reflexive, then there is a vector xo in X for which
Oo(xo) # 0 but /(x0) = 0 for all 0 e W. Exhibit an example of an infinite dimensional closed
subspace W of X* for which this separation property fails.
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The inner product (u, v) of two vectors u = (ul,... , un) and v E (Vi , ... , vn) in Euclidean
space Rn is defined by

n

(u, V) = I ukvk.
k=1

We call this the Euclidean inner product. The Euclidean norm II II is determined by the
relation

Ilull = (u, u) for all u E Rn.

With respect to the Euclidean inner product there is the important notion of orthogonality,
which brings a geometric viewpoint to the study of problems in finite dimensional spaces:
subspaces have orthogonal complements and the solvability of systems of equations can be
determined by orthogonality relations. The inner product also brings to light interesting
classes of linear operators that have quite special structure: prominent among these are
the symmetric operators for which there is a beautiful eigenvector representation. In this
chapter we study Banach spaces H that have an inner product that is related to the norm
as it is in the Euclidean spaces. These spaces are called Hilbert spaces. We show that if V
is a closed subspace of a Hilbert space H, then H is the direct sum of V and its orthogonal
complement. Based on this structural property, we prove the Riesz-Frechet Representation
Theorem, which characterizes the dual space of a Hilbert space. From this we infer, using
Helley's Theorem, that every bounded sequence in a Hilbert space has a weakly convergent
subsequence. We prove Bessel's Inequality from which we infer that a countable orthonormal
set is an orthonormal basis if and only if its linear span is dense. The chapter concludes with
an examination of bounded symmetric operators and compact operators on a Hilbert space,
in preparation for the proof of two theorems: the Hilbert-Schmidt Theorem regarding an
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eigenvalue expansion for compact symmetric operators and the Riesz-Schauder Theorem
regarding the Fredhohn properties of compact perturbations of the identity operator.

16.1 THE INNER PRODUCT AND ORTHOGONALITY

Definition Let H be a linear space. A function H X H -> R is called an inner product
on H provided for all xi, x2, x and y E H and real numbers a and l3,

(i) (axi + /3x2, y) = a(xi, Y) + /3(x2, Y),
(ii) (x, y) = (y, x),

(iii) (x, x) > O if x # 0.

A linear space H together with an inner product on H is called an inner product space.

Property (ii) is called symmetry. From (i) and (ii) it follows that (x, ayl + /3Y2)
a(x, Y1) + /3(x, y2): this property, together with (i), is called bifinearity.

Among infinite dimensional linear spaces two examples of inner product spaces come to
mind. For two sequences x = {xk} and y = {yk} E e2, the f2 inner product, (x, y), is defined by

00

(x, Y) = Y-, xkYk

k=1

For E a measurable set of real numbers and two functions f and g E L2(E), the L2 inner
product, (f, g), is defined by

(f, g) = fE f g,

where the integral is with respect to Lebesgue measure.
In Chapter 7 we obtained the Cauchy-Schwartz Inequality for L2(E) as a special case

of Holder's Inequality. This inequality holds for any inner product space.

The Cauchy-Schwarz Inequality For any two vectors u, v in an inner product space H,

1(u, v)I Hull Ilvll

To verify this, observe that

0<Ilu+tvll2=I1u112+2t(u, v)+t2llv1l2foralltER.

The quadratic polynomial in t defined by the right-hand side fails to have distinct real roots
and therefore its discriminant is not positive, that is, the Cauchy-Schwarz Inequality holds.

Proposition 1 For a vector h in an inner product space H, define

Ilhll = (h, h).

Then II II is a norm on H called the norm induced by the inner product(, ).
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Proof The only property of a norm that is not evident for 11 II is the triangle inequality. This,
however, is a consequence of the Cauchy-Schwarz Inequality since, fortwo vectors u, v E H,

Ilu+v112 = (u+v, u+v) = IIu112+2(u, v)+IIVI12 < 11u112+211u11Dull+IIVI12 = (I1ull+11U11)2.

The following identity characterizes norms that are induced by an inner product; see
Problem 7.

The Parallelogram Identity For any two vectors u, v in an inner product space H,

11u-v112+IIu+v112=211u112+211v112.

To verify this identity just add the following two equalities:

IIu - v112 = IIu112 - 2(u, v) + 11vl12;

IIu+v112 = IIu112+2(u, v)+IIv112.

Definition An inner product space His called a Hilbert space provided it is a Banach space
with respect to the norm induced by the inner product.

The Riesz-Fischer Theorem tells us that for E a measurable set of real numbers, L2(E)
is a Hilbert space and, as a consequence, so is t2.

Proposition 2 Let K be a nonempty closed convex subset ofa Hilbert space H and h0 belong
to H - K. Then there is exactly one vector h* E K that is closest to h0 in the sense that

Ilho - h*II = dist(ho, K) _.hmf Ilho - hll

Proof By replacing K by K - ho, we may assume that ho = 0. Let {hn} be a sequence in K
for which

lim Ilhnll = inf IIhhln +00 hEK

We infer from the parallelogram identity and the convexity of K that for each in and n,

11hn1l2+IIh.1I2=2
hn+hm112 11hn-hm

2
+2

2

2

>2
hEKllhll+2

hn - hm
2

2

(1)

. (2)

From (1) and (2) we infer that {hn} is a Cauchy sequence. Since H is complete and K is
closed, {hn } converges strongly to h* E K. By the continuity of the norm, 11h* 11 = inf hEK llh 11
This point in K that is closest to the origin is unique. Indeed, if h* is another vector in K that
is closest to the origin, then, if we substitute h* for hn and h* for hm in inequality (2), we have

o> Ilh*112+I1h*112-2.inf hIhll >>>2.
hEK

h* - h*
2

Thus h* = h*.
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Definition Two vectors u, v in the inner product space H are said to be orthogonal provided
(u, v) = 0. A vector u is said to be orthogonal to a subset S of H provided it is orthogonal to
each vector in S. We denote by S1 the collection of vectors in H that are orthogonal to S.

We leave it as an exercise to infer from the Cauchy-Schwarz Inequality that if S is
a subset of an inner product space H, then S1 is a closed subspace of H. The following
theorem is fundamental.

Theorem 3 Let V be a closed subspace of a Hilbert space H. Then H has the orthogonal
direct sum decomposition

H-V®V1. (3)

Proof Let ho belong to H ^- V. The preceding proposition tells us there is a unique vector
h* e V that is closest to ho. Let h be any vector in V. For a real number t, since V is a linear
space, the vector h* - th belongs to V and therefore

(ho-h*, ho-h*) = Ilho-h*112 < Ilho-(h*-th)II2 = (ho-h*, h)+t2(h, h).

Hence
0 < 2t (ho - h*, h) + t2(h, h) for all t E R,

and therefore (ho - h*, h) = 0. Thus the vector ho - h* is orthogonal to V. Observe that
ho = h* + [ho - h*]. We conclude that H = V + V1 and since V fl V1 = (0), H = V ® V1.

We leave the proof of the following corollary as an exercise.

Corollary 4 Let S be a subset of a Hilbert space H. Then the closed linear span of S is all of
H if and only if S1 = {0}.

In view of (3), for a closed subspace V of H, we call V1 the orthogonal complement of
V in H and refer to (3) as an orthogonal decomposition of H. The operator P E L( H) that
is the projection of H onto V along V1 is called the orthogonal projection of H onto V.

Proposition 5 Let P be the orthogonal projection of a Hilbert space H onto a nontrivial
closed subspace V of H. Then II P11 = 1 and

(Pu, v) = (u, Pv) for all u, v E H. (4)

Proof Let the vector u belong to H. Then

Ilu112 = (P(u)+(Id-P)(u), P(v)+(Id-P)(v)) = IIP(a)112+11(Id-P)(u)112 >- IIP(a)112,

and hence II P(u) II <- II u II . We therefore have 111`11 < 1 and conclude that 11 1`11 = 1 since
P(v) = v for each nonzero vector in V. If the vector v also belongs to H, then

(P(u), (Id-P)(v)) = ((Id-P)(u), P(v)) =0,

so that
(P(u), v) = (P(u), P(v)) = (u, P(v)).
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The proofs of many results we established for, general Banach spaces are much simpler
for the special case of Hilbert spaces; see Problems 11-15.

Remark A Banach space X is said to be complemented provided every closed subspace
of X has a closed linear complement. A Banach space X is said to be Hilbertable provided
there is an inner product on X whose induced norm is equivalent to the given norm. We infer
from Theorem 3 that a Hilbertable Banach space is complemented. A remarkable theorem of
Joram Lindenstrauss and Lior Tzafriri asserts that the converse is true: If a Banach space is
complemented, then it is Hilbertable. 1

PROBLEMS

In the following problems, H is a Hilbert space.

1. Let [a, b] be a closed, bounded interval of real numbers. Show that the L2[a, b] inner product
is also an inner product on C[a, b]. Is C[a, b], considered as an inner product space with the
L2[a, b] inner product, a Hilbert space?

2. Show that the maximum norm on C[a, b] is not induced by an inner product and neither is
the usual norm on I.

3. Let Hl and H2 be Hilbert spaces. Show that the Cartesian product H1 X H2 also is a Hilbert
space with an inner product with respect to which H, X {0} = [{0} X H2] -.

4. Show that if S is a subset of an inner product space H, then S1 is a closed subspace of H.

5. Let S be a subset of H. Show that S = (S')' if and only if S is a closed subspace of H.

6. (Polarization Identity) Show that for any two vectors u, v E H,

(u, v) = 4[IIu+v112- 11u-v112].

7. (Jordan-von Neumann) Let X be a linear space normed by II II . Use the polarization identity
to show that II II is induced by an inner product if and only if the parallelogram identity holds.

8. Let V be a closed subspace of H and P a projection of H onto V. Show that P is the orthogonal
projection of H onto V if and only if (4) holds.

9. Let T belong to L(H). Show that T is an isometry if and only if

(T(u), T(v)) = (u, v) for all u, v E H.

10. Let V be a finite dimensional subspace of H and cpl, ... , cpn a basis for V consisting of unit
vectors, each pair of which is orthogonal. Show that the orthogonal projection P of H onto V
is given by

n

P(h) = (h, tpk)tpk for all h E V.
k=1

11. For h a vector in H, show that the function u H (h, u) belongs to H*.

1"On the complemented subspace problem," Israel Journal of Math, 9,1971.
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12. For any vector h E H, show that there is a bounded linear functional 41 E H* for which

II4,II=1andfr(h)=11h11.

13. Let V be a closed subspace of H and P the orthogonal projection of H onto V. For any
normed linear space X and T E .C(V, X), show that T o P belongs to .C(H, X), and is an
extension of T : V X for which IIT o P11 = 11Th.

I

14. Prove the Hyperplane Separation Theorem for H, considered as a locally convex topological
vector space with respect to the strong topology, by directly using Proposition 2.

15. Use Proposition 2 to prove the Krein-Milman Lemma in a Hilbert space.

16.2 THE DUAL SPACE AND WEAK SEQUENTIAL CONVERGENCE

For E a measurable set of real numbers, 1 < p < oo, and q the conjugate to p, the Riesz
Representation Theorem for LP(E) explicitly describes a linear isometry of L9 (E) onto
[LP(E)]*. The p = 2 case of this theorem extends to general Hilbert spaces.

The Riesz-Frechet Representation Theorem Let H be a Hilbert space. Define the operator
T : H -* H* by assigning to each h E H the linear functional T(h) : H -+ R defined by

T(h)[u] = (h, u) for all u E H. (5)

Then T is a linear isometry of H onto H*.

Proof Let h belong to H. Then T (h) is linear. We infer from the Cauchy-Schwarz Inequality
that the functional T (h) : H -* R is bounded and IIT (h) II < II h II But if h 0 0, then
T (h) [h/ ll h ll ] = Il h ll Therefore II T(h) II = li h ll Thus T is an isometry. It is clear that T is
linear. It remains to show that T (H) = H*. Let a/,o # 0 belong to H*. Since 0 is continuous,
its kernel is a closed proper subspace of H. By Theorem 3, since ker air t- H, we may choose
a unit vector h* E H that is orthogonal to kera/io. Define h0 = Oo(h*)h*. We claim that
T (ho) = CVO. Indeed, for h E H,

h - 00(h )h* E so that (h - aVo(h410(h) h, h*) = 0

and therefore a/ro(h) = (h0, h) = T(ho)[h].

As in the case of a general Banach space, for a sequence in a Hilbert space H, we write
fun} - u in H to mean that the sequence (u,) is a sequence in H that converges weakly to
u E H. In view of the Riesz-Frechet Representation Theorem,

fun } u in H if and only if lim (h, un) = (h, u) for all h E H.
n-+oo

Theorem 6 Every bounded sequence in a Hilbert space H has a weakly convergent
subsequence.

Proof Let f hn } be a bounded sequence in H. Define Ho to be the closed linear span of (hn).

Then Ho is separable. For each natural number n, define 41n E [Ho]* by

0,, (h) = (hn, h) for all h E Ho.
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Since [hn} is bounded, we infer from the Cauchy-Schwarz Inequality that {on) also is
bounded. Then {tfin} is a bounded sequence of bounded linear functionals on the separable
normed linear space Ho. Helley's Theorem tells us that there is a subsequence {I/lnk} of {I/ln}
that converges pointwise to 4/o E [Ho]*. According to the Riesz-Frechet Representation
Theorem, there is a vector ho E Ho for which c0 = T(ho). Thus

lim (hnk, h) = (ho, h) for all h E Ho.
k goo

Let P be the orthogonal projection on H onto Ho. For each index k, since (Id -P)[H] _
P(H) 1,

(hnk, (Id-P)[h]) = (h0, (Id-P)[h]) = 0 for all h E H.

Therefore

lim (hnk, h) = (ho, h) for all h E H.
k- oo

Thus {hnk } converges weakly to h0 in H.

We gather in the following proposition some properties regarding weakly convergent
sequences which we established earlier for general Banach spaces but which, because of the
Riesz-Frechet Representation Theorem, have much simpler proofs in the case of Hilbert
spaces (see Problem 17).

Proposition 7 Let {un } -+ u weakly in the Hilbert space H. Then {un } is bounded and

(lull- liminf Ilunll

Moreover, if {vn} v strongly in H, then

lim (un, vn) = (u, v).
n-1oo

(6)

The following two propositions describe properties of weakly convergent sequences
in a Hilbert space, which in Chapter 8 we already noted hold in the LP(E) spaces, for E a
measurable set of real numbers and 1 < p < oo, but do not hold in general Banach spaces.

The Banach-Saks Theorem Let {un} -+ u weakly in the Hilbert space H. Then there is a
subsequence {unk} of {un} for which

Un +...+Un
1

k = u strongly in H.lim.kl
k

(7)

Proof Replacing each un with un - u we may suppose that u = 0. Since a weakly convergent
sequence is bounded, we may choose M > 0 such that

IIun112 <Mforalln.

We will inductively choose a subsequence {unk} of fun) with the property that for all k,

IIUnt
+...+Unkj12 < (2+M)k. (8)
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For such a sequence,
Unl .+ ... + Unk

k

2

(2 kM) for all k (9)

and the proof is complete.

Define nt = 1. Since fun} - 0 and un1 belongs to H, we can choose an index n2 such
that I (un1, un2) I < 1. Suppose we have chosen natural numbers nj < n2 < ... < nk such that

<(2+M)jfor j=1....,k.
Since {un} , 0 and un1 + + Unk belongs to H, we may choose nk+l > nk such that

I (Uni + ... + Unk, Unk+1) I < 1.

However,

IIUni + +Unk +Unk+1112 = IIun1 + +Unk112+2(Un1 + +Unk, unk+1) + IIUnk+l
112

Therefore,

IIUni + +Unk+1112 < (2 + M)k + 2 + M = (2+M)(k+1).
We have chosen a subsequence so that (8) holds.

The Radon-Riesz Theorem Let {un } -* u weakly in the Hilbert space H. Then

{un} -* u strongly in H if and only if lim Hun II = IIu IIn-oo

Proof Since the norm is continuous on H, with respect to the strong topology, if (un) - u
strongly, then limn-m Hun11 = IluII. On the other hand, if limn. Hun II = Ilu11, then since

IIUn - U112 = IIun112 - 2(un, u) + IIu112 for all n,

the weakly convergent sequence tun} is strongly convergent.

Theorem 8 Let H be a Hilbert space. Then H is reflexive. Therefore every nonempty strongly
closed bounded convex subset K of H is weakly compact and hence is the strongly closed
convex hull of its extreme points.

Proof To establish reflexivity it is necessary to show that the natural embedding J: H
[H*]* is onto. Let ''Y: H* -- R be a bounded linear functional. Let T: H --). [H]* be the
isomorphism described by the Riesz-Frechet Representation Theorem. Then '9r o T : H --
R, being the composition of bounded linear operators, is bounded. The Riesz-Frechet
Representation Theorem tells us that there is a vector ho E H for which 'I' o T = T( ho ).
Therefore

''Y(T(h)) = T(ho)[h] = T(h)[ho] = J(ho)[T(h)] for all k E H.

Since T(H) = H*, 41 = J(ho). Thus H is reflexive. We infer from Kakutani's Theorem
and Mazur's Theorem that every strongly closed bounded convex subset K of H is weakly
compact. Therefore, by the Krein-Milman Theorem and another application of Mazur's
Theorem, such a set K is the strongly closed convex hull of its extreme points.
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PROBLEMS

16. Show that neither fl, 2°O, L1[a, b] nor LOO [a, b] is Hilbertable.

17. Prove Proposition 7.

18. Let H be an inner product space. Show that since H is a dense subset of a Banach space X
whose norm restricts to the norm induced by the inner product on H, the inner product on
H extends to X and induces the norm on X. Thus inner product spaces have Hilbert space
completions.

16.3 BESSEL'S INEQUALITY AND ORTHONORMAL BASES

Throughout this section H is an inner product space.

Definition A subset S of H is said to be orthogonal provided every two vectors in S are
orthogonal. If such a set has the further property that each vector in S is a unit vector, then S
is said to be orthonormal.

The General Pythagorean Identity If u1, u2, ... , un are n orthonormal vectors in H, and
al.... , a, are real numbers, then

llalui +...+anun112 = IIal112+...+ Ila.I12.

This identity follows from an expansion of the right-hand side of the following identity

Ilalal +... +ananll2 = (alul +... +anun, aluI +... +anun),

Bessel's Inequality For {ft} an orthonormal sequence in H and h a vector in H,

00

(wk, h)2 < IIh112.
k=1

To verify this inequality, fix a natural number n and define hn = Jk=1('pk, Then, by
the General Pythagorean Identity,

0 < I1h-hn112 = 11h112-2(h, hn)+Ilhn112
n n

= 11h 112 - 21(h, (Pk) (h, (Ok) + I (h, (pk)2
k=1 k=1
n

=
k=1

Therefore
n

((Pk, h)2 < 11h112.
k=1

Take the limit as n -+ oo to obtain Bessel's Inequality.

Proposition 9 Let {(pk} be an orthonormal sequence in a Hilbert space H and the vector
h belong to H. Then the series Tk 1(wk, h)cpk converges strongly in H and the vector
h - Yk 1((0k, h)cpk is orthogonal to each cpk.
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Proof For a natural number n, define hn = Jk=1(cpk, h)cpk. By the General Pythagorean
Identity, for each pair of natural numbers n and k,

n+k

IIhn+k - hnII2 = E ((Pi, h)2.
i=n+1

However, by Bessel's Inequality, the series E°°1((,pi, h)2 converges and hence {hn} is a
Cauchy sequence in H. Since H is complete, Yk 1((Pk, h) 9k converges strongly to a vector
h,, E H. Fix a natural number m. Observe that if n > m, then h - hn is orthogonal to (p,n. By
the continuity of the inner product, h - h,, is orthogonal to cp n .

Definition An orthonormal sequence {cpk) in a Hilbert space H is said to be complete
provided the only vector h E H that is orthogonal to every (pk is h = 0.

We infer from Corollary 4 that an orthonormal sequence {cpk} in a Hilbert space H is
complete if and only if the closed linear span of {cpk} is H.

Definition An orthonormal sequence {(pk} in a Hilbert space H is called an orthonormal
basis for H provided

00h = I (cpk, h)cpk for all h E H.
k=1

(10)

Proposition 10 An orthonormal sequence {cpk} in a Hilbert space H is complete if and only if
it is an orthonormal basis.

Proof First assume {(Pk } is complete. According to the preceding proposition, h-1 (cpk, h)cPk
is orthogonal to each (Pk. Therefore, by the completeness of (wk), (10) holds. Conversely,
suppose (10) holds. Then if h E H is orthogonal to all cpk, then

00 00

h=I (cPk, h)cPk=10'(Pk=O.
k=1 k=1

Example The countable collection of functions in L2[0, 21r] consisting of the constant func-
tion that takes the value 1/ tar and the functions( l/ kt, 1/ kt}k are a com-
plete orthonormal sequence for the Hilbert space L2[0, 27r]. Indeed, we infer from the ele-
mentrary trigonometric identities that this sequence is orthonormal. We infer from the
Stone-Weierstrass Theorem that the linear span of this sequence is dense, with respect to the
maximum norm, in the Banach space C[a, b]. Thus, by the density of C[a, b] in L2[0, 21r],
the linear span of this sequence is dense in L2[0, 21r].

If a Hilbert space H possesses an orthonormal basis {QPk}, then, since finite rational
linear combinations of the cpk's are a countable dense subset of H, H must be separable.
It turns out that separability is also a sufficient condition for a Hilbert space to possess an
orthonormal basis.

Theorem 11 Every infinite dimensional separable Hilbert space posesses an orthonormal
basis.
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Proof Let.F be the collection of subsets of H that are orthonormal. Order .F by inclusion.
For every linearly ordered subcollection of F, the union of the sets in the subcollection
is an upper bound for the subcollection. By Zorn's Lemma, we may select a maximal
subset So of F. Since H is separable, So is countable. Let {(Pk)k

1
be an enumeration of

So. If h E H, h t 0, then, by Proposition 9, h - Ek 1((Pk, h) cpk is orthogonal to each cpk.
Therefore h - Ek 1 ((pk, h)cpk = 0, for otherwise the union of So and the normalization of
h - Ek 1(cpk, h)cpk would be an orthonormal set that properly contains So. Therefore {cPk}k

1

is an orthonormal basis for H.

PROBLEMS

19. Show that an orthonormal subset of a separable Hilbert space H must be countable.

20. Let {cpk} be an orthonormal sequence in a Hilbert space H. Show that {cpk} converges weakly
to 0 in H.

21. Let {cpk } be an orthonormal basis for the separable Hilbert space H. Show that {u } - u in H
if and only if for each k, (u,,, cpk) = (u, cpk).

22. Show that any two infinite dimensional separable Hilbert spaces are isometrically isomorphic
and that any such isomorphism preserves the inner product.

23. Let H be a Hilbert space and V a closed separable subspace of H for which {cpk} is an
orthonormal basis. Show that the orthogonal projection of H onto V, P, is given by

00

P(h) _ (cpk, h)cpk for all h E H.
k=1

24. (Parseval's Identities) Let {cpk} be an orthonormal basis for a Hilbert space H. Verify that

00

11h 112 = ('Pk, h)2 for all h E H.
k=1

Also verify that
00

(u, v) = ak bk for all u, v E H,
k=1

where, for each natural number k, ak = (u, cpk) and bk = (v, cpk).

25. Verify the assertions in the example of the orthonormal basis for L2[0, 2ir].

26. Use Proposition 10 and the Stone-Weierstrass Theorem to show that for each f E L2[-ar, n ],

00

f (x) = ao/2 + I [ak cos kx + bk sin kx],
k=1

where the convergence is in L2[-a, a] and each

1 1ak=- J
IT

f(x)coskxdxandbk=-J f(x)sinkxdx
a 1 a
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16.4 ADJOINTS AND SYMMETRY FOR LINEAR OPERATORS

Throughout this section, H denotes a Hilbert space. We denote C(H, H) by C(H). Let T
belong to C(H). For a fixed vector v in H, the mapping

uH(T(u), v)foruEH,

belongs to H* since it is linear and, by the Cauchy-Schwarz Inequality, I (T(u ), v) I c II u II

for all u E H, where c = II T11 I I v II . According to the Riesz-Frechet Representation Theorem,
there is a unique vector h E H such that (T(u), v) = (h, u) = (u, h) for all u E H. We
denote this vector h by T* (v). This defines a mapping T*: H -* H that is determined by the
relation

(T(u), v)=(u, T*(v))forall u,vEH. (11)

We call T* the adjoint of T.

Proposition 12 Let H be a Hilbert space. If T belongs to L(H), so does T* and II TII =IIT* II.

Proof Clearly T* is linear. Let h be a unit vector in H. Then, by the Cauchy-Schwarz
Inequality,

IIT*(h)IIl = (T*(h), T*(h)) = (T(T*(h)), h) IITIIIIT*(h)II

Thus T* belongs to £(H) and 11 T* II 11 TII. But also observe that

IIT(h)112 = (T(h), T(h)) = (T*(T(h)), h) IIT*IIIIT(h)II

Therefore II T11 II T* II .

We leave it as an exercise to verify the following structural properties of adjoints: for
T, SE£(H),

(T*)*=T, (T + S)* = T* + S* and (To S)*=S*oT*. (12)

Proposition 13 Let H be a Hilbert space. Suppose T belongs to C(H) and has a closed image.
Then

ImT®kerT*=H. (13)

Proof Since Im T is closed, it suffices, by Theorem 3, to show that ker T* = [Irn T]1. But
this is an immediate consequence of the relation (11).

Proposition 14 Let H be a Hilbert space. Suppose T belongs to ,C(H) and there is a c > O for
which 2

(T (h ), h) ? 11h 112 for all h E H. (14)

Then T is invertible.

ZAn operator T for which (14) holds is called positive definite.
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Proof The inequality (14) implies that ker T = {0}. We infer from (14) and the Cauchy-
Schwarz Inequality that

IIT(u)-T(v)ll>cllu-vllforallu,vEH.

We claim that T has closed range. Indeed, let h strongly in H. Then is
Cauchy. The above inequality implies that {h } is Cauchy. But H is complete and therefore
there is a vector h* to which (h, j converges strongly. By the continuity of T, T(k) = h.
Therefore T (H) is closed. We also claim that ker T* = {0}. Indeed, by (14), the symmetry of
the inner product and the definition of the adjoint,

(T*(h), h) = (T(h), h) > 11h112forall h E H.

Therefore ker T* = {0}. We infer from the preceding proposition that T(H) = H.

An examination of the proof of the Riesz-Frechet Representation Theorem reveals
that the symmetry of the inner product was not used. The following important generalization
of this theorem has many applications in the study of partial differential equations.

Theorem 15 (the Lax-Milgram Lemma) Let H be a Hilbert space. Suppose the function
B: H X H -* R has the following three properties:

(i) For each u E H, the following two functionals are linear on H;

v-*B(u, v) and v-*B(v, u).

(ii) There is a cl > 0 for which

IB(u, v) I

(iii) There is a c2 > 0 for which

B(h, h)>C2.11h112forallhEH.

Then for each ay E H*, there is a unique h E H for which

4(u) = B(h, u) forallu E H.

Proof Let T : H -* H* be the isomorphism defined by the Riesz-Frechet Representation
Theorem, that is, for each h E H,

T(h)[u] = (h, u) for all u E H. (15)

For each h E H, define the functional S(h) : H -+ R by

S(h) [u] = B(h, u) for all u E H. (16)

We infer from assumptions (i) and (ii) that each S(h) is a bounded linear functional on H
and that the operator S: H -* H* is linear and continuous. Since T is an isomorphism of H
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onto H*, to show that S is an isomorphism of H onto H* is equivalent to showing that the
operator T-1 o S E £(H) is invertible. However, by assumption (iii),

((T-1 o S)(h), h) = S(h)[h] = B(h, h) > c2 1 1 h for all h E H.

The preceding proposition tells us that T-1 o S E L(H) is invertible.

Definition An operator T E C(H) is said to be symmetric or self-adjoint provided T = T*,
that is,

(T(u), v) = (u, T(v)) forallu,V E H.

Example Let {cpk} be an orthonormal basis for the separable Hilbert space Hand T belong
to L(H ). Then, by the continuity of the inner product, T is symmetric if and only if

(T(,pi), cpj) _ (T(cpi), (pi) for all 1 < i, j < oo.

In particular, if H is Euclidean space Ru, then T is symmetric if and only if the n X n matrix
that represents T with respect to an orthonormal basis is a symmetric matrix.

A symmetric operator T E C(H) is said to be nonnegative, written T > 0, provided
(T(h), h) > 0 for all h e H. Moreover, for two symmetric operators A, B E £(H), we write
A > B provided A - B > 0. The sum of nonnegative, symmetric operators is nonnegative
and symmetric. Moreover,

if T E L (H) is symmetric and nonnegative, then so is S*TS for any S E G(H), (17)

since foreachh E H, (S*TS(h), h) = (T(S(h)), S(h)) > 0. In Problems 37-43 weexplorea
few of the many interesting consequences of this order relation among symmetric operators.

The Polarization Identity For a symmetric operator T E C(H),

(T(u), v)=4{(T(u+v), u+v)-(T(u-v),u-v)] forallu,vEH. (18)

To verify this identity, simply expand the two inner products on the right-hand side. If we
associate with a symmetric operator T E C (H) the quadratic form QT: H -+ R defined by

QT(u) _ (T(u), u)forall u E H,

the Polarization Identity tells us that T is completely determined by QT. In particular, T = 0
on H if and only if QT = 0 on H. In fact, the following much sharper result holds. It is
useful, for T E £(H) and A E,R, to denote AId-T by A - T, where the identity mapping
Id: H-+ Hisdefined byId(h) =hforall h a H.

Proposition 16 Let H be a Hilbert space and the operator T E L(H) be symmetric. Then

IITII = sup I(T(u), u)I. (19)
Ilull=1
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Proof Denote u) by i. If i = 0, we infer from the Polarization Identity
that T = 0. So consider the case rl > 0. Observe that, by the Cauchy-Schwarz Inequality, for
a unit vector u E H,

I(T(u), u)I <- IIT(u)IIIlull IITII.

Thus, i7 <- 11Th. To prove the inequality in the opposite direction, observe that the two
symmetric operators rl - T and 71 + T are nonnegative and therefore, by (17), the two
operators

(,n+T)*(r,-T)('7+T) = (71+T)('7-T)(,q+T)
and

(,q -T)*(rf+T)('q-T) = ('q-T)(71+T)(71-T)

also are nonnegative and hence so is their sum 2,7(,72 - T2). Since 271 > 0, ,72 - T2 is
nonnegative, that is,

IIT(u)112 = (T(u), T(u)) = (T2(u), u) < n2(u, u) = n211u112 for all u E H.

Hence < , q .

A general strategy in the study of a linear operator T E L(H) is to express H as a
direct sum H1 ® H2 for which T (H1) C Hl and T (H2) C H2. When this occurs we say the
decomposition H = H, ® H2 reduces the operator T. In general, if T (HI) C H1 we cannot
infer that T (H2) C H2. However, for symmetric operators on H and an orthogonal direct
sum decomposition of H, we have the following simple but very useful result.

Proposition 17 Let H be a Hilbert space. Suppose the operator T E G(H) is symmetric and
V is a subspace of H for which T(V) C V. Then T(V1-) C V1-.

Proof Let u belong to V. Then for any v E V, (T(u), v) = (u, T(v)) and (u, T(v)) = 0
since T (V) C V and U E V1-. Thus T (u) E V1.

PROBLEMS

27. Verify (12).

28. Let T and S belong to C(H) and be symmetric. Show that T = S if and only if QT = Qs.

29. Show the symmetric operators are a closed subspace of L(H). Also show that if T and S are
symmetric, then so is the composition S o T if and only if T commutes with S with respect to
composition, that is, S o T = T o S.

30. (Hellinger-Toplitz) Let H be a Hilbert space and the linear operator T : H -4 H have the
property that the (T(u), v) = (u, T(v)) for all u, v E h. Show that T belongs to £(H).

31. Exhibit an operator T E £(R2) for which 11 T11 > supllull=il(T(u), u)I.
32. Let S and Tin £(H) be symmetric. Assume S > T and T > S. Prove that T = S.

33. Let V be a closed nontrivial subspace of a Hilbert space H and P the orthogonal projection
of H onto V. Show that P = P*, P > 0, and IIPII = 1.

34. Let P E L(H) be a projection. Show that P is the orthogonal projection of H onto P(H) if
and only ifP=P*.
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35. Let {(pk ) be an orthonormal basis for a Hilbert space H and for each natural numbern, define
P. to be the orthogonal projection of H onto the linear span of p , , Show that P. is
symmetric and

0 < P < PP+1 < Id for all n.

Show that { PP } converges pointwise on H to Id but does not converge unformly on the unit ball.

36. Show that if T E .C( H) is invertible, so is T* o T and therefore so is P.

37. (a General Cauchy-Schwarz Inequality) Let T E ,C(H) be symmetric and nonnegative. Show
that for all u, v E H,

I(T(u), v)12 < (T(u), u) (T(v), v).

38. Use the preceding problem to show that if S, T E C(H) are symmetric and S >_ T, then for
each u E H,

IIS(u)-T(u)114 = ((S-T)(u), (S-T)(u))2 < 1((S-T)(u), u)II((S-T)2(u), (S-T)(u))I

and thereby conclude that

11S(u) - T(u) 114 < I(S(u), u) - (T(u), u)I.1IS- T113 11U 112.

39. (a Monotone Convergence Theorem for Symmetric Operators) A sequence IT. )of symmetric
operators in .C(H) is said to be monotone increasing provided T for each n, and said to
be bounded above provided there is a symmetric operator S in L(H) such that T. < S for all n.
(i) Use the preceding problem to show that a monotone increasing sequence IT.) of sym-

metric operators in L(H) converges pointwise to a symmetric operator in .C(H) if and
only if it is bounded above.

(ii) Show that a monotone increasing sequence {T,) of symmetric operators in .C(H) is
bounded above if and only if it is pointwise bounded, that is, for each h E H, the
sequence IT, (h)) is bounded.

40. Let S E £(H) be a symmetric operator for which 0 < S < Id. Define a sequence in
,C(H) by letting T1 = 1/2(Id -S) and if n is a natural number for which T EC(H) has been
defined, defining Ti}1 = 1/2(Id -S + T' ).
(i) Show that for each natural number n, T and Ti+t - T,, are polynomials in Id -S with

nonnegative coefficients.

(ii) Show that {T,, } is a monotone increasing sequence of symmetric operators that is bounded
above by Id.

(iii) Use the preceding problem to show that converses pointwise to a symmetric
operator T for which 0 < T < Id and T = 1/2 (Id -S + T ).

(iv) Define A = (Id -T). Show that A2 = S.

41. (Square Roots of Nonnegative Symmetric Operators) Let T E ,C(H) be a nonnegative
symmetric operator. A nonnegative symmetric operator A E C(H) is called a square root of
T provided A2 = T. Use the inductive construction in the preceding problem to show that
T has a square root A which commutes with each operator in ,C(H) that commutes with T.
Show that the square root is unique: it is denoted by lf Finally, show that T is invertible if
and only if . is invertible.

42. An invertible operator T E L(H) is said to be orthogonal provided T-1 = T*. Show that an
invertible operator is orthogonal if and only if it is an isometry.
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43. (Polar Decompositions) Let T E C(H) be invertible. Show that there is an orthogonal
invertible operator A E L(H) and a nonnegative symmetric invertible operator B E L(H)
such that T = B o A. (Hint: Show that T*T is invertible and symmetric and let B = T -o T*.)

16.5 COMPACT OPERATORS

Definition An operator T E L(H) is said to be compact provided T (B) has compact closure,
with respect to the strong topology, where B is the closed unit ball in H.

Any operator T E L(H) maps bounded sets to bounded sets. An operator T E .C(H)
is said to be of finite rank provided its image is finite dimensional. Since a bounded subset of
a finite dimensional space has compact closure, every operator of finite rank is compact. In
particular, if H is finite dimensional, then every operator in L(H) is compact. On the other
hand, according to Riesz's Theorem, or by Theorem 11, the identity operator Id: H --> H
fails to be compact if H is infinite dimensional. For the same reason, an invertible operator
in L(H) fails to be compact if H is infinite dimensional.

In any metric space, compactness of a set is the same as sequential compactness.
Furthermore, since a metric space is compact if and only if it is complete and totally
bounded, a subset of a complete metric space has compact closure if and only if it is totally
bounded. We therefore have the following useful characterizations of compactness for
a bounded linear operator.

Proposition 18 Let H be a Hilbert space and K belong to .C(H). Then the following are
equivalent:

(i) K is compact;

(ii) K(B) is totally bounded, where B is the closed unit ball in H;

(iii) If {hn} is a bounded sequence in H, then {K(h )} has a strongly convergent subse-
quence.

Example Let {cpk} be an orthonormal basis for the separable Hilbert space H and {Ak} a
sequence of real numbers that converges to 0. Define

T(h) _ Ak(h, Wk)cpk for h E H.
k=1

We infer from Bessel's Inequality and the boundedness of {Ak} that T belongs to .C(H)
and we claim that T is compact. According to the preceding proposition, to show that K
is compact it suffices to show that T(B) is totally bounded. Let E > 0. Choose N such that
IAk I < E/2 fork > N. Define TN EL(H) by

N

TN(h) Ak(h, cok)cpk forh E H.
k=1

We infer from Bessel's Inequality that IIT(h) - TN(h)II < E/211h11 for h E H. But TN(B) is
a bounded subset of a finite dimensional space, so it is totally bounded. Let E > 0. There
is a finite c/2-net for TN (B) and by doubling the radius of each of the balls in this net we get
a finite E-net for T(B).
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A linear operator T : H --> H belongs to C(H) if and only if it maps weakly convergent
sequences to weakly convergent sequences (see Problem 47).

Proposition 19 Let H be a Hilbert space. Then an operator Tin C(H) is compact if and only
if it maps weakly convergent sequences to strongly convergent sequences, that is,

if {hn} -h, then {T(hn)} - T(h).

Proof According to the preceding proposition, an operator is compact if and only if it
maps bounded sequences to sequences that have a strongly convergent subsequence. First
assume that T is compact. Observe that for any operator T E L(H), if {uk} u, then
{T (un) } T (u ), since for each v E H,

khm (T(Uk), v) kim (Uk, T*(v)) = (u, T*(v)) = (T(u), v).

Let {hn} h in H. By the compactness of T, every subsequence of {T(hn)} has a further
subsequence that converges strongly and, by the preceding observation, its strong limit
must be T (h ). Therefore the entire sequence {T (hn) } converges strongly to T (h ). To
prove the converse, assume T maps weakly convergent sequences to strongly convergent
subsequences. Let {hn} be a bounded sequence. Theorem 6 tells us that {hn} has a weakly
convergent subsequence. The image of this weakly convergent subsequence converges
strongly.

Schauder's Theorem A compact linear operator on a Hilbert space has a compact adjoint.

Proof Let K E .C(H) be compact. According to the preceding proposition, it suffices to show
that K* maps weakly convergent sequences to strongly convergent sequences. Let {hn } h
in H. For each n,

II K*(hn) - K*(h)112 = (KK*(hn) - KK*(h), hn -h). (20)

Since K* is continuous, (K*(hn)) converges weakly to K*(h). The preceding proposition
tells us that { KK* (hn) } -+ KK* (h) strongly in H. Therefore, by Proposition 7,

kl o(KK*(hn) - KK*(h), hn - h) = 0.

We infer from (20) that {K* (hn ) } converges strongly to K* (h ).

PROBLEMS

44. Show that if H is infinite dimensional and T E C (H) is invertible, then T is not compact.

45. Prove Proposition 18.

46. Let IC(H) denote the set of compact operators in £(H ). Show that K(H) is a linear subspace
of £(H ). Moreover, show that for K E K(H) and T E £(H), both K o T and T o K belong to
K(H).

47. Show that a linear operator T : H -* H is continuous if and only if it maps weakly convergent
sequences to weakly convergent sequences.
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48. Show that K E ,C(H) is compact if and only if whenever {un} -, u in H and {vn} v in H,
then(K(un), vn) (K(u), v).

49. Let {Pn} be a sequence of orthogonal projections in £(H) with the property that for natural
numbers n and m, Pn (H) and P,n (H) are orthogonal finite dimensional subspaces of H. Let
{An} be a bounded sequence of real numbers. Show that

00

n=1

is a properly defined symmetric operator in C(H) that is compact if and only if {A } converges
to 0.

50. For X a Banach space, define an operator T E C(X) be be compact provided T(B) has
compact closure. Show that Proposition 18 holds for a general Banach space and Proposition
19 holds for a reflexive Banach space.

16.6 THE HILBERT-SCHMIDT THEOREM

A nonzero vector u E H is said to be an eigenvector of the operator T E .C(H) provided
there is some A E R for which T (u) = Au. We call A the eigenvalue of T associated with the
eigenvector u. One of the centerpieces of linear algebra is the following assertion: If H is a
finite dimensional Hilbert space and T E C(H) is symmetric, then there is an orthonormal
basis for H consisting of eigenvectors of T, that is, if H has dimension n, there is an
orthonormal basis {cp1, ..., (p,,) for H and numbers {A1, ..., A,,) such that T (cpk) = Akcpk for
1<k<n.Thus

T(h) = I Ak(h, (pk)Wk for all h E H. (21)
k=1

Of course, in the absence of symmetry, a bounded linear operator, even on a finite
dimensional space, may fail to have any eigenvectors. As the following example shows,
even a symmetric operator on an infinite dimensional Hilbert space may fail to have any
eigenvectors.

Example Define T E L(L2[a, b]) by [T(f)](x) = xf(x) for f E L2[a, b]. For u,v E
L2[a, b],

b

u(x)v(x)dx= (u, T(v)).(T(u), v) =
fa

x

Thus T is symmetric and one easily checks that it has no eigenvectors.

We associated with a symmetric operator T E .C(H), the quadratic form QT: H - R
defined by

QT (h) = (T (h ), h) for all h E H.

It is useful to define the Raleigh quotient for T, RT: H - {0} -> R, by

RT (h) _ (T (h ), h)
for all h E H ^- {0}.

(h, h)

Observe that a maximizer h,, for the quadratic form QT on the unit sphere S = {h E H I II h II =
11 is a maximizer for the Raleigh quotient RT on H ^- {0}.
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The Hilbert-Schmidt Lemma Let H be a Hilbert space and T E L(H) be compact and
symmetric. Then T has an eigenvalue A for which

IAI = IITII = sup I(T(h), h)I. (22)
Ilh 11=1

Proof If T = 0 on H, then every nonzero vector in H is an eigenvector of T with
corresponding eigenvalue A = 0. So consider the case T :A 0. Proposition 16 tells us that

IITII = sup I(T(h), h)I.
IIh11=1

By possibly replacing T by -T we may suppose that IITII = supIIhII=1(T(h), h). Denote
sup IIh 11=1(T(h ) , h) by i7. Let S = {h E H I II h II = 1) be the unit sphere in H.

Let {hk } be a sequence of unit vectors for which limk->oo (T( hk ), hk) = rt. By Theorem 6,
by possibly passing to a subsequence, we may suppose that {hk} converges weakly to h,.
We have 11 h* 11 lim inf Il hn 11 = 1. According to Proposition 19, since T is compact, {T (h ) }
converges strongly to T (h* ). Therefore, by Proposition 7,

lim (T(hk), hk) = (T(h*), h*).
k oo

Thus rl = (T(h* ), h*). Now h* 0 0 since q # 0. Moreover, h* must be a unit vector. Indeed,
otherwise 0 < Ilh*II < 1, in which case the quadratic form QT takes a value greater than 71
at h*/llh*II E S, contradicting the choice of q as being an upper bound for QT on S. Thus
h* E S and QT(h) < QT(h*) for all h E S. Therefore, for the Raleigh Quotient for T, RT,
we have

RT(h) < RT(h*) for all h E H - (0).

Let h0 be any vector in H. Observe that the function f: R -* R, defined by f(t) _
RT(h* + tho) for t E R, has a maximum value at t = 0 and therefore f'(0) = 0. A direct
calculation gives

0_ f,(0) = (T(ho), h*)+(T(h*), ho) _ (T(h*), h*)(h*, ho) + (ho, h*)

Ilh*112 Ilh*114

But T is symmetric, h* is a unit vector, and q = (T(h*), h*) so that

(T(h*) -'9h*, ho) = 0.

Since this holds for all ho a H, T(h*) _ i7h*.

The Hilbert-Schmidt Theorem Let H be a Hilbert space. Suppose K E L(H) is a compact
symmetric operator that is not of finite rank. Then there is an orthonormal basis (41k) for
[ker K]l together with a sequence of real nonzero numbers {Ak) such that limk."" Ak = 0 and
K(efik) = Ak0k for each k. Thus

0
K(h) = I Ak(h, I/k)ok forallh E H. (23)

k=1
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Proof Let S be the unit sphere in H. According to the Hilbert-Schmidt Lemma, we may
choose a vector 411 E S and µi c- R for which

K(1) = µt 4,1 and Iµ11=sup I (K(h ), h) I
hES

Since K :f- 0, we infer from Proposition 16 that µ1 t- 0. Define H1 = [span t4,1)1-1. Since
K(span 14,11) C span (411 }, it follows from Proposition 17 that K(H1) C H1. Thus if we define
K1 to be the restriction of K to H1, then K1 E G(H1) is compact and symmetric. We again
apply the Hilbert-Schmidt Lemma to choose a vector 412 E S n H1 and µ2 E R for which

K( 2)=A2412andIµ2l=sup{I(K(h),h)I I

Observe that 1µ21 < lµ11. Moreover, since K does not have finite rank, we again use
Proposition 16 to conclude that µ2 # 0. We argue inductively to choose an orthogonal
sequence of unit vectors in H, (I/rk), and a sequence of nonzero real numbers (µk) such that
for each index k,

K(k) = µkIk and 1µk1 = sup {I (K(h), h)I I h Es n [span 1./r1, ..., 4'k-1}]1} (24)

Observe that { l µk l } is decreasing. We claim that 1141 -+ 0. Indeed, otherwise, since this
sequence is decreasing, there is some c > 0 such that IµkI ? E for all k. Therefore, for natural
numbers m and n, since On is orthogonal tom,

IIK(On)-K(4,m)112=µ211+1"1l2+µmlpm112>2E2.

Thus {K(+1k )} has no strongly convergent subsequence and this contradicts the compactness
of the operator K. Therefore (µk} -+ 0. Define Ho to be the closed linear span of (41k}k 1
Then, by Proposition 10, ((/!k}k° 1 is an orthonormal basis for Ho. Since K(H0) C H0, it follows
from Proposition 17 that K(Ho) C Ho . But observe that if h E Ho is a unit vector, then,
for each k, h E S n [span {ifrl, ... , +1k_1 }]1 and therefore I (K(h ), h) l < Iµk l Since {µk} -- 0,
(K(h), h) = 0. Thus QT = 0 on Ho and hence, by the polarization identity, ker K = HO L.
Thus Ho = [ker K]1.

In case a symmetric operator T E C(H) has finite rank, define Ho to be the image of T. Then
ker T = Ho j-. The above argument establishes a finite orthonormal basis for Ho consisting of
eigenvectors of T, thereby recovered a basic result of linear algebra that was mentioned at
the beginning of this section.

PROBLEMS

51. Let H be a Hilbert space and T E C(H) be compact and symmetric. Define

a = inf (T(h), h) and p = sup (T(h), h).
I1hll=1 I1h11=1

Show that if a < 0, then a is an eigenvalue of T and if (3 > 0, then a is an eigenvalue of T.
Exhibit an example where a = 0 and yet a is not an eigenvalue of T, that is, T is one-to-one.
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52. Let H be a Hilbert space and K E L (H) be compact and symmetric. Suppose

sup IIhII=1(K(h ), h) _ 0 > 0.

Let {hn} be a sequence of unit vectors for which limn,,,,(K(hn), hn) Show that a sub-
sequence of {hn } converges strongly to an eigenvector of T with corresponding eigenvalue p.

16.7 THE RIESZ-SCHAUDER THEOREM: CHARACTERIZATION
OF FREDHOLM OPERATORS

A subspace Xo of the Banach space X is said to be of finite codimension in X provided X0 has
a finite dimensional linear complement in X, that is, there is a finite dimensional subspace
X1 of X for which X = Xo ® X1. The codimension of Xo, denoted by codim Xo, is properly
defined to be the dimension of a linear complement of X0; all linear complements have the
same dimension (see Problem 66). A cornerstone of linear algebra is the assertion that if X
is a finite dimensional linear space and T : X - X is linear, then the sum of the rank of T
and the nullity of T equals the dimension of X, that is, if dim X = n,

dim Im T + dim ker T = n,

and therefore, since codim Im T = n - dim Im T,

dim ker T = codim Im T. (25)

Our principal goal in this section is to prove that if H is a Hilbert space and the operator
T E .C(H) is a compact perturbation of the identity operator, then T has a finite dimensional
kernel and a finite codimensional image for which (25) holds.

Proposition 2O Let H be a Hilbert space and K E C(H) be compact. Then Id+K has finite
dimensional kernel and a closed image.

Proof Suppose ker (Id+K) is infinite dimensional. We infer from Proposition 11 that there
is an orthogonal sequence of unit vectors (uk} contained in ker (Id +K). Since II K(un) -
K(um) II = II un - um II = 12_, if in # n, the sequence (K(un) } has no convergent subsequence.
This contradicts the compactness of the operator K. Thus dim[ker (Id +K)] < oo. Let
Ho = [ker (Id+K)]j-. We claim that there is a c > 0 for which

flu+K(u)II>cllullforall uEHo. (26)

Indeed, if there is no such c, then we can choose a sequence (hn } of unit vectors in Ho such
that fun + K(un)} -+ 0 strongly in H. Since K is compact, by passing to a subsequence if
necessary, we may suppose that {K(un )} -> ho strongly. Therefore (un) -* -ho strongly.
By the continuity of K, ho + K(ho) = 0. Thus ho is a unit vector that belongs to both
[ker (Id +K)]' and ker (Id +K). This contradiction confirms the existence of a c > 0 for
which (26) holds. We infer from (26) and the completeness of Ho that (Id +K) (Ho) is closed.
Since (Id+K)(Ho) = (Id+K)(H), Im(Id+K) is closed.
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Definition Let {cp } be an orthonormal basis for the separable Hilbert space H. For each n,
define Pn E L(H) by

n

Pn(h) _ I(cpk, h}(pk for all h E H.
k=1

We call {Pn} the orthogonal projection sequence induced by {cpn}.

For an orthogonal projection sequence {Pn} induced by an orthonormal basis {cpn},
each P n is the orthogonal projection of H into span {cP1, ... , cpn} and therefore II Pn II = 1.
Moreover, by the very definition of an orthonormal basis, {Pn} -* Id pointwise on H.
Therefore, for any T E C(H), {Pn o T} is a sequence of operators of finite rank that
converges pointwise to T on H.

Proposition 21 Let {P,,) be the orthogonal projection sequence induced by the orthonormal
basis {cpn } for the separable Hilbert space H. Then an operator T E L(H) is compact if and
only if{PnoT}-* TinL(H).

Proof First assume I P,, o T} -* T in L(H). For each natural number n, Pn o T has finite
dimensional range and therefore (Pn o T) (B) is totally bounded, where B is the unit ball in
H. Since [P,, o T) -* T E £(H), JP, o T) converges uniformly on B to T. Therefore T(B)
also is totally bounded. We infer from Proposition 18 that the operator T is compact. To
prove the converse, assume T is compact. Then the set T (B) is compact with respect to the
strong topology. For each natural number n, define 41,,: T (B) -+ R by

rn(h) = II Pn(h) -h1l for all h E T(B).

Since each P,, has norm 1, the sequence of real-valued functions {a(in : T B -* R} is
equicontinuous, bounded, and converges pointwise to 0 on the compact set T(B). We infer
from the Arzela-Ascoli Theorem that {ali,,: T (B) -+ R} converges uniformly to 0. This
means precisely that {P,, o T} -+ Tin C(H).

Proposition 22 Let H be a Hilbert space and K E C(H) be compact. If Id +K is one-to-one,
then it is onto.

Proof We leave it as an exercise (Problem 53) to show that there is a closed separable
subspace Ho of H for which K(H0) C Ho and K = 0 on HO J-. Therefore, by replacing H by
Ho we may suppose H is separable. We argue as we did in the proof of Proposition 20 to
show that there is a c > 0 for which

IIh+K(h)II>c11h1IforallhEH. (27)

According to Theorem 11, H has an orthonormal basis Let be the orthogonal
projection sequence induced by {cpn}. For each natural numbern, let H be the linear span
of {(P1, ... , cpn}. Since the operator K is compact, according to the preceding proposition,
{PnoK} -* KinL(H).Choose for all n >_ N.
We infer from (27) that

Ilu+P,oK(u)Il>c/211u11forallucHandall n > N. (28)
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To show that (Id+K)(H) = H, let h* belong to H. Let n > N. It follows from (28) that
the restriction to H of Id +Pn o K is a one-to-one linear operator that maps the finite
dimensional space Hn into itself. A one-to-one linear operator on a finite dimensional space
is onto. Therefore this restriction maps H onto Hn. Thus, there is a vector u,, E H,, for which

u,, + (P, oK)(u,,)= P,, (h*) (29)

Take the inner product of each side of this equality with v E H and use the symmetry of the
projection P,, to conclude that

(un + K(u,,), P. (v)) = (h*, P,, (v)) for all n > N, V E H. (30)

We infer from (29) and the estimate (28) that

IIh*II? IIP.(h*)II =llun+(PnoK)unhI _ c/2IIunllfor all n>N.

Therefore the sequence {u,, } is bounded. Theorem 6 tells us that there is a subsequence {hnk }
that converges weakly to h E H. Therefore {hnk + K(hnk )} converges weakly to h + K(h)-
Take the limit ask --> oo in (30) with n = nk to conclude, by Proposition 7, that

(u + K(u ), v) _ (h*, v) for all v E H.

Therefore u + K(u) = h*. Thus (Id +K) (H) = H.

The Riesz-Schauder Theorem Let H be a Hilbert space and K E 'C(H) be compact. Then
Im(Id+K) is closed and

dimker(Id+K) = dimker(Id+K*) < oo. (31)

In particular, Id +K is one-to-one if and only if it is onto.

Proof According to Proposition 20, a compact perturbation of the identity has finite
dimensional kernel and a closed image. We will show that

dim ker (Id +K) > dim ker (Id +K* ). (32)

Once this is established, we replace K by K* and use the observation that (K*) * = K, together
with Schauder's Theorem regarding the compactness of K*, to obtain the inequality in the
opposite direction. We argue by contradiction to verify (32). Otherwise, dim ker (Id +K) <
dim ker (Id +K*). Let P be the orthogonal projection of H onto ker (Id +K) and A a
linear mapping of ker(Id+K) into ker (Id+K*) that is one-to-one but not onto. Define
K' = K + A o P. Since Id +K has closed image, Proposition 13 tells us that

H = Im(Id+K)+ker(Id+K*)

and therefore Id +K' is one-to-one but not onto. On the other hand, since A o P is of finite
rank, it is compact and therefore so is K'. These two assertions contradict the preceding
proposition. Therefore (32) is established. Since Id +K has closed image, we infer from (14)
and (32) that Id +K is one-to-one if and only if it is onto.
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Corollary 23 (the Fredholm Alternative) Let H be a Hilbert space, K E L(H) compact, and
µ a nonzero real number. Then exactly one of the following holds:

(i) There is a nonzero solution of the following equation

p.h-K(h)=0,heH.

(ii) For every h0 E H, there is a unique solution of the equation

µh-K(h)=ho,heH.

Definition Let H be a Hilbert space and T belong to L(H ). Then T is said to be Fredholm
provided the kernel of T is finite dimensional and the image of T has finite codimension. For
such an operator, its index, ind T, is defined by

ind T = dim kerT - codim Im T.

In the proof of the Riesz-Schauder Theorem, we first established that Im T is closed and
used this, together with (14), to show that Im T has finite codimension equal to dimker T*.
However, Theorem 12 of Chapter 13 tells us that if H is a Hilbert space and the operator
T E L(H) has a finite codimensional image, then its image is closed. Therefore each
Fredholm operator has a closed image and hence, again by (14), codim Im T = dim ker T*.

We say that an operator T E L(H) is invertible provided it is one-to-one and onto.
The Open Mapping Theorem tells us that the inverse of an invertible operator is continuous
and therefore an invertible operator is an isomorphism.

'Theorem 24 Let H be a Hilbert space and T belong to L(H ). Then T is Fredholm of index 0
if and only if T = S + K, where S E L(H) is invertible and K E L(H) is compact.

Proof First assume T is Fredholm of index 0. Since Im T is closed, Proposition 13 tells us that

H = Im T ® ker T*. (33)

Since dim ker T = dim ker T* < oo, we may choose a one-to-one linear operator A of ker T
onto ker T*. Let P be the orthogonal projection of H onto ker T. Define K = A o P E L(H)
and S = T - K. Then T = S + K. The operator K is compact since it is of finite rank,
while the operator S is invertible by (33) and the choice of P and A. Hence T is a compact
perturbation of a invertible operator.

To prove the converse, suppose T = S+ K, where S E L(H) is invertible and K E L(H )
is compact. Observe that

T = S o [Id+S-1 o K]. (34)

Since S-1 is continuous and K is compact, S-1 o K is compact. The Riesz-Schauder Theorem
tells us that Id +S-1 o K is Fredhohn of index 0. The composition of a Fredhohn operator
with an invertible operator is also Fredholm of index 0 (see Problem 55). We therefore infer
from (34) that T is Fredholm of index 0.
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We leave it as an exercise to establish the following corollary.

Corollary 25 Let H be a Hilbert space and T and S in L(H) be Fredholm of index 0. Then
the composition S o T is also Fredholm of index 0.

Remark The Riesz-Schauder Theorem and Theorem 24 are true for operators on a general
Banach space. However, the general method of proof must be different. An essential ingredient
in the proo f of Proposition 22 is the approximation in L(H) of a compact operator by an oper-
ator o f finite rank. Per Enflo has shown that there are linear compact operators on a separable
Banach space that cannot be approximated in L(H) by linear operators of finite rank.3

PROBLEMS

53. Let K E .C(H) be compact. Show that T = K*K is compact and symmetric. Then use the
Hilbert-Schmidt Theorem to show that there is an orthonormal sequence {cpk} of H such that
T (ipk) = Ak (Pk for all k and T (h) = 0 if h is orthogonal to {k}0. Conclude that if h is
orthogonal to {cpk} 0, then

11K(h)112 = (K(h), K(h)) = (T(h), h) = 0.

Define HO to be the closed linear span of J Km (cpk) I m > 1, k > 1}. Show that HO is closed and
separable, K(HO) C HO and K = 0 on H,'-

54. Let 1C(H) denote the set of compact operators in C(H ). Show that K(H) is a closed subspace
of C(H) that has the set of operators of finite rank as a dense subspace. Is IC(H) an open
subset of £(H )?

55. Show that the composition of a Fredholm operator of index 0 with an invertible operator is
also Fredholm of index 0.

56. Show that the composition of two Fredholm operators of index 0 is also Fredholm of index 0.

57. Show that an operator T E C(H) is Fredholm of index 0 if and only if it is the perturbation
of an invertible operator by an operator of finite rank.

58. Argue as follows to show that the collection of invertible operators in C(H) is an open subset
of,C(H).
(i) For A E £(H) with 11 A 11 < 1, use the completeness of £(H) to show that the so-called

Neumann series 1'0 A" converges to an operator in C(H) that is the inverse of Id -A.

(ii) For an invertible operator S E £(H) show that for any T E £(H), T = S[Id+S-1(T -
S)].

(iii) Use (i) and (ii) to show that if S E C(H) is invertible then so is any T E C(H) for which
IIS-T11 <1/IIS-111.

59. Show that the set of operators in C(H) that are Fredholm of index 0 is an open subset of
,C(H).

60. By following the orthogonal approximation sequence method used in the proof of Proposi-
tion 22, provide another proof of Proposition 14 in case H is separable.

61. For T E £(H), suppose that (T(h), h) > 11h112forall h E H. Assume that K E £(H) is
compact and T + K is one-to-one. Show that T + K is onto.

3"A counterexample to the approximation problem in Banach spaces," Acta Mathematica, 130,1973.
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62. Let K E L(H) be compact and µ E R have IµI > II KII. Show that µ - K is invertible.

63. Let S E L(H) have IISII < 1, K E L(H) be compact and (Id+S+ K)(H) = H. Show that
Id +S + K is one-to-one.

64. Let 9L (H) denote the set of invertible operators in L(H).
(i) Show that under the operation of composition of operators, GL (H) is a group: it is called

the general linear group of H.

(ii) An operator T in cL(H) is said be orthogonal, provided that T' = T-1. Show that the
set of orthogonal operators is a subgroup of GL(H) : it is called the orthogonal group.

65. Let H be a Hilbert space, T E L(H) be Fredholm of index zero, and K E L(H) be compact.
Show that T + K is Fredholm of index zero.

66. Let Xo be a finite codimensional subspace of a Banach space X. Show that all finite dimensional
linear complements of Xo in X have the same dimension.
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The first goal of the present chapter is to abstract the most important properties of Lebesgue
measure on the real line in the absence of any topology. We shall do this by giving
certain axioms that Lebesgue measure satisfies and base our theory on these axioms. As a
consequence our theory will be valid for every system satisfying the given axioms.

To establish that Lebesgue measure on the real line is a countably additive set function
on a o--algebra we employed only the most rudimentary set-theoretic concepts. We defined
a primitive set function by assigning length to each bounded interval, extended this set
function to the set function outer measure defined for every subset of real numbers, and then
distinguished a collection of measurable sets. We proved that the collection of measurable
sets is a of-algebra on which the restriction of outer measure is a measure. We call this the
Caratheodory construction of Lebesgue measure. The second goal of this chapter is to show
that the Caratheodory construction is feasible for a general abstract set X. Indeed, we show
that any nonnegative set function µ defined on a collection S of subsets of X induces an
outer measure µ* with respect to which we can identify a o--algebra M of measurable sets.
The restriction of µ* to M is a measure that we call the Caratheodory measure induced by
A. We conclude the chapter with a proof of the Caratheodory-Hahn Theorem, which tells us
of very general conditions under which the Caratheodory measure induced by a set function
µ is an extension of µ.

17.1 MEASURES AND MEASURABLE SETS

Recall that a o--algebra of subsets of a set X is a collection of subsets of X that contains the
empty-set and is closed with respect to the formation of complements in X and with respect
to the formation of countable unions and therefore, by De Morgan's Identities, with respect
to the formation of intersections. By a set function µ we mean a function that assigns an
extended real number to certain sets.
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Definition By a measurable space we mean a couple (X, M) consisting of a set X and a
o -algebra M of subsets of X. A subset E of X is called measurable (or measurable with respect
to M) provided E belongs to M.

Definition By a measure p. on a measurable space (X, M) we mean an extended real-valued
nonnegative set function µ: M -* [0, oo] for which µ(0) = 0 and which is countably additive
in the sense that for any countable disjoint collection {Ek}11 °1 of measurable sets,

tl EkJ = ll(Ek)
k=1 k=1

By a measure space (X, M, µ) we mean a measurable space (X, M) together with a measure
µ defined on M.

One example of a measure space is (R, C, m), where R is the set of real numbers, L the
collection of Lebesgue measurable sets of real numbers, and in Lebesgue measure. A second
example of a measure space is (R, 5, m), where 8 is the collection of Borel sets of real
numbers and m is again Lebesgue measure. For any set X, we define M = 2x, the collection
of all subsets of X, and define a measure i by defining the measure of a finite set to be the
number of elements in the set and the measure of an infinite set to be oo. We call rt the
counting measure on X. For any o--algebra M of subsets of a set X and point xo belonging to
X, the Dirac measure concentrated at xo, denoted by Sxo, assigns 1 to a set in M that contains
xo and 0 to a set that does not contain xo: this defines the Dirac measure space (X, M, Sxo).
A slightly bizarre example is the following: let X be any uncountable set and C the collection
of those subsets of X that are either countable or the complement of a countable set. Then
C is a if-algebra and we can define a measure on it by setting µ(A) = 0 for each countable
subset of X and µ(B) = 1 for each subset of X whose complement in X is countable. Then
(X, C, µ) is a measure space.

It is useful to observe that for any measure space (X, M, µ), if Xo belongs to M, then
(Xo, Mo, µo) is also a measure space where Mo is the collection of subsets of M that are
contained in Xo and µo is the restriction of µ to Mo.

Proposition 1 Let (X, M, µ) be a measure space.

(Finite Additivity) For any finite disjoint collection {Ek}k=1 of measurable sets,

A(Ek)-
k=1 /J k=1

(Monotonicity) If A and B are measurable sets and A C B, then

µ(A) 5µ(B)

(Excision) If, moreover, A C B and µ(A) < oo, then

µ(B^' A) = µ(B) _ µ(A)
so that if µ(A) = 0, then

µ(B-A)=µ(B).



Section 17.1 Measures and Measurable Sets 339

(Countable Monotonicity) For any countable collection {Ek}k1 of measurable sets
that covers a measurable set E,

00

µ(E) IIL(Ek)
k=1

Proof Finite additivity follows from countable additivity by setting Ek = 0, so that
µ(Ek) = 0, fork > n. By finite additivity,

µ(B) = µ(A) +µ(B--A),

which immediately implies monotonicity and excision. To verify countable monotonicity,
define G1 = E, and then define

k-1
Gk = Ek U E; for all k > 2.

ti=1

Observe that
00 00

{Gk}k° 1 is disjoint, U Gk = U Ek and Gk C Ek for all k.
k=1 k=1

From the monotonicity and countable additivity of p. we infer that

(OEk)
00 lA(E)=A( GkIA(Gk)µ(Ek).
k=1 / k=1 k=1

The countable monotonicity property is an amalgamation of countable additivity and
monotonicity, which we name since it is invoked so frequently.

A sequence of sets {Ek}k°1 is called ascending provided for each k, Ek C Ek+1, and
said to be descending provided for each k, Ek+1 C E.

Proposition 2 (Continuity of Measure) Let (X, M, µ) be a measure space.

(i) If {Ak}k 1 is an ascending sequence of measurable sets, then

Ak) =k
noA(Ak). (1)

k=1

(ii) If {Bk}I 1 is a descending sequence of measurable sets for which µ(B1) < oo, then

00

µ(n Bk I = k im IL(Bk)
\k=1 1

(2)

The proof of the continuity of measure is the same, word for word, as the proof of the
continuity of Lebesgue measure on the real line; see page 44.

For a measure space (X, M, µ) and a measurable subset E of X, we say that a property
holds almost everywhere on E, or it holds for almost all x in E, provided it holds on E E0,
where E0 is a measurable subset of E for which p.(Eo) = 0.
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The Borel-Cantel i Lemma Let (X, M, µ) be a measure space and (Ek}k 1 a countable
00

collection of measurable sets for which µ(Ek) < oo. Then almost all x in X belong to at
k=1

most a finite number of the Ek's.

00
Proof For each n, by the countable monotonicity of µ, µ(U Ek) p,(Ek ). Hence, by

k=n

the continuity of µ,

n=1 k=n

ao 00

= lim µ( Ek) < lim tl(Ek) = 0-
n- 00

k=n k=n

Observe that n° [U1n Ek] is the set of all points in X that belong to an infinite number of
the Ek's.

Definition Let (X, M, µ) be a measure space. The measure p. is called finite provided
µ(X) < oo. It is called a--finite provided X is the union of a countable collection of measurable
sets, each of which has finite measure. A measurable set E is said to be of finite measure
provided µ(E) < oo, and said to be Q-finite provided E is the union of a countable collection
of measurable sets, each of which has finite measure.

Regarding the criterion for a-finiteness, the countable cover by sets of finite measure
may be taken to be disjoint. Indeed, if fXk}k 1 is such a cover replace, for k > 2, each Xk

by Xk - uk=1 Xi to obtain a disjoint cover by sets of finite measure. Lebesgue measure on
[0, 1] is an example of a finite measure, while Lebesgue measure on (-oo, oo) is an example
of a v-finite measure. The counting measure on an uncountable set is not o--finite.

Many familiar properties of Lebesgue measure on the real line and Lebesgue integration
for functions of a single real variable hold for arbitrary Q-finite measures, and many
treatments of abstract measure theory limit themselves to a--finite measures. However, many
parts of the general theory do not require the assumption of a--finiteness, and it seems
undesirable to have a development that is unnecessarily restrictive.

Definition A measure space (X, M, µ) is said to be complete provided M contains all
subsets of sets of measure zero, that is, if E belongs to M and µ(E) = 0, then every subset of
E also belongs to M.

We proved that Lebesgue measure on the real line is complete. Moreover, we also
showed that the Cantor set, a Borel set of Lebesgue measure zero, contains a subset that
is not Borel; see page 52. Thus Lebesgue measure on the real line, when restricted to the
v-algebra of Borel sets, is not complete. The following proposition, whose proof is left to the
reader (Problem 9), tells us that each measure space can be completed. The measure space
(X, Mo, µo) described in this proposition is called the completion of (X, M, µ).

Proposition 3 Let (X, M, µ) be a measure space. Define Mo to be the collection of subsets
EofXoftheform E=AUBwhere BEMandACCforsome CEMforwhich µ(C)=0.
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For such a set E define µo(E) = µ(B). Then Mo is a o-algebra that contains M, µo is a
measure that extends p., and (X, Mo, µo) is a complete measure space.

PROBLEMS

1. Let f be a nonnegative Lebesgue measurable function on R. For each Lebesgue measurable
subset E of R, define µ(E) = fE f, the Lebesgue integral of f over E. Show that µ is a
measure on the o--algebra of Lebesgue measurable subsets of R.

2. Let M be a o--algebra of subsets of a set X and the set function µ: M -* [0, oo) be finitely
additive. Prove that µ is a measure if and only if whenever (Ak}k 1 is an ascending sequence
of sets in M, then

µ(v Ak l
k
mp.(Ak).

k=1

3. Let M be a o-algebra of subsets of a set X. Formulate and establish a correspondent of the
preceding problem for descending sequences of sets in M.

4. Let ((XA, MA, µA))AEA be a collection of measure spaces parametrized by the set A. Assume
the collection of sets (XA}AEA is disjoint. Then we can form a new measure space (called their
union) (X, B, µ) by letting X = UAEA XA, B be the collection of subsets B of X such that
B f1 XA E MA for all A E A and defining µ(B) _ p. [B fl XA] for B E B.

AEA

(i) Show that M is a o--algebra.

(ii) Show that µ is a measure.

(iii) Show that µ is or-finite if and only if all but a countable number of the measures µA have
µ(XA) = 0 and the remainder are o--finite.

5. Let (X, M, µ) be a measure space. The symmetric difference, Et A E2, of two subsets Et
and E2 of X is defined by

E1 A E2 = [E1 E2] U [E2 - E1]

(i) Show that if E1 and E2 are measurable and µ(E1 A E2) = 0, then µ(E1) =µ(E2 ).

(ii) Show that if µ is complete, E1 E M and E2 ^ E1 E M, then E2 E M if p.(E1AE2) = 0.

6. Let (X, M, µ) be a measure space and Xo belong to M. Define Mo to be the collection of
sets in M that are subsets of Xo and µo the restriction of µ to Mo. Show that (Xo, Mo, µo) is
a measure space.

7. Let (X, M) be a measurable space. Verify the following:
(i) If µ and v are measures defined on M, then the set function A defined on M by

A(E) = µ(E) + v(E) also is a measure. We denote A by µ + v.

(ii) If µ and v are measures on M and µ > v, then there is a measure A on M for which
µ=v+A.

(iii) If v is Q-finite, the measure A in (ii) is unique.

(iv) Show that in general the measure A need not be unique but that there is always a smallest
such A.
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8. Let (X, M, µ) be a measure space. The measure µ is said to be semifinite provided each
measurable set of infinite measure contains measurable sets of arbitrarily large finite measure.
(i) Show that each o"-finite measure is semifinite.

(u) For E E M, define µl (E) = µ(E) if µ(E) < oo, and if µ(E) = oo define µl (E) = oo if
E contains measurable sets of arbitrarily large finite measure and µi ( E) = 0 otherwise.
Show that µl is a semifinite measure: it is called the semifinite part of A.

(iii) Find a measure µ2 on M that only takes the values 0 and no and µ = µt + tp2.

9. Prove Proposition 3, that is, show that .Mo is a o -algebra, µo is properly defined, and
(X, M0, µo) is complete. In what sense is Mo minimal?

10. If (X, M, µ) is a measure space, we say that a subset E of X is locally measurable provided
for each B E M with µ(B) < oo, the intersection E n B belongs to M. The measure µ is called
saturated provided every locally measurable set is measurable.
(i) Show that each o--finite measure is saturated.

(ii) Show that the collection C of locally measurable sets is a o-algebra.

(iii) Let (X, M, µ) be a measure space and C the u-algebra of locally measurable sets. For
EEC, define µ(E) = µ(E) if E E .M and µ(E) = no if E 0 M. Show that (X, C, µ) is
a saturated measure space.

(iv) If µ is semifinite and E E C, set µ(E) = sup {µ(B) I B E M, B C E}. Show that (X, C, IL)
is a saturated measure space and that p. is an extension of µ. Give an example to show
that g and µ may be different.

11. Let µ and 11 be measures on the measurable space (X, M). For E E M, define v(E)
max(µ(E),'i(E)}. Is v a measure on (X, M)?

17.2 SIGNED MEASURES: THE HAHN AND JORDAN DECOMPOSITIONS

Observe that if µt and µ2 are two measures defined on the same measurable space (X, M),
then, for positive numbers a and /3, we may define a new measure µ3 on X by setting

µ3(E) for all EinM.

It turns out to be important to consider set functions that are linear combinations of measures
but with coefficients that may be negative. What happens if we try to define a set function v
on M by

v(E) =µ1(E) -µ2(E) for all EinM?

The first thing that may occur is that v is not always nonnegative. Moreover, v(E) is not
even defined for E E M such that µ1(E) =,u2(E) = no. With these considerations in mind
we make the following definition.

Definition By a signed measure v on the measurable space (X, M) we mean an extended
real-valued set function v: M [-oo, oo] that possesses the following properties:

(i) v assumes at most one of the values +oo, -oo.
(ii) v(0) = 0.
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(iii) For any countable collection {Ek}k°1 of disjoint measurable sets,

00 00

v(U Ek) = E v(Ek),
k=1 k=1

w
where the series 2k

1 v(Ek) converges absolutely if v(lJ Ek) is finite.
k=1

A measure is a special case of a signed measure. It is not difficult to see that
the difference of two measures, one of which is finite, is a signed measure. In fact, the
forthcoming Jordan Decomposition Theorem will tell us that every signed measure is the
difference of two such measures.

Let v be a signed measure. We say that a set A is positive (with respect to v) provided
A is measurable and for every measurable subset E of A we have v(E) > 0. The restriction
of v to the measurable subsets of a positive set is a measure. Similarly, a set B is called
negative (with respect to v) provided it is measurable and every measurable subset of B has
nonpositive v measure. The restriction of -v to the measurable subsets of a negative set also
is a measure. A measurable set is called null with respect to v provided every measurable
subset of it has v measure zero. The reader should carefully note the distinction between a
null set and a set of measure zero: While every null set must have measure zero, a set of
measure zero may well be a union of two sets whose measures are not zero but are negatives
of each other. By the monotonicity property of measures, a set is null with respect to a
measure if and only if it has measure zero. Since a signed measure v does not take the values
oo and -oo, for A and B measurable sets,

if A C B and Iv(B)I < oo, then Iv(A)l < oo. (3)

Proposition 4 Let v be a signed measure on the measurable space (X, M). Then every
measurable subset of a positive set is itself positive and the union of a countable collection of
positive sets is positive.

Proof The first statement is trivially true by the definition of a positive set. To prove the
second statement, let A be the union of a countable collection {Ak}k1 of positive sets. Let E
be a measurable subset of A. Define E1 = E f1 Al. Fork > 2, define

Ek = [E f1 Ak] ^- [Al U ... U Ak_1].

Then each Ek is a measurable subset of the positive set Ak and therefore v(Ek) > 0. Since E
is the union of the countable disjoint collection {Ek}kO°1,

00v(E) = I v(Ek) > 0.
k=1

Thus A is a positive set.

Hahn's Lemma Let v be a signed measure on the measurable space (X, M) and E a
measurable set for which 0 < v(E) < oo. Then there is a measurable subset A of E that is
positive and of positive measure.
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Proof If E itself is a positive set, then the proof is complete. Otherwise, E contains sets of
negative measure. Let ml be the smallest natural number for which there is a measurable set
of measure less than -1/ml. Choose a measurable set E1 C E with v(El) < -1/m1. Let n
be a natural number for which natural numbers m , ... , m and measurable sets El, ... , E
have been chosen such that, for 1 < k < n, Mk is the smallest natural number for which there
is a measurable subset of E - Uk-1 E of measure less than -1/mk and Ek is a subset ofj=1

[E ^- U1=j Ei] for which v(Ek) < -1/Mk-If

this selection process terminates, then the proof is complete. Otherwise, define

A = E U Ek, so that E = A U U Ek I is a disjoint decomposition of E.
k=1 k=1

Since U' 1 Ek is a measurable subset of E and Iv(E)I < oo, by (3) and the countable

additivity of v,
11

-oo<V(6 Ekv(Ek)-1/mk.
k=1 ) k=1 k=1

Thus limk,,),, Mk = no. We claim that A is a positive set. Indeed, if B is a measurable subset
of A, then, for each k,

k-1

BCACE UEI ,
i=l

and so, by the minimal choice of Mk, v(B) > -1/ (Ink -1). Since limk,00 Mk = oo, we have
v(B) > 0. Thus A is a positive set. It remains only to show that v(A) > 0. But this follows

00
from the finite additivity of v since v(E) > 0 and v(E A) = v(Uk°

1
Ek) _ v(Ek) < 0.

k=1

The Hahn Decomposition Theorem Let v be a signed measure on the measurable space
(X, M). Then there is a positive set A for v and a negative set B for v for which

X=AUBandAflB=0.

Proof Without loss of generality we assume +oo is the infinite value omitted by v. Let P be
the collection of positive subsets of X and define A = sup {v(E) I E E P}. Then A > 0 since
P contains the empty set. Let {Ak}k 1 be a countable collection of positive sets for which
A = ]imk.,,,, v(Ak). Define A = U1 1 A. By Proposition 4, the set A is itself a positive set,
and so A > P(A). On the other hand, for each k, A - Ak C A and so v(A' Ak) > 0. Thus

v(A) = v(Ak) +v(A- Ak) > v(Ak).

Hence v(A) > A. Therefore v(A) = A, and A < no since v does not take the value no.

Let B = X ^- A. We argue by contradiction to show that B is negative. Assume B is
not negative. Then there is a subset E of B with positive measure and therefore, by Hahn's
Lemma, a subset E0 of B that is both positive and of positive measure. Then A U E0 is a
positive set and

v(AUEo)=v(A)+v(Eo)>A,
a contradiction to the choice of A.
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A decomposition of X into the union of two disjoint sets A and B for which A is positive
for v and B negative is called a Hahn decomposition for v. The preceding theorem tells us of
the existence of a Hahn decomposition for each signed measure. Such a decomposition may
not be unique. Indeed, if (A, B} is a Hahn decomposition for v, then by excising from A a null
set E and grafting this subset onto B we obtain another Hahn decomposition (A ^- E, B U E).

If {A, B} is a Hahn decomposition for v, then we define twomeasures v+ and v- with
v = v+ - v- by setting

v+(E) =v(Ef1A) andv (E) =-v(Ef1 B).

Two measures v1 and v2 on (X, M) are said to be mutually singular (in symbols v1 1 v2)
if there are disjoint measurable sets A and B with X = A U B for which v1(A) = v2(B) = 0.
The measures v+ and v- defined above are mutually singular. We have thus established the
existence part of the following proposition. The uniqueness part is left to the reader (see
Problem 13).

The Jordan Decomposition Theorem Let v be a signed measure on the measurable space
(X, M). Then there are two mutually singular measures v+ and v- on (X, M) for which
v = v+ - v-. Moreover, there is only one such pair of mutually singular measures.

The decomposition of a signed measure v given by this theorem is called the Jordan
decomposition of v. The measures v+ and v- are called the positive and negative parts (or
variations) of v. Since v assumes at most one of the values +oo and -oo, either v+ or v
must be finite. If they are both finite, we call v a finite signed measure. The measure Ivl is
defined on M by

Ivl(E)=v+(E)+v-(E)for all EEM.
We leave it as an exercise to show that

n

Ivl(X)=sup Iv(Ek)l,
k-1

(4)

where the supremum is taken over all finite disjoint collections [Ed'=1 of measurable subsets
of X. For this reason I vl (X) is called the total variation of v and denoted by Ilvll,r

Example Let f : R -+ R be a function that is Lebesgue integrable over R. For a Lebesgue
measurable set E, define v(E) = fE fdm. We infer from the countable additivity of
integration (see page 90) that v is a signed measure on the measurable space (R, G). Define
A = (x E R I f (x) > 0} and B = (x E R I f (x) < 0} and define, for each Lebesgue measurable
set E,

v+(E)=J fdm andv (E)=-f fdm.
AnE BnE

Then {A, B} is a Hahn decomposition of R with respect to the signedmeasure v. Moreover,
v = v+ - v is a Jordan decomposition of v.

PROBLEMS

12. In the above example, let E be a Lebesgue measurable set such that 0 < v(E) < oo. Find a
positive set A contained in E for which v(A) > 0.
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13. Let µ be a measure and µ1 and µ2 be mutually singular measures on a measurable space
(X, µ) for which µ = Al - 1L2. Show that µ2 = 0. Use this to establish the uniqueness
assertion of the Jordan Decomposition Theorem.

14. Show that if E is any measurable set, then

-v-(E) <v(E) <v+(E) and Iv(E)I < IvI(E)

15. Show that if vl and v2 are any two finite signed measures, then so is avl + 13v2, where a and '6
are real numbers. Show that

Iav1 = Ial Ivl and Ivt + v21 < Iv11 + Iv21,

where v < µ means v(E) < µ(E) for all measurable sets E.

16. Prove (4).

17. Letµandvbefinite signed measures. Define µnv= Z(µ+v-Iµ-vl)andµVv=µ+v-µnv.
(i) Show that the signed measure µ A v is smaller than µ and v but larger than any other

signed measure that is smaller than µ and v.

(ii) Show that the signed measure µ V v is larger than µ and v but smaller than any other
measure that is larger than µ and v.

(iii) If µ and v are positive measures, show that they are mutually singular if and only if
µnv=0.

17.3 THE CARATHEODORY MEASURE INDUCED BY AN OUTER MEASURE

We now define the general concept of an outer measure and of measurability of a set with
respect to an outer measure, and show that the Caratheodory strategy for the construction
of Lebesgue measure on the real line is feasible in general.

Definition A set function µ: S -+ [0, oo] defined on a collection S of subsets of a set X
is called countably monotone provided whenever a set E E S is covered by a countable
collection (Ek)k°1 of sets in S, then

00

µ(E) < I µ(Ek)
k=1

As we already observed, the monotonicity and countable additivity properties of a
measure tell us that a measure is countably monotone. If the countably monotone set
function A: S -+ [0, oo] has the property that 0 belongs to S and µ(0) = 0, then µ is finitely
monotone in the sense that whenever a set E E S is covered by a finite collection (Ek)k=i of
sets in S, then

n

µ(E) 1 tl(Ek)
k=1

To see this, set Ek = 0 for k > n. In particular, such a set function µ is monotone in the sense
that if A and B belong to S and A C B, then µ(A) < µ(B).

Definition A set function µ*: 2X [0, oo] is called an outer measure provided µ*(0) = 0
and p* is countably monotone.
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Guided by our experience in the construction of Lebesgue measure from Lebesgue
outer measure on the real line, we follow Constantine Caratheodory and define the
measurability of a set as follows.

Definition For an outer measure µ* : 2' -+ [0, oo], we call a subset E of X measurable (with
respect to µ*) provided for every subset A of X,

µ*(A) =µ*(AnE)+µ*(AnEc).

Since µ* is finitely monotone, to show that E C X is measurable it is only necessary to
show that

µ* (A) > µ* (A n E) + µ* (A f1 EC) for all A C X such that IL* (A) < oo.

Directly from the definition we see that a subset E of X is measurable if and only if its
complement in X is measurable and, by the monotonicity of µ*, that every set of outer
measure zero is measurable. Hereafter in this section, µ*: 2X -* [0, oo] is a reference outer
measure and measurable means measurable with respect to µ*.

Proposition 5 The union of a finite collection of measurable sets is measurable.

Proof We first show that the union of two measurable sets is measurable. Let Et and E2
be measurable. Let A be any subset of X. First using the measurability of El, then the
measurability of E2, we have

µ*(A) =µ*(AnEl)+µ*(AnE1)

= µ* (A f1 Et) + µ* ([A f1 Ei] f1 E2) + µ* ([A fl El] fl E2 c).

Now use the set identities

[AflEl]nEZ =Afl[ElUE2]C

and

[An El] U[AnE2nEl]=An[ElUE2],

together with the finite monotonicity of outer measure, to obtain

µ*(A) =µ*(Af1Et)+µ*(AflEc)

= A* (A fl El) + A* ([A fl El] fl E2) +,u* ([A fl El] fl E2 )

= µ* (A fl El) + A* ([A fl El] fl E2) + µ* (A fl [El U E2]c )

> µ*(A n [Et U E2]) +µ*(A n [El U E2]').
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Thus El U E2 is measurable. Now let {Ek}k=1 be any finite collection of measurable
sets. We prove the measurability of the union Uk=1 Ek, for general n, by induction. This is
trivial for n = 1. Suppose it is true for n - 1. Thus, since

n n-1

U Ek = U Ek U En
k-1 k=1

and the union of two measurable sets is measurable, the set Uk=1 Ek is measurable. 11

Proposition 6 Let A C X and {Ek}k=1 be a finite disjoint collection of measurable sets. Then

µ* ([c])
k=1

In particular, the restriction of µ* to the collection of measurable sets is finitely additive.

Proof The proof proceeds by induction on n. It is clearly true for n = 1, and we assume it is
true for n - 1. Since the collection {Ek}k=1 is disjoint,

A ofU Ek
Lk=1

and

nEn=AnEn

r(((
n

11 fn 1

A nIUEkInEn =AnIUEk .
`L

and the induction assumption, we haveHence by the measurability of En

\A fl[O Ek]

-µ*(AnEn)+µ* ([fl_t])

n-1

=µ*(AnEn)+1,µ*(AnEk)
k=1

n

_ Iµ*(AnEk).
k=1

Proposition 7 The union of a countable collection of measurable sets is measurable.

Proof Let E = U'
1

Ek, where each Ek is measurable. Since the complement in X of
a measurable set is measurable and, by Proposition 5, the union of a finite collection
of measurable sets is measurable, by possibly replacing each Ek with Ek - U'=1 E1, we
may suppose that {Ek}k 1 is disjoint. Let A be any subset of X. Fix an index n. Define
Fn = Uk=1 Ek. Since Fn is measurable and Fn D EC, we have

µ*(A)=µ*(An Fn)+µ*(An Fn)>µ*(AnFn)+µ*(AnEC).
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By Proposition 6,

Thus

n

µ*(Afl Fn) _ 1 µ*(Afl Ek).
k=1

n

µ*(A) > E µ*(A fl Ek) +µ*(A n EC).
k=1

The left-hand side of this inequality is independent of n and therefore

00

µ*(A) > Eµ*(AnEk)+µ*(AnEC).
k=1

By the countable monotonicity of outer measure we infer that

µ*(A)>µ*(AflE)+µ*(AflEC).

Thus E is measurable.

Theorem 8 Let µ* be an outer measure on 2X. Then the collection M of sets that are
measurable with respect to µ* is a o -algebra. If µ is the restriction of µ* to .M, then (X, .M, µ )
is a complete measure space.

Proof We already observed that the complement in X of a measurable subset of X also is
measurable. According to Proposition 7, the union of a countable collection of measurable
sets is measurable. Therefore M is a o--algebra. By the definition of an outer measure,
µ* (0) = 0 and therefore 0 is measurable and µ(0) = 0. To verify that µ is a measure on
.M, it remains to show it is countably additive. Since µ* is countably monotone and µ* is an
extension of µ, the set function µ is countably monotone. Therefore we only need show that
if {Ek}k 1 is a disjoint collection of measurable sets, then

UEkµ* µ*(Ek) (5)
k=1 k=1

However, µ* is monotone and, by taking A = X in Proposition 7, we see that µ* is additive
over finite disjoint unions of measurable sets. Therefore, for each n,

00 1 n n

µ* U
Ek/

? IL* (U
Ek/

= k µ* (Ek ).
k=1 k=1 k=1

The left-hand side of this inequality is independent of n and therefore (5) holds.

17.4 THE CONSTRUCTION OF OUTER MEASURES

We constructed Lebesgue outer measure on subsets of the real line by first defining the
primitive set function that assigns length to a bounded interval. We then defined the outer
measure of a set to be the infimum of sums of lengths of countable collections of bounded
intervals that cover the set. This method of construction of outer measure works in general.
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Theorem 9 Let S be a collection of subsets of a set X and µ: S -* [0, oo] a set function.
Define µ* (0) = 0 and for E C X, E * 0, define

00

µ*(E) = inf I µ(Ek), (6)
k=1

where the infimum is taken over all countable collections {Ek}r 1 of sets in S that cover E.1
Then the set function µ* : 2X -* [0, oo] is an outer measure called the outer measure induced
by µ.

Proof To verify countable monotonicity, let (Ek}00 °
1

be a collection of subsets of X that
00

covers a set E. If µ* (Ek) = oo for some k, then µ* (E)
=

µ* (Ek) = oo. Therefore we
k=1

may assume each Ek has finite outer measure. Let e > 0. For each k, there is a countable
collection (Eik}, 1 of sets in S that covers Ek and

00 6
µ(Eik) <tµ*(Ek)+2k

i=1

Then {Eik}1<k,i<00 is a countable collection of sets in S that covers Ul 1 Ek and therefore
also covers E. By the definition of outer measure,

A* (E) < 7, µ(Eik)
1<k,i<oo

Since this holds for all e > 0, it also holds for e = 0.

00

= E [Y,,°_°l µ( Eik )1
k=1

tt* (Ek) + c/2k
k=1 k=1

00

_ k, N-* (Ek) + 6-
k=1

1-1

Definition Let S be a collection of subsets of X, µ: S -> [0, oo] a set function, and µ* the
outer measure induced by I.L. The measure µ that is the restriction of µ* to the Q-algebra M of
µ*-measurable sets is called the Caratheodory measure induced by A.

µ* : 2X -+ [0, oo]
(the induced outer measure)

µ:S-*[0,o0
(a general set function)

µ:.M -+ [0, 00]
(the induced Caratheodory measure)

The Caratheodory Construction

'We follow the convention that the infimum of the empty-set is co. Therefore a subset E of X that cannot be
covered by a countable collection of sets in S has outer measure equal to oo.
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For a collection S of subsets of X, we use SQ to denote those sets that are countable
unions of sets of S and use S, to denote those sets that are countable intersections of sets
in SQ. Observe that if S is the collection of open integrals of real numbers, then S,,, is the
collection of open subsets of R and S, is the collection of Gs subsets of R.

We proved that a set E of real numbers is Lebesgue measurable if and only if it
is a subset of a Gs set G for which G- E has Lebesgue measure zero: see page 40. The
following proposition tells us of a related property of the Caratheodory measure induced by
a general set function. This property is a key ingredient in the proof of a number of important
theorems, among which are the proofs of the Caratheodory-Hahn Theorem, which we prove
in the following section, and the forthcoming theorems of Fubini and Tonelli.

Proposition 10 Let µ: S -+ [0, oo] be a set function defined on a collection S of subsets of a
set X and µ: M -+ [0, oo] the Caratheodory measure induced by µ. Let E be a subset of X
for which µ* (E) < oo. Then there is a subset A of X for which

A E SQs, ECAand µ*(E) =µ*(A).

Furthermore, if E and each set in S is measurable with respect to µ*, then so is A and

µ(A^-E)=0.

Proof Let E > 0. We claim that there is a set AE for which

AE E SQ, E C A, and µ* (AE) <p.4(E)+e. (7)

Indeed, since µ* (E) < oo, there is a cover of E by a collection (Ek ) 1 of sets in S for which

µ(Ek)<µ*(E)+E.
k=1

Define AE = Uk
1

E. Then AE belongs to So and E C AE. Furthermore, since {Ek}k 1 is a
countable collection of sets in S that covers AE, by the definition of the outer measure µ*,

00

t-i*(AE) < 2 µ(Ek) <µ*(E)+E.
k=1

Thus (7) holds for this choice of AE.

Define A = fkoo=1 Al/k. Then A belongs to SQs and E is a subset of A since E is a subset
of each Al/k. Moreover, by the monotonicity of µ* and the estimate (7),

µ*(E) <µ*(A) <N,*(Al/k) <N,*(E)+k for all k.

Thus µ*(E)=µ*(A).
Now assume that E is µ*-measurable and each set in S is µ*-measurable. Since the

measurable sets are a v-algebra, the set A is measurable. But µ* is an extension of the
measure A. Therefore, by the excision property of measure,

µ(A-E)=µ(A)-µ(E)=µ*(A)-µ*(E)=0.
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PROBLEMS

18. Let µ*: 2X -+ [0, oo] be an outer measure. Let A C X, {Ek}k1 be a disjoint countable
collection of measurable sets and E = Uk 1 Ek. Show that

+

00µ*(AnE)EA*(AnEk).
k=1

19. Show that any measure that is induced by an outer measure is complete.

20. Let X be any set. Define rl : 2X -* [0, oo] by defining q(0) = 0 and for E C X, E ;A 0, defining
i(E) = oo. Show that 1 is an outer measure. Also show that the set function that assigns 0 to
every subset of X is an outer measure.

21. Let X be a set, S = {0, X} and define µ(0) = 0, µ(X) = 1. Determine the outer measure µ*
induced by the set function µ: S -> [0, oo) and the o--algebra of measurable sets.

22. On the collection S = {0, [1, 2]} of subsets of R, define the set functionµ: S -* [0, oo) as
follows: µ(0) = 0, µ([1, 2]) = 1. Determine the outer measure µ* induced by µ and the
o-algebra of measurable sets.

23. On the collection S of all subsets of R, define the set function µ: S -* R by setting µ(A)
to be the number of integers in A. Determine the outer measure µ* induced by µ and the
or-algebra of measurable sets.

24. Let S be a collection of subsets of X and µ: S -a [0, oo] a set function. Is every set in S
measurable with respect to the outer measure induced by µ?

17.5 THE CARATHEODORY-HAHN THEOREM: THE EXTENSION OF A PREMEASURE
TO A MEASURE

Let µ: S -> [0, oo] be a set function that is defined on a nonempty collection S of subsets
of a set X. We ask the following question: What properties must the collection S and set
function µ possess in order that the Caratheodory measure µ induced by µ be an extension
of µ: that is, every set E in S is measurable with respect to the outer measure µ* induced by
µ and, moreover, µ(E) = µ* (E)? We will identify necessary properties that the set function
,u must possess for this to be so and show that these same properties are sufficient, provided
the collection S has finer set-theoretic structure.

We call a set function µ: S [0, oo] finitely additive provided whenever {Ek}k=1 is a
finite disjoint collection of sets in S and Uk=1 Ek also belongs to S, then

k=1 k=1

Proposition 11 Let S be a collection of subsets of a set X and µ: S -> [0, co] a set function.
In order that the Caratheodory measure induced by µ be an extension ofp. it is necessary that
µ be both finitely additive and countably monotone and, if 0 belongs to S, that µ(0) = 0.

Proof Let (X, M, µ) denote the Caratheodory measure space induced by µ and suppose
µ: M [0, oo] extends µ: S [0, oo]. First of all, observe that if 0 belongs to S, then
µ(0) = µ(0) = 0 since µ is a measure that extends µ. Now let (Ek)k=1 be a disjoint collection
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of sets in S such that Uk=1 Ek also belongs to S. A measure is finitely additive since it is
countably additive and the empty-set has measure zero. Therefore, since µ extends µ,

(1Ek)

= (UEk/=p(Ek)=p(Ek)
k=1 k=1 k=1

Thus µ is finitely additive. To establish countable monotonicity observe that µ(E) = µ*(E)
for all E E S if and only if µ is countably monotone. Thus if µ extends µ, µ* (E) = µ(E) =
µ(E) for all E E S and hence µ is countably monotone.

This proposition suggests that it is useful to single out and name the following class of
set functions.

Definition Let S be a collection of subsets of a set X and µ: S --> [0, oo] a set function. Then
µ is called a premeasure provided µ is both finitely additive and countably monotone and, if
0 belongs to S, then IL(O) = 0.

Being a premeasure is a necessary but not sufficient condition for the Caratheodory
measure induced by µ to be an extension of µ (examine the premeasures defined in Problems
25 and 26). However, if we impose on S finer set-theoretic structure, this necessary condition
is also sufficient.

Definition A collection S of subsets of X is said to be closed with respect to the formation
of relative complements provided whenever A and B belong to S, the relative complement
A - B belongs to S. The collection S is said to be closed with respect to the formation of finite
intersections provided whenever A and B belong to S, the intersection A n B belongs to S.

Observe that if a collection of sets S is closed with respect to the formation of relative
complements, then it is also closed with respect to the formation of finite intersections since
if A and B belong to S so does

AnB=A - [A".B].

Also observe that if a nonempty collection of sets S is closed with respect to the formation
of relative complements, then it contains 0. Indeed, 0 = A - A, where A belongs to S.

Theorem 12 Let µ: S -+ [0, oo] be a premeasure on a nonempty collection S of subsets of
X that is closed with respect to the formation of relative complements. Then the Caratheodory
measure µ: M -+ [0, oo] induced by µ is an extension of µ: it is called the Caratheodory
extension of µ.

Proof Let A belong to S. To show that A is measurable with respect to the outer measure
induced by µ it suffices to let E be any subset of X of finite outer measure, let E > 0 and
verify that

µ*(E)+e>µ*(EnA)+µ*(EnAC). (8)

By the definition of outer measure, there is a collection {Ek }k 1 of sets in S that covers E and

0"µ*(E)+E> Ip(Ek) (9)
k=1
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However, for each k, since S is closed with respect to the formation of relative complements,
Ek ^- A belongs to S and so does Ek fl A = Ek ^- [Ek - A]. A premeasure is finitely additive.
Therefore

µ(Ek) = µ(Ek fl A) + j (Ek fl AC).

Sum these inequalities to conclude that

00

00

00

2µ(Ek)=> (EknA)+2 µ(EknAC). (10)
k=1 k=1 k=1

Observe that (Ek fl A)k1 and {Ek fl Ac}k 1 are countable collections of sets in S that cover
E fl A and E fl AC, respectively. Therefore, by the very definition of outer measure,

00 00

Iµ(EkflA)>µ*(EfA)and E (EknAC)>p*(EfAC).
k=1 k=1

The desired inequality (8) follows from the these two inequalities together with (9) and (10).
Clearly µ(E) = µ*(E) for each set E E S if and only if p. is countable monotone.

Hence for each E E S, µ(E) = µ* (E) and therefore, since each set E E S is measurable,
µ(E) = µ(E)

Remark Observe the quite distinct roles played by the two properties of a premeasure in the
proof of the above theorem. We used the finite additivity of µ to infer that every set in S is
µ*-measurable. The countable monotonicity of µ is equivalent to the equality µ(E) = µ* (E)
for all E E S.

A number of natural premeasures, including the premeasure length defined on the
collection of bounded intervals of real numbers, are defined on collections of sets that are not
closed with respect to the formation of relative complements. However, we now introduce
the notion of a semiring. We show that a semiring S has the property that every premeasure
on S has a unique extension to a premeasure on a collection of sets that is closed with
respect to the formation of relative complements. This purely set-theoretic result, together
with Theorem 12, will be used to show that premeasures on semirings are extended by their
induced Caratheodory measure.

Definition A nonempty collection S of subsets of a set X is called a semiring provided
whenever A and B belong to S, then A fl B also belongs to S and there is a finite disjoint
collection {Ck}k=1 of sets in S for which

n

A^-B=UCk.
k=1

Proposition 13 Let S be a semiring of subsets of a set X. Define S' to be the collection of
unions of finite disjoint collections of sets in S. Then S' is closed with respect to the formation
of relative complements. Furthermore, any premeasure on S has a unique extension to a
premeasure on S'.
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Proof It is clear that S' is closed with respect to the formation of finite unions and finite
intersections. Let (Ak}k=1 and {Bj}

1
be two finite disjoint collections of sets in S. Observe

that

[OAk]
k=1

n m

U Bj = U Î I (Ak-Bj) . (11)
j=1 k=1 j=1

Since each Ak - B j belongs to S' and S' is closed with respect to the formation of finite unions
and finite intersections, we infer from (11) that S' is closed with respect to the formation of
relative complements.

Let µ: S [0, oo] be a premeasure on S. For E C X such that E = Uk=1 Ak, where
n

{Ak}k=1 is a disjoint collection of sets in S, define µ'(E) _
7

µ(Ak). To verify that µ'(E)
k=1

is properly defined, let E also be the disjoint union of the finite collection (B j)'1 of sets in

S. We must show that
m n

E A(Bj) = E µ(Ak).
j=1 k=1

However, by finite additivity of a premeasure,

and

Therefore

n

µ(Bj)=Eµ(BjflAk)for 1<j<m
k=1

m

µ(Ak)=2A(BjflAk)for1<k<n.
j=1

M m f n
f

n m n

Iµ(Bj)=I IA(BjflAk) Y,_ Y, µ(Bjf1Ak) =Ju(Ak).
j=1 j=1 k=1 k=1 j=1 k=1

Thus µ' is properly defined on S.

It remains to show that µ' is a premeasure on S. Since µ' is properly defined it
inherits finite additivity from the finite additivity possessed by A. To establish the countable
monotonicity of µ', let E E S' be covered by the collection {Ek}k° 1 of sets in S. Without loss
of generality we may assume that (Ek)k 1 is a disjoint collection of sets in S (see part (iii) of
Problem 31). Let E = U; 1 A j, where the union is disjoint and each A j belongs to S. For
each j, A j is covered by U11 (A j fl Ek), a countable collection of sets in S and therefore, by
the countable monotonicity of µ,

00µ(Aj) < 1 µ(Aj fl Ek).
k=1

Thus, by the finite monotonicity of µ,
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µ'(E)=2µ(Aj)
j=1 j=1 [i =i

00

IL(Aj n Ek)
k=1 j=1

00

= E µ(Ef1Ek)
k=1

00

E µ'(Ek)
k=1

Therefore µ' is countably monotone. The proof is complete. 0

For S a collection of subsets of X, a set function µ: S -+ [0, oo] is said to be if-finite
provided X = U01 Sk where for each k, Sk E S and p.(Sk) < oo.

The Caratheodory-Hahn Theorem Let µ: S -+ [0, oo] be a premeasure on a semiring
S of subsets of X. Then the Caratheodory measure µ induced by µ is an extension of µ.
Furthermore, if µ is Q-finite, then so is µ and µ is the unique measure on the 0--algebra of
µ*-measurable sets that extends µ.

µ: M -+ [0, oo]
(the Caratheodory extension)

A

ti,* : 2X * [0, oo]
(the induced outer measure)

µ: S -+ [0, oo]
(a premeasure on a semiring S)

The Caratheodory Construction Extends a Premeasure on a Semiring to a Measure

Proof We infer from Theorem 12 and Proposition 13 that µ extends µ. Now assume that 'U
is To prove uniqueness, let 1L1 be another measure on M that extends µ. We express
X = Uk 1 Xk, where the union is disjoint and for each k, Xk belongs to S and µ(Xk) < oo.
By the countable additivity of a measure, to prove uniqueness it suffices to show that µ and
µ1 agree on the measurable sets contained in each Xk. Let E be measurable with E C E0,
where Eo E S and µ(Eo) < oo. We will show that

µ(E) = µ1(E) (12)

According to Proposition 10, there is a set A E Ss for which E C A and µ(A - E) = 0. We
may assume that A C E0. However, by the countable monotonicity of µ1, if B is measurable
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and µ* (B) = 0, then µt (B) = 0. Therefore µl (A ^- E) = 0. On the other hand, by the
countable additivity of µ 1 and these measures agree on S,,, and therefore by the continuity
of measure they agree of the subsets of E0 which belong to S. Therefore µt (A) = µ(A).
Hence

µi (A- E) = µ(A- E) and ul (A) = µ(A

and so (12) is verified.

Corollary 14 Let S be a semiring of subsets of a set X and B the smallest 0-algebra of subsets
of X that contains S. Then two o-finite measures on B are equal if and only if they agree on
sets in S.

The set-theoretic restrictions on the collection of sets S that are imposed in the
Caratheodory-Hahn Theorem are satisfied in a number of important cases. For example, the
collection of bounded intervals of real numbers and the collection of subsets of the plane
R2 that are Cartesian products of bounded intervals of real numbers are semirings (see Pro-
blem 33). Moreover, the collection of bounded intervals in R" is a semiring. This will permit
us to construct Lebesgue measure on R" by use of the Caratheodory construction.

We note that the uniqueness assertion in the Caratheodory -Hahn Theorem may fail if
the premeasure is not assumed to be o -finite (see Problem 32).

It is useful for the reader to be familiar with some of the vocabulary associated with
properties of collections S of subsets of a set X. A collection S is called a ring of sets
provided it is closed with respect to the formation of finite unions and relative complements
and, therefore, with respect to the formation of finite intersections. A ring that contains X is
called an algebra while a semiring that contains X is called a semialgebra.

PROBLEMS

25. Let X be any set containing more than one point and A a proper nonempty subset of X.
Define S = {A, X} and the set function µ: S -* [0, oo] by µ(A) = 1 and µ(X) = 2. Show
that µ: S -a [0, oc] is a premeasure. Can A be extended to a measure? What are the subsets
of X that are measurable with respect to the outer measure µ* induced by µ?

26. Consider the collection S = {0, [0, 1], [0, 3], [2, 3]} of subsets of R and define µ(0) = 0,
µ([0, 1]) = 1, µ([0, 3]) = 1, µ([2, 3]) = 1. Show that µ: S -> [0, oo] is a premeasure. Can
µ be extended to a measure? What are the subsets of R that are measurable with respect to
the outer measure A* induced by µ?

27. Let S be a collection of subsets of a set X and µ: S -* [0, oo] a set function. Show that µ is
countably monotone if and only if µ* is an extension of A.

28. Show that a set function is a premeasure if it has an extension that is a measure.

29. Show that a set function on a o--algebra is a measure if and only if it is a premeasure.

30. Let S be a collection of sets that is closed with respect to the formation of finite unions and
finite intersections.

(i) Show that SQ is closed with respect to the formation of countable unions and finite
intersections.

(ii) Show that each set in SQS is the intersection of a decreasing sequence of SQ sets.
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31. Let S be a semialgebra of subsets of a set X and S' the collection of unions of finite disjoint
collections of sets in S.
(i) Show that S' is an algebra.

(ii) Show that S, = SQ and therefore SUs = SQs.

(iii) Let {Ek}k1 be a collection of sets in S. Show that we can express uk 1 Ek as the disjoint
union U' 1 Ek of sets in S for which

I A(Ek) I A(Ek)
k=1 k=1

(iv) Let A belong to SQs. Show that A is the intersection of a descending sequence {Ak}k 1
of sets in S,,.

32. Let Q be the set of rational numbers and S the collection of all finite unions of intervals of the
form (a, b] n Q, where a, b E Q and a < b. Define µ(a, b] = oo if a < b and µ(0) = 0. Show
that S is closed with respect to the formation of relative complements and I .L: S -* [0, oo] is a
premeasure. Then show that the extension of .e to the smallest o--algebra containing S is not
unique.

33. By a bounded interval of real numbers we mean a set of the form [a, b], [a, b),(a, b] or
(a, b) for real numbers a < b. Thus we consider the empty-set and a set consisting of a single
point to be a bounded interval. Show that each of the following three collections of sets S is
a semiring.

(i) Let S be the collection of all bounded intervals of real numbers.

(ii) Let S be the collection of all subsets of R X R that are products of bounded intervals of
real numbers.

(iii) Let n be a natural number and X be the n-fold Cartesian product of R:

n times

Let S be the collection of all subsets of X that are n-fold Cartesian products of bounded
intervals of real numbers.

34. If we start with an outer measure µ* on 2X and form the induced measure µ on the
µ*-measurable sets, we can view µ as a set function and denote by µ+ the outer measure
induced by µ.
(i) Show that for each set E C X we have µ+(E) > µ*(E).

(ii) For a given set E, show that µ+(E) = µ*(E) if and only if there is a µ*-measurable set
ADEwith A*(A)=µ*(E).

35. Let S be a av-algebra of subsets of X and µ: S -* [0, oo] a measure. Let µ: M -4 [0, oo] be
the measure induced by .e via the Caratheodory construction. Show that S isa subcollection
of M and it may be a proper subcollection.

36. Let µ be a finite premeasure on an algebra S, and µ* the induced outer measure. Show that a
subset E of X is a*-measurable if and only if for each e > 0 there is a set A E Ss, A C E,such
that a*(E-A) <E.
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We begin the study of integration over general measure spaces by devoting the first section
to the consideration of measurable functions. Much of this is quite similar to the study of
Lebesgue measurable functions on a single real variable. Our approach to general integration
differs from the one we pursued in Chapter 4 for integration with respect to Lebesgue mea-
sure for functions of a real variable. In Section 2, we first define the integral for a nonnegative
simple function and then directly define the integral of a nonnegative measurable function
f as the supremum of integrals of nonnegative simple functions 0 for which 0 < 0 < f.
At this early stage we establish the general Fatou's Lemma, which is the cornerstone of
the full development of the integral, and its close relatives, the Monotone Convergence
Theorem and Beppo Levi's Lemma. In the third section, we consider integration for general
measurable functions and establish the linearity and monotonicity properties of the integral,
the continuity, and countable additivity of integration, and the Integral Comparison Test
and Vitali Convergence Theorem. In Section 4, we introduce the concept of absolute con-
tinuity of one measure with respect to another and prove the Radon-Nikodym Theorem, a
far-reaching generalization of the representation of absolutely continuous functions of a real
variable as indefinite integrals. We also establish the Lebesgue Decomposition Theorem
for measures. The chapter concludes with an application of the Baire Category Theorem
to prove the Vitali-Hahn-Nikodym Theorem, which tells us of very general assumptions
under which the setwise limit of a sequence of measures is again a measure.

18.1 MEASURABLE FUNCTIONS

For a measurable space (X, M), the concept of a measurable function on X is identical
with that for functions of a real variable with respect to Lebesgue measure. The proof of the
following proposition is exactly the same as the proof for Lebesgue measure on the real line;
see page 54.

Proposition 1 Let (X, M) be a measurable space and f an extended real-valued function
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defined on X. Then the following statements are equivalent:

(i) For each real number c, the set {x E X I f (x) < c} is measurable.

(ii) For each real number c, the set {x e X I f (X) < c} is measurable.

(iii) For each real number c, the set {x E X 1f (x) > c} is measurable.

(iv) For each real number c, the set {x e X I f (X) > c} is measurable.

Each of these properties implies that for each extended real number c,

the set {x E X I f (x) = c} is measurable.

Deffigtion Let (X, M) be a measurable space. An extended real-valued function f on X is
said to be measurable (or measurable with respect to M) provided one, and hence all, of the
four statements of Proposition 1 holds.

For a set X and the a--algebra M = 2x of all subsets of X, every extended real-valued
function on X is measurable with respect to M. At the opposite extreme, consider the
o-algebra M = {X, 0}, with respect to which the only measurable functions are those that
are constant. If X is a topological space and M is a o"-algebra of subsets of X that contains the
topology on X, then every continuous real-valued function on X is measurable with respect
to M. In Part 1 we studied functions of a real variable that are measurable with respect to
the o--algebra of Lebesgue measurable sets.

Since a bounded, open interval of real numbers is the intersection of two unbounded,
open intervals and each open set of real numbers is the countable union of a collection of
open intervals, we have the following characterizaton of real-valued measurable functions
(see also Problem 1).

Proposition 2 Let (X, M) be a measurable space and f a real-valued function on X. Then
f is measurable if and only if for each open set 0 of real numbers, f-1(0) is measurable.

For a measurable space (X, M) and measurable subset E of X, we call an extended
real-valued function f that is defined on E measurable provided it is measurable with
respect to the measurable space (E, ME), where ME is the collection of sets in M that
are contained in E. The restriction of a measurable function on X to a measurable set is
measurable. Moreover, for an extended real-valued function f of X and measurable subset
E of X, the restriction of f to both E and X ' E are measurable if and only if f is measurable
on X.

Proposition 3 Let (X, M, µ) be a complete measure space and Xo a measurable subset of
X for which µ(X ^- Xo) = 0. Then an extended real-valued function f on X is measurable if
and only if its restriction to Xo is measurable. In particular, if g and h are extended real-valued
functions on X for which g = h a.e. on X, then g is measurable if and only if h is measurable.

Proof Define fo to be the restriction of f to Xo. Let c be a real number and E _ (c, oo ).
If f is measurable, then f -1(E) is measurable and hence so is f-1(E) fl Xo = fo (E).
Therefore fo is measurable. Now assume fo is measurable. Then

f-1(E) = ffo 1(E) U A,
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where A is a subset of X - X0. Since (X, M, µ) is complete, A is measurable and hence
so is f -1(E ). Therefore the function f is measurable. The second assertion follows from
the first.

This proposition is false if the measure space (X, M, µ) fails to be complete (see Problem 2).
The proof of the following theorem is exactly the same as the proof in the case of Lebesgue
measure on the real line; see page 56.

Theorem 4 Let (X, M) be a measurable space and f and g measurable real-valued functions
on X.

(Linearity) For any real numbers a and 0,

a f + lag is measurable.

(Products)
f g is measurable.

(Maximum and Minimum) The functions max{ f, g) and min{ f, g} are measurable.

Remark The sum of two extended real-valued functions is not defined at points where the
functions take infinite values of opposite sign. Nevertheless, in the study of linear spaces of
integrable functions it is necessary to consider linear combinations of extended real-valued
measurable functions. For measurable functions that are finite almost everywhere, we proceed
as we did for functions of a real variable. Indeed, for a measure space (X, M, µ), consider
two extended real-valued measurable functions f and g on X that are finite a.e. on X. Define
X0 to be the set of points in X at which both f and g are finite. Since fand g are measurable
functions, Xo is a measurable set. Moreover, µ(X ^-Xo) = 0. For real numbers a and 0,
the linear combination a f + lag is a properly defined real-valued function on X0. We say
that a f + lag is measurable on X provided its restriction to Xo is measurable with respect to
the measurable space (Xo, Mo), where Mo is the o--algebra consisting of all sets in M that
are contained in Xo. If (X, M, µ) is complete, Proposition 3 tells us that this definition is
equivalent to the assertion that one, and hence any, extension of a f +/3g on Xo to an extended
real-valued function on all of X is a measurable function on X. We regard the function a f +Ag
on X as being any measurable extended real-valued function on X that agrees with a f +13g on
Xo. Similar considerations apply to the product off and g and their maximum and minimum.
With this convention, the preceding theorem holds if the extended real-valued measurable
functions f and g are finite a.e. on X.

We have already seen that the composition of Lebesgue measurable functions of a
single real variable need not be measurable (see the example on page 58). However, the
following composition criterion is very useful. It tells us, for instance, that if f is a measurable
function and 0 < p < oo, then If Ip also is measurable.

Proposition 5 Let (X, M) be a measurable space, f a measurable real-valued function on
X, and cp: R - R continuous. Then the composition p o f : X -> R also is measurable.
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Proof Let 0 be an open set of real numbers. Since cp is continuous, cp 1(0) is open. Hence,
by Proposition 2, f-1(rp-1(O)) = ((p o f) 1(0) is a measurable set and so (p o f is a
measurable function.

A fundamentally important property of measurable functions is that, just as in the
special case of Lebesgue measurable functions of a real variable, measurability of functions
is preserved under the formation of pointwise limits.

Theorem 6 Let (X, M, µ) be a measure space and {f,, } a sequence of measurable functions
on X for which f pointwise a.e. on X. If either the measure space (X, M, js) is
complete or the convergence is pointwise on all of X, then f is measurable.

Proof In view of Proposition 3, possibly by excising from X a set of measure 0, we
suppose the sequence converges pointwise on all of X. Fix a real number c. We must
show that the set {x E X I f (x) < c} is measurable. Observe that for a point x E X, since
limn-,oo fn (x) = f (x), f (x) < c if and only if there are natural numbers n and k such that
for all j > k, fj(x) < c -1/n. But for any natural numbers n and j, since the function fj is
measurable, the set {x E X I fj(x) < c -1/n} is measurable. Since M is closed with respect
to the formation of countable intersections, for any k,

00

n{xEX ( fj(x)<c-1/n}
j=k

also is measurable. Consequently,

{xEXI f(x)<c}= U
1 <k,n <oo

00

n{xEX l fj(x)<c-1/n}
j=k

is measurable since M is closed with respect to the formation of countable unions.

This theorem is false if the measure space fails to be complete (see Problem 3).

Corollary 7 Let (X, M, µ) be a measure space and (fn) a sequence of measurable functions
on X. Then the following functions are measurable:

sup { fn}, inf { fn}, limsup{ fn}, liminf{fn}.

Definition Let (X, M) be a measurable space. For a measurable set E, its characteristic
function, XE, is the function on X that takes the value 1 on E and 0 on X ^- E. A real-valued
function 0 on X is said to be simple provided there is a finite collection {Ek}k=1 of measurable
sets and a corresponding set of real numbers {ck}k=1 for which

n=I
k=1

Observe that a simple function on X is a measurable real-valued function on X that
takes a finite number of real values.
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The Simple Approximation Lemma Let (X, M) be a measurable space and f a measurable
function on X that is bounded on X, that is, there is an M > 0 for which If I < M on X. Then
for each E > 0, there are simple functions cpE and 0E defined on X that have the following
approximation properties:

cpE < f < 0E and 0 < AGE - (pE < E on X.

Proof Let [c, d) be a bounded interval that contains the image of X, f (X), and

c=Yo<Yl <...<Yn-i <Yn=d

a partition of the closed, bounded interval [c, d] such that yk - yk-1 < E for 1 < k < n. Define

Ik = [Yk-1, yk) and Xk = f-1(Ik) for 1 < k < n.

Since each Ik is an interval and the function f is measurable, each set Xk is measurable.
Define the simple functions cpE and 0E on X by

n n

TE=IYk-1' XXk and fr =Y, yk- XXk.
k=1 k=1

Let x belong to X. Since f (X) C [c, d), there is a unique k,1 < k < n, for which
yk_1 < f(x) < yk and therefore

coe(x) = Yk-1 5 f(x) <Yk = 0e(x)-

But Yk - Yk-1 < E, and therefore cpE and 0E have the required approximation properties.

The Simple Approximation Theorem Let (X, M, µ) be a measure space and f a measurable
function on X. Then there is a sequence {on} of simple functions on X that converges pointwise
on X to f and has the property that

IOnI 5 IfI on X foralln.

(i) If X is a--finite, then we may choose the sequence {o,') so that each On vanishes outside
a set of finite measure.

(ii) If f is nonnegative, we may choose the sequence {on) to be increasing and each On > 0
on X.

Proof Fix a natural number n. Define En = {x E X I I f (X) I < n). Since If I is a measurable
function, En is a measurable set and the restriction of f to En is a bounded measurable
function. By the Simple Approximation Lemma, applied to the restriction of f to En and
with the choice of c = 1/n, we may select simple functions hn and gn on En, which have the
following approximation properties:

hn < f < gn and 0 < gn - hn < 1/n on En.

For x in En, define On (x) = 0 if f(x) = 0, On (x) = max(hn(x), 0) if f(x) > 0 and
ali (x) = min{gn(x), 0} if f(x) < 0. Extend 0, to all of X by setting On (x) = n if f(x) > n
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and 0,, (x) _ -n if f(x) < -n. This defines a sequence {rli,,} of simple functions on X. It
follows, as it did in the proof for the case of Lebesgue measurable functions of a real variable
(see page 62), that, for each n, I'/in l < If l on X and the sequence (a/J } converges pointwise
on X to f.

If X is o--finite, express X as the union of a countable ascending collection t of
measurable subsets, each of which has finite measure. Replace each 41n by in Xx, and (i) is
verified. If f is nonnegative, replace each 0, by maxt<,<n lei I and (ii) is verified.

The proof of the following general form of Egoroff's Theorem follows from the
continuity and countable additivity of measure, as did the proof in the case of Lebesgue
measurable functions of a real variable; see page 65.

Egorofrs Theorem Let (X, M, µ) be a finite measure space and a sequence of
measurable functions on X that converges pointwise are. on X to a function f that is finite a.e.
on X. Then for each e > 0, there is a measurable subset XE of X for which

( f uniformly on XE and.µ(X XE) < E.

PROBLEMS

In the following problems (X, M, µ) is a reference measure space and measurable means
with respect to M.
1. Show that an extended real-valued function on X is measurable if and only if f-tfool and

f-1 {-oo} are measurable and so is f -t (E) for every Borel set of real numbers.

2. Suppose (X, M, µ) is not complete. Let E be a subset of a set of measure zero that does not
belong to M. Let f = 0 on X and g = XE. Show that f = g a.e. on X while f is measurable
and g is not.

3. Suppose (X, M, µ) is not complete. Show that there is a sequence { f } of measurable
functions on X that converges pointwise a.e. on X to a function f that is not measurable.

4. Let E be a measurable subset of X and f an extended real-valued function on X. Show that
f is measurable if and only if its restrictions to E and X - E are measurable.

5. Show that an extended real-valued function f on X is measurable if and only if for each
rational number c, {x E X I f (X) < c} is a measurable set.

6. Consider two extended real-valued measurable functions f and g on X that are finite a.e. on
X. Define Xo to be the set of points in X at which both f and g are finite. Show that Xo is
measurable and µ(X - Xo) = 0.

7. Let X be a nonempty set. Show that every extended real-valued function on X is measurable
with respect to the measurable space (X, 2X).
(i) Let xo belong to X and Sxo be the Dirac measure at xo on 2x. Show that two functions on

X are equal a.e. [Sxo] if and only if they take the same value at xo.

(ii) Let 17 be the counting measure on 2x. Show that two functions on X are equal a.e. [rl] if
and only if they take the same value at every point in X.

8. Let X be a topological space and B(X) the smallest containing the topology on X.
13(X) is called the Borel Q-algebra associated with the topological space X. Show that any
continuous real-valued function on X is measurable with respect to the Borel measurable
space(X, B(X)).
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9. If a real-valued function on R is measurable with respect to the Q-algebra of Lebesgue
measurable sets, is it necessarily measurable with respect to the Borel measurable space
(R, B(R))?

10. Check that the proofs of Proposition 1 and Theorem 4 follow from the proofs of the
corresponding results in the case of Lebesgue measure on the real line.

11. Complete the proof of the Simple Approximation Lemma.

12. Prove Egoroff's Theorem. Is Egoroff's Theorem true in the absence of the assumption that
the limit function is finite a.e.?

13. Let { f, } be a sequence of real-valued measurable functions on X such that, for each natural
number n, µ{x E X I Ifn(x) - fn+t(x)I > 1/2"}1/2". Show that f is pointwise convergent
a.e. on X. (Hint: Use the Borel-Cantelli Lemma.)

14. Under the assumptions of Egoroff's Theorem, show that X = U'
O

Xk, where each Xk is
measurable, µ(Xo) = 0 and, for k > 1, If, } converges uniformly to f on Xk.

15. A sequence (f,) of measurable real-valued functions on X is said to converge in measure to
a measurable function f provided that for each 17 > 0,

nlim µ{xEX I Ifn(x)-f(x)I>17}=0.

A sequence (f,) of measurable functions is said to be Cauchy in measure provided that for
each e > 0 and q > 0, there is an index N such that for each m, n > N,

µ{x E X I I fn(x) - fm(x)I > 17} <E.

(i) Show that if µ(X) < oo and { fn } converges pointwise a.e. on X to a measurable function
f , then { fn } converges to fin measure. (Hint: Use Egoroff's Theorem.)

(ii) Show that if If, } converges to f in measure, then there is a subsequence of If,,) that
converges pointwise a.e. on X to f . (Hint: Use the Borel-Cantelli Lemma.)

(iii) Show that if { is Cauchy in measure, then there is a measurable function f to which
If, } converges in measure.

16. Assume µ(X) < cc. Show that {f,} -* f in measure if and only if each subsequence of f f }
has a further subsequence that converges pointwise a.e. on X to f. Use this to show that for
two sequences that converge in measure, the product sequence also converges in measure to
the product of the limits.

18.2 INTEGRATION OF NONNEGATIVE MEASURABLE FUNCTIONS

In Chapter 4 we developed integration for Lebesgue measurable functions of a real variable
with respect to Lebesgue measure. We first defined the integral of a simple function
over a set of finite Lebesgue measure. The second step was to define the concepts of
integrability and integral for a bounded function on a set of finite measure and use the
Simple Approximation Lemma to show that a bounded measurable function that vanished
outside a set of finite Lebesgue measure is integrable and that the integral of such functions
possessed the anticipated linearity, monotonicity, and additivity over domains properties.
We then defined the Lebesgue integral of a nonnegative Lebesgue measurable function f
over an arbitrary Lebesgue measurable set E to be the supremum of f E g as g ranged over all
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bounded Lebesgue measurable functions g for which 0 < g < f on E and that vanish outside
a set of finite Lebesgue measure. This approach is not appropriate in the case of a general
measure space. Indeed, for a measure space (X, M, µ), if µ(X) = oo, we certainly want
fx 1 dµ = m. However, if X is nonempty, M = {X, 0) and the measure µ is defined by setting
µ(H) = 0 and µ(X) = oc, then the only measurable function g that vanishes outside of a set
of finite measure is g = 0, and hence the supremum of fx g dµ over such functions is zero. To
circumvent this difficulty, for the general integral, we first define the integral of nonnegative
simple functions and then define the integral of a nonnegative measurable function directly
in terms of integrals of nonnegative simple functions. We almost immediately establish a
general version of Fatou's Lemma and make this the cornerstone of further development.
We devote this section to integration of nonnegative measurable functions.

Definition Let (X, M, µ) be a measure space and 0 a nonnegative simple function on X.
Define the integral of Eli over X, fxa/rdµ, as follows: if a/i = 0 on X, define fE0dµ = 0.
Otherwise, let cl, c2, ..., c be the positive values taken by +i on X and, for 1 < k < n, define
Ek={xEXIci(x)=ck}.Define

fx k=t
(1)

using the convention that the right-hand side is oo if, for some k, p.(Ek) = oo. For a measurable
subset E of X, the integral of 0 over E with respect to µ is defined to be fx a/i XE d1A and
denoted by fE f dµ.

Proposition 8 Let (X, M, µ) be a measure space and rp and 0 nonnegative simple function
on X. If a and 0 are positive real numbers, then

fx
fx fx

Odµ+l3 0dµ

If A and B are disjoint measurable subsets of X, then

(2)

'AUB0dµ-I +V dµ+ fB0dµ

In particular, if Xo C X is measurable and µ(X ^- Xo) = 0, then

(3)

fcfrd=fctsd.
o

Furthermore, if 0 < cp a.e. on X, then

(4)

f 0dµ `f i,dµx x
(5)

Proof If either r/i or cp is positive on a set of infinite measure, then the linear combination
a 41 + 0 ip has the same property and therefore each side of (2) is infinite. We therefore
assume both 41 and rp vanish outside a set of finite measure and hence so does the linear
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combination a 41 + R (p. In this case the proof of (2) is exactly the same as the proof
for Lebesgue integration of functions of a real variable (see the proofs of Lemma 1 and
Proposition 2 on page 72). The additivity over domains formula follows from (2) and the
observation that, since A and B are disjoint,

X.

To verify (5), first observe that since the integral of a simple function over a set of measure
zero is zero, by (3), we may assume ip < cp on X. Observe that since cp and 41 take only a finite

number of real values, we may express X as uk=1 Xk, a disjoint union of measurable sets for
which both cp and 0 are constant on each Xk. Therefore

n n

2 ak Xxk and cp = I bk Xxk where ak < bk for 1 < k < n. (6)
k=1 k=1

But (2) extends to finite linear combinations of nonnegative simple functions and therefore
(5) follows from (6).

Definition Let (X, M, µ) be a measure space and f a nonnegative extended real-valued
measurable function on X. The integral off over X with respect to µ, which is denoted by
fx f dµ, is defined to be the supremum of the integrals f X cp dµ as cp ranges over all simple
functions cp for which 0 < cp < f on X. For a measurable subset E of X, the integral off over
E with respect to u is defined to be f X f XE dµ and denoted by fE f dµ.

We leave it as an exercise to verify the following three properties of the integral of
nonnegative measurable functions. Let (X, M, µ) be a measure space, g and h nonnegative
measurable functions on X, Xo a measurable subset of X, and a a positive real number. Then

fxL =a.Jx gdµ;

r r
if g < h a.e. on X, then J g dµ <

J
h dµ;

X x

f gdµ=f gdAifµ(X-Xo)=0.
X xo

(7)

(8)

(9)

Chebychev's Inequality Let (X, M, µ) be a measure space, f a nonnegative measurable
function on X, and A a positive real number. Then

Xµ{xEXI f(x)>A}<_
1

a
fdµ. (10)

Proof Define XA = {x E X I f (x) > A} and W = A Xxk. Observe that 0 < W < f on X and kP

is a simple function. Therefore, by definition,

A.µ(XA) = fX kpdµ fX fdµ

Divide this inequality by A to obtain Chebychev's Inequality.
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Proposition 9 Let (X, .M, µ) be a measure space and f a nonnegative measurable function
on X for which fx f dµ < no. Then f is finite a.e. on X and {x E X I f (x) > 01 is o--finite.

Proof Define X,,, = {x E X I f(x) = oo} and consider the simple function 0 = yx.. By
definition, fx ( dµ = µ(X ,,,) and since 0 < 0 < f on X, µ(X,,)) < fx f dµ < oo. Therefore
f is finite a.e. on X. Let n be a natural number. Define Xn = {x E X I f(x) > 1/n}. By
Chebychev's Inequality,

A(Xn)<n f fdµ<oo.
x

Moreover,

{xEX I f(x)>0}=UEn00

n=1

Therefore the set {x E X I f (x) > 01 is o--finite.

Fatou's Lemma Let (X, M, µ) be a measure space and { fn } a sequence of nonnegative
measurable functions on X for which {f} f pointwise a. e. on X. Assume f is measurable.
Then

f dµ < liminfJ fn dµ. (11)
fx x

Proof Let X0 be a measurable subset of X for which µ(X X0) = 0 and {f,, } f pointwise
on Xo. According to (9), each side of (11) remains unchanged if X is replaced by Xo. We
therefore assume X = X0. By the definition of fx f dp. as a supremum, to verify (11) it is
necessary and sufficient to show that if (p is any simple function for which 0 < f on X,
then

jPdP$liminfffnd/L. (12)

Let cp be such a function. This inequality clearly holds if fx dµ = 0. Assume fx p dµ > 0.

Case 1: fx (P dA = no. Then there is a measurable set X,,, C X and a > 0 for whichA (X,,,,) = no
and cp = a on X,,,,. For each natural number n, define

An={xEX I fk(x)>a/2 forallk>n}.

Then {An}n°1 is an ascending sequence of measurable subsets of X. Since X,,, C Un__1 A,
by the continuity and monotonicity of measure,

0C

hm µ(An)=µ(UA,,)> r(Xoo)=oo.n- oo
n=1

However, by Chebychev's Inequality, for each natural number n,

i(An)<2

f fndµ<2 f fndA.
a An a

x

Therefore limn, fx fn dp. = no = fx cpdp..
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Case 2: 0 < fx cp dµ < oo. By excising from X the set where q' takes the value 0, the left-hand
side of (12) remains unchanged and the right-hand side does not increase. Thus we may
suppose that W > 0 on X and therefore, since qp is simple and fX cp dµ < oo, g(X) < oo. To
verify (12), choose E > 0. For each natural number n, define

Xn={xEXI fk(x)>(1-E)cp(x)forallk>n}.

Then (X,} is an ascending sequence of measurable subsets of X whose union equals X.
Therefore {X Xn} is a descending sequence of measurable subsets of X whose intersection
is empty. Since g(X) < oo, by the continuity of measure, g(X X,) = 0. Choose
an index N such that g(X - Xn) < E for all n > N. Define M > 0 to be the maximum of
the finite number of values taken by cp on X. We infer from the monotonicity and positive
homogeneity properties, (8) and (7), of integration for nonnegative measurable functions,
the additivity over domains and monotonicity properties, (3) and (5), of integration for
nonnegative simple function and the finiteness of fX cp dµ that, for n > N,

fn dµf fndµ> fX.

cpdµ

x

=(1-E)J cpdµ-(1-E)fX-X.
X

cpdµ> (1-E)J cpdµ - fx-x
X

pdiz(1-E) fX c

=Jxcpdg - EI JxcpdA+Ml.

Hence

lim inf fX fn dg > JX Cp dµ - E I Jx cp dA+ MI .

This inequality holds for all E > 0 and hence, since fX cp dg + M is finite, it also holds for
c=0.

In Fatou's Lemma, the limit function f is assumed to be measurable. In case { fn}
converges pointwise to f on all of X or the measure space is complete, Theorem 6 tells us
that f is measurable.

We have already seen in the case of Lebesgue integration on the real line that the
inequality (11) may be strict. For instance, it is strict for Lebesgue measure on X = [0, 1] and
fn = n X[o,1/n] for all n. It is also strict for Lebesgue measure on X = R and In = X[,,, n+t]
for all n. However, for a sequence of measurable functions f fn) that converges pointwise on
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X to f, in the case of Lebesgue integration for functions of a real variable, we established a
number of criteria for justifying passage of the limit under the integral sign, that is,

lim I J fn dµJ = f lim fn] dµ.
X xL

L

Each of these criteria has a correspondent in the general theory of integration. We first
establish a general version of the Monotone Convergence Theorem.

The Monotone Convergence Theorem Let (X, M, p.) be a measure space and { fn } an
increasing sequence of nonnegative measurable functions on X. Define f (x) = limn,oo fn (x)
for each x E X. Then

limnfX fn dµ =f fdµ-'°° x

Proof Theorem 6 tells us that f is measurable. According to Fatou's Lemma,

fX f dµ < lim inf fx fn dµ.

However, for each n, fn < f on X, and so, by (8), fx fn dp. < fX f dµ. Thus

fn dµ < f f dµ.lim sup fX
X

Hence

Ix 0f dµ = nhmof fn dµ.
X

Beppo Levi's Lemma Let (X, M, µ) be a measure space and J fn) an increasing sequence
of nonnegative measurable functions on X. If the sequence of integrals { fx fn dµ} is bounded,
then { fn) converges pointwise on X to a measurable function f that is finite a. e. on X and

lim fX fn dµ = f f dµ < oo.
x

Proof Define f (x) = limn + fn (x) for each x E X. The Monotone Convergence Theorem

tells us that { fx In dµ} fx f dµ. Therefore, since the sequence of real numbers {fx fn dµ}
is bounded, its limit is finite and so fx f dµ < oo. It follows from Proposition 9 that f is finite
a.e. on X.

Proposition 10 Let (X, M, µ) be a measure space and f a nonnegative measurable function
on X. Then there is an increasing sequence {'Iin} of simple functions on X that converges
pointwise on X to f and

nli
fX

1ndµ= f fdµ.
x

(13)

Proof Apply the Simple Approximation Theorem and the Monotone Convergence
Theorem.
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Proposition 11 Let (X, M, µ) be a measure space and f and g nonnegative measurable
functions on X. If a and 13 are positive real numbers, them

f[cx f+P.g]dµ=a fx fdIL +0 - fx gdN.. (14)

Proof In view of (7), it suffices to establish (14) for a = 0 = 1. According to the preceding
theorem, there are increasing sequences {i4ln} and {cpn} of nonnegative simple functions on X
that converge pointwise on X to g and f , respectively,

nlimoo f '/n dµ = fX g dµ and lim f con dµ f f dp..
X X X

Then {cpn + 1/ln} is an increasing sequence of simple functions that converges pointwise on
X to f + g. By the linearity of integration for nonnegative simple functions, the linearity of
convergence for sequences of real numbers and the Monotone Convergence Theorem,

fX[f + g] dµ = lim, fX [(pn + n] dµ

=
L

fX pn dµ+ fX ikn
dµ]

= limn f pn dµ + lim f ik, dµn4oo X

= f f dµ+ fgdt.

We have defined the integral of a nonnegative measurable function but so far not
defined what it means for such a function to be integrable.

Definition Let (X, M, µ) be a measure space and f a nonnegative measurable function on
X. Then f is said be integrable over X with respect to µ provided f X f dµ < oo.

The preceding proposition tells us that the sum of nonnegative integrable functions is
integrable while Proposition 9 tells us that a nonnegative integrable function is finite a.e. and
vanishes outside a o -finite set.

PROBLEMS

In the following problems, (X, M, µ) is a measure space, measurable means with respect
to M, and integrable means with respect to I.L.

17. Prove (7) and (8). Use (8) to prove (9).

1 Since a and R are positive and f and g are nonnegative extended real-valued functions, a f + pg is an extended
real-valued function that is properly defined pointwise on all of X.
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18. Let {u } be a sequence of nonnegative measurable functions on X. For x E X, define
f(x) Y_ un(x). Show that

n=1

f undAj
x n=1 x

19. Show that if f is a nonnegative measurable function on X, then

f fdµ=0 if and only if f = 0 a.e. on X.
x

20. Verify (2) in the case 0 and (p vanishes outside a set of finite measure.

21. Let f and g be nonnegative measurable functions on X for which g < f a.e. on X. Show that
f = g a.e. on X if and only if fx g dµ = fx f dµ.

22. Suppose f and g are nonnegative measurable functions on X for which f2 and g2 are
integrable over X with respect to µ. Show that f g also is integrableover X with respect to µ.

23. Let X be the union of a countable ascending sequence of measurable sets {Xn} and f a
nonnegative measurable function on X. Show that f is integrable over X if and only if there
is anM> 0 for which fxn fdµ <M for alln.

24. Show that the definition of the integral of a nonnegative measurable function on a general
measure space is consistent with the definition given in the particular case of the Lebesgue
integral of a function of a real variable.

25. Let r) be the counting measure on the natural numbers N. Characterize the nonnegative
real-valued functions (that is, sequences) that are integrable over N with respect to q and the
value of fN f dr7.

26. Let xo be a point in a set X and Sxo the Dirac measure concentrated atxo. Characterize the
nonnegative real-valued functions on X that are integrable over X with respect to Sxo and the
value of fx f dSxo.

18.3 INTEGRATION OF GENERAL MEASURABLE FUNCTIONS

Let (X, M) be a measurable space and f a measurable function on X. The positive part
and the negative part of f, f+ and f-, are defined by

f+ = max{ f, 0} and f- = max(- f, 0) on X.

Both f+ and f - are nonnegative measurable functions on X for which

f = f + - f andifI=f++f on X.

Since 0 < f+ < If I and 0 < f - If I on X, we infer from (8) that if If I is integrable
over X, so are f+ and f- Conversely, by linearity of integration for nonnegative functions,
if f+ and f - are integrable over X, so is If 1
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Definition Let (X, M, µ) be a measure space. A measurable function f on X is said to be
integrable over X with respect to µ provided If I is integrable over X with respect to µ. For
such a function, we define the integral off over X with respect to µ by

fx f dµ
fx f+ dµ

Jx f - dµ.

For a measurable subset E of X, f is said to be integrable over E provided f XE is integrable
over X with respect to µ. The integral off over E with respect to µ is defined to be f X f XE dµ
and denoted by fE f dµ.

The Integral Comparison Test Let (X, M, µ) be a measure space and f a measurable
function on X. If g is integrable over X and dominates f on X in the sense that If I < g a.e. on X,
then f is integrable over X and

L f dµ f IfI dµ < JgdIL. (15)
x

Proof The inequality (8) tells us that If I is integrable over X. We invoke Proposition 11 and
the inequality (8) once more to conclude that

fx f dµ fx f+ dµ- f
x

.f dµ < f .f+dµ+ f f dµ= f Ifldµ<J gdµ.
x x x

Remark Let (X, M, µ) be a measure space and f be integrable over X. We infer from
Proposition 9, when applied to the positive and negative parts of f, that f is finite a.e. on X.
Therefore, if g and h are integrable over X, the sum g + h is defined on X by the convention
established in the remark on page 361. Furthermore, by (9), applied to the positive and negative
parts of g + h, if Xo is the set of points in X at which both g and h are finite, then

fx
[g+h]dµ=fxo [g+h]dµ.

Therefore the integral of h + g over X is properly defined, that is, it does not depend on the
choice of functional value assigned to h + g at those points in X at which h and g take infinite
values of opposite sign.

Theorem 12 Let (X, M, µ) be a measure space and f and g be integrable over X.

(Linearity) For real numbers a and 0, a f + lag is integrable over X and

f[af+/3gJd/L=
x

a fx f dµ + l3 fx gdµ.

(Monotonicity) If f < g a.e. on X, then

ffd,Lfgd/L.
x
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(Additivity Over Domains) If A and B are disjoint measurable subsets of X, then

fAUB f dµ
= fA fdµ + fB f dµ.

Proof We prove linearity for coefficients a = Q = 1 and leave the extension to the case
of general coefficients as an exercise. Both If I and IgI are integrable over X. According to
Proposition 11, the sum If I + I8I also is integrable over X. Since If +gi < If I + IgI on X, we
infer from (8) that If + gI is integrable over X. Therefore the positive and negative parts of
f , g and f + g are integrable over X. According to Proposition 9, by excising from X a set of
measure zero and using (9), we may assume that f and g are finite on X. To verify linearity
is to show that

f[f+gJ+di_f[f+g]d/L= l1X.f+dµ- fXf di.1 +I f g+dµ- fXg- dµJ. (16)

But

(.f+g)+-(.f+g) =.f+g=(f+- f-)+(g+-g-) on X,
and therefore, since each of these six functions takes real values on X,

(.f+g)++f +g =(f+g) +f++g+onX.
We infer from Proposition 11 that

fX(f +g)+dA+ fXf dµ+ fXg- dµ= fX(f + g) dµ+ f .f+dµ+ fXg+dµ

Since f , g and f +g are integrable over X, each of these six integrals is finite. Rearrange these
integrals to obtain (16). We have established the linearity of integration. The monotonicity
property follows from linearity since if f < g a.e. on X, then g - f > 0 a.e. on X and therefore

0<f (g-f)dµ=f gdA-f fdA.
x x

Additivity over domains follows from linearity and the observation that, since A and B are
disjoint,

.f XAUB = f XA + f XB on X.

As we have seen in the case of Lebesgue integration for functions of a real variable,
the product of integrable functions is not, in general, integrable. In the following chapter
we establish a general Holder's Inequality and thereby describe integrability properties of
products of functions.

Theorem 13 (the Countable Additivity Over Domains of Integration) Let (X, M, µ) be a
measure space, the function f be integrable over X, and [X,,)'1 a disjoint countable collection
of measurable sets whose union is X. Then

f fdµ=> f fdp. (17)
X n=1 Xn
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Proof We assume f > 0. The general case follows by considering the positive and negative
parts of f. For each natural number n, define

n

fn=Ef'Xxn on X.
k=1

The summation formula (17) now follows from the Monotone Convergence Theorem and
the linearity of integration.

For a nonnegative integrable function g on X, this theorem tells us that the set function
EH fE g dµ defines a finite measure on .M2 and hence has the continuity properties possessed
by measures. This observation, applied to the positive and negative parts of an integrable
function, provides the proof of the following theorem.

Theorem 14 (the Continuity of Integration) Let (X, M, p.) be a measure space and the
function f be integrable over X.

(i) If (Xn)n
1 is an ascending countable collection of measurable subsets of X whose

union is X, then

fx.fdµ=nl fxnfdµ (18)

(ii) If (Xn}_ 1 is a descending countable collection of pmeasurable subsets of X, then

f f dµ = lim J f dµ. (19)
0o xn nom xn

So far the only class of integrable functions we have are simple functions that vanish
outside a set of finite measure. The following theorem presents a much larger linear space of
integrable functions.

Theorem 15 Let (X, M, µ) be a measure space and f a measurable function on X. If f is
bounded on X and vanishes outside a set of finite measure, then f is integrable over X.

Proof We assume f > 0 on X. The general case follows by considering the positive and
negative parts of f. Let Xo be a set of finite measure for which f vanishes on X - X0. Choose
M > 0 such that 0 < f < M on X. Define cp = M Xxo. Then 0 < f < co on X. We infer from
(8) that fffMx0)<0
Corollary 16 Let X be a compact topological space and M a of subsets of X that
contains the topology on X. If f is a continuous real-valued function on X and (X, M, µ) is
a finite measure space, then f is integrable over X with respect to µ.

Proof Since f is continuous, for each open set 0 of real numbers, f-1(0) is open in X and
therefore belongs to M. Thus f is measurable. On the other hand, since X is compact, f is

2The integral over the empty-set is defined to be zero.
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bounded. By assumption, µ(X) < oo. The preceding theorem tells us that f is integrable
over X with respect to µ.

We now return to the task of establishing criteria that justify, for a sequence of
integrable functions that converges pointwise to a limit function, passage of the limit under
the integral sign.

The Lebesgue Dominated Convergence Theorem Let (X, M, µ) be a measure space and
[ f } a sequence of measurable functions on X for which (f, } -* f pointwise a.e. on X and the
function f is measurable. Assume there is a nonnegative function g that is integrable over X
and dominates the sequence {fn} on X in the sense that

If, I < g a.e. on X for all n.

Then f is integrable over X and

lim
J

fndµ=J fdµ.
X X

Proof For each natural number n, the nonnegative functions g- f and g+ f are measurable.
By the integral comparison test, for each n, f and fn are integrable over X. Apply Fatou's
Lemma and the linearity of integration to the two sequences of nonnegative measurable
functions {g -/' f,) and {g + fn } in order to conclude that

fn dµ:J gdµ - J f dµ = f [g - f] dµ < lim inf J [g - f,] dµ = fx g dµ - lim sup fx
x x x x

fxg dg + fxfdt,= fX[g+ f]dµ <liminf fx[g+fn]dµ= fgdpH-liminffx f. dg;

There fore

lim sup fx fn dµ < fx fdµ < lim inf fx fn dµ.

We established the Vitali Convergence Theorem for the Lebesgue integral of a function
of a single real variable, first for integrals over sets of finite Lebesgue measure (see page 94)
and then for integrals over sets of infinite Lebesgue measure (see page 98). We now establish
a slight variation of this theorem for general integrals.

Definition Let (X, M, µ) be a measure space and {fn} a sequence of functions on X, each
of which is integrable over X. The sequence { fn} is said to be uniformly integrable over X
provided for each e > 0, there is a S > 0 such that for any natural number n and measurable
subset E of X,

if µ(E)<S, then fIfnIdlL<e. (20)

The sequence {f,) is said to be tight over X provided for each e > 0, there is a subset Xp of X
that has finite measure and, for any natural number n,

fn I d tb < e.
X Xp
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Proposition 17 Let (X, M, µ) be a measure space and the function f be integrable over X.
Then for each c > 0, there is a S > 0 such that for any measurable subset E of X,

if µ(E) <5, then

f
18dµ<E.

E

Furthermore, for each c > 0, there is a subset Xo of X that has finite measure and

(21)

Ifldµ<E. (22)

Proof We assume f > 0 on X. The general case follows by considering the positive and
negative parts of f. Let c >,0. Since fx f dµ is finite, by the definition of the integral of a
nonnegative function, there is a simple function 0 on X for which

0<qr<fonXand0<J fdµ-J +fdµ<E/2.
x

Choose M > 0 such that 0 < 41 < M on X. Therefore, by the linearity and monotonicity of
integration, if E C X is measurable, then

r
<J

E

Thus (21) holds for 6 = E/2M. Since the simple function 41 is integrable over X, the
measurable set Xo = {x E X I t/r(x) > 0} has finite measure. Moreover,

fx-xo x
fdµ = f

xo
[f - +P] dµ < fX[f - dµ < E.

The proof is complete.

The Vitali Convergence Theorem Let (X, M, µ) be a measure space and (fn) a sequence of
functions on X that is both uniformly integrable and tight over X. Assume (f") -+ f pointwise
a.e. on X and the function f is integrable over X. Then

lim fE fndµ=J fdµ.
n 00 E

Proof Observe that for all n, I f - fn I <- I f I + I f, I on X. Therefore, by the integral comparison
test and additivity over domains and monotonicity properties of integration, if Xo and Xt
are measurable subsets of X for which Xt C Xo, then for all n, since X is the disjoint union
X= X1U[X0-X1]U[X-X0],

f[fn_f]dif Ifs-fIdµ+ '0-X1 [IfnI+Ifl]dµ+ f [IfnI+Ifl]dµ. (23)
x xl x xo

Let E > 0. By the preceding proposition, the tightness of (fn), and the linearity of integration,
there is a measurable subset X0 of X of finite measure for which

f [IfnI+IfI]dµ= f IfnIdµ+ f IfIdµ<E/3 foralln. (24)
x xo x .. xo x ^ xo
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By the preceding proposition, the uniform integrability of {fn}, and the linearity of integra-
tion, there is a S > 0 such that for any measurable subset E of X,

if µ(E)<5, then f [Ifnl+I.fI]dµ= f If.Idµ+ f IfIdµ<E/3 foralln. (25)
E E E

By assumption, f is integrable over X. Therefore f is finite a.e. on X. Moreover, µ(Xo) < no.
We may therefore apply Egoroff's Theorem to infer that there is a measurable subset X1 of
X0 for which µ (Xo X j) < S and { fn } converge uniformly on X1 to f. It follows from (25) that

[IfnI+If I]dp.<E/3 for all n. (26)

On the other hand, by the uniform convergence of { fn} to f on X1, a set of finite measure,
there is an N for which

f Ifn - fdµ<sup Ifn(x)- f(x)I. (X1)<E/3foralln>N. (27)
t xEXI

From the inequality (23), together with the three estimates (24), (26), and (27), we conclude
that

fX[fn - f] dµ<Eforall n > N.

The proof is complete.

The Vitali Convergence Theorem for general measure spaces differs from the special
case of Lebesgue measure on the real line. In the general case, we need to assume that
the limit function f is integrable over E. The integrability of f does not follow from the
uniform integrability and tightness of {f,} as it does in the case of Lebesgue integration
on the real line (see, however, Problems 36 and 37). Indeed, let X be a set that contains
a proper nonempty set E. Consider the o--algebra M = {0, E, X - E, X} and define
µ(0) = 0,µ(E) = p(X - E) = 1/2 and µ(X) = 1. For each natural number n, define
fn = n - XE - n - X[X .. E]. The sequence {f n } is uniformly integrable and tight and converges
pointwise on X to the function f that takes the constant value no on E and -oo on X - E.
The limit function is not integrable over X with respect to µ.

We leave the proof of the following corollary as an exercise.

Corollary 18 Let (X, M, µ) be a measure space and (hn) a sequence of nonnegative
integrable functions on X. Suppose that {hn (x)} -+ 0 for almost all x in X. Then

lim f hn dµ = 0 if and only if {hn} is uniformly integrable and tight.n- oc x

PROBLEMS

In the following problems, (X, M, µ) is a reference measure space, measurable means with
respect to M, and integrable means with respect to µ.

27. For a set X, let M be the o--algebra of all subsets of X.
(i) Let 71 be the counting measure of M. Characterize the real-valued functions f on X,

which are integrable over X with respect to 17 and the value of f x f di for such functions.
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(ii) Let xp be a member of X and Sxo the Dirac delta measure concentrated at xo. Characterize
the real-valued functions f on X, which are integrable over X with respect to Sxo and the
value of f x f d&xO for such functions.

28. Show that if f is integrable over X, then f is integrable over every measurable subset of X.

29. Let f be a measurable function on X and A and B measurable subsets of X for which
X = A U B and A fl B = 0. Show that f is integrable over X if and only if it is integrable over
both A and B.

30. Let X be the disjoint union of the measurable sets For a measurable function f on
X, characterize the integrability of f on X in terms of the integrability and the integral of f
over the

31. Let (X, M, A) be a measure space for which µ(X) = 0 and the function f on X take the
constant value oo. Show that f x f dµ = 0.

32. Let f be integrable over X with respect to A. Show that f E f dµ = 0 for every measurable
subset E of X if and only if f = 0 a.e. on X.

33. Let (X, M, A) be a measure space and f a bounded measurable function on X that vanishes
outside a set of finite measure. Show that

f f dµ = sup
J

fdµ = inf
Jx

cpdµ,
x

where i ranges over all simple functions on X for which 41 < f on X and cp ranges over all
simple functions on X for which f < W on X.

34. Let (X, M, µ) be a measure space and f a bounded function on X that vanishes outside a
set of finite measure. Assume

sup jfdL=inffd,L.

where 0 ranges over all simple functions on X for which 0 < f on X and rP ranges over all
simple functions on X for which f < rp on X. Prove that f is measurable with respect to the
completion of (X, M, µ).

35. Prove the linearity property of integration for general coefficients a and /3.

36. Let (f,) be a sequence of integrable functions on X that is uniformly integrable and tight.
Suppose that (f,) -+ f pointwise a.e. on X and f is measurable and finite a.e. on X. Prove
that f is integrable over X.

37. Let { f} be a sequence of integrable functions on X that is uniformly integrable. Suppose
that {1) -+ f pointwise a.e. on X and f is measurable. Assume the measure space has the
property that for each e > 0, X is the union of a finite collection of measurable sets, each of
measure at most e. Prove that f is integrable over X.

38. Prove Corollary 18.

39. Deduce the Lebesgue Dominated Convergence Theorem from the Vitali Convergence
Theorem.

40. Show that almost everywhere convergence can be replaced by convergence in measure in
the Lebesgue Dominated Convergence Theorem and the Vitali Convergence Theorem (see
Problem 15 for the definition of convergence in measure).
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41. Let f f} be a sequence of functions on X, each of which is integrable over X. Show that If,)
is uniformly integrable if and only if for each e > 0, there is a S > 0 such that for any natural
number n and measurable subset E of X,

if µ(E) < S, then fE
f dµl <,E.

42. Let 71 be another measure on M. For an extended real-valued function f on X that is
measurable with respect to the measurable space (X, M), under what conditions is it true
that

fx f d[µ+71] = f f dµ+fx f dn.

43. Let .Mo be a o-algebra that is contained in M, po the restriction of µ to Mo, and f a
nonnegative function that is measurable with respect to Mo. Show that f is measurable with
respect to M and

fx f dµo < fx f dµ.

Can this inequality be strict?

44. Let v be a signed measure on (X, M). We define integration over X with respect to a signed
measure v by defining

fx f dv = fx f dv+ - fx f dv ,

provided f is integrable over X with respect to both v+ and v. Show that if If I < M on X, then

fX f dv <MIvI(X).

Moreover, if I v I (X) <oo, show that there is a measurable function f with I f I < ion X for which

ffdv= IvI(X)

45. Let g be a nonnegative function that is integrable over X. Define

v(E)=f gdµfor all EEM.
E

(i) Show that visa measure on the measurable space (X, M).

(ii) Let f be a nonnegative function on X that is measurable with respect to M. Show that

fx f dv=fx fgdµ.

(Hint: First establish this for the case when f is simple and then use the Simple
Approximation Lemma and the Monotone Convergence Theorem.)
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46. Let v : M -> [0, oc) be a finitely additive set function. Show that if f is a bounded measurable
function on X, then the integral off over X with respect to v, f, f dv, can be defined so that
fX XE dv = v(E), if E is measurable and integration is linear, monotone, and additive over
domains for bounded measurable functions.

47. Let µ be a finite premeasure on an algebra S and µ its Caratheodory extension. Let E be
µ*-measurable. Show that for each c > 0, given there is an A E S with

µ([A-El U[E^-A])<E.

48. Let S be an algebra of subsets of a set X. We say that a function q : X -> R is S-simple
provided cp = 2k=i akXAA, where each Ak E S. Let µ be a premeasure on S and µ its
Caratheodory extension. Given E > 0 and a function f that is integrable over X with respect
to µ, show that there is an S-simple function cp such that

fIf-ccId<E.

18.4 THE RADON-NIKODYM THEOREM

Let (X, M) be a measurable space. For µ a measure on (X, M) and f a nonnegative
function on X that is measurable with respect to M, define the set function v on M by

v (E) = J f dµ for all E E M. (28)
E

We infer from the linearity of integration and the Monotone Convergence Theorem that v
is a measure on the measurable space (X, M), and it has the property that

if E E M and µ(E) = 0, then v(E) = 0. (29)

The theorem named in the title of this section asserts that if p. is v-finite, then every v-finite
measure v on (X, M) that possesses property (29) is given by (28) for some nonnegative
function f on X that is measurable with respect to M. A measure v is said to be absolutely
continuous with respect to the measure µ provided (29) holds. We use the symbolism v «µ
for v absolutely continuous with respect to µ. The following proposition recasts absolute
continuity in the form of a familiar continuity criterion.

Proposition 19 Let (X, M, µ) be a measure space and v a finite measure on the measurable
space (X, M). Then v is absolutely continuous with respect to µ if and only if for each E > 0,
there is a 8 > 0 such that for any set E E M,

ifµ(E)<8, then v(E)<E. (30)

Proof It is clear that the E-S criterion (30) implies that v is absolutely continuous with
respect to µ, independently of the finiteness of v. To prove the converse, we argue by
contradiction. Suppose v is absolutely continuous with respect to p. but the E-S criterion
(30) fails. Then there is an co > 0 and a sequence of sets in M, (En}, such that for each n,
µ(En) < 1/2n while v (En) > co. For each n, define A,,= U'n Ek. Then (A,) is a descending
sequence of sets in M. By the monotonicity of v and the countable subadditivity of µ,

v(An)>Eoand µ(A,,) <1/2' 'forall n.
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Define A ,,= fl 1 A,,. By the monotonicity of the measure µ, µ(Ao,) = 0. We infer from
the continuity of the measure v that, since v(A1) < v(X) < oo and E0 for all n,
v(A,,) > co. This contradicts the absolute continuity of v with respect to µ. ,

The Radon-Nikodym Theorem Let (X, M, µ) be a o --finite measure space and v a or-finite
measure defined on the measurable space (X, M) that is absolutely continuous with respect to
µ. Then there is a nonnegative function f on X that is measurable with respect to M for which

v(E)=J fdµ forallEEM. (31)
E

The function f is unique in the sense that if g is any nonnegative measurable function on X
that also has this property, then g = f a.e. [ii].

Proof We assume that both µ and v are finite measures and leave the extension to the
o--finite case as an exercise. If v(E) = 0, for all E E M, then (31) holds for f =0 on X. So
assume v does not vanish on all of M. We first prove that there is a nonnegative measurable
function f on X for which

ffd<v(E)forallEEM.J
f>0and (32)

,

For A > 0, consider the finite signed measure v - Aµ. According to the Hahn Decomposition
Theorem, there is a Hahn decomposition (PA, NA) for P - Aµ, that is, X = PA U NA and PA n
NA = 0, where PA is a positive set and NA is a negative set for v - Aµ. We claim that there is
some A > 0 for which µ(PA) > 0. Assume otherwise. Let A > 0. Then µ(PA) = 0. Therefore
µ(E) = 0 and hence, by absolute continuity, v(E) = 0, for all measurable subsets of PA.
Since NA is a negative set for v - Aµ,

v(E)<Aµ(E)for all EEMand allA>0. (33)

We infer from these inequalities that v(E) = 0 if µ(E) > 0 and of course, by absolute
continuity, v (E) = 0 if µ(E) = 0. Since µ(X) < oo, P (E) = 0 for all E E M. This is a
contradiction. Therefore we may select Ao > 0 for which µ(PAO) > 0. Define f to be A0 times
the characteristic function of PAO.Observe that fx f dµ > 0 and, since v - Aoµ is positive on
P41

fE fdµ=A0p(PAonE) <v(PAonE) <v(E)forall EEM.

Therefore (32) holds for this choice of f. Define .1 to be the collection of nonnegative
measurable functions on X for which

J
fdµ<v(E)for all EEM,

E

and then define

M = sup fE.F fx .f dµ (34)

We show that there is an f E .1 for which fx f dµ = M and (31) holds for any such f. If g
and h belong to Y, then so does max(g, h). Indeed, for any measurable set E, decompose



Section 18.4 The Radon-Nikodym Theorem 383

E into the disjoint union of Et = {x E E I g(x) < h(x)} and E2 = {x E E I g(x) > h(x)} and
observe that

JE

h}d=J hd+ f gdv(E1)+v(E2)=v(E).
E1 EZ

Select a sequence { f, } in F for which f
X

f, dg = M. We assume { f } is point-
wise increasing on X, for otherwise, replace each f, by max{ fl, ... , f

f (x) for each x E X. We infer from the Monotone Convergence Theorem that
fx f dg = M and also that f belongs to Y. /D' Define

rl(E)=v(E)- J fdg for all EEM. (35)
E

By assumption, v(X) < oo. Therefore f X fdg < v(X) < oo, and hence, by the countable
additivity of integration, i7 is a signed measure. It is a measure since f belongs to F, and it
is absolutely continuous with respect to g. We claim that 11= 0 on M and hence (31) holds
for this choice of f. Indeed, otherwise, we argue as we just did, with v now replaced by 17, to
conclude that there

X

there is a nonnegative measurable function rf for which

L'-

<-7(E)=v(E)- Jfdg for all EE.M. (36)
E

Therefore f + f belongs to .E and fX[f + ,f ] dg > fx fdg = M, a contradiction of the
choice of f. It remains to establish uniqueness. But if there were two, necessarily integrable,
functions ft and f2 for which (31) holds, then, by the linearity of integration,

fE [fl - f2] dg = 0 for all E E.M.

Therefore ft = f2 a.e. [g] on X.

In Problem 59 we outline another proof of the Radon-Nikodym Theorem due to John
von Neumann: it relies on the Riesz-Frechet Representation Theorem for the dual of a
Hilbert space.

Example The assumption of Q-finiteness is necessary in the Radon-Nikodym Theorem.
Indeed, consider the measurable space (X, M), where X = [0, 1] and M is the collection
of Lebesgue measurable subsets of [0, 1]. Define g to be the counting measure on M, so
g(E) is the number of points in E if E is finite, and otherwise g(E) = oo. The only set of
g measure zero is the empty-set. Thus every measure on M is absolutely continuous with
respect to g. Define m to be Lebesgue measure on M. We leave it as an exercise to show
that there is no nonnegative Lebesgue measurable function f on X for which

m(E)=J fdg forallEEM.
E

Recall that for a measurable space (X, M) and signed measure v on M, there is the Jordan
decomposition v = vt - v2, where vi and v2 are measures on M, one of which is finite:
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We define the measure lvi to be v1 + v2. If µ is a measure on M, the signed measure v is
said to be absolutely continuous with respect to µ provided JvI is absolutely continuous with
respect to µ, which is equivalent to the absolute continuity of both vl and v2 with respect to
µ. From this decomposition of signed measures and the Radon-Nikodym Theorem, we have
the following version of this same theorem for finite signed measures.

Corollary 20 Let (X, M, µ) be a o--finite measure space and v a finite signed measure on
the measurable space (X, M) that is absolutely continuous with respect toµ. Then there is a
function f that is integrable over X with respect to p. and

v(E)=f fdµforallEEM.
E

Recall that given two measures µ and v on a measurable space (X, M), we say that µ
and v are mutually singular (and write µ 1 v) provided there are disjoint sets A and B in
Mforwhich X=AUBandv(A)=µ(B)=0.

The Lebesgue Decomposition Theorem Let (X, M, µ) be a or-finite measure space and v a
o -finite measure on the measurable space (X, M). Then there is a measure vo on M, singular
with respect to µ, and a measure vl on M, absolutely continuous with respect to u, for which
v = vo + v1. The measures vo and v1 are unique.

Proof Define A = µ + v. We leave it as an exercise to show that if g is nonnegative and
measurable with respect to M, thenr

J g dA = J g dµ + f g dv for all E E M.
E E

Since µ and v are o--finite measures, so is the measure A. Moreover, µ is absolutely continuous
with respect to A. The Radon-Nikodym Theorem tells us that there is a nonnegative
measurable function f for which

f
fdA=J fdµ+ f fdv for allEEM. (37)µ(E)=JE

E E

Define X+ _ {x E X I f (x) > 0) and X0 = {x E X I f (X) = 0). Since f is a measurable
function, X = Xo U X+ is a disjoint decomposition of X into measurable sets and thus
v = vo + v1 is the expression of v as the sum of mutually singular measures, where

vo (E) = v(E f1 Xo) and vt (E) = v(E f1 X+) for all E E M.

Now µ(Xo) = f xo f dA = 0, since f = O on Xo, and vo (X+) = v (X+ n X0) = v(0) = 0. Thus
µ and vo are mutually singular. It remains only to show that vt is absolutely continuous with
respect to µ. Indeed, let µ(E) = 0. We must show vi (E) = 0. However, since µ(E) = 0,
fE f dµ = 0. Therefore, by (37) and the additivity of integration over domains,

J
fdv=J fdv+ f fdv=0.

E Enxo Enx+

But f = O on E f1 Xo and f > O on E f1 Xo and thus v(E f1 X+) = O, that is, vl (E) =0.
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A few words are in order regarding the relationship between the concept of absolute
continuity of one measure with respect to another and their integral representation and
the representation of an absolutely continuous function as the indefinite integral of its
derivative, which we established in Chapter 6. Let [a, b] be a closed, bounded interval and
the real-valued function h on [a, b] be absolutely continuous. According to Theorem 10 of
Chapter 6,

ah (d) - h (c) =
J

h' dµ for all [c, d] C [a, b]. (38)
c

We claim that this is sufficient to establish the Radon-Nikodym Theorem in the case
X = [a, b], M is the v-algebra of Borel subsets on [a, b] and µ is Lebesgue measure on
M. Indeed, let v be a finite measure on the-measurable space ([a, b], M) that is absolutely
continuous with respect to Lebesgue measure. Define the function h on [a, b] by

h (x) = v ([a, x]) for all x E [a, b]. (39)

The function his called the cumulative distribution function associated with v. The function h
inherits absolute continuity from the absolute continuity of the measure v. Therefore, by (38),

v(E)=J h'dp.for all E_[c, d]C[a, b].
E

However, we infer from Corollary 14 of the preceding chapter that two measures that
agree on closed, bounded subintervals of [a, b] agree on the smallest Q-algebra containing
these intervals, namely, the Borel sets contained in [a, b]. Therefore

v(E)=J h'dµfor all EEM.
E

The Radon-Nikodym Theorem is a far-reaching generalization of the representation of
absolutely continuous functions as indefinite integrals of their derivatives. The function f
for which (31) holds is called the Radon-Nikodym derivative of v with respect to µ. It is
often denoted by dµ.

PROBLEMS

49. Show that the Radon-Nikodym Theorem for finite measures 'U and v implies the theorem for
v-finite measures µ and v.

50. Establish the uniqueness of the function fin the Radon-Nikodym Theorem.

51. Let [a, b] be a closed, bounded interval and the function f be of bounded variation on [a, b].
Show that there is an absolutely continuous function g on [a, b], and a function h on [a, b]
that is of bounded variation and has h' = 0 a.e. on [a, b], for which f = g + h on [a, b]. Then
show that this decomposition is unique except for addition of constants.

52. Let (X, M, µ) be a finite measure space, {Ek}k=1 a collection of measurable sets, and {ck}k=1
a collection of real numbers. For E E M, define

v(E)=>ck. (EflEk).
k=1

Show that v is absolutely continuous with respect to µ and find its Radon-Nikodym derivative
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53. Let (X, M, µ) be a measure space and f a nonnegative function that is integrable over
X with respect to A. Find the Lebesgue decomposition with respect to µ of the measure v
defined by v(E) = fE f dµ for E E M.

54. Let µ, v, and A be a -finite measureson the measurable space (X, M).
(i) If v << µ and f is a nonnegative function on X that is measurable with respect to M,

show that

f f dv = f f
[ddvjuld,_

(ii) If v «µ and A «µ, show that

d(v+A) dv dA

dp.
=

d1
+

dµ
a.e. [µ].

(iii) If v << <<A, show that
dv _ dv dµ

dA d dA
a.e. [A].

N-

(iv) If v << and µ << v, show that

dv dµ
= 1 a.e. [µ].dµ dv

55. Let µ, v, vl, and v2 be measures on the measurable space (X, M).
(i) Show that if v 1 µ and v << , then v = 0.

(ii) Show that if vl and v2 are singular with respect to µ, then, for any a > 0, /3 > 0, so is the
measure av1 + /31'2.

(iii) Show that if vl and v2 are absolutely continuous with respect to µ, then, for any
a > 0, 0 > 0, so is the measure av1 + /3v2.

(iv) Prove the uniqueness assertion in the Lebesgue decomposition.

56. Characterize the measure spaces (X, M, µ) for which the counting measure on M is
absolutely continuous with respect to µ and those for which, given xo E X, the Dirac measure
Sxo on M is absolutely continuous with respect to µ

57. Let [p,] be a sequence of measures on a measurable space (X, M) for which there is a
constant c > 0 such that An (X) < c for all n. Define µ: M -* [0, oo] by

00

I n-2n=1

Show that µ is a measure on M and that each µn is absolutely continuous with respect to A.
58. Let µ and v be measures on the measurable space (X, M) and define A = µ+v. Let the

nonnegative function f on X be measurable with respect to (X, M). Show that f is integrable
over X with respect to A if and only if it is integrable over X with respect to both µ and v.
Also show that if f is integrable over

fE

X with respect to A, then

f g dA = g dµ + f g dv for all E E .M.
E E
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59. (von Neumann's proof of the Radon-Nikodym Theorem) The basis of this proof is the
following assertion, which is a corollary of the Riesz-Frechet Representation Theorem for
the dual of a Hilbert space: For a measure space (X, M, A), let L2(X, A) be the collection
of measurable functions f on X such that f 2 is integrable over X with respect to A. Suppose
that the functional 0: L2(X, A) - R is linear, and bounded in the sense that there is some
c > 0 such that

XI+,(f)I2_<c.J f2dAforall fEL2(X,A).

Then there is a function g E L2(X, A) such that

t/r(f)=JX

Assuming this representation result, verify the following steps in another proof of the Radon-
Nikodym Theorem, where µ and v are finite measures on a measurable space (X, M) and v
is absolutely continuous with respect to µ.

(i) Define the measure A = µ + v on the measurable space (X, M) and the functional 41 on
L2(X, A) by

4i(f)=J fdµfor all f EL2(X, A).X

Show that 0 is a bounded linear functional on L2(X, A).

(ii) By the above representation result, choose a function g E L2(X, A) such that

gdA forall f E L2(X, A).J f dµ=
fX

f
x

Conclude that

J
fdµ=fx f fEL2(X,A),

x x

and therefore

µ(E)=fE gdµ+ f gdv for all E E M.
E

From this last identity conclude that g > 0 a.e. [A] on X and then use the absolute
continuity of v with respect to µ to conclude that A{x E X I g(x) = 0} = 0.

(iii) Use part (ii) to assume, without loss of generality, that g > 0 on X. Fix a natural number
n and E E M and define f = XE/[g + 1/n] on X. Show that f belongs to L2(X, A).
Conclude that

fg+l/n d= f 1 gd+ f 1 gdvforalln.Eg+l/n Eg+l/n
Justify taking limits as n -* no on each side of this equality and conclude that

v(E) = fE [1/g- 1]dµ for all EEM.

60. Let X = [0, 11, M the collection of Lebesgue measurable subsets of [0, 1], and take v to be
Lebesgue measure and µ the counting measure of M. Show that v is finite and absolutely
continuous with respect to µ, but there is no function f for which v(E) = fE dµ for all
EEM.
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18.5 THE NIKODYM METRIC SPACE: THE VITAU-HAHN-SAKS THEOREM

Let (X, M, µ) be a finite measure space. Recall that the symmetric difference of two
measurable sets A and B is the measurable set A A B defined by

AAB=[A-B]U[B^-A].

We leave the proof of the following set identity as an exercise:

(AAB)A(BOC)=AAC. (40)

We introduce a relation on M by defining A ^ B provided µ(AAB) = 0. The above
identity implies that this relation is transitive, and it clearly is reflexive and symmetric.
Therefore the equivalence relation ~ induces a decomposition of M into equivalence classes;
denote this collection by M/=. For A E M, denote the equivalence class of A by [A]. On
M/r, define the Nikodym metric pN, by

pµ ([A], [B]) =µ(AAB)forall A,B E M.

We infer from the identity (40) that pN, is properly defined and the triangle inequality holds;
the remaining two properties of a metric are evident. We call (M/=, pv,) the Nikodym
metric space associated with the measure space (X, M, µ). Now let v be a finite measure
on M that is absolutely continuous with respect to A. For A, B E M with A B, since
p(AE B) = 0, v(AAB) = 0, and hence

v(A)-v(B)=[v(AnB)+v(A^-B)]-[v(AnB)+v(B' A)]=v(A-B)-v(B^-A)=0.

We may therefore properly define v on M/= by setting

v([A]) = v(A) for all A E M.

As we did with the L" spaces, for convenience and simplicity, we denote members [A] of
M/= by A, and functions v: M/= -+ [0, oo) by v: M [0, oo). A consequence of the
Baire Category Theorem (Theorem 7 of Chapter 10) tellsus that if a sequence of real-valued
functions on a complete metric space converges pointwise to a real-valued function, then
there is a point in the space at which the sequence is equicontinuous. To employ this result
in the study of sequences of absolutely continuous measures, we now show that M/= is
complete and that a measure on M that is absolutely continuous with respect to µ induces a
uniformly continuous function on the Nikodym metric space pµ).

In Chapter 7, we normed the linear space of Lebesgue measurable functions on a
Lebesgue measurable set of real numbers, denoted it by Lt, and established the Riesz-
Fischer Theorem which told us that L1 is complete and every convergent sequence in Lt
had a subsequence that converges pointwise a.e. In the first section of the next chapter, for
a general measure space (X, M, /.t), we define L 1(X, µ) in the obvious manner and prove
the Riesz-Fischer Theorem in general.

Theorem 21 Let (X, M, µ) be a finite measure space. Then the Nikodym metric space
(M, p1.) is complete, that is, every Cauchy sequence converges.
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Proof Observe that for A, B E M,

µ(AAB)=J IXA -XBIdA. (41)
X

Define the operator T: M -* L' (X, µ) by T(E) = XE. Then (41) is the assertion that the
operator T is an isometry, that is,

pv,(A, B) = 11T(A) - T(B)IIi for all A, B E M. (42)

Let {A } be a Cauchy sequence in (M, p,,). Then {T(A)} is a Cauchy sequence in
L1 (X, µ). The Riesz-Fischer Theorem tells us that there is a function f E Lt (X, µ) such
that (T f in Ll (X, µ) and a subsequence of (T that converges pointwise to
f almost everywhere on X. Since each T (A,,) takes the values 0 and 1, if we define A0
to be the points in X at which the pointwise convergent subsequence converges to 1, then
f = XA, almost everywhere on X. Therefore, by (41), Ao in (M, pN,). The proof is
complete. 0

Lemma 22 Let (X, M, µ) be a finite measure space and v a finite measure on M. Let Eo be
a measurable set and e > 0 and S > 0 be such that for any measurable set E,

ifpN,(E, Eo)<3, then iv(E)-v(Eo)I <e/4. (43)

Then for any measurable sets A and B,

if pv,(A, B) <3, then Iv(A) - v(B)I < E. (44)

Proof We first verify that

ifpv,(A, 0) <3, thenv(A) <e/2. (45)

Observe that if D C C, then C A D = C"- D. Let A belong to M and p(A, 0) = µ.(A) <8.
Observe that

[Eo^-A] A Eo = E0^-[E0-A] = Eo f1 A C A.

Hence p v, (E0' A, Eo) = µ([Eo-A] A Eo) < µ(A) < S, and therefore, by assumption (43),

v(Eo) -v(Eo^'A) <e/4.

We infer from the excision property of v that

v(A fl Eo) = v(Eo) - v(Eo^-A) < E/4.

Now observe that

Eo A [Eo U [A - Eo]] = [Eo U [A" Eo]]-Eo = A^,Eo C A.

Thus, arguing as above,

v(A^-Eo) = v(Eo U [A' Eo]) - v(Eo) < e/4.
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Therefore

v(A) = v(A fl EO) + v(A^-Ep) < E/2,

and so (45) is verified.

But for any two measurable sets, since v is real-valued and finitely additive,

v(A)-v(B)_[v(A"B)+v(AflB)]-[v(B-A)+v(AflB)]=v(A-B)-v(B' A).

Therefore (45) implies (44).

Proposition 19 tells us that a finite measure v on M is absolutely continuous with
respect to µ if and only if each E > 0, there is a 5 > 0 such that if µ(E) < 5, then v(E) < e.
This means that if v is finite, then v is absolutely continuous with respect to µ if and only if
the set function v is continuous with respect to the Nikodym metric at 0. However, we infer
from the preceding lemma that if a finite measure v on M is continuous, with respect to the
Nikodym metric at one set E0 in M, then it is uniformly continuous on M. We therefore
have established the following proposition.

Proposition 23 Let (X, M, µ) be a finite measure space and v a finite measure on M that
is absolutely continuous with respect to µ. Then v induces a properly defined, uniformly
continuous function on the Nikodym metric space associated with (X, M, µ).

Definition Let (X, M) be a measurable space. A sequence {vn } ofmeasures on M is said to
converge setwise on M to the set function v provided

v(E) = nlim vn (E) for all E E M.
+oc

Definition Let (X, M, e) be a finite measure space. A sequence (vn) of finite measures on
M, each of which is absolutely continuous with respect to µ, is said to be uniformly absolutely
continuous3 with respect to .e provided for each e > 0, there is a 5 > 0 such that for any
measurable set E and any natural number n,

if ie(E) < 5, then vn(E) < e.

It is not difficult to see, using Lemma 22, that a sequence of finite measures (vn) of M
is uniformly absolutely continuous with respect to µ if and only if the sequence of functions
{vn : M -+ R) is equicontinuous4 with respect to the Nikodym metric pp,. Moreover, for
each natural number n, the Radon-Nikodym Theorem tells us that there is a nonnegative
integrable function fn, the Radon-Nikodym derivative of µ with respect to vn, for which

vn (E) = J fn dµ for all E E M
t:

3What we here call "uniformly absolutely continuous" might also be called equi absolutely continuous. There
is no standard terminology.

4Recall that a sequence of functions {hn : S -> R) on the metric space (S, p) is said to be equicontinuous at a
point u E S provided that for each e > 0, there is a S > 0 such that for v E S and natural number n, if p(u, v) < S,
then Ihn (u) - h (v) I < e. The sequence (hn : S -+ R) is said to be equicontinuous provided it is equicontinuous at
each point in S.
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It is clear that the sequence of functions (f,) is uniformly integrable over X with respect to µ
if and only if the sequence of measures {v } is uniformly absolutely continuous with respect
to s. We therefore have the following proposition.

Proposition 24 Let (X, M, tk) be a finite measure space and {vn} a sequence of finite
measures of M each of which is absolutely continuous with respect to L. Then the following
are equivalent:

(i) The sequence of measures {vn} is uniformly absolutely continuous with respect to the
measure µ.

(ii) The sequence of functions {vn : M -+ R} is equicontinuous with respect to the Nikodym
metric pv,.

(iii) The sequence of Radon-Nikodym derivatives { } is uniformly integrable over X withdy,
respect to the measure 1k.

Theorem 25 Let (X, M, µ) be a finite measure space and (vn} a sequence of finite measures
on M that is uniformly absolutely continuous with respect to p. If (vn} converges setwise on
M to v, then v is a measure of M that is absolutely continuous with respect to U.

Proof Clearly, v is a nonnegative set function. The setwise limit of finitely additive set
functions is finitely additive. Therefore v is finitely additive. We must verify that it is countably
additive. Let (Ek}k 1 be a disjoint collection of measurable sets. We must show that

v UEk v(Ek).
k=1 k=1

(46)

If there is a k such that v(Ek) = oo, then, by the monotonicity of v, (46) holds since both
sides are infinite. We therefore assume that v(Ek) < oo for all k. By the finite additivity of
v, for each natural number n,

0o n ao

v UEk =2v(Ek)+v(U Ek). (47)
k=1 k=1 k=n+1 I

Let E > 0. By the uniform absolute continuity with respect to µ of the sequence {vn), there
is a S > 0 such that for E measurable and any natural number n,

if µ(E) <S, then vn(E) <e/2, (48)

and therefore
if µ(E) < 5, then v (E) < e.

Since µ(X) < oo and µ is countably additive, there is a natural number N for which

µ U
Ek/

< S.
k=N+1 1

By the choice of S, (47), and the finiteness of each v(Ek) we conclude that

N

v(Ek)<e.
k=1 / k=1
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Thus (46) is verified. Therefore visa measure and we infer from (48) that if µ(E) = 0, then
v(E) = 0 and thus v is absolutely continuous with respect to p..

The following remarkable theorem tells us that, in the statement of the preceding
theorem, if the sequence is bounded, we can dispense with the assumption that
the sequence is uniformly absolutely continuous: The uniform absolute continuity is a
consequence of setwise convergence. The proof of this theorem rests beside the Uniform
Boundedness Principle and the Open Mapping Theorem as one of the exceptional fruits of
the Baire Category Theorem.

The Vitali-Hahn-Saks Theorem Let (X, M, µ) be a finite measure space and {vn} a
sequence of finite measures on M, each of which is absolutely continuous with respect to µ.
Suppose that {vn(X )} is bounded and (vn} converges setwise on M to v. Then the sequence

is uniformly absolutely continuous with respect to L. Moreover, v is a finite measure on
M that is absolutely continuous with respect to p..

Proof According to Theorem 21, the Nikodym metric space is complete, and (vn} induces
a sequence of continuous functions on this metric space that converges pointwise (that is,
setwise) to the function v, which is real-valued since (v,,(X)} is bounded. We infer from
Theorem 7 of Chapter 10, a consequence of the Baire Category Theorem, that there is a set
E0 E M for which the sequence of functions {vn : M -+ R} is equicontinuous at E0, that is,
for each e > 0, there is a S > 0 such that for each measurable set E and natural number n,

ifpN,(E, Eo)<S, then Iµn(E)-µn(Eo)I <e.

Since this holds for every e > 0 and each v, is finite, we infer from Lemma 22 that for each
e > 0, there is a S > 0 such that for each measurable set E and natural number n,

if pv, (E) < S, then µn (E) <,e.

Hence {v,} is uniformly absolutely continuous. According to the preceding theorem, v is a
finite measure that is absolutely continuous with respect to µ.

Remark Of course, sigma algebras are not linear spaces and measures are not linear
operators. Nevertheless, there is a striking similarity between the Vitali-Hahn-Saks Theorem
and the continuity of the pointwise limit of a sequence of continuous linear operators, and
the Baire Category Theorem is the basis of the proofs of both these results. Also observe the
similarity between Lemma 22 and the uniform continuity of a linear operator if it is continuous
at a point.

Theorem 26 (Nikodym) Let (X, M) be a measurable space and {vn} a sequence of finite
measures on M that converges setwise on M to the set function v. Assume (vn (X)) is bounded.
Then v is a measure on M.

Proof For a measurable set E, define

00
1

g(E)
Zn

-vn(E') (49)
n=1
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We leave the verification that µ is a finite measure on M as an exercise. It is clear that
each v is absolutely continuous with respect to µ. The conclusion now follows from the
Vitali-Hahn-Saks Theorem.

PROBLEMS

61. For two measurable sets A and B, show that A A B = [A U B] - [A fl B] and that

pN,(A,B) =µ(A) +µ(B) fl B).

62. Let be a sequence of measurable sets that converges to the measurable set A0 with
respect to the Nikodym metric. Show that A0 = Un__1 [f1k00_n Ak]

63. Show that (49) defines a measure.

64. Prove Proposition 24.

65. Let (X, M, µ) be a finite measure space and v: M [0, oo) a finitely additive set function
with the property that for each c > 0, there is a S > 0 such that for a measurable set E, if
µ(E) < S, then v(E) < c. Show that visa measure on M.

66. Let (X, M) be a measurable space and a sequence of finite measures on M that
converges setwise on M to v. Let {Ek} be a descending sequence of measurable sets with
empty intersection. Show that for each e > 0, there is a natural number K for which

<eforalln.
67. Give an example of a decreasing sequence {µn} of measures on a measurable space such that

the set function µ defined by µ (E) = lim µ (E) is not a measure.

68. Let (X, M) be a measurable space and [An) a sequence of measures on M such that for each
E E M,µi}1(E) > For each E E M, define µ(E) = Show that µ is a
measure on M if µ(x) < eo.

69. Formulate and prove a version of the Vitali-Hahn-Saks Theorem for signed measures.

70. Show that the Nikodym metric space associated with the finite measure space (X, M, µ) is
separable if and only if LP(X, µ) is separable for all 1 < p < oo.
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For a measure space (X, M, µ) and 1 < p < oo, we define the linear spaces LP(X, µ)
just as we did in Part I for the case of Lebesgue measure on the real line. Arguments very
similar to those used in the case of Lebesgue measure on the real line show that the Holder
and Minkowski Inequalities hold and that LP(X, µ) is a Banach space. We devote the first
section to these and related topics. The remainder of this chapter is devoted to establishing
results whose ptoofs lie outside the scope of ideas presented in Part I. In the second section,
we use the Radon-Nikodym Theorem to prove the Riesz Representation Theorem for the
dual space of LP (X, A), for 1 < p < oo and µ a o -finite measure. In the third section, we
show that, for 1 < p < oo, the Banach space LP (X, µ) is reflexive and therefore has the weak
sequential compactness properties possessed by such spaces. In the following section, we
prove the Kantorovitch Representation Theorem for the dual of L00 (X, [t). The final section
is devoted to consideration of weak sequential compactness in the nonreflexive Banach space
L1 (X, µ). We use the Vitali-Hahn-Saks Theorem to prove the Dunford-Pettis Theorem,
which tells us that, if µ(X) < oo, then every bounded sequence in Ll (X, µ) that is uniformly
integrable has a weakly convergent subsequence.

19.1 THE COMPLETENESS OF LP(X, µ),1 <p:5 o0

Let (X, M, µ) be a measure space. Define.F to be the collection of all measurable extended
real-valued functions on X that are finite almost everywhere on X. Since a function that is
integrable over X is finite a.e. on X, if f is a measurable function on X and there is a p in
(0, oo) for which fx I f I P dµ < oo, then f belongs to F. Define two functions f and gin .F
to be equivalent, and write

f = g provided f = g a.e. on X.

This is an equivalence relation, that is, it is reflexive, symmetric, and transitive. Therefore
it induces a partition of .F into a disjoint collection of equivalence classes. We denote
this collection of equivalence classes by .F/.. There is a natural linear structure on F/..
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Given two equivalence classes [f ] and [g] and real numbers a and /3, we define the linear
combination a [f ] + /3 [g] to be the equivalence class of the functions belonging to .F that
take the value a f (x) +/3g(x) on X0, where X0 is the set of points in X at which both f and
g are finite. Observe that linear combinations of equivalence classes are properly defined in
that they are independent of the choice of representatives of the equivalence classes. The
zero element of this linear space is the equivalence class of functions that vanish almost
everywhere on X.

Let LP (X, µ) be the collection of equivalence classes [f ] for which

r. Ifip < oo.

This is properly defined since if f = fl, then If I P is integrable over X if and only if I fl I P is.
We infer from the inequality

la+bIp < 2p[IaIp + Iblp] for all a, b E R

and the integral comparison test that LP (X, µ) is a linear space. For an equivalence class [ f ]
in LP(X, µ) we define II[f] llp by

p

fx

1/

II[flllp = IfIpdµ]

This is properly defined. It is clear that II [f ] II p = 0 if and only if [f ] = 0 and II [a f ] II p=a II [f] II p
for each real number a.

We call an equivalence class [f] essentially bounded provided there is some M > 0,
called an essential upper bound for [f ], for which

IfI<Ma.e.onX.

This also is properly defined, that is, independent of the choice of representative of the
equivalence class. We define LOO (X, µ) to be the collection of equivalence classes [f] for
which f is essentially bounded. Then L°°(X, µ) also is a linear subspace of .F/=. For
[f] E LOO (X, 1L), define II [f] II oo to be the infimum of the essential upper bounds for f . This
is properly defined. It is easy to see that II [f ] IIoo is the smallest essential upper bound for f.
Moreover, N [f] I I oo = 0 if and only if [f] = 0 and I I [a f ] II o=a II [f] II oo for each real number
a. We infer from the triangle inequality for real numbers that the triangle inequality holds
for II Iloo and hence it is a norm.

For simplicity and convenience, we refer to the equivalence classes in ,F/= as functions
and denote them by f rather than [f ]. Thus to write f = g means that f (x) = g(x) for
almost all x E X.

Recall that the conjugate q of a number p in (1, oo) is defined by the relation
11p + 1/q = 1; we also call 1 the conjugate of oo and oo the conjugate of 1.

The proofs of the results in this section are very similar to those of the corresponding
results in the case of Lebesgue integration of functions of a real variable.

Theorem 1 Let (X, M, µ) be a measure space, 1 < p < oo, and q the conjugate of p. If f be-
longs to LP (X, µ) and g belongs to L7 (X, , A), then their product f g belongs to L' (X, µ) and
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Holder's Inequality

fX
If gIdµ= 11f 8111 11f11p II911q

Moreover, if f :0, the function f * = II f Il P
P sgn(f) . If

IP_1 belongs to L9(X, µ),

f ff* dµ =Ifllp and IIf*IIq =1.
X

(1)

Minkowski's Inequality For 1 < p:5 oc and f, g E LP(X, µ),

IIf+gIIP < IIfllp+llgllp.

Therefore LP(X, µ) is a normed linear space.

The Cauchy-Schwarz Inequality Let f and g be measurable functions on X for which f2
and g2 are integrable over X. Then their product f g also is integrable over X and, moreover,

IfgI dµ < f f2dµ If g2dµ
X x x

Proof If p = 1, then Holder's Inequality follows from the monotonicity and homogeneity
of integration, together with the observation that IISII,, is an essential upper bound for g.
Equality (1) is clear. Assume p > 1. Young's Inequality asserts that for nonnegative real
numbers a and b,

ab < 1 . a1' + 1 bq.
p q

Define a = fx I f I P dµ and (3= fx 1 g 1 q dµ. Assume a and Pare positive. The functions f and

g are finite a.e. on X. If f (x) and g(x) are finite, substitute I f (x)I/a1IP for a and Ig(x)I/a1/n
for b in Young's Inequality to conclude that

PI/, If(x)IP+
Q

Ig(x)lgforalmost all xEX.a/pl If(x)g(x)1 <_ 1
1 P q

Integrate across this inequality, using the monotonicity and linearity of integration, and
multiply the resulting inequality by a1"p . R1lq to obtain Holder's Inequality. Verification of
equality (1) is an exercise in the arithmetic of p's and q's. To verify Minkowski's Inequality,
since we already established that f + g belongs to LP (X, µ), we may consider the associated
function (f + g)* in Lq(X, µ) for which (1) holds with f + g substituted for f. According to
Holder's Inequality, the functions f (f +g) * +g (f +g) * are integrable over X. Therefore,
by the linearity of integration and another employment of Holder's Inequality,

IIf+gllp = f(f+g)(f+g)*dit

=
Jf.(f+g)*dit+fg.(f+g)*dit

<_ IIfllp ll(f +g)*Ilq+ llgllp 11(f +g)*Ilq

= IIfllp+II9IIP-
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Of course, the Cauchy-Schwarz Inequality is Minkowski's Inequality for the case p = q = 2.
11

Corollary 2 Let (X, M, µ) be a finite measure space and 1 < P1 < P2 < oo. Then
LP2(X, p.) C LPI(X, µ). Moreover, for

c=[p.(X)]IP21P21 if P2<ooandc=[IL(X)] P1 if P2=oo, (2)

IIf11p1 _c11f11p2forall finLP2(X). (3)

Proof For f e LPZ(X, µ), apply Holder's Inequality, with p = p2 and g = 1 on X, to
confirm that (3) holds for c defined by (2).

Corollary 3 Let (X, M, µ) be a measure space and 1 < p < oo. If { fn } is a bounded sequence
of functions in LP(X, µ), then (fn} is uniformly integrable over X.

Proof Let M > O be such that II f II p < M for all n. Define y =1 if p = oo andy = (p -1)/p
if p < oo. Apply the preceding corollary, with pl = 1, p2 = p, and X = E, a measurable
subset of X of finite measure, to conclude that for any measurable subset E of X of finite
measure and any natural number n,

fE IfnldtL M-[IL(E)]Y.

Therefore (fn} is uniformly integrable over X.

For a linear space V normed by II II, we call a sequence (vk) in V rapidly Cauchy
provided there is a convergent series of positive numbers El t Ek for which

II vk+1 - vk II < Ek for all natural numbers k.

We observed earlier that a rapidly Cauchy sequence is Cauchy and that every Cauchy
sequence has a rapidly Cauchy subsequence.1

Lemma 4 Let (X, M, µ) be a measure space and 1 < p < oo. Then every rapidly Cauchy
sequence in LP(X, µ) converges to a function in LP(X, µ), both with respect to the LP(X, µ)
norm and pointwise almost everywhere on X.

Proof We leave the case p = oo as an exercise. Assume 1 < p < oo. Let 7,'l Ek be a
convergent series of positive numbers for which

II fk+1 - A 11 p < Ek for all natural numbers k. (4)

Then

<JIfn+k - fdit
P

for all natural numbers n and k. (5)

See the footnote on page 146 regarding rapidly converging Cauchy sequences.
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Fix a natural number k. According to Chebychefv's Inequality,

f- EX Ifk+1(x)-fk(x)IP>- EkP} p J I.fk+l-fkIPdl-= pIIfk+1-fkllp+ (6)
Ek x Ek

and therefore

µ {x E X I I fk+1(x) - fk (x) I ? Ek } < Ek for all natural numbers k.

Since p > 1, the series Ek1 Ek converges. The Borel-Cantelli Lemma tells us that there is a
subset X0 of X for which µ(X - Xo) = 0 and for each x E X0, there is an index K(x) such that

Ifk+1(x)- fk(x)I <Ekforall k> K(x).

Hence, for x E X0,

I fn +k (x) - fn (x) I E Ej for all n > K(x) and all k.0"
j=n

(7)

The series E'l c j converges, and therefore the sequence of real numbers { fk (x)) is Cauchy.
The real numbers are complete. Denote the limit of { fk(x)} by f(x). Define f (x) = 0 for
x E X^'Xo. Taking the limit as k -* oo in (5) we infer from Fatou's Lemma that

µ<f1f_fnPd
P

00

J E for all n.
j=n

Since the series El l ek converges, f belongs to LP(X) and { fn} f in LP(X). We
constructed f as the pointwise limit almost everywhere on X of { fn}.

The Riesz-Fischer Theorem Let (X, M, µ) be a measure space and 1 < p < oo. Then
LP(X, µ) is a Banach space. Moreover, if a sequence in LP(X, µ) converges in LP(X, µ) to
a function f in LP, then a subsequence converges pointwise a.e. on X to f.

Proof Let (f,, I be a Cauchy sequence in LP(X, µ). To show that this sequence converges to
a function in LP(X, µ), it suffices to show it has a subsequence that converges to a function
in LP (X, IL). Choose {fnk } to be a rapidly Cauchy subsequence of {f). The preceding lemma
tells us that {fnk} converges to a function in LP(X, µ) both with respect to the LP(X, µ)
norm and pointwise almost everywhere on X.

Theorem 5 Let (X, M, µ) be a measure space and 1 < p < oo. Then the subspace of simple
functions on X that vanish outside a set of finite measure is dense in LP(X, µ).

Proof Let f belong to LP(X, IL). According to Proposition 9 of the preceding chapter, {x E
X I f (x) # 0} is if-finite. We therefore assume that X is o--finite. The Simple Approximation
Theorem tells us that there is a sequence {t/in} of simple functions on X, each of which
vanishes outside a set of finite measure, which converges pointwise on X to f and for which
Ion l 5 If l on X for all n. Then

I4,n - f11 <2" IfIP on Xfor all n.
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Since If IP is integrable over X, we infer from the Lebesgue Dominated Convergence
Theorem that the sequence {/rn} converges to f in LP(X, µ).

We leave the proof of the following consequence of the Vitali Convergence Theorem
as an exercise (see Corollary 18 of the preceding chapter).

The Vitali LP Convergence Criterion Let (X, M, µ) be a measure space and 1 < p < oo.
Suppose { is a sequence in LP(X, µ) that converges pointwise a.e. to f and f also belong
to LP(X, µ). Then (fn} - f in LP(X, µ) if and only if [If IPJ is uniformly integrable and
tight.

PROBLEMS

1. For 1 < p < oo and n a natural number, define f (x) = nt/P if 0 < x < 1/n and f (x) = 0 if
1/n < x < 1. Let f be identically zero on [0, 1]. Show that J fn) converges pointwise to f but
does not converge in LP. Where does the Vitali Convergence Criterion in LP fail?

2. For 1 < p < no and n a natural number, let f be the characteristic function of [n, n + 1]. Let
f be identically zero on R. Show that If,) converges pointwise to f but does not converge in
LP. Where does the Vitali LP Convergence Criterion fail?

3. Let (X, M, µ) be a measure space and 1 < p < no. Let { be a sequence in LP(X, µ) a nd
f a function LP (X, µ) for which f f } -* f pointwise a.e. on X. Show that

{ fn } -* fin L P (X, µ) if and only if the sequence (I f I P) is uniformly integrable and tight.

4. For a measure space (X, M, µ) and 0 < p < 1, define LP(X, µ) to be the collection of
measurable functions on X for which If IP is integrable. Show that LP(X, µ) is a linear space.
For f ELP(X, is), define II.f11P=fxIf IPdµ
(i) Show that, in general, II II p is not a norm since Minkowski's Inequality may fail.

(ii) Define

p(f, g)=J If - glPdµfor all f,gELP(X, µ).
x

Show that p is a metric with respect to which LP(X, µ) is complete.

5. Let (X, M, µ) be a measure space and {fn} a Cauchy sequence in L°O(X, µ). Show that
there is a measurable subset X0 of X for which µ(X^-Xo) = 0 and for each e > 0, there is an
index N for which

IIn-fm1 SEonX0forall n,m>N.
Use this to show that LOO (X, µ) is complete.

19.2 THE RIESZ REPRESENTATION THEOREM FOR THE DUAL OF LP(X, µ),1 < p:5 o0

For 1 < p < no, let f belong to Lq(X, µ), where q is conjugate of p. Define the linear
functional Tf: LP(X, µ) -+ R bye

f
Tf(g)=JX fgdµfor all gELP(X, µ). (8)

2Bear in mind that the "functions" are, in fact, equivalence classes of functions. This functional is properly
defined on the equivalence classes since if f = f and g =g a.e. on X. then

f f gdµ= Ix f gdµ.
x
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Holder's Inequality tells us that Tf is a bounded linear functional on LP and its norm is at
most II f 11q, while (1) tells us that its norm is actually equal to III IIq Therefore T : Ly (X, µ )
(LP (X, µ) )* is an isometry. In the case that X is a Lebesgue measurable set of real numbers
and µ is Lebesgue measure, we proved that T maps L4(X, µ) onto (LP(X, µ))*, that is,
every bounded linear functional on LP(X, µ) is given by integration against a function in
LN(X, µ). This fundamental result holds for general Q-finite measure spaces.

The Riesz Representation Theorem for the Dual of LP(X, p) Let (X, M, µ) be a Q-finite
measure space, 1 < p < no, and q the conjugate to p. For f E Lq(X, µ), define Tf E
(LP(X, p))* by (8). Then T is an isometric isomorphism of Lq(X, µ) onto (LP(X, µ))*.

Before we prove this theorem, a few words are in order contrasting the proof in the
case of a closed, bounded interval with the general proof. In the case of Lebesgue measure
m on X = [a, b], a closed, bounded interval of real numbers, the heart of the proof of
the Riesz Representation Theorem lay in showing if S is a bounded linear functional on
LP ([a, b], m), then the real-valued function x -*h (x) = S(X[a. ,C]) is absolutely continuous
on [a, b]. Once this was established, we inferred from the characterization of absolutely
continuous functions as indefinite integrals that

S(X[a,X])=h(x)=f h'dmforallxE[a,b].
[a, x]

From this we argued that h' belonged to LI and

S(g)=J for all gEL"([a, b],m).
[a, b]

In the case of a general finite measure space, if S is a bounded linear functional on LP(X, µ),
we will show that the set function E H P(E) = S(XE) is a measure that is absolutely
continuous with respect to µ. We then define f to be the Radon-Nikodym derivative of v
with respect to µ, that is,

S(XE)=J fdµforallEEM.
E

We will argue that f belongs to L4 and

S(g) = f f gdµ for all g E LP(X, µ).
x

Lemma 6 Let (X, M, µ) be a v-finite measure space and 1 < p < oo. For f an integrable
function over X, suppose there is an M > 0 such that for every simple function g on X that
vanishes outside of a set of finite measure,

fx fgdµ :5 M.IIgIIp. (9)

Then f belongs to Ly(X, µ), where q is conjugate of p. Moreover, 11 IIly M.
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Proof First consider the case p > 1. Since If I is a nonnegative measurable function and
the measure space is or-finite, according to the Simple Approximation Theorem, there is a
sequence of simple functions IT,), each of which vanishes outside of a set of finite measure,
that converges pointwise on X to If I and 0 < cpn < If I on E for all n. Since (0%) converges
pointwise on X to I f Iq, Fatou's Lemma tells us that to show that I f I9 is integrable and
II!IIq < M it suffices to show that

f<_M0lu1Tn d1L. (10)

Fix a natural number n. To verify (10), we estimate the functional values of e,, as follows :

On = T" . <Pn-1 <
If I

' Tn-1 = .f ' Sgn(f) "
Tn-1 on X.

Define the simple function gn by

gn = sgn(f) . 0n-1 on X.

We infer from (11) and (9) that

ff Tnd1L f f.gnd1L<MIIgnIIp.
X

Since p and q are conjugate, p(q - 1) = q and therefore

1f IgnlpdN = fX
pn(N )dµ= Jcd/.L

X

Thus we may rewrite (12) as

f
1/p

fX q,
d1L <

M [Jx n dµ]

(12)

For each n, Tn is a simple function that vanishes outside of a set of finite measure and
therefore it is integrable. Thus the preceding integral inequality may be rewritten as

1-1/p

[Jd!L] < M.

Since 1-1/p =1/q, we have verified (10).

It remains to consider the case p = 1. We must show that M is an essential upper
bound for f. We argue by contradiction. If M is not an essential upper bound, then there
is some e > 0 for which the set X. = {x E X I If (x) I > M + e} has nonzero measure. Since
X is Q-finite, we may choose a subset of XE with finite positive measure. If we let g be the
characteristic function of such a set we contradict (9).
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Proof of the Riesz Representation Theorem We leave the case p = 1 as an exercise (see
Problem 6). Assume p > 1. We first consider the case µ(X) < oo. Let S: LP(X, µ) -* R be
a bounded linear functional. Define a set function v on the collection of measurable sets M
by setting

P(E) = S(XE) for E E M.

This is properly defined since µ(X) < oo and thus the characteristic function of each
measurable set belongs to LP(X, µ). We claim that v is a signed measure. Indeed, let
{Ek}k 1 be a countable disjoint collection of measurable sets and E = Uk 1 Ek. By the
countable additivity of the measure µ,

00

Therefore

Consequently,

µ(E)=Eµ(Ek)<oo.
k=1

00

lint I µ(Ek) = 0.
n->o0

k=n+1

n 11,P

liMn ooIIXE-IXEklip=n P-(Ek) =0.
k=1 k=n+1

But S is both linear and continuous on LP(X, µ) and hence

00

S(XE) = I S(XEk),
k=1

that is,

(13)

v(E)v(Ek).
k=1

To show that v is a signed measure it must be shown that the series on the right converges
absolutely. However, if, for each k, we set ck = sgn(S(XEk)), then arguing as above we
conclude that the series

00 00 00

I, S(ck XEk) is Cauchy and thus convergent, so I w(Ek)l E S(ck XEk) converges.
k=1 k=1 k=1

Thus v is a signed measure. We claim that v is absolutely continuous with respect to I.L.

Indeed, if E E M has µ(E) = 0, then XE is a representative of the zero element of LP(X, µ)
and therefore, since S is linear, vk(E) = S(XE) = 0. According to Corollary 20 in Chapter
18, a consequence of the Radon-Nikodym Theorem, there is a function f that is integrable
over X and

S(XE)=v(E)=J fdµfor all EEM.
E

For each simple function (p, by the linearity of S and of integration, since each simple function
belongs to LP(X, µ),

S((p) = fx fpdµ
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Since the functional S is bounded on LP(X, p.), IS(g)I IISII IISII,, for each g E LP(X, µ).
Therefore,

fx
f,p dg = I S((p) I II S111191Ip for each simple function gyp,

and consequently, by Lemma 6, f belongs to Ly. From Holder's Inequality and the continuity
of Son LP(X, µ), we infer that the functional

gHS(g) - JX, f gdµforallgELP(X, IL)

s continuous. However, it vanishes on the linear space of simple functions that, according toi
Theorem 5, is a dense subspace of LP(X, j L). Therefore S - Tf vanishes on all of LP(X, p.),
that is, S = Ti.

Now consider the case that X is if-finite. Let (Xn} be an ascending sequence of
measurable sets of finite measure whose union is X. Fix n. We have just shown that there is
a function fn in L9 (X µ) for which

fn=0on X-Xn, JlfflldIL:s I1SII9
X

and

S(g) = J fngdµ=fX fgdµifgELp(X,µ)andg=0onX-Xn.
X

ince any function fn with this property is uniquely determined on X, except for changesS

on sets of measure zero and since the restriction of fn+l to Xn also has this property, we
may assume fn+1 = fn on Xn. For X E X = Un° 1 Xn, set f (x) = fn (x) if x belongs to Xn.

Then f is a properly defined measurable function on X and the sequence (I fn I9} converges
pointwise a.e. to I f 1q. By Fatou's Lemma,

rf I f l y dµ < lim inf J I fn l" dp. < IISII".
X X

Thus f belongs to L. Let g belong to LP (X, t t). For each n, define gn = g on Xn and gn = 0
on X-Xn. Since, by Holder's Inequality, fgl is integrable over X and l fgnI Ifgl a.e. on
X, by the Lebesgue Dominated Convefrgence Theorem,

lim fgndµ= f fgdp.. (14)
X

On the other hand, (Ign - gIp} - 0 pointwise a.e. on X and Ign - gIp < I g1p a.e. on X, for all
n. Once more invoking the Lebesgue Dominated Convergence Theorem, we conclude that
(gn} - gin LP(X, dµ). Since the functional S is continuous on LP(X, µ),

lim S(gn) = S(g). (15)

However, for each n,

S(9n) = f fngn d1L = f fgn dl-L,
xn x

so that, by (14) and (15), S(g) = fX fgdµ.
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PROBLEMS

6. Prove the Riesz Representation Theorem for the case p = 1 by adapting the proof for the
case p > 1.

7. Show that for the case of Lebesgue measure on a nontrivial closed, bounded interval [a, b],
the Riesz Representation Theorem does not extend to the case p = oo.

8. Find a measure space (X, M, µ) for which the Riesz Representation Theorem does extend
to the case p = oo.

19.3 THE KANTOROVITCH REPRESENTATION THEOREM FOR THE DUAL OF L00(X, µ)

In the preceding section, we characterized the dual of LP(X, µ) for 1 < p < oo and
(X, M, µ) a if-finite measure space. We now characterize the dual of L' (X, µ).

Definition Let (X, M) be a measurable space and the set function v: M -+ R be finitely
additive. For E E M, the total variation of v over E, IvI(E), is defined by

n

IvI(E) = sup I Iv(Ek)I,
k=1

(16)

where the supremum is taken over finite disjoint collections {Ek}k_1 of sets in M that are
contained in E. We call v a bounded finitely additive signed measure provided l vi (X) < 00.
The total variation of v over X, which is denoted by Ilvllvar, is defined to be ivl(X).

Remark If v: M -+.R is a measure, then Ilvllvar = v(X ). If v: M R is a signed measure,
we already observed that the total variation Ilvllvar is given by

Ilvllvar = lvi(X) = v+(X) +v (X),

where v = v+ - v- is the Jordan Decomposition of v as the difference of measures (see
page 345). For a real-valued signed measure v, an analysis (which we will not present here)
of the total variation set function Ivl defined by (16) shows that Ivi is a measure. Observe that
ivi - v also is a measure and v = IvI - [IvI - v]. This provides a different proof of the Jordan
Decomposition Theorem for a finite signed measure.

If v: M -a R is a bounded finitely additive signed measure on M, and the simple function
n

'P = 7, Ck - XEk is measurable with respect to M, we define the integral of <p over X with
k=1

respect to v by

ftV Ck .v(Ek).
X k=1

The integral is properly defined, linear with respect to the integrand and

fx cpdv <- Ilvllvar HOW. (17)

Indeed, in our development of the integral with respect to a measure it, only the finite
additivity of µ was needed in order to show that integration is a properly defined, linear,
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monotone functional on the linear space of simple functions. Let f : X -> R be a measurable
function that is bounded on X. According to the Simple Approximation Lemma, there are
sequence (4fn) and (rpn } of simple functions on X for which

Pn < <Pn+1 < f < 4n+1 < On and 0 < ,li - cpn < 1/n on X for all n.

Therefore the sequence {con } converges uniformly to f on X. We infer from (17) that

QPn+k dv - f
X

dv
X

II v II var I I PPn+k - cPn II oo for all natural numbers n and k.<

We define the integral of f over X

f

wrespect to vv by

fdv = Urn J cpn dv
x n->oo x

This does not depend on the choice of sequence of simple functions that converges uniformly
on X to f. Now let (X, M, tk) be a measure space. We wish to define fx f dv for
f E LOO (X, µ), now formally viewed as a linear space of equivalence classes of essentially
bounded measurable functions with respect to the relation of equality a.e. [µ]. This requires
that fx fdv = fx f dv if f = fl a.e. [µ] on X. If there is a set E E M for which µ(E) = 0,
but v(E) # 0, then clearly this does not hold. We therefore single out the following class of
bounded finitely additive signed measures.

Definition Let (X, M, tk) be a measure space. By 13FA(X, M, µ) we denote the normed
linear space of bounded finitely additive signed measures v on M that are absolutely continuous
with respect to µ in the sense that if E E M and µ(E) = 0, then v(E) = 0. The norm of
v E 13.TA(X, M, tk) is the total variation norm Ilvllvar

It is clear that if v belongs to BFA(X, M, µ) and cp and 41 are simple functions that are
equal a.e. [µ] on X, then fx cp dv = fx 41 dv and hence the same is true for essentially bounded
measurable functions that are equal a.e. [µ] on X. Therefore the integral of an L°O(X, µ)
function (that is, class of functions) over X with respect to v is properly defined and

L f dv < Ilvllvar 11f 1100 for all f E L00(X, µ) andv E 13.1(X, M, µ). (18)

Theorem 7 (the Kantorovitch Representation Theorem) Let (X, M, µ) be a measure
space. Forv E 13.FA(X, M, µ), define T,,: L0° (X, µ) Rby

fdv for all f EL0c(X,IL). (19)
X

Then T is an isometric isomorphism of the normed linear space B.FA(X, M, µ) onto the
dual of L' (X, µ).

Proof We first show that T is an isometry. In view of inequality (18), it suffices to show that
Ilvllvar < 11 T. Indeed, let {Ek}k=1 be a disjoint collection of sets in M. For 1 < k < n, define
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n

ck = sgn(v(Ek)) and then define ck XEk. Then IIw4Io = 1. Thus
7'=1

I Iv(Ek)I = fodv = T,(w) IlTvll
k-1

Therefore II v Ilvar < II Tv 11 and hence T is an isometry. It remains to show that T is onto. Let
S belong to the dual of L' (X, v). Define v: M --). R by

v(E) = S(XE) for all E E M. (20)

The functon XE belongs to L0°(X, v) and therefore v is properly defined. Moreover, v is
finitely additive since S is linear. Furthermore, we claim that v is absolutely continuous with
respect to tk. Indeed, let E E M have µ(E) = 0. Thus v(E) = S(XE) = 0.3 We infer from
the linearity of S and of integration with respect to v that

Ix
f dv = S(f) for all simple functions in LO0(X, µ).

The Simple Approximation Lemma tells us that the simple functions are dense in L°O (X, µ ).
Therefore, since both S and integration with respect to v are continuous on LO0(X, µ),
S = Tv.

Remark Let [a, b] be a closed, bounded interval of real numbers and consider the Lebesgue
measure space ([a, b], ,C, m). The operator T : L 1([a, b], m) --). [Loo ([a, b], m)]* given by

Tg(f) = f g f dm for all g E L1([a, b], m) and f E L°O([a, b], m)
[a, b)

is a linear isomorphism. Moreover, L1 ([a, b], m) is separable and therefore so is T (L1([a, b],
m) ). On the other hand, L( [a, b], m) is not separable. According to Theorem 13 of
Chapter 14, if the dual of a Banach space V is separable, then V also is separable. Therefore
T(L1([a, b], m)) is a proper subspace of [L°O([a, b], m)]*. We therefore infer from the
Kantorovitch Representation Theorem that there is a bounded finitely additive signed measure
v on M that is absolutely continuous with respect to m but for which there is no function
g E Ll ([a, b], m) for which

, b] [

f dv = fa,
b]

g f dm for all f E L([a, b], m). (21)Ja

The set function v cannot be countably additive since if it were, according to Corollary 20,
there would be an L1 ([a, b], m) function g for which (21) holds. Thus v is a bounded set
function on the Lebesgue measurable subsets of [a, b], is absolutely continuous with respect
to Lebesgue measure, is finitely additive but not countably additive. No such set function has
been explicitly exhibited.

3Here we need to return to the formal definition of L00(X, µ) as equivalence classes of functions with respect
to the equivalence of equality almost everywhere [µ] and recognize that S is defined on these equivalence classes.
Since XE is the representative of the zero equivalence class and S is linear, S(XE) = 0.
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PROBLEMS

In the following problems (X, M, µ) is a complete measure space.

9. Show that 13.FA(X, M, jr) is a linear space on which 11 Ilvar is a norm. Then show that this
normed linear space is a Banach space.

10. Let v: M -- R be a signed measure and (X, M, µ) be o -finite. Show that there is a function
f E L 1(X, µ) for which

f gdv=fXg- fdtfor all gEL00(X,A).
X

1. Let (v l be a bounded sequence in 1i.T'A([a, b], L, m). Show that there is a subsequence1

{v,} and v E &FA([a, b],

f
Lm) such that

f dv for all f E Lt ([a, b], m ).lim f
fXk-oo X

12. Let be a sequence of measures on the Lebesgue measurable space ([a, b], C) for
which {µ ([a, b] )J is bounded and each v, is absolutely continuous with respect to Lebesgue
measure m. Show that a subsequence of converges setwise on M to a measure on
([a, b], C) that is absolutely continuous with respect tom.

19.4 WEAK SEQUENTIAL COMPACTNESS IN LP(X, 1L),1 < p < 1

Recall that for X a normed linear space, the dual space of bounded linear functionals on X
is denoted by X* and the dual of X* is denoted by X**. The natural embedding J: X -- X**
is defined by

J(x)[/i]=/i(x)forallxEX,41EX*.
We inferred from the Hahn-Banach Theorem that the natural embedding is an isometry and
called X reflexive provided the natural embedding maps X onto X**. Theorem 17 of Chapter
14 tells us that every bounded sequence in a reflexive Banach space has a weakly convergent
subsequence.

Theorem 8 Let (X, M, A) be a a--finite measure space and 1 < p < oo. Then LP(X, tt) is a
reflexive Banach space.

Proof The Riesz Representation Theorem tells us that for conjugate numbers r, s E (1, oo ),
the operator Tr: Lr -+ (LS)*, defined by

Tr(h)](g) = g h for all h E Lr and g E Ls,
fa

b

[

is an isometric isomorphism from Lr onto (LS)*. To verify the reflexivity of LP we let
S: (LP)* -+ R be a continuous linear functional and seek a function f E LP for which
S = J(f ).4 But observe that S o Tq: Lq -+ R, being the composition of continuous linear

4We repeat an earlier caveat pertaining to reflexivity. For a normed linear space X to be reflexive it is not
sufficient that X be isomorphic to its bidual X**; it is necessary that the natural embedding be an isomorphism of X
onto X**. See the article by R.C. James, "A non-reflexive Banach space isometric to its second dual," Proc. Nat.
Acad. Sci. U.S.A. 37 (1951).
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operators, also is a continuous linear functional. By the Riesz Representation Theorem, Tp
maps LP onto (Lq )*, and hence there is a function f E LP for which S o Tq = Tp(f ), that is

(SoTq)[g] = Tp(f )[g] for all g E Lq.

Thus

S(Tq(g)) = Tp(f )[g] = Tq(g)[f] = J(f)(Tq(g)) for all g E Lq
Since Tq maps Lq onto (LP)*, S = i(f). El

The Riesz Weak Compactness Theorem Let (X, M, µ) be a o--finite measure space and
1 < p < oo. Then every bounded sequence in LP(X, µ) has a weakly convergent subsequence;
that is, if { fn) is a bounded sequence LP(X, µ), then there is a subsequence {fnk} of and
a function f in/LP(X, µ) for which

lim J f, gdµ =
J

f gdµ for all g E Lq(X, L), where l/p + l/q = 1.
k-oo X X

Proof The preceding theorem asserts that LP(X, µ) is reflexive. However, according to
Theorem 17 of Chapter 14, every bounded sequence in a reflexive Banach space has a
weakly convergent subsequence. The conclusion now follows from the Riesz Representation
Theorem for the dual of LP(X, µ).

In Chapter 8, we studied weak convergence in LP(E, m), where E is a Lebesgue
measurable set of real numbers and m is Lebesgue measure. In Chapter 14, we studied
properties of weakly convergent sequences in a general Banach spaces and these, of course,
hold for weak convergence in LP (X, IL). We record here, without proof, three general results
about weak convergence in LP(X, is), for 1 < p < oo and (X, M, µ) a general ?-finite
measure space. The proofs are the same as in the case of Lebesgue measure on the real line.

The Radon-Riesz Theorem Let (X, M, µ) be a o-finite measure space, 1 < p < 00, and
{ f,j a sequence in LP(X, µ) that converges weakly in LP(X, tt) to f. Then

(fn} converges strongly in L"(X, r) to f

if and only if

nin IIffIIp=IIfIIp+00

Corollary 9 Let (X, M, t) be a o--finite measure space, 1 < p < oo and (f,) a sequence in
LP(X, t) that converges weakly in LP(X, µ) to f. Then a subsequence of If,) converges
strongly in LP(X, tk) to f if and only if

IIfIIp =liminfllfnllp

The Banach-Sake Theorem Let (X, M, µ) be a o--finite measure space, 1 < p < oo, and (ff }
a sequence in LP (X, µ) that converges weakly in LP (X, µ) to f. Then there is a subsequence
{fnk} for which the sequence of Cesaro means converges strongly in LP(X, µ) to f, that is,

kl
Al + f 2

k

+ fnk = f strongly in LP(X, µ). (22)oc
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PROBLEMS

13. A linear functional S: LP(X, µ) ->. R is said to be positive provided S(g) > 0 for each
nonnegative function gin LP(X, µ). For 1 < p < no and p. o -finite, show that each bounded
linear functional on LP(X, µ) is the difference of bounded positive linear functionals.

14. Prove the Radon-Riesz Theorem, and the Banach-Saks Theorem in the case p = 2.

15. Let X be the subspace of L00 (R, m), where m is Lebesgue measure, consisting of the
continuous functions f that have a finite limit as x -* no. For f E X, define S(f) =
lima, f (x). Use the Hahn-Banach Theorem to extend S to a bounded linear functional on
L00 (R, m). Show that there is not ra function fin Ll ([a, b], m) such that

S(g)=J
R

Does this contradict the Riesz Representation Theorem?

16. Let µ be the counting measure on the set of natural numbers N.
(i) For 1 < p < no, show that LP(N, µ) = lP and thereby characterize the dual space of LP

for 1 <p<oo.
(ii) Discuss the dual of LP(X, µ) for 1 < p < no, where µ is the counting measure on a not

necessarily countable set X.

17. Find a measure space (X, M, µ) with the property that all the theorems of this section hold
in the case p = 1.

18. Show that for Lebesgue measure on a closed, bounded interval [a, b] of real numbers and
p = 1, neither the Riesz Weak Compactness Theorem, nor the Radon-Riesz Theorem, nor
the Banach-Saks Theorem are true.

19.5 WEAK SEQUENTIAL COMPACTNESS IN Lt (X, µ):
THE DUNFORD-PETTIS THEOREM

For a measure space (X, M, p.), in general, the Banach space L1(X, µ) is not reflexive,
in which case, according to the Eberlein-Smulian Theorem, there are bounded sequences
in L1 (X, µ) that fail to have weakly convergent subsequences. It therefore is important
to identify sufficient conditions for a bounded sequence in L1(X, µ) to possess a weakly
convergent subsequence. In this section we prove the Dunford-Pettis Theorem, which tells
us that, for µ(X) < oo, if a bounded sequence in Lt (X, µ) is uniformly integrable, then it
has a weakly convergent subsequence. Recall that a sequence { in Lt (X, µ) is said to be
uniformly integrable provided for each E > 0, there is a S > 0 such that for any measurable
set E,

if µ(E)<S, then flfnldp.<Eforalln.
E

For finite measure spaces, we have the following characterization of uniform integrability.

Proposition 10 For a finite measure space (X, M, µ) and bounded sequence in
L1 (X, µ), the following two properties are equivalent:

(i) {fn} is uniformly integrable over X.
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(ii) For each c > 0, there is an M > 0 such that

{xEX I I.fn (x) I>M)

If,, I < E for all n. (23)

Proof Since If, } is bounded, we may choose C > 0 such that II fn 11 1 < C for all n. First assume
(i). Let E > 0. Choose 5 > 0 such that if E is measurable and µ(E) < S, then, fE I fn I dµ < E

for all n. By Chebychev's Inequality,

AfXEXI Ifn(x)I>M}-Mf fnldµ<Mforall n.
x

Hence if M > C/ S, then µ{x E X I I fn (x) I > M} < S and therefore (23) holds. Now assume
that (ii) holds. Let E > 0. Choose M > 0 such that

LEXIIf(X)I>Ml
Ifn I <E/2 foralln.

Define S = E/2M. Then by the choice of M and S, for any measurable set E, if µ(E) < S and
n is any natural number, then

f Ifnldµ= f Ifnldµ+ f
E (xEEIIf,(x)I>M} (xEEIIf,(x)I<M)

Therefore { fn } is uniformly integrable over X.

For an extended real-valued measurable function f on X and a > 0, define the
truncation at level a of f, f [a], on X by

0 if f(x)>a
fla)(x) = f(x) if -a <f(x) <a

0 iff(x)<-a.

Observe that if µ(X) < oo, then for f E Ll (X, µ) and a > 0, f [al belongs to Ll (X, µ) and
has the following approximation property:

fX
[f - fla)]dµ < Ifidµ

(xEX I If(x)I>a}
(24)

Lemma 11 For a finite measure space (X, M, µ) and bounded uniformly integrable sequence
If,,) in Ll (X, A), there is a subsequence If,,,) such that for each measurable subset E of X,

f,, dµ } is Cauchy. (25)
JfE

JJJ

Proof We first describe the centerpiece of the proof. If {gn} is any bounded sequence in
Ll(X, µ) and a > 0, then, since µ(X) < oo, the truncated sequence is bounded in
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L2 (X, µ ). The Riesz Weak Compactness Theorem tells us that there is a subsequence {gk'}

that converges weakly in L2(X, µ). Since µ(X) < oo, integration over a fixed measurable set
is a bounded linear functional on L2(X, µ) and therefore for each measurable subset E of X,

{ fE gn)] dµ} is Cauchy. The full proof uses this observation together with a diagonalization
argument.

Indeed, let a = 1. There is a subsequence of {f,} for which the truncation at level 1
converges weakly in L2(X, µ). We can then take a subsequence of the first subsequence
for which the truncation at level 2 converges weakly in L2(X, µ). We continue inductively
to find a sequence of sequences, each of which is a subsequence of its predecessor and the
truncation at level k of the kth subsequence converges weakly in L2(X, µ). Denote the
diagonal sequence by (hn }. Then (hn } is a subsequence of { ff } and for each natural number
k and measurable subset E of X,

S L h[k] dµ} is Cauchy. (26)

Let E be a measurable set. We claim that )

1J
h dµ } is Cauchy. (27)

E JJJ

Let c > 0. Observe that for natural numbers k, n, and m,

hn - hm = [hnk] - hmk]] + [h[nk,] - hm] + [hn - hnk]] .

Therefore,erefore, by (24),

[hn - hm] dµ < f [hnk] - hk]] dµ
E

+ f IhmI dµ+ f IhnI dµ
xEE I Ih,I(x)>k) {xEE I IhnI(x)>k)

(28)
We infer from the uniform integrability of (fn} and Proposition 10 that we can choose a
natural number k0 such that

(xEE I Ihn I(x)>ko)
Ihn I dµ < E/3 for all n. (29)

On the other hand, by (26) at k = k0, there is an index N such that

f [hnko] - hlko]] dµl
E

We infer from (28), (29), and (30) that

< E/3 for all n, m > N. (30)

f[hn - hm]dµ <e for alln, m N.
E

Therefore (27) holds and the proof is complete.
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Theorem 12 (the Dunford-Pettis Theorem) For a finite measure space (X, M, µ) and
bounded sequence If,, } in L' (X, µ), the following two properties are equivalent.-

(i) If,) is uniformly integrable over X.

(ii) Every subsequence of f fn) has a further subsequence that converges weakly in
L1(X, µ).

Proof First assume (i). It suffices to show that f fn) has a subsequence that converges
weakly in Ll(X, µ). Without loss of generality, by considering positive and negative parts,
we assume that each fn is nonnegative. According to the preceding lemma, there is a
subsequence of If,), which we denote by {hn }, such that for each measurable subset E of X,

{JE
hdµl is Cauchy.

J

For each n, define the set function v, onfM by

vn (E) = J hn dµ for all E E M.
E

(31)

Then, by the countable additivity over domains of integration, v, is a measure and it is
absolutely continuous with respect to µ. Moreover, for each E E M, {vn (E) } is Cauchy. The
real numbers are complete and hence we may define a real-valued set function v on M by

lira vn(E) = v(E) for all E E M.
n-aoo

Since {hn} is bounded in L1(X, µ), the sequence {vn(X )} is bounded. Therefore, the Vitali-
Hahn-Saks Theorem tells us that visa measure on (X, M) that is absolutely continuous with
respect to A. According to the Radon-Nikodym Theorem, there is a function f E Ll (X, µ)
for which

v(E)=J fdµfor all EEM.
E

Since

lim
fE

fndµ=J fdµforallEEM,
n-aoo E

f (p dtt for every simple function <p. (32)lim fX fn cp dp. =
fX

By assumption, { fn } is bounded in Ll (X, IL). Furthermore, by the Simple Approximation
Lemma, the simple functions are dense in L00(X, µ). Hence

lim
fX

fn gdµ =
J

f gdµ for all g E L00(X, µ), (33)n-oo x

that is, [fn I converges weakly in Ll(X, µ) to f.
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It remains to show that (ii) implies (i). We argue by contradiction. Suppose { fn} satisfies
(ii) but fails to be uniformly integrable. Then there is an e > 0, a subsequence (hn} of If,, 1,
and a sequence of measurable sets for which

nlimo µ 0 but
J

h dµ > co for all n. (34)
E

By assumption (ii) we may assume that {h,) converges weakly in Lt (X, µ) to h. For each n,
define the measure v on M by

v (E) = f h dµ for all E E M.
E

Then each v, is absolutely continuous with respect to µ and the weak convergence in
L1(X, µ) of to h implies that

{v (E)) is Cauchy for all E E M.

But the Vitali-Hahn-Saks Theorem tells us that {v,, (E)} is uniformly absolutely continuous
with respect to µ and this contradicts (34). Therefore (ii) implies (i) and the proof is complete.

Corollary 13 Let (X, M, µ) be a finite measure space and { a sequence in L'(X, µ) that
is dominated by the function g E L1(X, µ) in the sense that

f I < g a. e. on E for all n.

Then If,, } has a subsequence that converges weakly in L1(X, IL).

Proof The sequence {f} is bounded in L1(X, µ) and uniformly integrable. Apply the
Dunford-Pettis Theorem.

Corollary 14 Let (X, M, µ) be a finite measure space, 1 < p < oo, and { fn } a bounded
sequence in LP(X, A). Then If,) has a subsequence that converges weakly in L1 (X, µ).

Proof Since µ(X) Goo, we infer from Holder's Inequality that is a bounded sequence
in L1 (X, µ) and is uniformly integrable. Apply the Dunford-Pettis Theorem.

PROBLEMS

19. For a natural number n, let e be the sequence whose nth term is 1 and other terms are zero.
For what values of p, 1 < p < oo, does converge weakly in PP?

20. Find a bounded sequence in Ll ([a, b], m), where m is Lebesgue measure, which fails to have
a weakly convergent subsequence.

21. Find a measure space (X, M, µ) for which every bounded sequence in L1(X, µ) has a
weakly convergent subsequence.

22. Fill in the details of the proof of Corollary 14.

23. Why is the Dunford-Pettis Theorem false if the assumption that the sequence is bounded in
L1 is dropped?
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In Chapter 17 we considered the Caratheodory construction of measure. In this chapter
we first use the Caratheodory-Hahn Theorem to construct product measures and prove the
classic theorems of Fubini and Tonelli. We then use this theorem to construct Lebesgue
measure on Euclidean space R" and show that this is a product measure and therefore
iterated integration is justified. We conclude by briefly considering a few other selected
measures.

20.1 PRODUCT MEASURES: THE THEOREMS OF FUBINI AND TONELLI

Throughout this section (X, A, tk) and (Y, B, v) are two reference measure spaces. Consider
the Cartesian product X X Y of X and Y. If A C X and B C Y, we call A X B a rectangle. If
A E A and B E B, we call A X B a measurable rectangle.

Lemma 1 Let {Ak X Bk}k 1 be a countable disjoint collection of measurable rectangles whose
union also is a measurable rectangle A X B. Then

00

µ(A)Xv(B) _ I µ(Ak)Xv(Bk).
k=1

Proof Fix a point x E A. For each y E B, the point (x, y) belongs to exactly one Ak X Bk.
Therefore we have the following disjoint union:

B= U Bk.
(k I xEAk)

By the countable additivity of the measure v,

v(B) v(Bk).
{kJXEAk}
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Rewrite this equality in terms of characteristic functions as follows:

k=1

Since each Ak is contained in A, this equality also clearly holds for x E X \ A. Therefore
00

v(B).XA= 2 v(Bk) - XAk on X.
k=1

By the Monotone Convergence Theorem,

,u(A)xv(B)= f v(B).XAdA=i f v(Bk)-XAkdµ=I/L(Ak)Xv(Bk)
X k=1 X k=1

Proposition 2 Let 1Z be the collection of measurable rectangles in X X Y and for a measurable
rectangle A x B, define

A(Ax B) = u(A) v(B).

Then 1Z is a semiring and A: R -> [0, oo] is a premeasure.

Proof It is clear that the intersection of two measurable rectangles is a measurable rectangle.
The relative complement of two measurable rectangles is the disjoint union of two measurable
rectangles. Indeed, let A and B be measurable subsets of X and C and D be measurable
subsets of Y. Observe that

(AXC) - (BXD) = [(A-B) xC] U [(An B) x(C-D)],

and the right-hand union is the disjoint union of two measurable rectangles.

It remains to show that A is a premeasure. The finite additivity of A follows from the
preceding lemma. It is also clear that A is monotone. To establish the countable monotonicity
of A, let the measurable rectangle E be covered by the collection {Ek}k 1 of measurable
rectangles. Since R is a semiring, without loss of generality, we may assume that (Ek}k 1 is a
disjoint collection of measurable rectangles. Therefore

E=UEnEk,00

k=1

this union is disjoint and each E n Ek is a measurable rectangle. We infer from the preceding
lemma and the monotonicity of A that

A(E)A(EnEk):5 A(Ek)
k=1 k=1

Therefore A is countably monotone. The proof is complete.

This proposition allows us to invoke the Caratheodory -Hahn Theorem in order to
make the following definition of product measure, which assigns the natural measure,
µ(A) v(B), to the Cartesian product A X B of measurable sets.
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Definition Let (X, A, µ) and (Y, B, v) be measure spaces, R the collection of measurable
rectangles contained in X X Y, and k the premeasure defined on R by

A = the Caratheodory extension of A: R - [0, oo]
defined on the o--algebra of (µ X v)*-measurable subsets of X X Y.

Let E be a subset of X X Y and f a function on E. For a point x E X, we call the set

Ex={yEYI (x,y)EE}CY

the x-section of E and the function f (x, ) defined on Ex by f (x, ) (y) = f (x, y) the
x-section of f. Our goal now is to determine what is necessary in order that the integral of
f over X X Y with respect to µ X v be equal to the integral over X with respect to µ of the
function on X that assigns to x E X the integral of f (x, ) over Y with respect to v. This is
called iterated integration. The following is the first of two fundamental results regarding
iterated integration. 1

Fubini's Theorem Let (X, A, µ) and (Y, 13, v) be two measure spaces and v be complete.
Let f be integrable over X X Y with respect to the product measure µ X P. Then for almost all
x c X, the x-section of f, f (x, ), is integrable over Y with respect to v and

fXXY
f d(Axv) =

fX fy
L

f(x, y) dv(y)J dµ(x) (1)

An integrable function vanishes outside a cr-finite set. Therefore, by the Simple
Approximation Theorem and the Monotone Convergence Theorem, the integral of a
general nonnegative integrable function may be arbitrarily closely approximated by the
integral of a nonnegative simple function that vanishes outside a set of finite measure, that is,
by a linear combination of characteristic functions of sets of finite measure. Thus the natural
initial step in the proof of Fubini's Theorem is to prove it for the characteristic function of a
measurable subset E of X X Y that has finite measure. Observe that for such a set, if we let f
be the characteristic function of E, then

xxY
f d(AXv) = (AXv)(E).

On the other hand, for each x E X, f (x, ) = XEx and therefore if the x-section of E, Ex, is
v-measurable, then

f f(x, y) dv(y) = v(Ex)

Therefore, for f = XE, (1) reduces to the following:

(AXv)(E) = fv(Ex)dic(x).

1Let X0 be a measurable subset of X for which µ(X^-Xo) = 0. For a measurable function h on X0, we write
fx h dµ to denote fxa h dµ, if the latter integral is defined. This convention is justified by the equality of fX h dµ

and fxo h dµ for every measurable extension of h to X.
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Proposition 10 of Chapter 17 tells us that a measurable set E C X x Y is contained in
an R,rs set A for which (,u x v) (A' E) = 0. We therefore establish the above equality first
for RaS sets and then for sets with product measure zero.

Lemma 3 Let E C X X Y be an RQS set for which (,u x v)(E) < oo. Then for all x in X,
the x-section of E, Ex, is a v-measurable subset of Y, the function x H v(Ex) for x E X is a
,u-measurable function and

(AXv)(E) =
J

v(Ex)dµ(x). (2)
x

Proof First consider the case that E = A x B, a measurable rectangle. Then, for X E X,

B forxEA
Ex

0 for x 0 A,

and therefore v(Ex) = v(B) XA(x). Thus

(Axv)(E) = lr(A) - v(B) = v(B) - JxXA = fv(Ex)diL(x).

We next show (2) holds if E is an Ra set. Since R is a Bemiring, there is a disjoint collection
of measurable rectangles {Ak X Bk}kk'-1 whose union is E. Fix X E X. Observe that

Ex=U(AkXBk)x.00

k=1

Thus Ex is v-measurable since it is the countable union of Bk's, and since this union is disjoint,
by the countable additivity of v,

00

v(Ex) _ 2 v((Ak XBk)x)
k=1

Therefore, by the Monotone Convergence Theorem, the validity of (5) for each measurable
rectangle Ak X Bk and the countable additivity of the measure µ x v,

f v(Ex)dµ(x) =Ei f v((AkXBk)x)dµ
X k=1

00

=I u(Ak)Xv(Bk)
k=1

= (AXv)(E).

Thus (2) holds if E is an RQ set. Finally, we consider the case that E is in RQs and use the
assumption that E has finite measure. Since R is a semiring, there is a descending sequence
{Ek}I 1 of sets in RQ whose intersection is E. By the definition of the measure AXv in terms
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of the outer measure induced by the premeasure µ x v on R, since (µ x v) (E) < oo, we may
suppose that (µ x v) ( El) < oo. By the continuity of the measure µ X v,

lim (IL Xv)(Ek) _ (µXv)(E). (3)
k roc

Since El is an RQ set,

(ILXv)(El) = fV((Ei)x)dit(x),

and hence, since (,u x v) (El) < oo,

v((El )x) < oo for almost all x E X. 4)

Now for each x e X, Ex is v-measurable since it is the intersection of the descending sequence
of v-measurable sets {(Ek )x}k'=1 and furthermore, by the continuity of the measure v and
(4), for almost all x e X,

lim v((Ek)x) = v(Ex)
k- oc

Furthermore, the function x ti v((E1)x) is a nonnegative integrable function that, for each
k, dominates almost everywhere the function x H v( (Ek )x ). Therefore by the Lebesgue
Dominated Convergence Theorem, the validity of (5) for each R, set Ek and the continuity
property (3),

fxv(Ex)dit(x) = lim f v((Ek)x)dµk-*oo x

=kli . (N,Xv)(Ek)

_ (N Xv)(E).

The proof is complete.

Lemma 4 Assume the measure v is complete. Let E C X X Y be measurable with respect to
IL X V. If (µ X v) (E) = 0, then for almost all x e X, the x-section of E, Ex, is v-measurable and
v(Ex) = 0. Therefore

(AXv)(E) = fv(Ex)dit(x).
x

Proof Since (µ x v) (E) < oo, it follows from Proposition 10 of Chapter 17 that there is a
set A in Ros for which E C A and (µ x v) (A) = 0. According to the preceding lemma, for
all x E X, the x-section of A, Ax, is v-measurable and

(AX P) (A) = fv(Ax)dit(x).
x

Thus v(Ax) = 0 for almost all x E X. However, for all x e X, Ex C Ax. Therefore we may
infer from the completeness of v that for almost all x e X, Ex is v-measurable and v(Ex) = 0.

0
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Proposition 5 Assume the measure P is complete. Let E C X X Y be measurable with respect to
µ X v and (µ X v) (E) < oo. Then for almost all x in X, the x-section of E, Ex, is a v-measurable
subset of Y, the function x H v(Ex) for x E X is aµ-measurable function, and

(t Xv)(E) = f v(Ex)du(x). (5)
X

Proof Since (µ x v) (E) < oo, it follows from Proposition 10 of Chapter 17 that there is a set
A in 1 for which E C A and (µ X v) (E' A) = 0. By the excision property of the measure
µXv, (µXv)(E) = (A X v) (A). By the preceding lemma,

v(A.,) = v(Ex) + ((A-E )x) = v(Ex) for almost all x E X.

Once more using the preceding lemma, we conclude that

(Axv)(E) =(t Xv)(A)

The proof is complete.

Theorem 6 Assume the measure v is complete. Let P: X X Y -* R be a simple function that
is integrable over X X Y with respect to µ X v. Then for almost all x E X, the x-section of <p,
p(x, ), is integrable over Y with respect to v and

fXXY (P d(AX v) = fX fy
L

P(x> Y) dv(Y)] d u(x) (6)

Proof The preceding proposition tells us that (6) holds if p is the characteristic function
of a measurable subset of X X Y of finite measure. Since p is simple and integrable, it is a
linear combination of characteristic functions of such sets. Therefore (6) follows from the
preceding proposition and the linearity of integration.

Proof of Fubini's Theorem Since integration is linear, we assume that f is nonnegative. The
Simple Approximation Theorem tells us that there is an increasing sequence kok} of simple
functions that converges pointwise on X X Y to f and, for each k, 0 < <pk < f on X X Y. Since
f is integrable over X X Y, each (Pk is integrable over X X Y. According to the preceding
proposition, for each k,

fXXY Pk d(N-X v) = f[i
X

(Pk(x, y) dv(Y)] dIL(x)

Moreover, by the Monotone Convergence Theorem,

f fd(AXv) = lim f pkd(AXv).
XxY k-'oo XxY
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It remains to prove that

klim fX I JY(Pk(x, Y) dv(Y)I du(x) = f V f(x, y) dv(Y)Jdµ(x)oc

If we excise from X X Y a set of µ x v-measure zero, then the right-hand side of (7)
remains unchanged and, by Lemma 4, so does the left-hand side. Therefore, by possibly
excising from X X Y a set of Ax v-measure zero, we may suppose that for all x E X and all k,
(pk (x, ) is integrable over Y with respect to v.

Fix X E X. Then {cpk(x, )} is an increasing sequence of simple v-measurable functions
that converges pointwise on Y to f (x, ). Thus f (x, ) is v-measurable and, by the Monotone
Convergence Theorem,

J f(x, y)dv(y) =kh f ggk(x, y)dv(y). (8)

For eachx E X, define h(x) = fy f(x, y)dv(y) andhk(x) = fycpk(x, y)dv(y). According
to the preceding theorem, each hk: X -> R is integrable over X with respect to µ. Since {hk}
is an increasing sequence of nonnegative measurable functions that converges pointwise on
X to h, by the Monotone Convergence Theorem,

kl f Ifcok(xY)dv(Y)d(x)= lim fhkdµ= f hdµ= f f f(x,Y)dv(Y)d/L(x)Xk-'°° X X XLLY

Therefore (7) is verified. The proof is complete. 0
In order to apply Fubini's Theorem, one must first verify that f is integrable with

respect to µ X v; that is, one must show that f is a measurable function on X X Y and that
f If I d (µ x v) < oo. The measurability of f on X X Y is sometimes difficult to establish, but
in many cases we can establish it by topological considerations (see Problem 9). In general,
from the existence and finiteness of the iterated integral on the right-hand side of (1), we
cannot infer that fin integrable over X X Y (see Problem 6). However, we may infer from the
following theorem that if v is complete, the measures a and v are a-finite and f is nonnegative
and measurable with respect to µ X v, then the finiteness of the iterated integral on the
right-hand side of (1) implies that f is integrable over X X Y and the equality (1) does hold.

Tonelli's Theorem Let (X, A, µ) and (Y, B, v) be two a -finite measure spaces and v be
complete. Let f be a nonnegative (µ X v)-measurable function X X Y. Then for almost all
x E X, the x-section of f, f (x, ), is v-measurable and the function defined almost everywhere
on X by x H the integral of f (x, ) over Y with respect to v is µ-measurable. Moreover,

fXXY
f d(AX v) = fX [J, y) dv(Y)J dµ(x) (9)

Proof The Simple Approximation Theorem tells us that there is an increasing sequence 4k)
of simple functions that converges pointwise on X X Y to f and, for each k, 0 < (Pk < f on
X X Y. At this point in the proof of Fubini's Theorem, we invoked the integrability of the
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nonnegative function I f I to conclude that since each 0 < cpk < I f I on X, each cpk is integrable
and hence we were able to apply Theorem 6 for each (Pk. Here we observe that the product
measure µ X v is Q-finite since both µ and v are Therefore we may invoke assertion
(i) of the Simple Approximation Theorem in order to choose the sequence to {(pk} to have
the additional property that each cpk vanishes outside of a set of finite measure and therefore
is integrable. The proof from this point on is exactly the same as that of Fubini's Theorem.

Two comments regarding Tonelli's Theorem are in order. First, each of the integrals
in (9) may be infinite. If one of them is finite, so is the other. Second, if µ is complete, then
the right-hand integral in (9) may be replaced by an iterated integral in the reverse order.
Indeed, we have considered iterated integration by integrating first with respect to y and
then with respect to x. Of course, all the results hold if one integrates in the reverse order,
provided in each place we required the completeness of -P we now require completeness of A.

Corollary 7 (Tonelli) Let (X, A, µ) and (Y, B, v) be two ofinite, complete measure spaces
and f a nonnegative (,u x v)-measurable function on X X Y. Then (i) for almost all x e X,
the x-section of f, f (x, ), is v-measurable and the function defined almost everywhere on X
by x ti the integral of f (x, ) over Y with respect to v is µ-measurable and (ii) for almost all
y E Y, the y-section of f, f y) is u-measurable and the function defined almost everywhere
on Y by y ti the integral of f y) over X with respect to µ is v-measurable. If

f (x, y) dv(y) I dµ(x) < oo, (10)

then f is integrable over X X Y with respect to µ x v and

[ f .f (x, y) dv(y)J dta(x). (11)f I fX .f (x, y) dli(x)J dv(y) = LX
x Y

f d(µx v) = fX
YY

Proof Tonelli's Theorem tells us that f is integrable over X X Y with respect to µ X v and
we have the right-hand equality in (11). Therefore f is integrable over X X Y with respect to
µ X P. We now apply Fubini's Theorem to verify the left-hand equality in (11).

The examples in the problems show that we cannot omit the hypothesis of the
integrability off from Fubini's Theorem and cannot omit either o-finiteness or nonnegativity
from Tonelli's Theorem (see Problems 5 and 6). In Problem 5 we exhibit a bounded function
f on the product Xf X Y of finite measure spaces for which

L I fyf(x, y) dv(y)Jdµ(x)# fY [Jf(x, y) du(x)]dv(y)

even though each of these iterated integrals is properly defined.
We conclude this section with some comments regarding a different approach to the

development of a product measure. Given two measure spaces (X, A, µ) and (Y, 8, v),
the smallest o--algebra of subsets of X X Y containing the measurable rectangles is denoted
by A X B. Thus the product measure is defined on a if-algebra containing A X B. These
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two measures are related by Proposition 10, of Chapter 17, which tells us that the µ X v-
measurable sets that have finite µ X v-measure are those that differ from sets in A X B by
sets of µ x v-measure zero. Many authors prefer to define the product measure to be the
restriction of µ x v to A X B. The advantage of our definition of the product measure is that
this does what we want for Lebesgue measure: As we will see in the next section, the product
of m-dimensional Lebesgue measure with k-dimensional Lebesgue measure is (m + k)-
dimensional Lebesgue measure. Since our hypotheses for the Fubini and Tonelli Theorems
require only measurability with respect to the product measure, they are weaker than
requiring measurability with respect to A X B. Moreover, a function that is integrable with
respect to A X B is also integrable with respect to the product measure that we have defined.

The product measure is induced by an outer measure and therefore is complete. But
we needed to assume that v is complete in order to show that if E C X X Y is measurable
with respect to our product measure, then almost all the x-sections of E are v-measurable. If,
however, E is measurable with respect to Ax13, then all of the x-sections on E belong to A even
if v is not complete. This follows from the observation that the collection of subsets of XXY that
have all of their x-sections belonging to 13 is a a -algebra containing the measurable rectangles.

PROBLEMS

1. Let A C X and let B be a v-measurable subset of Y. If A X B is measurable with respect to the
product measure tk X v, is A necessarily measurable with respect to A?

2. Let N be the set of natural numbers, M = 2N, and c the counting measure defined by setting
c(E) equal to the number of points in E if E is finite and oo if E is an infinite set. Prove that
every function f : N -* R is measurable with respect to c and that f is integrable over N with

respect to c if and only if the series Y, f (k) is absolutely convergent in which casecc
k=1

00f fdc=E f(k).
N k=1

3. Let (X, A, µ) = (Y, 13, v) _ (N, M, c), the measure space defined in the preceding
problem. State the Fubini and Tonelli Theorems explicitly for this case.

4. Let (N, M, c) be the measure space defined in Problem 2 and (X, A, µ) a general measure
space. Consider N X X with the product measure c X u.

Show that a subset E of N X X is measurable with respect to c x µ if and only if for each
natural number k, Ek = {x E X I (k, x) E E) is measurable with respect to A.

Show that a function f : N X X -+ R is measurable with respect to c x µ if and only if for
each natural number k, f (k, ) : X -+ R is measurable with respect to µ.

Show that a function f: N X X-+ R is integrable over N X X with respect to c x µ if and
only if for each natural number k, f (k, -): X R is integrable over X with respect to u
and

If (k, x) I du(x) < no.
k=1 X

(iv) Show that if the function f : N X X -+ R is integrable over N X X with respect to cxµ,
then

f f d(cX ) f f(k, x)dµ(x) <oo.
NXX k=1 X
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5. Let (X, A, µ) = (Y, B, v) = (N, M, c), the measure space defined in Problem 2. Define
f: NxN ---> R by setting

2-2-x lfx=y
f(x,y)= -2+2-x ifx=y+1

0 otherwise.

Show that f is measurable with respect to the product measure c x c. Also show that

IN
[INf(m, n) dc(m) I dc(n) # fN [IN f(m, n) dc(n)] dc(m).

Is this a contradiction either of Fubini's Theorem or Tonelli's Theorem?

6. Let X = Y be the interval [0, 1], with A = B the class of Borel sets. Let µ be Lebesgue
measure and v = c the counting measure. Show that the diagonal A = {(x, y) Ix = y} is
measurable with respect to the product measure µ x c (is an R,s, in fact). Show that if f is
the characteristic function of D,

40,
f d(µxc)# 40,

L

f f(x, y)dc(y)JdA(x)
11x[0,11 11 [0,11

Is this a contradiction either of Fubini's Theorem or Tonelli's Theorem?

7. Prove that the conclusion of Tonelli's Theorem is true if one of the spaces is the space
(N, M, c) defined in Problem 2 and the other space is a general measure space that need not
be v-finite.

8. In the proof of Fubini's Theorem justify the excision from X X Y of a set of AX v measure zero.

9. Let X = Y = [0, 1], and let µ = v be Lebesgue measure. Show that each open set in X X Y is

measurable, and hence each Borel set in X X Y is measurable. Is every continuous real-valued
function on [0, 1] x [0, 1] measurable with respect to the product measure?

10. Let h and g be integrable functions on X and Y, and define f (x, y) = h(x)g(y). Show that f
is integrable on X X Y with respect to the product measure, then

fXXY f d(AXv) = fXhdµ ffgdv.

(Note: We do not need to assume that µ and v are v-finite.)

11. Show that Tonelli's Theorem is still true if, instead of assuming µ and v to be v-finite, we
merely assume that {(x, y) I f (x, y) # 0} is a set of v-finite measure.

12. For two measure spaces (X, A, µ) and (Y, B, v) we have defined Ax B to be the smallest
a -algebra that contains the measurable rectangles.

(i) Show that if both measures are v-finite, then µxv is the only measure on AXB that assigns
the value µ(A) v(B) to each measurable rectangle A X B. Also that this uniqueness
property may fail if we do not have o-finiteness.

(ii) Show that if E E A X B, then Ex E B for each x.

(iii) Show that if f is measurable with respect to A X B, then f (x, ) is measurable with
respect to B for each x.
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13. If {(Xk, At, µk)}k=1 is a finite collection of measure spaces, we can form the product measure
µt X X µn on the space Xt x x X. by starting with the semiring of rectangles of
the form R = At x ... X A,, define µ(R) = fj µk(Ak), show that tk is a premeasure and
define the product measure to be the Caratheodory extension of µ. Show that if we identify

(Xtx...XXp)X(Xp+1X...XXn)with (Xtx...XXn),then (µ1x...xµp)X(1sp+1x...XFin) _
Filx...XN,n

14. A measure space (X, M, tk) such that µ(X) = 1 is called a probability measure space. Let
{(XA, AA, µA)}AEA be a collection of probability measure spaces parametrized by the set A.
Show that we can define a probability measure

A = H AA
AEA

on a suitable Q-algebra on the Cartesian product r I AEA XA so that

µ(A) = 11 IA(AA)
AEA

when A = jI AEA AA. (Note that µ(A) can only be nonzero if all but a countable number of
the AA have µ(AA) = 1.)

20.2 LEBESGUE MEASURE ON EUCLIDEAN SPACE R"

For a natural number n, by R" we denote the collection of ordered n-tuples of real numbers
x = (xl,... , xn ). Then R" is a linear space and there is a bilinear form R" X R" R
defined by

n

(x, x,yER.
k=1

This bilinear form is called the inner product or the scalar product. It induces a norm II II

defined by

Ilxll = (x, x) xk for all x E R".
II k=1

This norm is called the Euclidean norm. It induces a metric and thereby a topology on R.
The linear space R", considered with this inner product and induced metric and topology, is
called n-dimensional Euclidean space.

By a bounded interval in R we mean a set of the form [a, b], [a, b), (a, b] or (a, b) for
real numbers a < b. So here we are considering the empty-set and the set consisting of a
single point to be a bounded interval. For a bounded interval I with end-points a and b, we
define its length f( I) to be b - a.

Definition By a bounded interval in R" we mean a set I that is the Cartesian product of n
bounded intervals on real numbers,

We define the volume of I, vol(I), by

vo1(I) =f(I1).t(I2).... I(In)
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Definition We call a point in Rn an integral point provided each of its coordinates is an
integer and for a bounded interval I in Rn , we define its integral count, IL"gral (I), to be the
number of integral points in I.

Lemma 8 For each e > 0, define the 6-dilation TE: Rn -+ Rn by TE(x) = E x. Then for each
bounded interval I in RI,

µintegral (TE (I) )
hill

6 00 en

Proof For a bounded interval I in R with end-points a and b, we have the following estimate
for the integral count of I (see Problem 18):

(b-a)-1<uintegral(1)<(b-a)+1. (13)

Therefore for the interval I = 11 X Iz X . . . X In, since

integral(f) = µintegral (I1 ) ... integral (In
)+

if each Ik has end-points ak and bk, we have the estimate:

[(bl-al)-11.... [(bn-an)-11<,integral (I)<[(bl-al)+11.... [(bn-an)+1]. (14)

For c > 0 we replace the interval I by the dilated interval TE (I) and obtain the estimate

[c.(b1-al)-1].... [e. (bn _an) _1] < µintegral(TE(I)) < [c.(bl -al)+1].... [c.(bn-an)+1].
(15)

Divide this inequality by en and take the limit as E -* oo to obtain (12).

We leave the proof of the following proposition as an exercise in induction, using the
property that the Cartesian product of two semirings is a semiring (see Problem 25).

Proposition 9 The collection I of bounded intervals in RI is a semiring.

Proposition 10 The set function volume, vol: I -> [0, oo), is a premeasure on the Bemiring
I of bounded intervals in Rn.

Proof We first show that volume is finitely additive over finite disjoint unions of bounded
intervals. Let I be a bounded interval in RI that is the union of the finite disjoint finite
collection on bounded intervals {Ik }k 1. Then for each E > 0, the bounded interval TE (I) is
the union of the finite disjoint collection of bounded intervals (TE (Ik) )k 1. It is clear that the
integral count µintegral is finitely additive. Thus

m

integral (TE (I)) = 2 vol(TE (Ik)) for all c > 0.
k=1

Divide each side by E" and take the limit as c -> oo to obtain, by (12),

m

vol(I) = 2 vol(Ik).
k=1
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Therefore the set function volume is finitely additive.

It remains to establish the countable monotonicity of volume. Let I be a bounded
interval in R" that is covered by the countable collection on bounded intervals (1k)k

1.
We first consider the case that I is a closed interval and each Ik is open. By the Heine-
Borel Theorem, we may choose a natural number m for which I is covered by the finite
subcollection {Ik}k 1. It is clear that the integral count µintegral is monotone and finitely
additive and therefore, since the collection of intervals is a semiring, finitely monotone. Thus

m
µintegral (I) < E µintegral (Ik )

Dilate these intervals. Therefore

k=1

m
µintegral(

Te
( I)) < I µintegral(Te (Ik)) for all E > 0.

k=1

Divide each side by En and take the limit as c -+ oo to obtain, by (12),

m 00

Vol(I) < E vol(Ik) < E vol(Ik).
k=1 k=1

It remains to consider the case of a collection {Ik}k° of general bounded intervals that cover
the interval I. Let E > 0. Choose a closed interval I that is contained in I and a collection
{Ik}r1 of open intervals such that each Im C Im and, moreover,

vol(I) - Vol(!) < E and Vol(!') - vol(Im) < 6/2' for all m.

By the case just considered,
00

Vol(!) < vol(lk).
k=1

Therefore

vol(I) < 1 Vol(Ik)+2E.00

k=1

Since this holds for all E > 0 it also holds for c = 0. Therefore the set function volume is a
premeasure.

Definition The outer measure µn induced by the premeasure volume on the semiring
of bounded intervals in R" is called Lebesgue outer measure on W. The collection of
µn-measurable sets is denoted by G" and called the Lebesgue measurable sets. The restriction
of An to G" is called Lebesgue measure on R" or n-dimensional Lebesgue measure and
denoted by An.

Theorem 11 The Q-algebra C" of Lebesgue measurable subsets of R" contains the bounded
intervals in R" and, indeed, the Borel subsets of R". Moreover, the measure space (R", .C", µn )
is both o--finite and complete and for a bounded interval I in R",

µn (I) = vol(I).
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Proof According to the preceding proposition, volume is a premeasure on the semiring of
bounded intervals in R. It clearly is a-finite. Therefore the Caratheodory -Hahn Theorem
tells us that Lebesgue measure is an extension of volume and the measure space (R", C", µ" )
is both a-finite and complete. It remains to show that each Borel set is Lebesgue measurable.
Since the collection of Borel sets is the smallest o -algebra containing the open sets, it suffices
to show that each open subset 0 of R" is Lebesgue measurable. Let 0 be open in R". The
collection of points in 0 that have rational coordinates is a countable dense subset of O.
Let f zk}k' 1 be an enumeration of this collection. For each k, consider the open cube 2 Ik,n
centered at Zk of edge-length 1/n. We leave it as an exercise to show that

O = U Ik,n
lk,"CO

(16)

and therefore since each Ik,n is measurable so is 0, the countable union of these sets.

Corollary 12 Let E be a Lebesgue measurable subset of R" and f : E -+ R be continuous.
Then f is measurable with respect to n-dimensional Lebesgue measure.

Proof Let 0 be an open set of real numbers. Then, by the continuity off on E, f-1(O) =
E rl U, where U is open in R. According to the preceding theorem, U is measurable and
hence so is f-1(O).

The Regularity of Lebesgue Measure The following theorem and its corollary strongly
relate Lebesgue measure on R" to the topology on R" induced by the Euclidean norm.

Theorem 13 Let E of a Lebesgue measurable subset of R". Then

IL,, (E) = inf {µn (O) I EC0,Oopen) (17)

and

µ" (E) = sup {µn (K) I K C E, K compact). (18)

Proof We consider the case in which E is bounded, and hence of finite Lebesgue measure,
and leave the extension to unbounded E as an exercise. We first establish (17). Let e > 0.
Since µn (E) = p. (E) < oo, by the definition of Lebesgue outer measure, we may choose a
countable collection of bounded intervals in R", (Im}m 1, which covers E and

00

I, IL, (I') <N-n(E)+e/2.
m=1

For each m, choose an open interval that contains Im and has measure less than µn (Im) +
,-/[2m+1] The union of this collection,of open intervals is an open set that we denote by O.
Then E C 0 and, by the countable monotonicity of measure, µ" (0) < µ" (E) + e. Thus (17)
is established.

2By a cube in R" we mean an interval that is the Cartesian product of n intervals of equal length.



428 Chapter 20 The Construction of Particular Measures

We now establish (18). Since E is bounded, we may choose a closed and bounded set
K' that contains E. Since K'^-E is bounded, we infer from the first part of the proof that
there is an open set 0 for which K'"E C 0 and, by the excision property of µn,

N-,,(0-[K'-E]) <E. (19)

Define

K=K'-0.
Then K is closed and bounded and therefore compact. From the inclusions K'^-E C 0 and
E C K' we infer that

K=K'-OCK'-[K'-E]=K'nECE
and therefore K C E. On the other hand, from the inclusion E C K' we infer that

E-'K=E^'[K"-.0}=En0

and

E n 0 C 0-[K'-El.
Therefore, by the excision and monotonicity properties of measure and (19),

p (E) - tln(K) = lln(E.'K) <E.

Thus (18) is established and the proof is complete.

Each Borel subset of RI is Lebesgue measurable and hence so is any Gs or F,
set. Moreover, each set that has outer Lebesgue measure zero is Lebesgue measurable.
Therefore the preceding theorem, together with the continuity and excision properties of
measure, provides the following relatively simple characterization of Lebesgue measurable
sets. It should be compared with Proposition 10 of Chapter 17.

Corollary 14 For a subset E of Rn, the following assertions are equivalent-

(i) E is measurable with respect to n-dimensional Lebesguemeasure.
(ii) There is a Gs subset G of Rn such that

ECGand µn(G^-E)=0.

(iii) There is a FQ subset F of Rn such that

FCEand ,4(E--F)=0.

We leave it as an exercise (see Problem 20) to infer from the above characterization
of Lebesgue measurable sets that Lebesgue measure is translation invariant in the following
sense: For E C RI and Z E Rn, define the translation of E by z by

E+z={x+zl xEE}.

If E is µn-measurable, then so is E + z and

A,(E)=µn(E+z).
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Lebesgue Measure as a Product Measure For natural numbers n, m, and k such that
n = m + k, consider the sets R", R', Rk, and R' X Rk and the mapping

(p: R' --). R' X Rk

defined by

'P(x1,...,xn)=((x1,...,xm), (xm+1,...,xm+k))forallxER". (20)

This mapping is one-to-one and onto. Each of the sets R", R, and Rk has a linear structure,
a topological structure, and a measure structure, and the product space R' X Rk inherits a
linear structure, a topological structure, and a measure structure from its component spaces
Rm and Rk. The mapping cp is an isomorphism with respect to the linear and topological
structures. The following proposition tells us that the mapping cp is also an isomorphism from
the viewpoint of measure.

Proposition 15 For the mapping gyp: R" --* Rm X Rk defined by (20), a subset E of R" is
measurable with respect to n-dimensional Lebesgue measure if and only if its image cp(E) is
measurable with respect to the product measure An, X µk on Rm X Rk, and

a (E) = (µm X p,k)(c0(E))

Proof Define Z, to be the collection of intervals in R" and vol,, the set function volume
defined on In . Since vol,, is a o--finite premeasure, it follows from the uniqueness part of
the Caratheodory -Hahn Theorem that Lebesgue measure An is the unique measure on G"
which extends vole : Z, -* [0, oo]. It is clear that

A.( 1) = (µm Xµk)((p(I)) for all I E Zn. (21)

We leave it as an exercise for the reader to show that this implies that outer measures are
preserved by cp and therefore E belongs to Ln if and only if cp(E) is (µm X µk )-measurable.
Since cp is one-to-one and onto it follows that if we define

µ'(E) = (µm Xµk)(cp(E)) for all E E G",

then µ' is a measure on Ln that extends vole : In -+ [0, oo]. Therefore, by the above
uniqueness assertion regarding An,

µn(E) =µ (E) = (µmXµk)(cp(E))for all E E G".

This completes the proof.

From this proposition, the completeness and o -finiteness of Lebesgue measure and the
Theorems of Fubini and Tonelli, we have the following theorem regarding integration with
respect to Lebesgue measure on R".

Theorem 16 For natural numbers n, m, and k such that n = in + k, consider the mapping
cp: R" -> Rm X Rk defined by (20). A function f : Rm X Rk -+ R is measurable with respect to
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the product measure µ,n XAk if and only if the composition f o gyp: R" -+ R is measurable with
respect to Lebesgue measure /x, If f is integrable over R" with respect to Lebesgue measure
µn, then

fW .f dPn = Lk
fRm

f(x, Y)dAm(x)J dµk(Y) (22)

Moreover, if f is nonnegative and measurable with respect to Lebesgue measure µ", the above
equality also holds.

Lebesgue Integration and Linear Changes of Variables We denote by £(R") the linear
space of linear operators T: R" -. R. We denote by GL(n, R) the subset of £(R")
consisting of invertible linear operators T: R" -+ R", that is, linear operators that are
one-to-one and onto. The inverse of an invertible operator is linear. Under the operation of
composition, GL(n, R) is a group called the general linear group of R. For 1 < k < n, we
denote by ek the point in R" whose kth coordinate is 1 and other coordinates are zero. Then
{el, ..., en} is the canonical basis for L(R" ). Observe that a linear operator T: R" -* R" is
uniquely determined once T(ek) is prescribed for 1 < k < n, since if x = (xl,... , xn ), then

all xER".

The only analytical property of linear operator that we need is that they are Lipschitz.

Proposition 17 A linear operator T : R" R" is Lipschitz.

Proof Let x belong to R. As we have just observed, by the linearity of T,

Therefore, by the subadditivity and positivity homogeneity of the norm,

n

IIT(x)II = IIx1T(el)+...+xnT(en)11 <- 1 IxkI.1IT(ek)II.
k=1

Hence, if we define c = , 7, II T( ek )112, by the Cauchy-Schwarz Inequality,
k=1

IIT(x)II c llxll.

For any u, v E R1, set x = u - v. Then, by the linearity of T, T (x) = T (u - v) = T (u) - T (v ),
and therefore

11T(u)-T(v)II :S vll.

We have already observed in our study of Lebesgue measure on the real line that
a continuous function will not, in general, map Lebesgue measurable sets to Lebesgue
measurable sets. However, a continuous mapping that is Lipschitz does map Lebesgue
measurable sets to Lebesgue measurable sets.
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Proposition 18 Let the mapping 'DIY: R' -* R" be Lipschitz. If E is a Lebesgue measurable
subset of R', so is 'AY(E). In particular, a linear operator T: R" R" maps Lebesgue
measurable sets to Lebesgue measurable sets.

Proof A subset of R' is compact if and only if it is closed and bounded and a continuous
mapping maps compact sets to compact sets. Since 'Y is Lipschitz, it is continuous. Therefore
1P maps bounded FQ sets to FQ sets.

Let E be a Lebesgue measurable subset of R". Since W is the union of a countable
collection of bounded measurable sets, we may assume that E is bounded. According to
Corollary 14, E = A U D, where A is an FQ subset of R" and D has Lebesgue outer measure
zero. We just observed that 1P'(A) is an FQ set. Therefore to show that '!'(E) is Lebesgue
measurable it suffices to show that the set 'Y(D) has Lebesgue outer measure zero.

Let c > 0 be such that

II'`Y(u)-'lr(v)II <c.Ilu-vllforallu,vER".

There is a constant c' (see Problem -24) that depends solely on c and n such that for any
interval I in R",

An ('Y(I)) <c' vol(I). (23)

Let E > 0. Since A* (D) = 0, there is a countable collection {Ik},1 of intervals in R" that
00

cover D and for which 2 vol(Ik) < E. Then (p(Ik) }k 1 is a countable cover of P(D ).
k=1

Therefore by the estimate (23) and the countable monotonicity of outer measure,

00 00

An(4'(I))<I 1-1n(T(Ik))<2C VOl(Ik)<C E.
k=1 k=1

Since this holds for all c > 0 it also holds for c = 0.

Corollary 19 Let the function f : R" - R be measurable with respect to Lebesgue measure
and the operator T : R" R" be linear and invertible. Then the composition f o T : W -+ R
also is measurable with respect to Lebesgue measure.

Proof Let 0 be an open subset of R. We must show that (f o T)-1(O) is Lebesgue
measurable. However,

(f o T)-1(O) = T-1(f-1(O))
But the function f is measurable and therefore the set f -1(O) is measurable. On the
other hand, the mapping T-1 is linear and therefore, by the preceding proposition, maps
Lebesgue measurable sets to Lebesgue measurable sets. Thus (f o T) -1 (0) is Lebesgue
measurable.

We will establish a general formula for the change in the value of a Lebesgue integral
over R" under a linear change of variables and begin with dimensions n = 1 and 2.
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Proposition 20 Let f : R -* R be integrable over R with respect to one-dimensional Lebesgue
measure. If a, 0 E R, a # 0, then

J f dl-t1 = lal JR f(ax)dµ1(x) and J Rfdµl = J f(x+/3)dp1(x) (24)
R

Proof By the linearity of integration we may assume f is nonnegative. Approximate the
function f an increasing sequence of simple integrable functions and thereby use the
Monotone Convergence Theorem to reduce the proof to the case that f is the characteristic
function of a set of finite Lebesgue measure. For such a function the formulas are evident.

Proposition 21 Let f : R2 -* R be integrable over R2 with respect to Lebesgue measure µ2
and c # 0 be a real number. Define cp: R2 -+ R, iji: R2 -+ R and q: R2 -+ R by

,p(x, y) = f (y, x), /,(x, y) = f (x, x + y) and ri(x, y) = f(cx, y) for all (x, y) E R2.

Then (p, 0, and 17 are integrable over R2 with respect to Lebesgue measure µ2. Moreover,

fR2 fdµ2 = fR2 pdµ2 = fR2 4,dµ2,

and
1

R2
f dµ2 = Icl fRZ fdµ2

Proof We infer from Corollary 19 that each of the functions cp, i/i, and z7 is µ2-measurable.
Since integration is linear, we may assume that f is nonnegative. We compare the integral
of f with that of p and leave the other two as exercises. Since f is µ2-measurable, we infer
from Fubini's Theorem, as expressed in Theorem 16, that

JfdJ[Jf(x , Y)dµ1(x)J dµi(Y)

However, by the definition of the function cp, for almost ally E R,

JRf(x,
Y)dµl(x) = fRp(y, x)dla1(x)

and therefore

fR
[
fR f(x, Y)dl-ti (x) I dµl(Y) = fR [ fR(p(Y, x)dµl(x)J dµl(Y)

Since p is nonnegative and µ2-measurable we infer from Tonelli's Theorem,as expressed in
Theorem 16, that

,P(y, x)dµl(x)J dµl(Y) =
fR2

tpola2.

Therefore

fR2 fdµ2 = fR2 (Pdµ2-
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So far the sole analytical property of linear mappings that we used is that such mappings
are Lipschitz. We now need two results from linear algebra. The first is that every operator
T E GL(n, R) may be expressed as the composition of linear operators of the following
three elementary types:

Type andT(ek)=ekfork j:
Type 2: T ei+1, T (e.i+l) = ej and T(ek) = ek fork # j, j + 1 :
Type 3: T (ej) = ej + ej+1, and T(ek) = ek for k 96 j :

That every invertible linear operator may be expressed as the composition of elemen-
tary operators is an assertion in terms of linear operator of a property of matrices: every
invertible n x n matrix may be reduced by row operations to the identity matrix.

The second property of linear operators that we need is the following: To each linear
operator T : R" -+ R" there is associated a real number called the determinant of T and
denoted by detT, which possesses the following three properties:

(i) For any two linear operators T, S: R' -+ R"

det(S o T) = detS detT, (25)

(ii) detT = c if T is of Type 1, detT = -1 if T is of Type 2, and detT =1 if T is of Type 3.

(iii) If T (en) = 1 and T maps the subspace (x E R" I x = (x1, x2, ... , xn_1, 0)} into itself,
then detT = detT', where T': Rn-1 --). Rn-1 is the restriction of T to Rn-1

Theorem 22 Let the linear operator T : R" --). R' be invertible and the function f : R" - R
be integrable over R' with respect to Lebesgue measure. Then the composition f o T : R" - R
also is integrable over R" with respect to Lebesgue measure and

fW f o T dµn =
IdetTl fR^ f

dµn.
(26)

Proof Integration is linear. We therefore suppose f is nonnegative. In view of the mul-
tiplicative property of the determinant and the decomposability of an invertible linear
operator into the composition of elementary operators, we may also suppose that T is
elementary. The case n = 1 is covered by (24). By Proposition 21, (26) holds if n = 2. We
now apply an induction argument. Assume we have proven (26) for m > 2 and consider
the case n = m + 1. Since T is elementary and n > 3, , either (i) T(en) = en and T maps
the subspace (x E R" I x = (x1, ... , xn_1, 0)) into itself or (ii) T(el) = e1 and T maps the
subspace (x E R" I x = (0, x2, ... , xn )} into itself. We consider case (i) and leave the similar
consideration of case (n) as an exercise. Let T' be the operator induced on R"-' by T.
Observe that IdetT'I = IdetTI. We now again argue as we did in the proof of Proposition
21. The function f o T is µn-measurable. Therefore we infer from Fubini's Theorem and
Tonelli's Theorem, as formulated for Lebesgue measure in Theorem 16, together with the
validity of (26) for m = n - 1, that
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fR. f oTdµn =
JR

f1f c T(xl,X2,...,xn)dAn-1(x1,...,Xn-1)I dAl(xn)

=JR [fRlf(T'xl Xn_i), xn))dµn-1(x1, ..., x.-1)J d/x1(xn)

1

fRIdetT'IJ R [1w_i.f(xi,x2,...,xn)dNn-1(xl,...,Xn-1)J dµl(xn)

_ 1

IdetTl JRn fdl,,,.

Corollary 23 Let the linear operator T : Rn - Rn be invertible. Then for each Lebesgue
measurable subset E of Rn, T (E) is Lebesgue measurable and

l-cn(T(E)) = Idet(T)I'!xn(E). (27)

Proof We assume that E is bounded and leave the unbounded case as an exercise. Since T
is Lipschitz, T(E) is bounded. We infer from Proposition 18 that the set T(E) is Lebesgue
measurable and it has finite Lebesgue measure since it is bounded. Therefore the function
f = XT (E) is integrable over Rn with respect to Lebesgue measure. Observe that f o T = XE
Therefore

ffoTdn/.Ln(E)adffd/.n=/xn(T(E))

Hence (27) follows from (26) for this particular choice of f .

By a rigid motion of Rn we mean a mapping P of Rn onto Rn that preserves Euclidean
distances between points, that is,

IIIP(u)-'`p(u)ll=llu-vll for all u,vER.

A theorem of Mazur and Ulam3 tells us that every rigid motion is a constant perturbation
of a linear rigid motion, that is, there is a point xo in RI and T: Rn -4 R' linear such that
'P(x) = T(x) +xo for all x E Rn, where T is a rigid motion. However, since a linear rigid
motion maps the origin to the origin, T preserves the norm, that is,

IIT(u)II = lull for allu ERn.

3See pages 49-51 of Peter Lax's Functional Analysis [Lax02].
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Thus the following polarization identity (see Problem 28),

(u, v) =
4

{Ilu + v112 - Ilu - v112} for all u, v E Rn, (28)

tells us that a linear rigid motion T preserves the inner product, that is,

(T (u ), T (v)) = (u, v) for all u, v E R.

This identity means that T*T = Id. From the multiplicative property of the determinant
and the fact that detT = detT*, we conclude that ldetTl = 1. Therefore by the translation
invariance of Lebesgue measure (see Problem 20) and (27) we have the following interesting
geometric result: If a mapping on Euclidean space preserves distances between points, then
it preserves Lebesgue measure.

Corollary 24 Let 'Y: Rn -* Rn be a rigid motion. Then for each Lebesgue measurable subset
E of Rn,

(41(E)) = An (E).

It follows from the definition of Lebesgue outer measure µn that the subspace
V = {x E R' I x = (xl, x2, ... , xn_1, 0)} of Rn has n-dimensional Lebesgue measure zero
(see Problem 30). We may therefore infer from (27) that any proper subspace W of Rn has
n-dimensional Lebesgue measure zero since it may be mapped by an operator in GL(n, R)
onto a subspace of V. It follows that if a linear operator T: Rn -* Rn fails to be invertible,
then, since its range lies in a subspace of dimension less than n, it maps every subset of Rn to
a set of n-dimensional Lebesgue measure zero. This may be restated by asserting that (27)
continues to hold for linear operators T that fail be invertible.

PROBLEMS

15. Consider the triangle A = {(x, y) E R210 < x < a, 0 < y < [b/a]x}. By covering A with
finite collections of rectangles and using the continuity of measure, determine the Lebesgue
measure of A.

16. Let [a, b] be a closed, bounded interval of real numbers. Suppose that f : [a, b] --> R is
bounded and Lebesgue measurable. Show that the graph of f has measure zero with respect
to Lebesgue measure on the plane. Generalize this to bounded real-valued functions of
several real variables.

17. Every open set of real numbers is the union of a countable disjoint collection of open intervals.
Is the open subset of the plane {(x, y) E R210 < x, y < 11 the union of a countable disjoint
collection of open balls?

18. Verify inequality (13).

19. Verify the set equality (16).

20. Let E C Rn and Z E Rn.

(i) Show that E + z is open if E is open.

(ii) Show that E + z is GS if E is Gs.

(iii) Show that (E + z) = ( E ) .

(iv) Show that E is µn-measurable if and only if E + z is µn-measurable.

21. For each natural number n, show that every subset of Rn of positive outer Lebesgue measure
contains a subset that is not Lebesgue measurable.
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22. For each natural number n, show that there is a subset of R" that is not a Borel set but is
µ"-measurable.

23. If (27) holds for each interval in R", use the uniqueness assertion of the Caratheodory -Hahn
Theorem to show directly that it also holds for every measurable subset of R.

24. Let 4r: R" -* R" be Lipschitz with Lipschitz constant c. Show that there is a constant c' that
depends only on the dimension n and c for which the estimate (23) holds.

25. Prove that the Cartesian product of two semirings is a semiring. Based on this use an induction
argument to prove that the collection of intervals in R" is a semiring.

26. Show that if the function f : [0, 1] x [0, 1] -+ R is continuous with respect to each variable
separately, then it is measurable with respect to Lebesgue measure /.L2.

27. Let g: R -* R be a mapping of R onto R for which there is a constant c > 0 for which

Show that if f : R -> R is Lebesgue measurable, then so is the composition fog: R -> R.
28. By using the bilinearity of the inner product, prove (28).

29. Let the mapping T: R" -* R" be linear. Define c = sup {II T(x) 11 1 IIx1I < 1}. Show that c is the
smallest Lipschitz constant for T.

30. Show that a subspace of W of R" of dimension less than n has n-dimensional Lebesgue
measure zero by first showing this is so for the subspace {x E R" I X" = 0}.

31. Prove the two change of variables formulas (24) first for characteristic functions of sets of
finite measure, then for simple functions that vanish outside a set of finite measure and finally
for nonnegative integrable functions of a single real variable.

32. For a subset E of R, define

c(E)={(x, Y)ER2I x - yEE}.

(i) If E is a Lebesgue measurable subset of R, show that o ,(E) is a measurable subset of
R2. (Hint: Consider first the cases when E open, E a Gs, E of measure zero, and E
measurable.)

(ii) If f is a Lebesgue measurable function on R, show that the function F defined by
F(x, y) = f (x - y) is a Lebesgue measurable function on R2.

(iii) If f and g belong to L1 (R, pd ), show that for almost all x in R, the function <p given by
,p(y) = f (x - y)g(y) belongs to Li (R, u l). If we denote its integral by h (x ), show that
h is integrable and

fR jIfIdm.fIgId.

33. Let f and g be functions in L 1(R, A,), and define f * g on R by

(f *g)(Y) = ff(Y_x)g(x)dri(x).

(i) Show that f * g = g * f.

(ii) Show that (f * g) * h = f * (g * h) for each h E L' (R, IL I).
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34. Let f be a nonnegative function that is integrable over R with respect to µ1. Show that

µ2{(x, Y) E R2 0_< Y<f(x)}=112{(x>Y)ER2) 0< Y< f(x)}= f f(x)dx.
R

For each t > 0, define cp(t) = p. {x E R I f (x) > t}. Show that p is a decreasing function and

fo(t) d1(t) = IRf1(

20.3 CUMULATIVE DISTRIBUTION FUNCTIONS AND BOREL MEASURES ON R

Let I = [a, b] be a closed, bounded interval of real numbers and 13(I) the collection of Borel
subsets of I. We call a finite measure µ on 13(I) a Borel measure. For such a measure, define
the function g,,: I -+ R by

9,, (x) =µ[a,x]forall xinI.

The function gN, is called the cumulative distribution function of it.

Proposition 25 Let t be a Borel measure on B(I ). Then its cumulative distribution function
g, is increasing and continuous on the right. Conversely, each function g: I -+ R that is increa-
sing and continuous on the right is the cumulative distribution function of a unique Borel
measure A, on 13(I ).

Proof First let µ be a Borel measure on B(I ). Its cumulative distribution function is certainly
increasing and bounded. Let xo belong to [a, b) and (xk) be a decreasing sequence in (xo, b]
that converges to xo. Then fl 1(xo, ski = 0 so that, since µ is finite, by the continuity of
measure,

0 = µ(0) = lim 1- (x0, xk] = lim [gµ(xk) - gµ(x0)]
k->oo k-+oo

Thus gµ is continuous on the right at xo.

To prove the converse, let g: I --> R be an increasing function that is continuous on
the right. Consider the collection S of subsets of I consisting of the empty set, the singleton
set (a), and all subintervals of I of the form (c, d]. Then S is a semiring. Consider the set
function µ: S -* R defined by setting µ(0) = 0, A[a} = g(a) and

µ(c, d] = g(d) - g(c) for (c, d] C I.

We leave it as an exercise (see Problem 39) to verify that if (c, d] C I is the union of finite
n

disjoint collection lJ (ck, dk], then
k=1

n

g(d)-g(c) = 2 [g(dk) - g(ck)]
k=1

00
and that if (c, d] C I is covered by the countable collection U (ck, dk], then

k=1

00g(d) - g(c) < 1 [g(dk) -g(ck)] (29)
k=1
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This means that µ is a premeasure on the semiring S. By the Caratheodory -Hahn Theorem,
the Caratheodory measure µ induced by µ is an extension of A. In particular, each open
subset of [a, b] is µ*-measurable. By the minimality of the Borel o--algebra, the o--algebra of
µ* measurable sets contains 13(I ). The function g is the cumulative distribution function for
the restriction of µ to 13(I) since for each x E [a, b],

µ[a, x] = µ{a} + µ(a, x] = g(a) + [g(x) - g(a)] = g(x)

It is natural to relate the continuity properties of a Borel measure to those of its
cumulative distribution function. We have the following very satisfactory relation whose
proof we leave as an exercise.

Proposition 26 Let A be a Borel measure on B(I) and g, its cumulative distribution function.
Then the measure µ is absolutely continuous with respect to Lebesgue measure if and only if
the function g, is absolutely continuous.

For a bounded Lebesgue measurable function f on [a, b], the Lebesgue integral
fa bl f dm is defined, where m denotes Lebesgue measure. For a bounded function f on
[a, b] whose set of discontinuities has Lebesgue measure zero, we proved that the Riemann
integral fb f (x) dx is defined and

b]

fdm=
aJ

f(x)dx.Ia

There are two generalizations of these integrals, the Lebesgue-Stieltjes and Riemann-Stieltjes
integrals, which we now briefly consider.

Let the function g: I -+ R be increasing and continuous on the right. For a bounded
Borel measurable function f : I -* R, we define the Lebesgue-Stieltjes integral of f with
respect to g over [a, b], which we denote by fa fdg, by

f fdg=J fdµg. (30)
ab] [a, b]

Now suppose that f is a bounded Borel measurable function and g is increasing and
absolutely continuous. Then g' Lebesgue integrable function over [a, b] and hence so is f g'.
We have

f fdg = f
la,

(31)
a b] [a, b]

where the right-hand integral is the integral of f g' with respect to Lebesgue measure m.
To verify this formula, observe that it holds for f a Borel simple function and then, by the
Simple Approximation Theorem and the Lebesgue Dominated Convergence Theorem, it
also holds for a bounded Borel measurable function f. In this case, by Proposition 26, µg is
absolutely continuous with respect to m. We leave it to the reader to verify that function g'
is the Radon-Nikodym derivative of µg with respect tom (see Problem 44).

There is a Riemann-Stieltjes integral that generalizes the Riemann integral in the same
manner that the Lebesgue-Stieltjes integral generalizes the Lebesgue integral. We briefly
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describe this extension .4 If p = [xp, x1, ... , xn} is a partition of [a, b], we let 11 P11 denote the
maximum of the lengths on the intervals determined by P and let C = f cl , ... , cn }, where
each ci belongs to [xi_1, xi]. For two bounded functions f : [a, b] -+ R and g: [a, b] -+ R,
consider sums of the form

S(f, g, P, C) .f (cj) . [g(x1) - g(xi-1)]
k=1

If there is a real number A such that for each c > 0, there is a S > 0 such that

if 11P11 <&then IS(f, g, P, C) - AI <e,

then f is said to be Riemann-Stieltjes integrable over I with respect to g and we set

A = f b f(x)dg(x)
a

It is clear that if g(x) = x for all x E [a, b], then the Riemann-Stieltjes integral of f
with respect to g is just the Riemann integral of f. Moreover, if f is continuous and g
is monotone, then f is Riemann-Stieltjes integrable over I with respect to g.5 However,
a theorem of Camille Jordan tells us a function of bounded variation is the difference of
increasing functions. Therefore a continuous function on I is Riemann-Stieltjes integrable
over I with respect to a function of bounded variation. The Lebesgue-Stieltjes integral and
the Riemann-Stieltjes integrals are defined for different classes of functions. However, they
are both defined if f is continuous and g is increasing and absolutely continuous. In this case,
they are equal, that is,

fbf(x)dg(x)
= J[a,b]fdg,

since (see Problems 36 and 37) each of these integrals is equal to f [a bl f g' dm, the Lebesgue

integral of f . g' over [a, b] with respect to Lebesgue measure m.

PROBLEMS

35. Prove Proposition 26.

36. Suppose f is a bounded Borel measurable function on [a, b] and g is increasing and absolutely
continuous on [a, b]. Prove that if m denotes Lebesgue measure, then

b] [

fdg=Ja,
b]fa

37. Suppose f is a continuous function on [a, b] and g is increasing and absolutely continuous on
[a, b]. Prove that if m denotes Lebesgue measure, then

f
bf(x)dg(x)=

f fS dm.
a [a, b]

40n pages 23-31 of Richard Wheedon and Antoni Zygmund's Measure and Integral [WZ77] there is a precise
exposition of the Riemann-Stieltjes integral.

5The proof of this is a slight variation of the proof of the Riemann integrability of a continuous function.
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38. Let f and g be functions on [-1, 1] such that f = 0 on [-1, 01, f = 1 and (0, 1], and g = 0
on [-1, 0), g = 1 and [0, 1]. Show that f is not Riemann-Stieltjes integrable with respect to
g over [-1, 1] but is Riemann-Stieltjes integrable with respect tog on [-1, 0] and on [0, 1].

39. Prove the inequality (29). (Hint: Choose c > 0. By the continuity on the right of g, choose
ri; > 0 so thatg(b; +,qi) <g(b,)+E2-1, and choose 8>0sothat g(a+S) <g(a)+C.Then
the open intervals (a b; + m) cover the closed interval [a + S, b].)

40. For an increasing function g: [a, b] -* R, define

g*(x) =
r
lim AY).

Show that g* is an increasing function that is continuous on the right and agrees with g
wherever g is continuous on the right. Conclude that g = g*, except possibly at a countable
number of points. Show that (g*)* = g*, and if g and G are increasing functions that agree
wherever they are both continuous, then g* = G*. If f is a bounded Borel measurable
function on [a, b], show that

fla,
= fla,la, b] [a, b]

41. (i) Show that each bounded function g of bounded variation gives rise to a finite signed
Borel measure v such that

v(c, d] = g(d+) - g(c+) for all (c, d] C [a, b].

(iii)

Extend the definition of the Lebesgue-Stieltjes integral f la b] f dg to functions g of
bounded variation and bounded Borel measurable functions f .

Show that if I f 1 < M on [a, b] and if the total variation of g is T, then I f iila b] f dgi < MT.

42. Let g be a continuous increasing function on [a, b] with g(a) = c, g(b) = d, and let f be a
nonnegative Borel measurable function on [c, d]. Show that

la, b] [

f ogdg=Jc,
d]

fdm.

43. Let g be increasing on [a, b]. Find a Borelrmeasure µ on 8([a, b]) such that

Jb f(x)dg(x)=J fdu for all f EC[a, b].
a [a, b]]

44. If the Borel measure µ is absolutely continuous with respect to Lebesgue measure, show that
its Radon-Nikodym derivative is the derivative of its cumulative distribution function.

45. For a finite measure µ on the collection 8(R) of all Borel subsets of R, define g: R --* R
by setting g(x) x]. Show that each bounded, increasing function g: R -* R that is
continuous on the right and g(x) = 0 is the cumulative distribution function of a
unique finite Borel measure on 8(R).
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20.4 CARATHEODORY OUTER MEASURES AND HAUSDORFF
MEASURES ON A METRIC SPACE

Lebesgue outer measure on Euclidean space R° has the property that if A and B are subsets
of R" and there is a S > 0 for which 1ju - vjj > B for allu E A and v E B, then

µn(AUB) =Nn(A)+IL,(B)

We devote this short section to the study of measures induced by outer measures on a metric
space that possess this property and a particular class of such measures called Hausdorff
measures.

Let X be a set and r a collection of real-valued functions on X. It is often of interest
to know conditions under which an outer measure µ* has the property that every function
in r is measurable with respect to the measure induced by µ* through the Caratheodory
construction. We present a sufficient criterion for this. Two subsets A and B of X are said
to be separated by the real-valued function f on X provided there are real numbers a and b
with a < b for which f < a on A and f > b on B.

Proposition 27 Let cp be a real-valued function on a set X and µ* : 2X -+ [0, oo] an outer
measure with the property that whenever two subsets A and B of X are separated by cp, then

µ*(AU B) = µ*(A) +µ*(B)

Then cp is measurable with respect to the measure induced by µ*.

Proof Let a be a real number. We must show that the set

E={xEXI p(x)>a}

is µ*-measurable, that is, that for any e > 0 and any subset A of X of finite outer measure,

µ*(A) +e >,u*(A f E) +µ*(A f EC).

Define B = A ft E and C = A n Ec. For each natural number n, define

Bn={xEBI cp(x)>a+1/n} and R, = B,-B,,-,.

We have

(32)

B=BnUI U Rk].
k=n+1

Now on Bn_2 we have cp > a + 1/(n - 2), while on Rn we have p < a + 1/(n -1). Thus cp
k-1

separates Rn and Bn_2 and hence separates R2k and U R2j, since the latter set is contained
j=1

in B2k_2. Consequently, we argue by induction to show that for each k,

k k-1
`kA* U R2 j = A* (R2k) +A* U R2j L,= µ* (R2j)

j=1 j=1 j=1
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Since j=1 R2j C B C A, we have (R2 j) < µ* (A), and so the series 1
µ* (R2j)

converges. Similarly, the series
1
µ* (R2j+1) converges, and therefore so does the series

k µ* (Rk ). Choose n so large that Ek=n+t tk* (Rk) <e. Then by the countable monotonicity
of µ*,

00

A*(B) <µ*(Bn)+ I µ*(Rk) <A*(Bn)+E
k=n+1

or

µ*(B.) >A*(B) -
Now

to*(A) gyp-*(BnUC)=tl*(Bn)+µ*(C)
since cp separates Bn and C. Consequently,

µ*(A) > µ*(B) +µ*(C) - E.

We have established the desired inequality (32).

Let (X, p) be a metric space. Recall that for two subsets A and B of X, we define the
distance between A and B, which we denote by p(A, B), by

p(A, B) uEinf
p(u. v)

By the Borel a--algebra associated with this metric space, which we denote by .13(X), we
mean the smallest a--algebra containing the topology induced by the metric.

Definition Let (X, p) be a metric space. An outer measure µ*: 2X [0, oo] is called
a Caratheodory outer measure provided whenever A and B are subsets of X for which
p(A, B) > 0, then

A*(AU B) =A* (A)+µ*(B).

Theorem 28 Let µ* be a Carath@odory outer measure on a metric space (X, p). Then every
Borel subset of X is measurable with respect to µ*.

Proof The collection of Borel sets is the smallest o--algebra containing the closed sets, and
the measurable sets are a o--algebra. Therefore it suffices to show that each closed set is
measurable. However, each closed subset F of X can be expressed as F = f -1(0) where f
is the continuous function on X defined by f (x) = p(F, [x)). It therefore suffices to show
that every continuous function is measurable. To do so, we apply Proposition 27. Indeed, let
A and B be subsets of X for which there is a continuous function on X and real numbers
a < b such that f < a on A and f > b on B. By the continuity of f, p(A, B) > 0. Hence,
by assumption, µ* (A U B) = µ* (A) + µ* (B). According to Proposition 27, each continuous
function is measurable. The proof is complete.

We now turn our attention to a particular family of Caratheodory outer measures on the
metric space (X, p). First recall that we define the diameter of a subset A of X, diam(A ), by

diam(A) = sup p(u, v).
u, vEA
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Fix a > 0. For each positive real number a, we define a measure Ha on the Borel o--algebra
B(X) called the Hausdorff measure on X of dimension a. These measures are particularly
important for the Euclidean spaces R", in which case they provide a gradation of size among
sets of n-dimensional Lebesgue measure zero.

Fix a > 0. Take E > 0 and for a subset E of X, define

00

H )(E) = inf E[diam(Ak)]a,
k=1

where {Ak}k°1 is a countable collection of subsets of X that covers E and each Ak has a

diameter less than E. Observe that H(E) increases as E decreases. Define

H.* (E) = sup H(E)(E) = limH(E)(E).

Proposition 29 Let (X, p) be a metric space and a a positive real number. Then Ha : 2X
[0, co] is a Caratheodory outer measure.

Proof It is readily verified that Ha is a countably monotone set function on 2X and
Ha (0) = 0. Therefore Ha is an outer measure on 2X. We claim it is a Caratheodory outer
measure. Indeed, let E and F be two subsets of X for which p(E, F) > S. Then

H(E)(EU F) >

as soon as E < S: For if {Ak} is a countable collection of sets, each of diameter at most c, that
covers E U F, no Ak can have nonempty intersection with both E and F. Taking limits as
E -+ 0, we have

H.(EUF)> Ha(E)+Ha(F).

We infer from Theorem 28 that H,*, induces a measure on a o--algebra that contains
the Borel subsets of X. We denote the restriction of this measure to B(X) by Ha and can it
Hausdorff a-dimensional measure on the metric space X.

Proposition 30 Let (X, p) be a metric space, A a Borel subset of X, and a, 0 positive real
numbers for which a < P. If Ha'(A) < oc, then Hp(A) = 0,

Proof Let E> 0. Choose {Ak}k 1 to be a covering of A by sets of diameter less than a for which00

2 [diam(Ak )]a < H,,(A) + 1.
k=1

Then

HE)(A) c
E00 00

[diam(Ak)R] <Ep-a . E[diam(Ak)]a <p-a, [Ha(A)+1].
k=1 k=1

Take the limit as c -+ 0 to conclude that Hp (A) = 0.
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For a subset E of R", we define the Hausdorff dimension of E, dimH(E), by

dimH(E) = inf {0 > 0 I Hp(E) = 01.

Hausdorff measures are particularly significant for Euclidean space W. In the case
n = 1, H1 equals Lebesgue measure. To see this, let I C R be an interval. Given E > 0,
the interval I may be expressed as the disjoint union of subintervals of length less that E
and the diameter of each subinterval is its length. Thus H1 and Lebesgue measure agree on
the semiring of intervals of real numbers. Therefore, by the construction of these measures

from outer measures, these measures also agree on the Borel sets. Thus H(E) is the
Lebesgue outer measure of E. For n > 1, H is not equal to Lebesgue measure (see Problem
48) but it can be shown that it is a constant multiple of n-dimesional Lebesgue measure
(see Problem 55). It follows from the above proposition that if A is a subset of R" that
has positive Lebesgue measure, then dimH (A) = n. There are many specific calculations of
Hausdorff dimension of subsets of Euclidean space. For instance, it can be shown that the
Hausdorff dimension of the Cantor set is log 2/ log 3. Further results on Hausdorff measure,
including specific calculations of Hausdorff dimensions, may be found in Yakov Pesin's book
Dimension Theory and Dynamical Systems [Pes98].

PROBLEMS

46. Show that in the definition of Hausdorff measure one can take the coverings to be by open
sets or by closed sets.

47. Show that the set function outer Hausdorff measure H,*, is countably monotone.

48. In the plane R2 show that a bounded set may be enclosed in a ball of the same diameter. Use
this to show that for a bounded subset A of R2, H2(A) > 4/a µ2(A), where µ2 is Lebesgue
measure on R2.

49. Let (X, p) be a metric space and a > 0. For E C X, define

Ha(E)=inf [diam(Ak)]a,
k=1

where {Ak}kk.1 is a countable collection of subsets of X that covers E: there is no restriction
regarding the size of the diameters of the sets in the cover. Compare the set functions H' and
H..

50. Show that each Hausdorff measure H,, on Euclidean space R" is invariant with respect to
rigid motions.

51. Give a direct proof to show that if I is a nontrivial interval in R" , then H (I) > 0.

52. Show that in any metric space, Ho is counting measure.

53. Let [a, b] be a closed, bounded interval of real numbers and R = {(x, y) E R2 I a < x <
b, y = 0.1 Show that H2 (R) = 0. Then show that Hi (R) = b - a. Conclude that the Hausdorff
dimension of R is 1.
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54. Let f : [a, b] -* R be a continuous bounded function on the closed, bounded interval [a, b]
that has a continuous bounded derivative on the open interval (a, b). Consider the graph G
of f as a subset of the plane. Show that H, (G) = fa 1 + I f' (x) I2 dx.

55. Let J be an interval in R°, each of whose sides has length 1. Define y, = Show
that if I is any bounded interval in R", then H (I) = yn µ (I). From this infer, using the
uniqueness assertion of the Caratheodory-Hahn Theorem, that H. = yn µ on the Borel
subsets of R.
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In the study of Lebesgue measure, µ", and Lebesgue integration on the Euclidean spaces
R' and, in particular, on the real line, we explored connections between Lebesgue measure
and the Euclidean topology and between the measurable functions and continuous ones.
The Borel a-algebra 13(R") is contained in the a--algebra of Lebesgue measurable sets.
Therefore, if we define Cc (R") to be the linear space of continuous real-valued functions on
R" that vanish outside a closed, bounded set, the operator

fyf fdµ"forall f ECC(R")

is properly defined, positive,1 and linear. Moreover, for K a closed, bounded subset of R",
the operator

fHJ fdµ"for all f EC(K)
K

is properly defined, positive, and is abounded linear operator if C(K) has the maximum norm.
In this chapter we consider a general locally compact topological space (X, T), the

Borel a-algebra [3(X) comprising the smallest a--algebra containing the topology T, and
integration with respect to a Borel measure j :.13(X) -> [0, oo). The chapter has two
centerpieces. The first is the Riesz-Markov Theorem, which tells us that if CC(X) denotes
the linear space of continuous real-valued functions on X that vanish outside a compact
set, then every positive linear function on C,(X) is given by integration against a Borel
measure on C3(X ). The Riesz-Markov Theorem enables us to prove the Riesz Representation
Theorem, which tells us that, for X a compact Hausdorff topological space, every bounded
linear functional on the linear space C(X), normed with the maximum norm, is given by

IA linear functional L on a space of real-valued functions on a set X is called positive, provided L(f) > 0
if f > 0 on X. But, for a linear functional, positivity means L(h) > L(g) if h > g on X. So in our view our
perpetual dependence on the monotonicity property of integration, the adjective "monotone" is certainly better
than "positive." However, we will respect convention and use of the adjective "positive."
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integration against a signed Borel measure. Furthermore, in each of these representations
it is possible to choose the representing measure to belong to a class of Borel measures
that we here name Radon, within which the representing measures are unique. The Riesz
Representation Theorem provides the opportunity for the application of Alaoglu's Theorem
and Helley's Theorem to collections of measures.

The proofs of these two representation theorems require an examination of the
relationship between the topology on a set and the measures on the Borel sets associated
with the topology. The technique by which we construct Borel measures that represent
functionals is the same one we used to construct Lebesgue measure on Euclidean space:
We study the Caratheodory extension of premeasures defined on particular collection S
of subsets of X, now taking S = T, the topology on X. We begin the chapter with a
preliminary section on locally compact topological spaces. In the second section we gather
all the properties of such spaces that we need into a single theorem and provide a separate
very simple proof of this theorem for X a locally compact metric space .2

21.1 LOCALLY COMPACT TOPOLOGICAL SPACES

A topological space X is called locally compact provided each point in X has a neighborhood
that has compact closure. Every compact space is locally compact, while the Euclidean spaces
R" are examples of spaces that are locally compact but not compact. Riesz's Theorem tells us
that an infinite dimensional normed linear space, with the topology induced by the norm, is
not locally compact. In this section we establish properties of locally compact spaces, which
will be the basis of our subsequent study of measure and topology.

Variations on Urysohn's Lemma Recall that we extended the meaning of the word neigh-
borhood and for a subset K of a topological space X call an open set that contains K a
neighborhood of K.

Lemma l Let x be a point in a locally compact Hausdorff space X and 0 a neighborhood of
x. Then there is a neighborhood V of x that has compact closure contained in 0, that is,

x E V C V C O and V is compact.

Proof Let U be a neighborhood of x that has compact closure. Then the topological space
U is compact and Hausdorff and therefore is normal. The set On U is a neighborhood, with
respect to the Ti topology, of x. Therefore, by the normality of Ti, there is a neighborhood V
of x that has compact closure contained in On U: Here both neighborhood and closure mean
with respect to the U topology. Since 0 and U are open in X, it follows from the definition of
the subspace topology that V is open in X and V C 0 where the closure now is with respect
to the X topology.

Proposition 2 Let K be a compact subset of a locally compact Hausdorff space X and 0 a
neighborhood of K. Then there is a neighborhood V of K that has compact closure contained
in 0, that is,

K C V CV C0andV is compact.

2There is no loss in understanding the interplay between topologies and measure if the reader, at first reading,
just considers the case of metric spaces and skips Section 1.
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Proof By the preceding lemma, each point x E K has a neighborhood Nx that has compact
closure contained in 0. Then {Nx}xEK is an open cover of the compact set K. Choose a finite
subcover [A(, 11.1 1 of K. The set V = U 1 Ar, is a neighborhood of K and

n _
VCUNxi c0.

i=1

The set Un

i-1 Vi,, being the union of a finite collection of compact sets, is compact and hence
so is V since it is a closed subset of a compact space.

For a real-valued function f on a topological space X, the support of f, which we
denote by supp f, is defined 3 to be the closure of the set {x E X I f (x) :f- 0}, that is,

suppf={xEXI f(x)9- 0}.

We denote the collection of continuous functions f : X -a R that have compact support by
Cc (X). Thus a function belongs to Cc. (X) if and only if it is continuous and vanishes outside
of a compact set.

Proposition 3 Let K be a compact subset of a locally compact Hausdorff space X and 0 a
neighborhood of K. Then there is a function f belonging to Cc(X) for which

f=1on K,f=Oon X-.0and 0<f<lon X. (1)

Proof By the preceding proposition, there is a neighborhood V of K that has compact
closure contained in 0. Since V is compact and Hausdorff, it is normal. Moreover, K and
V' V are disjoint closed subsets of V. According to Urysohn's Lemma, there is a continuous
real-valued function f on V for which

f =1onK, f=OonV -. V and0< f <1onV.

Extend f to all of X by setting f = 0 on X - V. Then f belongs to C, (X) and has the
properties described in (1).

Recall that a subset of a topological space is called a GS set provided it is the intersection
of a countable number of open sets.

Corollary 4 Let K be a compact Ga subset of a locally compact Hausdorff space X. Then
there a function f E Cc(X) for which

K={xEXI f(x)=1}.

Proof According to Proposition 2, there is a neighborhood U of K that has compact closure.
Since K is a Gs set, there is a countable collection {Ok}k1 of open sets whose intersection

3This is different from the definition of support in the discussion of measurable sets in which the support of f
was defined to be the set {x E X I f (x) * 0}, not its closure.
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is K. We may assume Ok C U for all k. By the preceding proposition, for each k there is a
continuous real-valued function fk on X for which

fk=1onK, fk=OonX^-OkandO< fk<1on X.

The function f defined by
00

f'Y, 2-kfkOnX
k_1

has the desired property.

Partitions of Unity

Definition Let K be a subset of a topological space X that is covered by the open sets (Ok}k-1
A collection of continuous real-valued functions on X, (c0k}k-1, is called a partition of unity
for K subordinate to {Ok}k_1 provided

suppcpjCOj,0<cps<lon Xfor l<i<n

and
q01 +cp2+...+(Pn =1 on K.

Proposition 5 Let K be a compact subset of a locally compact Hausdorffspace X and (Ok }k_1
a finite cover of K by open sets. Then there is a partition of unity {cpk}k=1 for K subordinate to
this finite cover and each cpk has compact support.

Proof We first claim that there is an open cover {Uk}k=1 of K such that for each k, Uk is
a compact subset of Ok. Indeed, invoking Proposition 2 n times, for each x E K, there is a
neighborhood Nx of x that has compact closure and such that if 1 < j < n and x belongs to
Oj, then Nx C Oj. The collection of open sets is a cover of K and K is compact.
Therefore there is a finite set of points (xk }k 1 in K for which {Nxk }1<kn, also covers K. For
1 < k < n, let Uk be the unions of those Nxj's that are contained in Ok. Then (U1..... Un}
is an open cover of K an d for each k, lfk is a compact subset of Ok since it is the finite union
of such sets. We infer from Proposition 3 that for each k, 1 < k < n, there is a function
fk E C,(X) for which fk = 1 on uk and f = 0 on X ' Ok. The same proposition tells us that
there is a function h E C(X) for which h = 1 on K and h = 0 on X ^- Uk=1 Uk. Define

n

f = 7, fk on X.
k=1

Observe that f + [1 - h] > 0 on X and h = 0 on K. Therefore if we define

fk
C1 onXfor1<k<n,cpk= f+=hl

k0k}k=l is a partition of unity for K subordinate to (Ok)k=1 and each cpk has compact support.
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The Alexandroff One-Point Compactification If X is a locally compact Hausdorff space,
we can form a new space X* by adjoining to X a single point w not in X and defining a set
in X* to be open provided it is either an open subset of X or the complement of a compact
subset in X. Then X* is a compact Hausdorff space, and the identity mapping of X into X*
is a homeomorphism of X and X* - {w}. The space X* is called the Alexandroff one-point
compactification of X, and w is often referred to as the point at infinity in X*.

The proof of the the following variant, for locally compact Hausdorff spaces,
of the Tietze Extension Theorem nicely illustrates the usefulness of the Alexandroff
compactification.

Theorem 6 Let K be a compact subset of a locally compact Hausdorff space X and f a
continuous real-valued function on K. Then f has an extension to a continuous real-valued
function on all of X.

Proof The Alexandroff compactification of X, X*, is a compact Hausdorff space. Moreover,
K is a closed subset of X*, since its complement in X* is open. A compact Hausdorff space
is normal. Therefore we infer from the Tietze Extension Theorem that f may be extended
to a continuous real-valued function on all of X*. The restriction to X of this extension is a
continuous extension of f to all of X. 11

PROBLEMS

1. Let X be a locally compact Hausdorff space, and F a set that has closed intersection with
each compact subset of X. Show that F is closed.

2. Regarding the proof of Proposition 3:
(i) Show that F and V - V are closed subsets of V.

(ii) Show that the function f is continuous.

3. Let X be a locally compact Hausdorff space and X* the Alexandroff one-point compactifica-
tion of X:

(i) Prove that the subsets of X* that are either open subsets of X or the complements of
compact subsets of X are a topology for X*.

(ii) Show that the identity mapping from X to the subspace X*- {w} is a homeomorphism.
(iii) Show that X* is compact and Hausdorff.

4. Show that the Alexandroff one-point compactification of R" is homeomorphic to the n-sphere
S"= {xERn+1Ilixil=1}.

5. Show that an open subset of a locally compact Hausdorff space, with its subspace topology,
is locally compact.

6. Show that a closed subset of a locally compact space, with its subspace topology, is locally
compact.

7. Show that a locally compact Hausdorff space X is compact if and only if the set consisting of
the point at infinity is an open subset of the Alexandroff one-point compactification X* of X.

8. Let X be a locally compact Hausdorff space. Show that the Alexandroff one-point compacti-
fication X* is separable if and only if X is separable.
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9. Consider the topological space X consisting of the set of real numbers with the topology that
has complements of countable sets as a base. Show that X is not locally compact.

10. Provide a proof of Proposition 3 by applying Urysohn's Lemma to the Alexandroff one-point
compactification of X.

11. Let f continuously map the locally compact Hausdorff space X onto the topological space Y.
Is Y necessarily locally compact?

12. Let X be a topological space and f a continuous function of X that has compact support.
Define K = {x E X f (x) = 11. Show that K is a compact GS set.

13. Let 0 be an open subset of a compact Hausdorff space X. Show that the mapping of X to the
Alexandroff one-point compactification of 0 that is the identity on 0 and takes each point in
X 0 into w is continuous.

14. Let X and Y be locally compact Hausdorff spaces, and f a continuous mapping of X into
Y. Let X* and Y* be the Alexandroff one-point compactifications of X and Y, and f* the
mapping of X* into Y* whose restriction to X is f and that takes the point at infinity in X*
into the point at infinity in Y*. Show that f* is continuous if and only if f-1(K) is compact
whenever K C Y is compact. A mapping f with this property is said to be proper.

15. Let X be a locally compact Hausdorff space. Show that a subset F of X is closed if and only if
F fl K is closed for each compact subset K of X. Moreover, show that the same equivalence
holds if instead of being locally compact the space X is first countable.

16. Let F be a family of real-valued continuous functions on a locally compact Hausdorff space
X which has the following properties:
(i) If f E F and g E 17, then f+ g E F.

(ii) If f E F and g E F, then f/g E .F', provided that supp f C (x E X I g(x) # 0).

(iii) Given a neighborhood 0 of a point xo E X, there is a f E J with f (xo) = 1, 0 < f < 1
and supp f C O.

Show that Proposition 5 is still true if we require that the functions in the partition of unity
belong to F.

17. Let K be a compact GS subset of a locally compact Hausdorff space X. Show that there is
a decreasing sequence of continuous nonnegative real-valued functions on X that converges
pointwise on X to the characteristic function of K.

18. The Baire Category Theorem asserts that in a complete metric space the intersection of a
countable collection of open dense sets is dense. At the heart of its proof lies the Cantor
Intersection Theorem. Show that the Frechet Intersection Theorem is a sufficiently strong
substitute for the Cantor Intersection Theorem to provide a proof of the following assertion
by first proving it in the case in which X is compact: Let X be a locally compact Hausdorff
space.

(i) If {Fn}n° 1 is a countable collection of closed subsets of X for which each F has empty
interior, then the union Un°

1
Fn also has empty interior.

(ii) If (pn}no
1

is a countable collection of open dense subsets of X, then the intersection
n 1

O, also is dense.

19. Use the preceding problem to prove the following: Let X be a locally compact Hausdorff
space. If 0 is an open subset of X that is contained in a countable union Un°

1
Fn of closed

subsets of X, then the union of their interiors, int Fn, is an open dense subset of O.
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20. For a map f : X Y and a collection C of subsets of Y we define f *C to be the collection of
subsets of X given by

f*C={E E = f -'[C] for some C E Cl .

Show that if A is the o--algebra generated by C, then f *A is the o -algebra generated by f *C.

21. For a map f : X -* Y and a collection C of subsets of X, let A be the or-algebra generated by
C. If f -'[f [C]] = C for each C E C, show that f-1 [ f [A]] = A for each A E A.

21.2 SEPARATING SETS AND EXTENDING FUNCTIONS

We gather in the statement of the following theorem the three properties of locally compact
Hausdorff spaces which we will employ in the proofs of our forthcoming representation
theorems.

Theorem 7 Let (X, T) be a Hausdorff space. Then the following four properties are
equivalent:

(i) (X, T) is locally compact.

(ii) If 0 is a neighborhood of a compact subset K of X, then there is a neighborhood U of
K that has compact closure contained in 0.

(iii) If 0 is a neighborhood of a compact subset K of X, then the constant function on K
that takes the value 1 may be extended to a function f in Cc(X) for which 0 < f < 1
on X and f vanishes outside of 0.

(iv) For K a compact subset of X and .F a finite open cover of K, there is a partition of
unity subordinate to .F consisting of functions of compact support.

Proof We first establish the equivalence of (i) and (ii). Assume (ii) holds. Let x be a point in
X. Then X is a neighborhood of the compact set {x}. By property (ii) there is a neighborhood
of (x) that has compact closure. Thus X is locally compact. Now assume that X is locally
compact. Proposition 2 tells us that (ii) holds.

Next we establish the equivalence of (i) and (iii). Assume (iii) holds. Let x be a point
in X. Then X is a neighborhood of the compact set (x). By property (iii) there is a function
fin CC (X) to take the value 1 at x. Then 0 = f -1(1/2, 3/2) is a neighborhood of x and it
has compact closure since f has compact support and 5 C f-1[1/2, 3/2]. Thus X is locally
compact. Now assume that X is locally compact. Proposition 3 tells us that (iii) holds.

Finally, we establish the equivalence of (1) and (iv). Assume property (iv) holds. Let x
be a point in X. Then X is a neighborhood of the compact set (x). By property (iv) there is a
single function f that is a partition of unity subordinate to the covering of the compact set
(x) by single open set X. Then 0 = f-1(1/2, 3/2) is a neighborhood of x and it has compact
closure. Thus X is locally compact. Now assume that X is locally compact. Proposition 5 tells
us that (iv) holds.

The substantial implications in the above theorem are that a locally compact Hausdorff
space possesses properties (ii), (iii), and (iv). Their proofs, which we presented in the
preceding section, depend on Urysohn's Lemma. It is interesting to note, however, that if X
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is a locally compact metric space, then very direct proofs show that X possesses properties
(ii), (iii), and (iv). Indeed, suppose there is a metric p: X X X -> R that induces the topology
T and X is locally compact.

Proof of Property (ii) For each x E K, since 0 is open and X is locally compact, there
is an open ball B(x, rx) of compact closure that is contained in O. Then (B(x, rx/2))xEK is
a cover of K by open sets. The set K is compact. Therefore there are a finite set of points
xl,... , x in K for which f B(x, rxk/2)}1<k< cover K. Then U = U1<k<n B(x, rxk/2) is a
neighborhood of K that, since U C UI<k<n B(x, rxk/2), has closure contained in O.

Proof of Property (iii) For a subset A of X, define the function called the distance to
A and denoted by distA : X --> [0, oo) by

distA(x) = inf p(x, y) forx E X.
yEA

The function distA is continuous; indeed, it is Lipschitz with Lipschitz constant 1 (see Problem
25). Moreover, if A is closed subset of X, then distA(x) = 0 if and only if x E A. For O a
neighborhood of a compact set K, by part (i) choose U to be a neighborhood of K that has
compact closure contained in O. Define

_ distX-uf
disc

on X.
x-u+distK

Then f belongs to C,(X ), takes values in [0, 1], f =1 on K and f = 0 on X O.

Proof of Property (iv) This follows from properties (ii) and (i) as it did in the case in
which X is Hausdorff but not necessarily metrizable; see the proof of Proposition 5.

We see that property (ii) is equivalent to the assertion that two disjoint closed subsets
of X, one of which is compact, may be separated by disjoint neighborhoods. We therefore
refer to property (ii) as the locally compact separation property. It is convenient to call (iii)
the locally compact extension property.

PROBLEMS

22. Show that Euclidean space R" is locally compact.

23. Show that £ , for 1 < p < oo, fails to be locally compact.

24. Show that C([0, 1] ), with the topology induced by the maximum norm, is not locally compact.

25. Let p: X X X -). R be a metric on a set X. For A C X, consider the distance function

distA : X -> [0, 00).

(i) Show that the function distA is continuous.

(ii) If A C X is closed and x is a point in X, show that diStA (x) = 0 if and only if x belongs to A.

(iii) If A C X is closed and x belongs to X, show that there may not exist a point xo in A for
which distA(x) = p(x, xo), but there is such a point xo if K is compact.
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26. Show that property (ii) in the statement of Theorem 7 is equivalent to the assertion that
two disjoint closed subsets of X, one of which is compact, may be separated by disjoint
neighborhoods.

21.3 THE CONSTRUCTION OF RADON MEASURES

Let (X, T) be a topological space. The purpose of this section is to construct measures on
the Borel o--algebra, B(X), comprising the smallest that contains the topology T.
A natural place to begin is to consider premeasures g: T -> [0, oo] defined on the topology
T and consider the Caratheodory measure induced by g. If we can establish that each open
set is measurable with respect to g*, then, by the minimality with respect to inclusion of
the Borel o--algebra among all Q-algebras containing the open sets, each Borel set will be
g*-measurable and the restriction of g* to 13(X) will be an extension of A. We ask the
following question: What properties of g: T -> [0, oo] are sufficient in order that every
open set be measurable with respect to g*, the outer measure induced by g. It is not useful
to invoke the Caratheodory -Hahn Theorem here. A topology, in general, is not a semiring.
Indeed, it is not difficult to see that a Hausdorff topology T is a semiring if and only if T is
the discrete topology, that is, every subset of X is open (see Problem 27).

Lemma 8 Let (X, T) be a topological space, µ: T -> [0, co] a premeasure, and g* the outer
measure induced by A. Then for any subset E of X,

g* (E) = inf {g(U) I U a neighborhood of E} . (2)

Furthermore, E is g*-measurable if and only if

g(O)>g*(OfE)+g*(O^-E) for each open setOfor which p(O) <oo. (3)

Proof Since the union of any collection of open sets is open, (2) follows from the countable
monotonicity of g. Let E be a subset of X for which (3) holds. To show that E is g*-
measurable, let A be a subset of X for which g* (A) < oo and let e > 0. We must show that

g*(A) +c > g*(An E)+g*(A-E).

By the above characterization (2) of outer measure, there is an open set 0 for which

(4)

AC0and g*(A)+e>g*(O).

On the other hand, by (3) and the monotonicity of jr*,

(5)

g*(O) > g*(Ofl E)+g*(O^-E) > g.*(Afl E)+g*(A-E). (6)

Inequality (4) follows from the inequalities (5) and (6).

Proposition 9 Let (X, T) be a topological space and g: T - [0, oo] a premeasure. Assume
that for each open set O for which g(0) < oo,

g(O) = sup {g(U) if open and if C 01. (7)

Then every open set is g*-measurable and the measure g* : 13(X) -+ [0, oo] is an extension ofg.
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Proof A premeasure is countable monotone and hence, for each open set V, µ* (V) = µ(V ).
Therefore, by the minimality property of B(X ), to complete the proof it suffices to show that
each open set is µ*-measurable.

Let V be open. To verify the µ*-measurability of V it suffices, by the preceding lemma,
to let 0 be open with µ(O) < oo, let E > 0 and show that

µ(O) +E > µ(0nV)+µ*(o-V). (8)

However, 0 n V is open and, by the monotonicity of µ, µ(O n V) < oo. By assumption (7)
there is an open set U for which a C O n V and

µ(U) >µ(OnV) -e.

The pair of sets U and 0 ^- U are disjoint open subsets of 0. Therefore by the monotonicity
and finite additivity of the premeasure µ,

µ(0) > µ(U U [0 U]) =1411) +t'(0-U)-

On the other hand, since U C V n O,

0 -V=O-[0nV]c0-U.
Hence, by the monotonicity of outer measure,

µ(O-U) > µ*(O-V).

Therefore
µ(O) > µ(U) + p(0". U)

µ(O n V) - E+µ(o-ii)

> µ(OnV) -E+µ*(o-V).
We have established (8). The proof is complete.

Definition Let (X, T) be a topological space. We call a measure µ on the Borel o--algebra
B(X) a Borel measure provided every compact subset of X has finite measure. A Borel
measure µ is called a Radon measure provided

(i) (Outer Regularity) for each Borel subset E of X,

µ(E)=inf {µ(U) I UaneighborhoodofE};

(ii) (Inner Regularity) for each open subset 0 of X,

µ(O) =sup {µ(K) I K a compact subset of 0).

We proved that the restriction to the Borel sets of Lebesgue measure on a Euclidean
space R' is a Radon measure. A Dirac delta measure on a topological space is a Radon
measure.
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While property (7) is sufficient in order for a premeasure µ: T -> [0, oo] to be
extended by the measure µ* : l3 -j [0, oo], in order that this extension be a Radon measure
it is necessary, if X is locally compact Hausdorff space, that p. be what we now name a Radon
premeasure (see Problem 35).

Definition Let (X, T) be a topological space. A premeasure µ: T -> [0, oo] is called a
Radon premeasure4 provided

(i) for each open set U that has compact closure, µ(U) < oo;
(ii) for each open set 0,

µ(O) = sup {µ(U) U open and U a compact subset of 0} .

Theorem 10 Let (X, T) be a locally compact Hausdorff space and µ: T -+ [0, oo] a Radon
premeasure. Then the restriction to the Borel 0--algebra B(X) of the Caratheodory outer
measure µ* induced by µ is a Radon measure that extends I.L.

Proof A compact subset of the Hausdorff space X is closed, and hence assumption (ii)
implies property (7). According to Proposition 9, the set function µ*: 13(X) -> [0, oo] is
a measure that extends A. Assumption (i) and the locally compact separation property
possessed by X imply that if K is compact, then µ* (K) < oo. Therefore µ* : 13(X) --> [0, oo]
is a Borel measure. Since it is a premeasure, Lemma 8 tells us that every subset of X and,
in particular, every Borel subset of X, is outer regular with respect to µ*. It remains only
to establish the inner regularity of every open set with respect to µ*. However, this follows
from assumption (ii) and the monotonicity of µ*.

The natural functions on a topological space are the continuous ones. Of course ev-
ery continuous function on a topological space X is measurable with respect to the Borel
o--algebra 13(X). For Lebesgue measure on R, we proved Lusin's Theorem, which made
precise J. E. Littlewood's second principle: a measurable function is "nearly continuous."
We leave it as an exercise (see Problem 39) to prove the following general version of Lusin's
Theorem.

Lusin's Theorem Let X be a locally compact Hausdorff space, /J,: 13(X) -* [0, oo) a Radon
measure, and f : X R a Borel measurable function that vanishes outside of a set of finite
measure. Then for each e > 0, there is a Borel subset Xo of X and a function g E Cc(X)
for which

f = g on Xp and µ(X - Xo) < e.

PROBLEMS

27. Let (X, T) be a Hausdorff topological space. Show that T is a semiring if and only if T is the
discrete topology.

28. (Tyagi) Let (X, T) be a topological space and µ: T -> [0, oo] a premeasure. Assume that if
0 is open and µ(O) < oo, then µ(bd 0) = 0. Show that every open set is µ*-measurable.

4What is here called a Radon measure is often called a regular Borel measure or a quasi-regular Borel measure.
What is here called a Radon premeasure is sometimes called a content or inner content or volume.
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29. Show that the restriction of Lebesgue measure on the real line to the Borel o-algebra is a
Radon measure.

30. Show that the restriction of Lebesgue measure on the Euclidean space R" to the Borel
Q-algebra is a Radon measure.

31. Show that a Dirac delta measure on a topological space is a Radon measure.

32. Let X be an uncountable set with the discrete topology and (xk}1<k<oo a countable subset of
X. For E C X, define

µ(E) _ E 2-n.
In IxnEE{

Show that 2X =13(X) and µ: 5(X) -+ is a Radon measure.

33. Show that the sum of two Radon measures also is Radon.

34. Let µ and v be Borel measures on 5(X), where X is a compact topological space, and suppose
that µ is absolutely continuous with respect to v. If v is Radon show that µ also is Radon.

35. Let (X, T) be a locally compact Hausdorff space and j: T -->. [0, 00] a premeasure for which
the restriction to 13(X) of µ* is a Radon measure. Show that It is a Radon premeasure.

36. Let X be a locally compact Hausdorff space and µ: 8(X) --+ [0, 00] a Radon measure. Show
that any Borel set E of finite measure is inner regular in the sense that

µ(E) = sup {µ(K) I K C E, K compact}.

Conclude that if µ is u-finite, then every Borel set is inner regular.

37. Let X be a topological space, µ: 13(X) [0, oo] a Q-finite Radon measure, and E C X a
Borel set. Show that there is a G8 subset A of X and an FQ subset B of X for which

ACECBandµ(B-E) =µ(E^-A) =0.
38. For a metric space X, show that 8(X) is the smallest v-algebra with respect to which all of

the continuous real-valued functions on X are measurable.

39. Prove Lusin's Theorem as follows:
(i) First prove it for simple functions by using the inner regularity of open sets and the

locally compact extension property.

(ii) Use part (i) together with Egoroff's Theorem and the Simple Approximation Theorem
to complete the proof.

21.4 THE REPRESENTATION OF POSITIVE LINEAR FUNCTIONALS ON Cc(X):
THE RIESZ-MARKOV THEOREM

Let X be a topological space. A real-valued functional /i on C(X) is said to be monotone
provided a(i(g) > a(i(h) if g > h on X, and said to be positive provided +/i(f) > 0 if f > 0 on
X. If 0 is linear, fr(g - h) _ di(g) - IJJ(h) and, of course, if f = g - h, then f > 0 on X if and
only if g > h on X. Therefore, for a linear functional, positivity is the same as monotonicity.

Proposition 11 Let X be a locally compact Hausdorff space and µl, µ2 be Radon measures
on 13(X) for which

ffd/Li = f fdµ2for all feCc(X).

Then µ1 = µ2.
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Proof By the outer regularity of every Borel set, these measures are equal if and only if
they agree on open sets and therefore, by the inner regularity of every open set, if and only
if they agree on compact sets. Let K be a compact subset of X. We will show that

Al (K) =µ2(K)

Let e > 0. By the outer regularity of both Al and µl and the excision and monotonicity
properties of measure, there is a neighborhood 0 of K for which

W(O-K) <e/2 and µ2(O^- K) <e/2. (9)

Since X is locally compact and Hausdorff, it has the locally compact extension property.
Hence there is a function f E Cc (X) for which 0 < f < 1 on X, f = 0 on X ^- O, and f = 1
on K. For i = 1, 2,

fK
fdµj= fX-0fdAt+µi(K)fxfdl-rt= f fd =

fOK fd +

By assumption,

fxf1=Ixf2

There

µl(K)-µ2(K)= f fdµ2- f fdµ2
o-K -K

But 0 < f < 1 on X and we have the measure estimates (9). Hence, by the monotonicity of
integration,

lµi(K)-µ2(K)I : fo fdµ2+ fo fdµ2 <e.

Therefore µ1(K) = µ2(K). The proof is complete. 0

The Riesz-Markov Theorem Let X be a locally compact Hausdorff space and I a positive
linear functional on C c (X ). Then there is a unique Radon measure µ on 8(X), the Borel
o-algebra associated with the topology on X, for which

1(f) = j f dµ for all f E Cc (X). (10)

Proof 5 Define µ(0) = 0. For each nonempty open subset 0 of X, define

µ(O)=sup{I(f)I fECc(X), 0<f<1,suppfc0}.

5To prove the theorem we need to determine the measure of a set by knowing the values of the "integrals" of
certain functions. It is an instructive exercise to show that if u is Lebesgue measure of R and I = (a, b), an open,
bounded interval, then

µ(I)=b-a=sup{ fRfdµ fEC,(R), O<f<1,suPPfC1}.
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Our strategy is to first show that µ is a Radon premeasure. Hence, by Theorem 10, if we
denote by µ the restriction to the Borel sets of the outer measure induced by µ, then jc is a
Radon measure that extends A. We then show that integration with respect to µ represents
the functional I. The uniqueness assertion is a consequence of the preceding proposition.

Since I is positive, µ takes values in [0, oo]. We begin by showing that µ is a premeasure.
To establish countable monotonicity, let {Ok}k'=1 be a collection of open subsets of X that
covers the open set 0. Let f be a function in Cc (X) with 0 < f < 1 and supp f C 0. Define
K = supp f. By the compactness of K there is a finite collection {Ok}k=1 that also covers K.
According to Proposition 5, there is a partition of unity subordinate to this finite cover, that
is, there are functions ol, ... , co, in Cc (X) such that

n

=1onKand, forl <k<n,0<cpk <1onXand suppcpkCOk.
i=1

Then, since f = 0 on X - K,

n

f = J cpk f on X and, for l < k < n, 0< f . cpk < 1 and supp(cpk f) C Ok.
k=1

By the linearity of the functional I and the definition of µ,

n n n o0

I(1)=I ,cpk'f
k=1 k=1 k=1 k=1

Take the supremum over all such f to conclude that

00

µ(O) < I µ(0k)
k=1

Therefore µ is countably monotone.

Since µ is countably monotone and, by definition, µ(0) = 0, µ is finitely monotone.
Therefore to show that µ is finitely additive it suffices, using an induction argument, to let
0 = 01 U 02 be the disjoint union of two open sets and show that

µ(O) > 11(O1) +µ(O2) (11)

Let the functions f1, f2 belong to QX) and have the property that for 1 < k < 2,

landsuppfkCOk.

Then the function f = f1 + f2 has support contained in 0, and, since 01 and 02 are disjoint,
0 < f < 1. Again using the linearity of I and the definition of µ, we have

I(fi)+I(f2)=I(f) :!S µ(O)

If we first take the supremum over all such f1 and then over all such f2 we have

µ(O1)+µ(O2) :!S µ(O)
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Hence we have established (11) and thus the finite additivity of µ. Therefore p. is a
premeasure.

We next establish the inner regularity property of a Radon premeasure. Let 0 be open.
Suppose µ(O) < oo. We leave the case µ(O) = oo as an exercise (see Problem 43). Let E > 0.
We have to establish the existence of an open set U that has compact closure contained in 0
and µ(U) > µ(O) - E. Indeed, by the definition of µ, there is a function fE E CC (X) that has
support contained in 0 and for which I(ff) > µ(O) - E. Let K = supp f. But X is locally
compact and Hausdorff and therefore has the locally compact separation property. Choose
U to be a neighborhood of K that has compact closure contained in 0. Then

It remains only to show that if 0 is an open set of compact closure, then µ(O) < 00. But X
is locally compact and Hausdorff and therefore has the locally compact extension property.
Choose a function in CJX) that takes the constant value 1 on O. Thus, since I is positive,
µ(O) < I (f) < oo. This concludes the proof that µ is a Radon premeasure.

Theorem 10 tells us that the Caratheodory measure induced by µ restricts to a Radon
measure µ on 8(X) that extends µ. We claim that (10) holds for µ. The first observation
is that a continuous function is measurable with respect to any Borel measure and that a
continuous function of compact support is integrable with respect to such a measure since
compact sets have finite measure and continuous functions on compact sets are bounded. By
the linearity of I and of integration with respect to a given measure and the representation
of each f E C, (X) as the difference of nonnegative functions in CC (X ), to establish (10) it
suffices to verify that

r
1(f)=J fdI for all f eC,(X)forwhich 0< f <1. (12)

x

Let f belong to C,(X). Fix a natural number n. For 1 < k < n, define the function
Vk : X [0, 1] as follows:

I
cpk(x)= nf(x)-(k-1) ifknl<f(x)<n

0 if f(x) < knt.

The function Wk is continuous. We claim that

1 n

n k=1
(13)

To verify this claim, let x belong to X. If f(x) = 0, then cyk(x) = 0 for 1 < k < n, and
therefore (13) holds. Otherwise, choose ko such that 1 < k0 < n and kpn l < f (x) < . Then

11 if1<k<ko-1
cpk(x)= nf(x)-(ko-1) ifk=ko

0 ifko<k<n.

Thus (13) holds.
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Since X is locally compact and Hausdorff, it has the locally compact separation property.
Therefore, since supp f is compact, we may choose an open set 0 of compact closure for
which supp f C 0. Define 00 = 0, 0i+1 = 0 and, for 1 < k < n, define

Ok=xE0

By construction,

f(x)> kn 1}.

SUpp (Pk C Ok C Ok-1 and Pk = 1 on 0k+1

Therefore, by the monotonicity of I and of integration with respect to µ, and the definition
of µ,

µ(0k+1) I((Pk) : µ(Ok-1)=µ(0k)+[µ(Ok-1)-µ(Ok)]
and

However,

µ(0k+1) fdI AM-1) =µ(0k) + [µ(Ok-1) - µ(Ok)]-

µ(O)=A(00)>µ(0l)>...>_µ(On-1)>...>_µ(0)=0.
Therefore, since the compactness of 0 implies the finiteness of µ(O), we have

-µ(n)-µ(O) i [I(k) - jkd] <µ(0)+µ(0).
k=1

Divide this inequality by n, use the linearity of I and of integration, together with (13)
to obtain

I(f) - fx fdµ nµ(O).

This holds for all natural numbers n and µ(O) < oo. Hence (10) holds.

PROBLEMS

40. Let X be a locally compact Hausdorff space, and Co (X) the space of all uniform limits of
functions in C( X ).

(i) Show that a continuous real-valued function f on X belongs to Co(X) if and only if for
each a > 0 the set {x E X l I f (x) I > a} is compact.

(ii) Let X* be the one-point compactification of X. Show that Co(X) consists precisely of the
restrictions to X of those functions in C(X*) that vanish at the point at infinity.

41. Let X be an uncountable set with the discrete topology.
(i) What isC,(X)?

(ii) What are the Borel subsets of X?

(iii) Let X* be the one-point compactification of X. What is C(X* )?

(iv) What are the Borel subsets of X*?

(v) Show that there is a Borel measure µ on X* such that µ(X*) = 1 and f x f dµ = 0 for
each fin C, (X).
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42. Let X and Y be two locally compact Hausdorff spaces.
(i) Show that each f E C, (X X Y) is the limit of sums of the form

n

Vi (x)Y'i(Y)
i=1

where Vi E C, (X) and iii = C, (Y). (The Stone-Weierstrass Theorem is useful.)

(ii) Showthatl3(XxY)c13(X)x13(Y).

(iii) Show that 13(X X Y) = f3(X) X 13(Y) if and only if X or Y is the union of a countable
collection of compact subsets.

43. In the proof of the Riesz-Markov Theorem, establish inner regularity in the case in which
µ(O) = oo.

44. Let k(x, y) be a bounded Borel measurable function on X X Y, and let µ and v be Radon
measures on X and Y.
(i) Show that

ff xxYip(x)k(x, f
L

fX p(x)k(x, Y)dµ] 4,(Y)dv

= fxP(x) LI k(x,Y)q,(Y)dvl dµ

for all e C(X) and f,EC,(Y).
(ii) If the integral in (i) is zero for all cp and ii in C,(X) and C,(Y), show that then k = 0 a.e.

[µ X v].

45. Let X be a compact Hausdorff space and µ a Borel measure on B(X ). Show that there is a
constant c > 0 such that

fX f dµ
<clifllmaxforall f EC(X).

21.5 THE RIESZ REPRESENTATION THEOREM FOR THE DUAL OF C(X)

Let X be a compact Hausdorff space and C (X) = C, (X) the space of real-valued continuous
functions on X. In the preceding section, we described the positive linear functionals on C (X ).
We now consider C(X) as a normed linear space with the maximum norm and characterize
the continuous linear functionals on C(X). First observe that each positive linear functional
is contihuous, that is, is bounded. Indeed, if L is a positive linear functional on C(X) and
f E C(X) with 11 f 11 < 1, then -1 < f < 1 on X and hence, by the homogeneity and positivity
of L, -L (1) < L (f) < L(1), that is, 1 L (f ) 1 < L(1). Therefore L is bounded and the norm
of the functional L equals the value of L at the constant function with value 1, that is,

IL11= L(1).

Jordan's Theorem tells us that a function of bounded variation may be expressed as the
difference of increasing functions. Therefore, for X = [a, b], Lebesgue-Stieltjes integration
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against a function of bounded variation may be expressed as the difference of positive
linear functionals. According to the Jordan Decomposition Theorem, a signed measure
may be expressed as the difference of two measures. Therefore integration with respect
to a signed measure may be expressed as the difference of positive linear functionals. The
following proposition is a variation, for general continuous linear functionals on C(X), of
these decomposition properties.

Proposition 12 Let X be a compact Hausdorff space and C(X) the linear space of continuous
real-valued functions on X, normed by the maximum norm. Then for each continuous linear
functional L on C(X ), there are two positive linear functionals L+ and L_ on C(X) for which

L=L+-L_ and IILII =L+(1)+L_(1).

Proof For f E C(X) such that f > 0, define

L+(f) = sup L(c )
o<iGsf

Since the functional L is bounded, L+(f) is a real number. We first show that for
f >0,g>0andc>0,

L+(cf)=cL+(f)andL+(f+g)=L+(f)+L+(g)

Indeed, by the positive homogeneity of 'L, L+(c f) = cL+(f) for c > 0. Let f and g be two
nonnegative functions in C(X ). If 0 < <p < f and 0 < qr < g, then 0 < <p + 0 <_ f + g and so

L((p) + L(0) = L(,P ++,) < L+(f + g).

Taking suprema, first over all such (p and then over all such fr, we obtain

L+(f) + L+ (g) < L+ (f + g)

On the other hand, if 0 < aV < f +g, then 0 < min{qr, f } < f and thus 0 < r/r - min{4i, f } < g,
and therefore

L(0) =L(min{i/r, f})+L(4r-[min{a/i, f}])

L+(f) + L+ (g).

Taking the supremum over all such 41, we get

L+(f + g) < L+(f) + L+ (g).

Therefore
L+(f + g) = L+(f ) + L+(g).

Let f be an arbitrary function in C(X), and let M and N be two nonnegative constants
for which f + M and f + N are nonnegative. Then

L+(f +M+N) = L+(f +M) +L+(N) = L+(f +N)+L+(M).



464 Chapter 21 Measure and Topology

Hence
L+(f + M) - L+(M) = L+(f + N) - L+(N).

Thus the value of L+(f + M) - L+(M) is independent of the choice of M, and we define
L+ (f )to be this value.

Clearly, L+: C(X) -+ R is positive and we claim that it is linear. Indeed, it is clear
that L+(f + g) = L+(f) + L+ (g). We also have L+(c f) = cL+(f) for c > 0. On the
other hand, L+(- f) + L+(f) = L+(0) = 0, so that we have L+(-f ) _ -L+ (f ). Thus
L+(c f) = cL+(f) for all c. Therefore L+ is linear.

Define L_ = L+ - L. Then L_ is a linear functional on C(X) and it is positive since,
by the definition of L+, L(f) < L+(f) for f > 0. We have expressed L as the difference,
L+ - L_, of two positive linear functionals on C(X).

We always have IILII IIL+II+IIL- II = L+(1)+L_(1).Toestablish theinequality in
the opposite direction, let cp be any function in C(X) for which 0 < ' 1. Then 1

and hence
IILII ? L(2(p - 1) = 2L(,p) - L(1).

Taking the supremum over all such cp, we have

IILII > 2L+(1) - L(1) = L+(1) +L_(1).

Hence IILII = L+(1) + L_(1).

For a compact topological space X, we call a signed measure on 8(X) a signed Radon
measure provided it is the difference of Radon measures. We denote by IZadon(X) the
normed linear space of signed Radon measures on X with the norm of v E Radon (X) given
by its total variation I I v I Ivar, which, we recall, may be expressed as

Ilvllvar = v+(X) +v-(X),

where v = v+ - v- is the Jordan decomposition of v. We leave it as an exercise to show that
I I I Ivar is a norm on the linear space of signed Radon measures.

The Riesz Representation Theorem for the Dual of C(X) Let X be a compact Hausdorff
space and C(X) the linear space of continuous real-valued functions on X, normed by the

(X) -+ [C(X) ]* by setting, for v E Radon (X ),maximum norm. Define the operator T :

f

Ra

T(f)=fdvforall finC(X).

Then T is a linear isometric isomorphism of Radon(X) onto [C(X)]*.

Proof Let L be a bounded linear functional on C(X ). By the preceding proposition, we may
choose positive linear functionals Lt and L2 on C(X) for which L = Ll - L2. According to
the Riesz-Markov Theorem, there are Radon measures on X, µt and µ2, for which

L1(f)=J fdµlandL2(f)=J fdµ2forall f EC(X).
x x
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Define µ = µl - µ2. Thus µ is a signed Radon measure for which L = Tp,. Hence T is
onto. We infer from this and Proposition 11 that the representation of L as the difference of
positive linear functionals is unique. Therefore, again by the preceding proposition,

IIL1I = L1(1) +L2(1) = µ1(X) +µ2(X) = IpI(X).

Therefore T is an isomorphism.

Corollary 13 Let X be a compact Hausdorff space and K* a bounded subset of Radon (X)
that is weak-* closed. Then K* is weak-* compact. If, furthermore, K* is convex, then K* is
the weak-* closed convex hull of its extreme points.

Proof Alaoglu's Theorem tells us that each closed ball in [C(X)]* is weak-* compact. A
closed subset of a compact topological space is compact. Thus K* is weak-* compact. We
infer from the Krein-Milman Theorem, applied to the locally convex topological space
comprising [C(X)]* with its weak-* topology, that if K* is convex, then K* is the weak-*
closed convex hull of its extreme points.

The original Riesz Representation Theorem was proven in 1909 by Frigyes Riesz for
the dual of C(X ), where X = [a, b], a closed, bounded interval of real numbers. The general
case for X a compact Hausdorff space was proven by Shizuo Kakutani in 1941. There were
two intermediate theorems: in 1913 Johann Radon proved the theorem for X a cube in
Euclidean space and in 1937 Stefan Banach proved it for X a compact metric space .6 In each
of these two theorems the representing measure is a finite measure on the Borel sets and
is unique among such measures: there is no mention of regularity. The following theorem
explains why this is so.

Theorem 14 Let X be a compact metric space and µ a finite measure on the Borel o--algebra
8(X). Then µ is a Radon measure.

Proof Define the functional I: C(X) R by

I(f)=J fdµfor all f EC(X).
X

Then I is a positive linear functional on Cc(X) = C(X). The Riesz-Markov Theorem tells
us that there is Radon measure µo: 8(X) -+ [0, oo) for which

J
f dµ = fX f dµo for all f E C(X ). (14)

x

We will show that µ = µo. First, consider an open set 0. For each natural number n, let
K _ {x E X I distx-0(x) > 1/n). Then is an ascending sequence of compact subsets
of 0 whose union is 0. Since X is compact it is locally compact and therefore possesses the

6Albrecht Pietsch's History of Banach Spaces and Functional Analysis [Pie07] contains an informative discussion
of the antecedents of the general Riesz Representation Theorem. Further interesting historical information is
contained in the chapter notes of Nelson Dunford and Jacob Schwartz's Linear Operators, Part I [DS71].
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locally compact extension property. Select a sequence If,) of functions in C(X) for which
each fn = 1 on Kn and fn = 0 on X - O. Substitute f, for fin (14). Then

µ(Kn)+fo-Kn fndN=µo(Kn)+fo fndµoforalln.
Kn

We infer from the continuity of the measures µ and µo and the uniform boundedness of the
fn's that for every open set 0,

µ(O)= Jim a(Kn)= l to(Kn)=µo(O)

Now let F be a closed set. For each natural number n, define

On = U B(x, 1/n).
XEF

Then On, being the union of open balls, is open. On the other hand, since F is compact,

F=non.00

n=1

By the continuity of the measures µ and p.o and their equality on open sets,

µ(F) = lim µ(On) = lim t.o(On) =µo(F)n-*oc n-+oo

We conclude that for every closed set F, µ(F) = to(F)-

Now let E be a Borel set. We leave it as an exercise (see Problem 51) to show that
the Radon measure µo on the compact metric space X has the following approximation
property: for each e > 0, there is an open set OE and a closed set FE for which

FECECOEand µo(O,-FE)<E. (15)

Therefore, by the excision property of measure,

t-.(OE- FE) =.(OE) -.(FE) < E.

From these two estimates we infer that I µo (E) - µ(E) I < 2. E. Thus the two measures agree
on the Borel sets and therefore are equal.

Corollary 15 Let X be a compact metric space and {µn: 13(X) -+ [0, oo)} a sequence of
Borel measures for which the sequence {µn (X)) is bounded. Then there is a subsequence (p. }

and a Borel measure u for which

f d1k for all f E C(X ).lim
J

f dµnk =
fxx
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Proof Borsuk's Theorem tells us that C (X) is separable. The Riesz Representation Theorem
and the preceding regularity theorem tell us that all the bounded linear functionals on C(X)
are given by integration against finite signed Borel measures. The weak-* sequential
compactness conclusion now follows from Helley's Theorem.

In 1909 Frigyes Riesz proved the representation theorem which bears his name for the
dual of C[a, b], in the following form: For each bounded linear functional L on C[a, b], there
is a function g: [a, b] -+ R of bounded variation for which

L (f) =
J

6 f (x) dg(x) for all f E C[a, b] :
Ja

the integral is in the sense of Riemann-Stieltjes. According to Jordan's Theorem, any function
of bounded variation is the difference of increasing functions. Therefore it is interesting,
given an increasing function g on [a, b], to identify, with respect to the properties of g, the
unique Borel measure µ for which

J b f (x) dg(x) = J f dµ for all f E C[a, b]. (16)
a [a, bl

For a closed, bounded interval [a, b], let S be the semiring of subsets of [a, b]
comprising the singleton set {a} together with subintervals of the form (c, d]. Then B[a, b]
is the smallest o--algebra containing S. We infer from the uniqueness assertion in the
Caratheodory-Hahn Theorem that a Borel measure on B[a, b] is uniquely determined
by its values on S. Therefore the following proposition characterizes the Borel measure
that represents Lebesgue-Stieltjes integration against a given increasing function. For an
increasing real-valued function on the closed, bounded interval [a, b] we define, for a < c < b,

f(c+) = inf f(x) and f(c-) = sup f(x).
c<x<b a<x<c

Define f(a+) and f(b-) in the obvious manner, and set f(a) = f(a), f(b+) = f(b).
The function f is said to be continuous on the right at x E [a, b) provided f (x) = f (x+ ).

Proposition 16 Let g be an increasing function on the closed, bounded interval [a, b] and µ
the unique Borel measure for which (16) holds. Then µ{a} = g(a+) - g(a) and

µ(c, d] = g(d+) - g(c+) for all (c, d] C (a, b]. (17)

Proof We first verify that

µ[c, b] = g(b) - g(c-) for all c E (a, b]. (18)

Fix a natural number n. The increasing function g is continuous except at a countable number
of points in [a, b]. Choose a point cn E (a, c) at which g is continuous and c - c < 1/n. Now
choose a point cn E (a, cn) at which g is continuous and g(cn) - g(cn) < 1/n. Construct a
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continuous function fn on [a, b] for which 0 < fn < 1 on [a, b], fn =1 on [ca, b] and fn = 0
on [a, cn]. By the additivity over intervals property of the Riemann-Stieltjes integral,

b cnf fn(x)dg(x)= f fn(x)dg(x)+[g(b)-g(Cn)].
a c;,

By the additivity of integration with respect to µ over finite disjoint unions of Borel sets,

f fn dµ f
ab] (cn, cn)

Substitute f = fn in (16) to conclude that

fCflffl(x)dg(x)+[g(b)_g(Cfl)]=f
fnd+[c,b]. (19)

; ( n. C.)

However, since 0 < fn 1 on [a, b],

nf fn(x)dg(x)
cn

g(cn) - g(cn) < l/n

and

fndµl µ'(Cn, Cn) <µ(Cn, C).fcn,cn)

Take the limit as n -+ oo in (19) and use the continuity of measure to conclude that (18)
holds. A similar argument shows that µ{a} = g(a+) - g(a) and

AN = g(c+) - g(c-) for all c E (a, b). (20)

Finally, we infer from (18), (20), and the finite additivity of p. that for a < c < d < b,

µ(c, d] = µ[c, b] - µ[d, b] - µ{c} +µ{d} = g(d+) - g(c+).

The proof is complete.

We have the following, slightly amended, version of Riesz's original representation
theorem from 1909.

Theorem 17 (Riesz) Let [a, b] be a closed, bounded interval and F the collection of real-
valued functions on [a, b] that are of bounded variation on [a, b], continuous on the right
on (a, b), and vanish at a. Then for each bounded linear functional fr on C[a, b], there is a
unique function g belonging to F for which

(f)
= f b f(x)dg(x) for all f E C[a, b]. (21)

a
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Proof To establish existence, it suffices, by the Riesz-Markov Theorem, to do so for /
a positive bounded linear functional on C[a, b]. For such a fi, the Riesz Representation
Theorem tells us there is a Borel measure µ for which

b(f)
_ f dµ for all f E C[a, b].

a

Consider the increasing real-valued function g defined on [a, b] by g(a) = 0 and g(x) =
µ(a, x] + µ{a} for x E (a, b]. The functon g inherits continuity on the right at each point in
(a, b) from the continuity of the measure µ. Thus g belongs to Y. We infer from Proposition
16 that

f

b 6

fdµ=f f (x) dg(x) for all f EC[a, b],
a

where µ is the unique Borel measure on 8[a, b] for which

µ(c, b] = g(b) - g(c+) = g(b) - g(c) for all c E (a, b) and µ(a) = g(a+) - g(a)

However, the measure µ has these properties. This completes the proof of existence.

To establish uniqueness, by Jordan's Theorem regarding the expression of a function
of bounded variation as the difference of increasing functions, it suffices to let 91, 92 E .F be
increasing functions which have the property that

(f)=
f bf(x)dgi(x)= f bf(x)dg2(x)forall f EC[a, b],

a a

and show that gl = 92. Take f =1 in this integral equality to conclude that

91(b) = g1(b) - g1(a) = g2(b) - g2(a) = 92(b)

Let be represented by integration against the Borel measure µ. We infer from Proposition
16 and the right continuity of gj and 92 at each point in (a, b) that if x belongs to (a, b),
then

gl(b) - gl(x) = µ(x, b] = g2(b) - 92(x),

and hence gl(x) = g2(x). Therefore gj = 92 on [a, b].

PROBLEMS

46. Let xo be a point in the compact Hausdorff space X. Define L (f) = f (xo) for each f E C(X ).
Show that L is a bounded linear functional on C(X). Find the signed Radon measure that
represents L.

47. Let X be a compact Hausdorff space and µ a Borel measure on 13(X). Show that there is a
Radon measure Ao for which

f
f dµ =

f X

duo for all f in Q X ).
X X
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48. Let g1 and 82 be two increasing functions on the closed, bounded interval [a, b] that agree at
the end-points. Show that

a
fbf(x)dg1(x)= fbf(x)dg2(x)forall fEC[a,b]

a

if and only if $1(x+) = 92 (x+) for all a < x < b.

49. Let X be a compact Hausdorff space. Show that the Jordan Decomposition Theorem for
signed Borel measures on B(X) follows from the Riesz Representation Theorem for the dual
of C(X) and Proposition 12.

50. What are the extreme points of the unit ball of the linear space of signed Radon measures
Radon (X), where X is a compact Hausdorff space?

51. Verify (15) for E a Borel subset of a compact metric space X and µ a Radon measure on
8(X).

52. Let X be a compact metric space. On the linear space of functions j defined in the statement
of Theorem 17, define the norm of a function to be its total variation. Show that with this
norm .j is a Banach space.

53. (Alternate proof of the Stone-Weierstrass Theorem (de Branges)) Let A be an algebra of
real-valued continuous functions on a compact space X that separates points and contains
the constants. Let A' be the set of signed Radon measures on X such that IµI (X) < 1 and
fx fdlu =0forall f E A.
(i) Use the Hahn-Banach Theorem and the Riesz Representation Theorem to show that if

A' contains only the zero measure, then A = C(X ).

(ii) Use the Krein-Milman Theorem and the weak-* compactness of the unit ball in
Radon (X) to show that if the zero measure is the only extreme point of Al, then A'
contains only the zero measure.

(iii) Let µ be an extreme point of A'. Let f belong to A, with 0 < f < 1. Define measures
µ1 and µ2 by

fdµandµ2(E)=f (1 - f)dµforEE8(X).µ1(E)= fE
E

Show that µ1 and µ2 belong to A' and, moreover, IIµ111 + IIA211 = IItII, and Al +µ2 = A.
Since g is an extreme point, conclude that µ1 = cµ for some constant c.

(iv) Show that f = c on the support of A.

(v) Since A separates points, show that the support of µ can contain at most one point. Since
fx 1dµ = 0, conclude that the support of µ is empty and hence µ is the zero measure.

21.6 REGULARITY PROPERTIES OF BAIRE MEASURES

Definition Let X be a topological space. The Baire o--algebra, which is denoted by Ba(X ),
is defined to be the smallest o--algebra of subsets of X for which the functions in Cc (X) are
measurable.

Evidently
Ba(X)CB(X).
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There are compact Hausdorff spaces for which this inclusion is strict (see Problem 58). The
forthcoming Theorem 20 tells us that these two a--algebras are equal if X is a compact metric
space. A measure on 13a(X) is called a Baire measure provided it is finite on compact sets.
Given a Borel measure µ on the Borel a-algebra B(X), we define µo to be the restriction
of µ to the Baire Q-algebra Ba(X). Then µo is a Baire measure. Moreover, each function
f E C (X) is integrable over X with respect to µo since it is measurable with respect to
Ba(X ), bounded, and vanishes outsiderx a set of finite measure. Since f3a(X) C B(X ),

lxi dµ =
f X

dµo for all f E C,.(X). (22)

We will establish regularity properties for Baire measures from which we obtain finer
uniqueness properties for Baire representations than are possible for Borel representations
in the Riesz-Markov and Riesz Representation Theorems.

Let X be a topological space, S a a--algebra of subsets of X, and µ: S -+ [0, oo] a
measure. A set E E S is said to be outer regular provided

p(E) = inf {µ(O) I O open, O E S, E C O}

and said to be inner regular provided

µ(E) = sup {µ(K) I K compact, K E S, K C E} .

A set that is both inner and outer regular is called regular with respect to µ. The measure
µ: S -+ [0, oo] is called regular provided each set in S is regular.

We showed that Lebesgue measure on the Euclidean space R" is regular. We defined
a Borel measure to be a Radon provided each Borel set is outer regular and each open set is
inner regular.

Proposition 18 Let X be a locally compact Hausdorff space and µl and µ2 be two regular
Baire measures on Ba(X). Suppose

rx

lxfdL1 =Jfdµ2forallfECc(X).

Then µ1 = µ2.

Proof The proof is exactly the same as the corresponding uniqueness result for integration
with respect to Radon measures.

Proposition 19 Let X be a compact Hausdorff space, S a v-algebra of subsets of X, and
µ: S -. [0, oo) a finite measure. Then the collection of sets in S that are regular with respect
to p. is a a-algebra.

Proof Define I to be the collection of sets in S that are regular with respect to A. Since X is
compact and Hausdorff, a subset of X is open if and only if its complement in X is compact.
Thus, since µ is finite, by the excision property of measure, a set belongs to F if and only if
its complement in X belongs to F. We leave it as an exercise to show that the union of two
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regular sets is regular. Therefore the regular sets are closed with respect to the formation
of finite unions, finite intersections, and relative complements. It remains to show that .F is
closed with respect to the formation of countable unions. Let E = Un° 1 E, where each En
is a regular set. By replacing each E by E ^- U" 11 Ei, we may suppose that the En's are
disjoint. Let c > 0. For each n, by the outer regularity of En, we may choose a neighborhood
O" of En, which belongs to S and µ(O,) < µ(E,) + E/2". Define 0 = Un 1 On. Then O is a
neighborhood of E, 0 belongs to S, and, since

00

0- ECU[On^.K"],
n=1

by the excision and countable monotonicity properties of the measure µ,

00

!-L(C7) -N(E) =N(C7^ E) < E /L(On-En) <e.
n=1

Thus E is outer regular. A similar argument established inner regularity of E. This completes
the proof.

Theorem 20 Let X be a compact Hausdorff space in which every closed set is a GS set.
Then the Borel o--algebra equals the Baire and every Borel measure is regular. In
particular, if X is a compact metric space, then the Bore! a--algebra equals the Baire o--algebra
and every Borel measure is regular.

Proof To show that the Baire if-algebra equals the Borel a--algebra, it is necessary and
sufficient to show that every closed set is a Baire set. Let K be a closed subset of X.
Then K is compact and, by assumption, is a Gs set. According to Proposition 4, there is a
function f E C,. (X) for which K = {x E X I f (x) = 11. Since f belongs to QX ), the set
IX EXI f(x)=1} isaBaireset.

Let µ be a Borel measure on 13(X). The preceding proposition tells us that the
collection of regular Borel sets is a if-algebra. Therefore, to establish the regularity of 13(X )
it is necessary and sufficient to show that every closed set is regular with respect to the Borel
u-algebra. Let K be a closed subset of X. Then K is compact since X is compact and thus K
is inner regular. Since K is a Gs set and µ(X) < oo, we infer from the continuity of measure
that K is outer regular with respect to the Borel

To conclude the proof, assume X is a compact metric space. Let K be a closed subset of
X. We will show that K is a Gs set. Let n be a natural number. Define On = UXEKB(x, 11n).
Then 0 is a neighborhood of the compact set K. According to the locally compact extension
property, the function that takes the value 1 on K may be extended to a function fn E QX )
that has support contained in On. Define Un = f, 1 (-1/n, 11n). Then Un is an open Baire
set. By the compactness of K, K = U1 1U,,. We infer from the continuity of measure that K
is outer regular.

In the preceding section we used the Riesz-Markov Theorem to show that if X is a
compact metric space, then every Borel measure on 13(X) is a Radon measure.
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Proposition 21 Let X be locally compact Hausdorff space. The Baire o--algebra Ba(X) is the
smallest that contains all the compact G5 subsets of X.

Proof Define .I to be the smallest a-algebra that contains all the compact GS sets. Let K
be a compact Gs set. According to Proposition 4 there is a function f E C, (X) for which
K = {x E X I f(x) = 11. Therefore K belongs to T. Thus F C Ba(X). To establish the
inclusion in the opposite direction we let f belong to Cc (X) and show it is measurable with
respect to the Baire For a closed, bounded interval [a, b] that does not contain
0, f [a, b] is compact and equal to fln° 1(a - 1/n, b + 1/n) since f is continuous and
has compact support. Since .F is closed with respect to the formation of countable unions,
f -1(I) also belongs to .T if I is any interval that does not contain 0. Finally, since

f-1{0} = X- [f-1(-o0, 0) U f_1(0, oo)]

we infer that the inverse image under f of any nonempty interval belongs to.F and therefore
f is measurable with respect to the Baire a-algebra.

Proposition 22 Let X be a compact Hausdorff space. Then every Baire measure on Ba(X)
is regular.

Proof Let µ be a Baire measure on Ba(X). Proposition 19 tells us that the collection of
subsets of Ba(X) that are regular with respect to µ is a if-algebra. We infer from Proposition
21 that to prove the proposition it is sufficient to show that each compact Gs subset K of X
is regular. Let K be such a set. Clearly K is inner regular. Since µ(X) Goo and K is a Gs set,
by the continuity of measure, K is outer regular.

We have the following small improvement regarding uniqueness of the Riesz Repre-
sentation Theorem.

Theorem 23 Let X be a compact Hausdorff space and I: C(X) -* R a bounded linear
functional. Then there is a unique signed Baire measure µ for which

I(f)=Jx fdµforall f EC,(X).

Proof The Riesz Representation Theorem tells us that I is given by integration against a
signed Radon measure µ' on the Borel subsets of X. Let µ be the restriction of µ' to the Baire
Q-algebra. Then, arguing as we did in establishing (22), integration against s represents I.
The uniqueness assertion follows from Proposition 18 and the preceding regularity result.

Definition A topological space X is said to be provided it is the countable union
of compact subsets.

Each Euclidean space R" is a--compact. The discrete topology on an uncountable space
is not a-compact. Our final goal of this chapter is to prove regularity for Baire measures
on a locally compact, if-compact Hausdorff space. To that end we need the following three
lemmas whose proof we leave as exercises.
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Lemma 24 Let X be a locally compact Hausdorff space and F C X a closed Baire set. Then
forACF,

A E Ba(X) if and only if A E Ba(F).

Lemma 25 Let X be a locally compact Hausdorff space and E C X a Baire set that has
compact closure. Then E is regular with respect to any Baire measure µ on Ba(X ).

Lemma 26 Let X be a locally compact, Hausdorff space and A C X a Baire set.
Then A = Uk=1 Ak where each Ak is a Baire set that has compact closure.

Theorem 27 Let X be a locally compact, o--compact Hausdorff space. Then every Baire
measure on 13a(X) is regular.

Proof Since X is locally compact, Lemma 25 tells us that any Baire set of compact closure
is regular. Moreover, by the preceding lemma, since X is o--compact, every Baire set is the
union of a countable collection of Baire sets each of which has compact closure. Therefore
to complete the proof it is sufficient to show that the countable union of Baire sets, each of
which has compact closure, is regular.

Let E = U0 1 Ek, where each Ek is a Baire set of compact closure. Since the Baire
sets are an algebra, we may suppose that the Ek's are disjoint. Let c > 0. For each k, by the
regularity of Ek, we may choose Baire sets Kk and Ok, with Kk compact and Ok open, for
which

and

Kk C Ek C Ok

µ(Ek) -e/2k <µ(Kk) :5 AM) <µ(Ek) +E/2k.
If µ(E) = oo then, of course, E is outer regular. Moreover, since

00 00

1 IN UEkl=ii(E)=ooandµrUKkI=limµ\Kkl
k=1 / ``k_1 f n +oo k_1 /

E contains compact Baire sets of the form Uk
1

Kk, which have arbitrarily large measure
and therefore E is inner regular.

Now suppose that µ(E) < oo. Then 0 = Uk
1
Ok is again an open Baire set and since

000 - ECU[Ok Ek],
k=1

by the countable monotonicity and excision properties of measure,

00

µ(O) -µ(E) =µ(O"'E) < I il(Ok- Ek) <e.
k=1

Thus E is outer regular. To establish inner regularity observe that

N N

µ(E) = lim 2 µ(Ek)_ lim I µ(Kk)+E
Noo k=1 N- ook=1
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Thus E contains compact Baire subsets of the form U1 Kk, which have measure arbitrarily
close to the measure of E. Therefore E is inner regular.

We have the following small improvement regarding uniqueness of the Riesz-Markov
Theorem for u--compact spaces.

Theorem 28 Let X be a locally compact, a-compact Hausdorff space and I: C,(X) -* R a
positive linear functional. Then there is a unique Baire measure µ for which

I(f) =
rf

di for all f E Cc (X).
x

The reader should be warned that standard terminology regarding sets and measures
that are either Baire or Borel has not been established. Neither has the terminology regarding
Radon measures. Some authors take the class of Baire sets to be the smallest u-algebra for
which all continuous real-valued functions on X are measurable. Others do not assume every
Borel or Baire measure is finite on every compact set. Others restrict the class of Borel sets to
be the smallest u--algebra that contains the compact sets. Authors (such as Hahnos [Ha1501)
who do measure theory on a-rings rather than u--algebras often take the Baire sets to be
the smallest a-ring containing the compact Ga's and the Borel sets to be the smallest u--ring
containing the compact sets. In reading works dealing with Baire and Borel sets or measures
and Radon measures, it is imperative to check carefully the author's definitions. A given
statement may be true for one usage and false for another.

PROBLEMS

54. Let X be a separable compact Hausdorff space. Show that every closed set is a GS set.

55. Let X be a Hausdorff space and µ: B(X) -+ [0, oo] a or-finite Borel measure. Show that µ is
Radon if and only if it is regular.

56. Show that a Hausdorff space X is both locally compact and v-compact if and only if there is
an ascending countable collection {Ok}k 1 of open subsets of X that covers X and for each k,

Ok is a compact subet of 0k+1

57. Let xo be a point in the locally compact Hausdorff space X. Is the Dirac delta measure
concentrated at xo, 5x0, a regular Baire measure?

58. Let X be an uncountable set with the discrete topology and X* its Alexandroff compactification
with x* the point at infinity. Show that the singleton set {x*} is a Borel set that is not a Baire
set.

59. Let X be a locally compact Hausdorff space. Show that a Borel measure µ: B(X) -* [0, oo] is
Radon if and only if every Borel set is measurable with respect to the Caratheodory measure
induced by the premeasure µ: 5(X) -* [0, oo].

60. Prove Lemmas 24, 25, and 26.
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61. Let X be a compact Hausdorff space and fl, ... , fn continuous real-valued functions on X.
Let v be a signed Radon measure on X with I vI (X) < 1 and let c, = f x f dv, for 1 < i < n.
(i) Show that there is a signed Radon measure µ on X with IliI (X) < 1 for which

Jx
fidµ=ci

and
r r

f
gdµ <J gddforallgEC(X)

x x

for any signed Radon measure A with I A I (X) < 1 and such that f x f, dA = ci for 1 < i < n.

Suppose that there is a Radon measure v on X with v(X) = 1 and f x fidv = ci,1 < i < n.
Show that there is a Radon measure µ on X with µ(X) = 1 and f x fi dµ = ci, for 1 <
i < n, which minimizes f x gdµ among all Radon measures that satisfy these conditions.
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A topological group is a group G together with a Hausdorff topology on G for which the
group operation and inversion are continuous. We prove a seminal theorem of John von
Neumann which tells us that on any compact topological group G there is a unique measure
µ on the Borel o-- algebra B(G ), called Haar measure, that is invariant under the left action
of the group, that is,

geG,EEL3(G).

Uniqueness follows from Fubini's Theorem; existence is a consequence of a fixed point
theorem of Shizuo Kakutani which asserts that for a compact group G, there is a functional
b E [C(G)]* for which

J[f=1]=1and all gEG,feC(G).

Alaoglu's Theorem is crucial in the proof of this fixed point theorem. Details of the proof
of the existence of Haar measure are framed in the context of a group homomorphism of G
into the general linear group of [C(G)]*. We also consider mappings f of a compact metric
space X into itself and finite measures on 13(X). Based on Helley's Theorem, we prove the
Bogoliubov-Krilov Theorem which tells us that if f is a continuous mapping on a compact
metric space X, then there is a measure µ on 13(X) for which

all pELt(X,µ).

Based on the Krein-Milman Theorem, we prove that the above µ may be chosen so that f is
ergodic with respect to µ, that is, if A belongs to 13(X) and µ([A- f (A)] U [ f (A)'-A]) = 0,
then µ(A)=0or µ(A)=1.

22.1 TOPOLOGICAL GROUPS: THE GENERAL LINEAR GROUP

Consider a group together with a Hausdorff topology on 9. For two members gt, gZ of g,
denote the group operation by gt 82, denote the inverse of a member g of the group by
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-1g , and let e be the identity of the group. We say that g is a topological group provided
the mapping (gi, g2) -4 81 - 92 is continuous from g x g to g, where g x g has the product
topology, and the mapping g H g-1 is continuous from g to g. By a,compact group we
mean a topological group that is compact as a topological space. For subsets g1 and g2 of g,
we define g1 92 = {81 - 92 181 E 91, 92 E 92} and 911 = {g_' I g E 911. If 91 has just one
member g, we denote {g} g2 by g g2.

Let E be a Banach space and G(E) the Banach space of continuous linear operators
on E.1 The composition of two operators in G(E) also belongs to G(E) and clearly, for
operators T, S E G(E),

IISo Tll I1S11.11TI1 (1)

Define GL(E) to be the collection of invertible operators in G(E). An operator in G(E)
is invertible if and only if it is one-to-one and onto; the inverse is continuous by the Open
Mapping Theorem. Observe that for T, S E GL(E), (S o T)-1 = T-1 o S-1. Therefore,
under the operation of composition, GL(E) is a group called the general linear group of E.
We denote its identity element by Id. It also is a topological space with the topology induced
by the operator norm.

Lemma 1 Let E be a Banach space and the operator C EC(E) have IICII < 1. Then Id-C is
invertible and

II(Id-C)-111 (1 - IICII)-1 (2)

Proof We infer from (1) that for each natural number k, IICk11 IlCllk Hence, since
IICII < 1, the series of real numbers yk 0 IlCkll converges. The normed linear space G(E)
is complete. Therefore the series 2 of operators J;'

O
Ck converges in G(E) to a continuous

linear operator. But observe that

n

(Id -C) o Ck) Ck) o (Id -C) = Id -Cn+1 for all n.
k=0 k=0

Therefore the series 2, 0 Ck converges to the inverse of Id -C. The estimate (2) follows
from this series representation of the inverse of Id -C.

Theorem 2 Let E be a Banach space. Then the general linear group of E, GL(E), is a
topological group with respect to the group operation of composition and the topology induced
by the operator norm on G(E).

Proof For operators T, T', S, S' in GL(E), observe that

ToS-T'oS'=To(S-S')+(T-T')oS'.

Therefore, by the triangle inequality for the operator norm and inequality (1),

lIToS-T'oS'11.5

'Recall that the operator norm, IITII, of T E G(E) is defined by IITII = sup(IIT(x)II Ix E E, Ilxll < 1).
002The series E Ck is called the Neumann series for the inverse of / - C.

k=0
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The continuity of composition follows from this inequality.

If S belongs to GL(E) and IIS - Id II < 1, then from the identity

S-1 - Id = (Id-S)S-1 = (Id-S)[Id-(I - S)]-1,

together with the inequalites (1) and (2), we infer that

IIS-t - Id II < 1 II

IIS I
Id

Id11 (3)

Therefore inversion is continuous at the identity. Now let T and S belong to GL(E) and
11S - T11 < II T-1 11 -1. Then

IIT-1S- Id II = IIT-1(S-T)II 11T-111 IIS - TII < 1.

Thus, if we substitute T-1S for S in (3) we have

IIS-tT - Id 11 <
IIT-'S - Id II

1-IIT-1S-Id II

From this inequality and the identities

S-1 - T-1 = (S-1 T - Id) T-1 and T-' S - Id = T-1(S - T)

we infer that

IIS-1- T-111 IIT-1112 IIT - SII

1-IIT-111 IIT-S11

The continuity of inversion at T follows from this inequality. 11

In the case E is the Euclidean space R", GL(E) is denoted by GL(n, R). If a choice
of basis is made for R°, then the topology on GL(n, R) is the topology imposed by the
requirement that each of the n X n entries of the matrix representing the operator with
respect to this basis is a continuous function.

A subgroup of a topological group with the subspace topology is also a topological
group. For example, if H is a Hilbert space, then the subset of GL(H) consisting of those
operators that leave invariant the inner product is a topological group that is called the
orthogonal linear group of H and denoted by O(H).

PROBLEMS

In the following exercises, g is a topological group with unit element e and E is a Banach
space.

1. If Te is a base for the topology at e, show that {g 010 E Te} is a base for the topology atgEt

2. Show that K1 K2 is compact if K1 and K2 are compact subsets of G.

3. Let 0 be a neighborhood of e. Show that there is also a neighborhood U of e for which
U=U-1 andUUC0.
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4. Show that the closure H of a subgroup H is a subgroup of G.

5. Let G, and 92 be topological groups and h : Gl -> 92 a group homomorphism. Show that h is
continuous if and only if it is continuous at the identity element of Gl .

6. Use the Contraction Mapping Principle to prove Lemma 1.

7. Use the completeness of G(E) to show that if C E L (E) and II C II < 1, then Y 0 Ck converges
in,C(E).

8. Show that the set of n X n invertible real matrices with determinant 1 is a topological group
if the group operation is matrix multiplication and the topology is entrywise continuity. This
topological group is called the special linear group and denoted by SL(n, R).

9. Let H be a Hilbert space. Show that an operator in GL(H) preserves the norm if and only if
it preserves the inner product.

10. Consider R" with the Euclidean inner product and norm. Characterize those n x n matrices
that represent orthogonal operators with respect to an orthonormal basis.

11. Show that GL(E) is open in G(E).

12. Show that the set of operators in GL(E) comprising operators that are linear compact
perturbations of the identity is a subgroup of GL(E). It is denoted by GLc(E).

22.2 KAKUTANI'S FIXED POINT THEOREM

For two groups G and 7-l, a mapping cp: G 1-1 is called a group homomorphism provided
for each pair of elements gl, g2 in 9, cp(gt 92) = g0(g1) - (P(92)-

Definition Let G be a topological group and E a Banach space. A group homomorphism
-ir: G -+ GL (E) is called a representation3 of G on E.

As usual, for a Banach space E, its dual space, the Banach space of bounded linear
functionals on E, is denoted by E*. We recall that the weak-* topology on E* is the topology
with the fewest number of sets among the topologies on E* such that, for each x E E, the
functional on E* defined by t/i H O(x) is continuous. Alaoglu's Theorem tells us that the
closed unit ball of E* is compact with respect to the weak-* topology.

Definition Let G be a topological group, E a Banach space, and ir: G -+ GL(E) a represen-
tation of G on E. The adjoint representation ir* : G -+ GL (E*) is a representation of G on E*
defined for g E G by

it*(g)t/r= oir(g-1) for all E E*. (4)

We leave it as an exercise to verify that ar* is a group homomorphism.
Recall that a gauge or Minkowski functional on a vector space V is a positively

homogeneous, subadditive functional p: V -). R. Such functionals determine a base at the
origin for the topology of a locally convex topological vector space V. In the presence of a
representation 7r of a compact group G on a Banach space E, the following lemma establishes
the existence of a family, parametrized by G, of positively homogeneous, subadditive
functionals on E*, each of which is invariant under ir* and, when restricted to bounded
subsets of E*, is continuous with respect to the weak-* topology.

3Observe that no continuity assumption is made regarding a representation. It is convenient to view it as a purely
algebraic object and impose continuity assumptions as they are required in a particular context.
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Lemma 3 Let g be a compact group, E a Banach space, and 7r: G -* GL (E) a representation
of G on E. Let xo belong to E and assume that the mapping g H ar(g )xo is continuous from g
to E, where E has the norm topology. Define p: E* --* R by

p(') = sup Jq,(ir(g)xo)I.forifi E E*.
gEG

Then p is a positively homogeneous, subadditive functional on E*. It is invariant under ar*,
that is,

p(-* (g)0) = p(') for all 0 E E* and g E G.

Furthermore, the restriction of p to any bounded subset of E* is continuous with respect to the
weak-* topology on E*.

Proof Since G is compact and, for ' E G, the functional g H '(vr(g)xo) is continuous on
G, p: E* -), R is properly defined. It is clear that p is positively homogeneous, subadditive,
and invariant with respect to 11*. Let B* be a bounded subset of E*. To establish the weak-*
continuity at p: B* -), R, it suffices to show that for each fro E B* and c > 0, there is a weak-*
neighborhood N('o) of Oo for which

I' (ir(g) xo) - 'Po(ir (g) xo) I < E for all 41 E M(00) n B* and g E G. (5.)

Let fro belong to B* and E > 0. Choose M > 0 such that 11011 5 M for all 'P E B*. The mapping
g-*Tr(g)xo is continuous and G is compact. Therefore there are a finite number of points
{gl, ... , in G and for each k, 1 < k < n, a neighborhood Ok of gk such that {Ogk}k=1
covers G and, for 1 < k < n,

IIir(g)xo -1r(gk )xoll < E/4M for all g E Ogk. (6)

Define the weak-* neighborhood N('0) of'Po by

N('ro) = {O E E* I I('P-41o)(1T(gk)xo)I <E/2for1 <k <n}.

Observe that for any g E G, 0 E E* and 1 < k < n,

'P(IT(g)xo) -'o(a(g)xo) = ('P -'o)[i(gk)xo]+ (4r -'Po)[1T(g)xo -1r(gk)xo] 7)

To verify (5), let g belong to G and 0 belong to N('Po) n B*. Choose k, 1 < k < n, for which
g belongs to Ok. Then I(' -'o)[1r(gk)xo]I < E/2 since 41 belongs to N(00). On the other
hand, since 110 - 0011 5 2M, we infer from (6) that 1(41 - +Go)[w(g)xo - lr(gk)xo]I < E/2.
Therefore, by (7), (5) holds for N('0).

Definition Let G be a topological group, E a Banach space, and 1r: G -+ GL(E) a
representation of G on E. A subset K of E is said to be invariant under ar provided
Ir(g) (K) C K for all g E G. A point x E E is said to be fixed under iT provided ir(g)x = x for

a compact group, E a Banach space, and ir: G -, GL (E) a representation
of G on E. Assume that for each x E E, the mapping g H ir(g)x is continuous from G to E,
where E has the norm topology. Assume there is a nonempty, convex, weak-* compact subset
K* of E* that is invariant under 7r*. Then there is a functional 'P in K* that is fixed under Tr*.
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Proof Let F be the collection of all nonempty, convex, weak-* closed subsets of K* that
are invariant under Tr*. The collection .F is nonempty since K* belongs to F. Order F by
set inclusion. This defines a partial ordering on F. Every totally ordered subcollection of F
has the finite intersection property. But for any compact topological space, a collection of
nonempty closed subsets that has the finite intersection property has nonempty intersection.
The intersection of any collection of convex sets is convex and the intersection of any
collection of ir* invariant sets is a* invariant. Therefore every totally ordered subcollection
of .F has its nonempty intersection as a lower bound. We infer from Zorn's Lemma that
there is a set Ko in F that is minimal with respect to containment, that is, no proper subset
of Ko belongs to 1. This minimal subset is weak-* closed and therefore weak-* compact.
We relabel and assume K* itself is this minimal subset.

We claim that K* consists of a single functional. Otherwise, choose two distinct
functionals t/rl and '2 in K*. Choose xo E E such that 01 (xo) # I2(xo ). Define the functional
p: K* - R by

p(hi) = sup Ii(ir(g)xo)I for i/i E K*.
gEG

Since K* is weak-* compact, the Uniform Boundedness Principle tells us that K* is bounded.
According to the preceding lemma, p is continuous with respect to the weak-* topology.
Therefore, if, for r > 0 and 71 E K*, we define

Bo(n,r)={grEK*I p(O -n)<r}andBo(rl,r)=10eK*I p(i/r-l)<r), (8)

then Bo (q, 'r) is open with respect to the weak-* topology on K* and Bo (r1, r) is closed with
respect to the same topology. Each of these sets is convex since, again by the preceding
lemma, p is positively homogeneous and subadditive.

Define d = sup (p(t/r - (p) 10, (P E K*}. Then d is finite since p is continuous on the
weak-* compact set K*, and d > 0 since p(h1 - +/'2) > 0. Since K* is weak-* compact and
each Bo(rl, r) is weak-* open, we may choose a finite subset (41k)k=1 of K* for which

n

K* = U Bo(+Gk, d/2)
k=1

Define
Gt+...++lk+...+On

n

The functional /* belongs to K* since K* is convex. Let f be any functional in K*. By the
definition of d, p(i - i/ik) < d for 1 < k < n. Since (Bo(bk, d/2))k=1 covers K*, belongs to
some Bo%o, d/2) for some ko. Thus, by the positive homogeneity and subadditivity:of p,

p(o -qr*) <d'whered'= n-1 .d+d <d.
n 2

Define

K' = n Bo(q,, d').
OEK*

Then K' is a weak-* closed, and hence weak-* compact, convex subset of K*. It is nonempty
since it contains the functional t/r*. We claim that K' is invariant under nr*. To verify this, for
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'1 E K', c E K* and g E G, we must show that p(ir*(g)n - 0) < d'. Since p is ir* invariant
and p(i1- 7T*(g-') 0) < d',

p('r*(g)rl-p)=p(n-ir*(g 1)/)<d'.

By the minimality of K*, K* = K'. This is a contradiction since, by the definition of d, there
are functionals iii' and 0" in K* for which p(q/ - u/') > d' and hence u/l' does not belong
to Bo(t/i', d'). We infer from this contradiction that K* consists of a single functional. The
proof is complete. U

Definition Let g be a compact group and C(G) the Banach space of continuous real-valued
functions on G, normed by the maximum norm. By the regular representation of G on C(G)
we mean the representation ir: G -), GL(C(G)) defined by

[Tr(g)f](x)= f(g f EC(G),xE9andgEG.

We leave it as an exercise to show that the regular representation is indeed a
representation. The following lemma shows that the regular representation of a compact
group G on C(G) possesses the continuity property imposed in Theorem 4.

Lemma 5 Let g be a compact group and ii: G -* GL(C(G)) the regular representation of G
on C(G). Then for each f E C(G), the mapping g H ir(g) f is continuous from G to C(G),
where C(G) has the topology induced by the maximum norm.

Proof Let f belong to C(G). It suffices to check that the mapping g H ir(g) f is continuous
at the identity e E G. Let e > 0. We claim that there is a neighborhood of the identity, U, for
which

I f(x)I <Eforall gEU,xE9. (9)

Let x belong to G. Choose a neighborhood of x, Ox, for which

I f(x) - f(x)I <e/2 for all x E Ox.

Thus
If(x')-f(x")I<eforallx',x"EOx. 10)

By the continuity of the group operation, we may choose a neighborhood of the identity,
U, and a neighborhood x, V, for which Vx C Ox and Ux Vx C O. By the compactness
of G, there is a finite collection (Vxk}k-t that covers G. Define U= fk_t Uxk. Then U is a
neighborhood of the identity in G. We claim that (9) holds for this choice of U. Indeed, let g
belong in U and x belong to G. Then x belongs to some Vxk. Hence

/1
x E

Therefore both x and g x belong to Oxk so that, by (10), If (g x) - f (x) I < E. Thus (9) is
established. Replace U by U fl U-1. Therefore

I f(g1 -x) - f(x) I <Eforall geU,xEG,

that is,
II1r(g).f - ir(e).f llmax < E for all g E U.

This establishes the required continuity.
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For G a compact group, we call a functional f# E [C(g)]* a probability functional
provided it takes the value 1 at the constant function f = 1 and is positive in the sense that
for f E C(G), if f > 0 on G, then ii(f) > 0.

Theorem 6 (Kakutani) Let G be a compact group and ir: G -a GL(C(G)) the regular
representation of G on C(G). Then there is a probability functional 41 E [C(G)]* that is fixed
under the adjoint action irs, that is,

/r(f) = i/r(?r(g) f) for all f E C(G) and g E G. (11)

Proof According to Alaoglu's Theorem, the closed unit ball of [C(G)]* is weak-* compact.
Let K* be the collection of positive probability functionals on C(G). Observe that if 0 is a
probability functional and f belongs to C(G) with Ofllmax < 1, then, by the positivity and
linearity of t/r, since -1 < f < 1,

-1= (-1) < (f) < cr(1) =1.

Thus I'/'( f) I < 1 and hence II4iII 1. Therefore K* is a convex subset of the closed unit ball
of E*. We claim that K* is weak-* closed. Indeed, for each nonnegative function f E C(G),
the set {t/r E [C(G)]* I C f) > 0) is weak-* closed, as is the set of functionals r/r that take the
value 1 at the constant function f =1. The set K* is therefore the intersection of weak-*
closed sets and so it is weak-* closed. As a closed subset of a compact set, K* is weak-*
compact. Finally, the set K* is nonempty since if x0 is any point in G, the Dirac functional
that takes the value f (xo) at each f E C(G) belongs to K*.

It is clear that K* is invariant under lr*. The preceding lemma tells us that the regular
representation possesses the continuity required to apply Theorem 4. According to that
theorem, there is a functional in r/r e K* that is fixed under lr*, that is, (11) holds.

PROBLEMS

13. Show that the adjoint of a representation also is a representation.
14. Show that a probability functional has norm 1.

15. Let E be a reflexive Banach space and K* a convex subset of E* that is closed with respect to
the metric induced by the norm. Show that K* is weak-* closed. On the other hand, show that
if E is not reflexive, then the image of the closed unit ball of E under the natural embedding
of E in (E*) * = E** is a subset of E** that is convex, closed and bounded with respect to the
metric induced by the norm but is not weak-* closed.

16. Let G be a compact group, E a reflexive Banach space, and ir: G -> GL(E) a representation.
Suppose that for each x E E, the mapping g -+Ir(g)x is continuous. Assume there is a
nonempty strongly closed, bounded, convex subset K of E that is invariant with respect to ir.
Show that K contains a point that is fixed by ir.

17. Let G be a topological group, E be a Banach space, and ir: G -* GL(E) a representation. For
x E E, show that the mapping g ti ir(g)x is continuous if and only if it is continuous at e.

18. Suppose G is a topological group, X a topological space, and q': G X X -> X a mapping. For
g E G, define the mapping ir(g) : X --* X by ir(g)x = rp(g, x) for all x E X. What properties
must rp possess in order for a to be a representation on G on C(X)? What further properties
must cp possess in order that for each x E X, the mapping g H ir(g)x is continuous?
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22.3 INVARIANT BOREL MEASURES ON COMPACT GROUPS:
VON NEUMANN'S THEOREM

A Borel measure on a compact topological space X is a finite measure on B(X), the smallest
cr-algebra that contains the topology on X. We now consider Borel measures on compact
groups and their relation to the group operation.

Lemma 7 Let G be a compact group and µ a Borel measure on 13(G). For g E G. define the
set function µg: B(G) - [0, oo) by

Ag(A) = µ(g A) for all A E L3(G).

Then µg is a Borel measure. If µ is Radon, so is µg. Furthermore, if it is the regular
representation of G on C(Gf1r(g)fd=jfdgforallfEC(c).),4 then

(12)

Proof Let g belong to G. Observe that multiplication on the left by g defines a topological
homeomorphism of G onto G. From this we infer that A is a Borel set if and only if g A is
a Borel set. Therefore the'set function µg is properly defined on B(G). Clearly, µg inherits
countable additivity from µ and hence, since µg(G) = µ(G) < 00, µg is a Borel measure.
Now suppose µ is a Radon measure. To establish the inner regularity of µg, let 0 be open
in G and E > 0. Since µ is inner regular and g - 0 is open, there is a compact set K contained
in g 0 for which µ(g 0^'K) < e. Hence K' = g-t K is compact, contained in 0, and
µg (O-K') < e. Thus µg is inner regular. A similar argument shows µg is outer regular.
Therefore µg is a Radon measure.

We now verify (12). Integration is linear. Therefore, if (12) holds for characteristic
functions of Borel sets it also holds for simple Borel functions. We infer from the Simple
Approximation Theorem and the Bounded Convergence Theorem that (12) holds for all
f E C(G) if it holds for simple Borel functions. It therefore suffices to verify (12) in the case
f = XA, the characteristic function of the Borel set A. However, for such a function,

fir(g)fd=(g.A)=ffdg.
El

Definition Let g be a compact group. A Borel measure µ: B(G) -, [0, oo) is said to be
left-invariant provided

forallgEGandAEC3(G). (13)

It is said to be a probability measure provided µ(G) =1.

A right-invariant measure is defined similarly. If we consider Rn as a topological group
under the operation of addition, we showed that the restriction of Lebesgue measure µ on

4A continuous function on a topological space is measurable with respect to the Borel o-algebra on the space
and, if the space is compact and the measure is Borel, it is integrable with respect to this measure. Therefore, each
side of the following formula is properly defined because, for each f E C(G) and g E G, both f and r(g) f are
continuous functions on the compact topological space 9 and both µ and µg are Borel measures.
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R' to B(R") is left-invariant with respect to addition, that is, µ" (E + x) = µ" (E) for each
Borel subset E of R' and each point x E R". Of course, this also holds for any Lebesgue
measurable subset E of R.

Proposition 8 On each compact group G there is a Radon probability measure on B(G) that
is left-invariant and also one that is right-invariant.

Proof Theorem 6 tells us that there is a probability functional l E [C(G)]* that is fixed
under the adjoint of the regular representation on G on C(G). This means that i/r(1) = 1 and

PP(f) = q,(-(g-')f) for all f E C(G) and g E G. (14)

On the other hand, according to the Riesz-Markov Theorem, there is a unique Radon
measure µ on B(G) that represents a/r in the sense that

0(f) =J fdµfor all f EC(G). (15)

Therefore, by (14),

0(f)=4,(-(g-1)f f7r(g-')fdL f orall fEC(G)andgE9. (16)

Hence, by Lemma 7,

r(f)=
G

f fdµgiforall f EC(G)andgEG.

By the same lemma, -1 is a Radon measure. We infer from the uniqueness of the
representation of the functional 0 that

µ=µg1for all gEG.

Thus µ is a left-invariant Radon measure. It is a probability measure because 41 is a probability
functional and thus

1=iv(1)= f dµ=µ(G)
s

A dual argument (see Problem 25) establishes the existence of a right-invariant Radon
probability measure.

Definition Let G be a topological group. A Radon measure on B(G) is said to be a Haar
measure provided it is a left-invariant probability measure.

Theorem 9 (von Neumann) Let G be a compact group. Then there is a unique Haar measure
,u on B(G). The measure u is also right-invariant.

Proof According to the preceding proposition, there is a left-invariant Radon probability
measure µ on 8(9) and a right-invariant Radon probability measure v on B(G). We claim
that

ffd/L=jfdvforaufEc(c). (17)
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Once this is verified, we infer from the uniqueness of representations of bounded linear
functionals on C(C) by integration against Radon measures that µ = P. Therefore every
left-invariant Radon measure equals P. Hence there is only one left-invariant Radon measure
and it is right-invariant.

To verify (17), let f belong to C(Q). Define h: G x 9 - R by h(x, y) = f (x y) for
(x, y) E G X G. Then h is a continuous function on G X G. Moreover the product measure
v X µ is defined on a v-algebra of subsets of G X G containing B(G X C). Therefore, since h is
measurable and bounded on a set G X Q of finite v X u measure, it is integrable with respect
to the product measure v X µ over Cc

f
X . To verifyr(17) it suffices torshow that

J
hd[vXp] =fdµ and

4J

hd[Ax]=J fdv (18)94
x4

heorem,5

1

However, by Fubini's Tfhd[vx]=f[jh(x.

)d()] dv(x).

By the left-invariance of µ and (12),

J
h(x, )dµ(y)= J fdµ forallxEG.

9 4

Thus, since v(G) = 1,

fcxchd=ffdL v()=fqfdiL

A si milar argument establishes the right-hand equality in (18) and thereby completes the
proof.

The methods studied here may be extended to show that there is a left-invariant Haar
measure on any locally compact group 9, although it may not be right-invariant. Here we
investigated one way in which the topology on a topological group determines its measure
theoretic properties. Of course, it is also interesting to investigate the influence of measure
on topology. For further study of this interesting circle of ideas it is still valuable to read
John von Neumann's classic lecture notes Invariant Measures [vN91].

PROBLEMS

19. Let µ be a Borel probability measure on a compact group g. Show that µ is Haar measure if
and only if

J
f fdµ forallgE9, f EC(g),

4 9

where cpg (g') = g g' for all g' E G.

5See the last paragraph of Section 20.1 for an explanation of why, for this product of Borel measures and
continuous function h, the conclusion of Fubini's Theorem holds without the assumption that the measure µ is
complete.
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20. Let µ be Haar measure on a compact group 9. Show that µ X µ is Haar measure on 9 X g.

21. Let G be a compact group whose topology is given by a metric. Show that there is a g-invariant
metric. (Hint: Use the preceding two problems and average the metric over the group 9 X 9.)

22. Let µ be Haar measure on a compact group G. If 9 has infinitely many members, show that
µ({g}) = 0 for each g E g. If g is finite, explicitly describe p..

23. Show that if µ is Haar measure on a compact group, then µ(O) > 0 for every open subset
Oofg.

24. Let S' = {Z = e`N 18 E R} be the circle with the group operation of complex multiplication
and the topology it inherits from the Euclidean plane.
(i) Show that S1 is a topological group.

(ii) Define A = {(a, (3) 1 a, (3 E R, 0 < (3 - a < 2a}. For A = (a, (3) E A, define I,,
{e'° I a < 8 < (3}. Show that every proper open subset of S1 is the countable disjoint union
of sets of the form IA, A E A.

(iii) For A = (a, (3) E A, define µ(I.) a)/21r. Define µ(S1) = 1. Use part (ii) to
extend µ to set function defined on the topology T of S1. Then verify that, by Proposition
9 from the preceding chapter, µ may be extended to a Borel measure µ on 13(S1).

(iv) Show that the measure defined in part (ii) is Haar measure on S1.

(v) The torus T" is the topological group consisting of the Cartesian product of n copies of
S1 with the product topology and group structure. What is Haar measure on T"?

25. Let µ be a Borel measure on a topological group G. For a Borel set E, define µ'(E) = µ(E-1),
where E-1 = {g-1 I g E E}. Show that p? also is a Borel measure. Moreover, show that µ is
left-invariant if and only if p? is right-invariant.

22.4 MEASURE PRESERVING TRANSFORMATIONS AND ERGODICITY:
THE BOGOLIUBOV-KRILOV THEOREM

For a measurable space (X, M), a mapping T: X -+ X is said to be a measurable
transformation provided for each measurable set E, T-1(E) also is measurable. Observe
that for a mapping T : X -+ X,

T is measurable if and only if g o T is measurable whenever the function g is measurable.
(19)

For a measure space (X, M, a), a measurable transformation T: X -). X is said to be
measure preserving provided

µ(T-1(A)) = µ(A) for all A E M.

Proposition 10 Let (X, M, µ) be a finite measure space and T : X -+ X a measurable
transformation. Then T is measure preserving if and only if g o T is integrable over X whenever
g is, and

fX
goTdµ= fX gdµfor all gEL1(X, u). (20)

Proof First assume (20) holds. For A E M, since µ(X) < oo, the function g = XA belongs
to Ll(X, µ) and g o T = XT_1(A). We infer from (20) that µ(T-1(A)) = µ(A).
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Conversely, assume T is measure preserving. Let g be integrable over X. If g+ is the
positive part of g, then (g o T)+ = g+ o T. Similarly for the negative part. We may therefore
assume that g is nonnegative. For a simple function g = Jk=1 ck XAk, since T is measure
preserving,

foTdI.L=J[ck r-XAkoTdµ= f Eck'XT-1(Ak) dµCk-tL(Ak)=J gdµ
X X k=1 X k=1 k=1 X

Therefore (20) holds for g simple. According to the Simple Approximation Theorem, there
is an increasing sequence {gn} of simple functions on X that converge pointwise on X to g.
Hence (gn o T} is an increasing of simple functions on X that converge pointwise on X to
g o T. Using the Monotone Convergence Theorem twice and the validity of (20) for simple
functions, we have

(go T dµ = nlimo l jX & o Tdµ1 = nlinl l Ifx
gn dµi = J g dµ.

For a measure space (X, M, µ) and measurable transformation T : X - X, a measur-
able set A is said to be invariant under T (with respect to µ) provided

,(A'-'T'(A)) =N,(T-1(A)^-A)=0

that is, modulo sets of measure 0, T-1(A) = A. It is clear that

A is invariant under T if and only if XA o T = XA a.e. on X. (21)

If (X, M, µ) also is a probability space, that is, µ(X) = 1, a measure preserving transfor-
mation T is said to be ergodic provided any set A that is invariant under T with respect to µ
has,u(A)=0or µ(A)=1.

Proposition 11 Let (X, M, µ) be a probability space and T : X X a measure preserving
transformation. Then, among real-valued measurable functions g on X,

T is ergodic if and only if whenever g o T = g ae. on X, then g is constant a.e. on X. (22)

Proof First assume that whenever g o T = g a.e. on X, the g is constant a.e. on X. Let
A E M be invariant under T. Then g = XA, the characteristic function of A, is measurable
and XA o T = XA a.e. on X. Thus XA is constant a.e., that is, µ(A) = 0 or µ(A) = 1.

Conversely, assume T is ergodic. Let g be a real-valued measurable function on X for
which g o T = g a.e. on X. Let k be an integer. Define Xk = (x E X I k < g(x) < k + 1).
Then Xk is a measurable set that is invariant under T. By the ergodicity of T, either
µ(Xk) = 0 or j.(Xk) = 1. The countable collection is disjoint and its union is X.
Since µ(X) = 1 and µ is countably additive, µ(Xk) = 0, except for exactly one integer k'.
Define 11 = [k', k' + 1]. Then µ(x E X I g(x) E It} =1 and the length of It, £(II ), is 1.

Let n be a natural number for which the descending finite collection {1k}k=1 of closed,
bounded intervals have been defined for which

f(Ik)=1/2k-1 andp.{xEXI g(x)EIk}=1for1<k<n.
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Let In = [an, bn], define cn = (bn - an )/2,

An={xEXI an<g(x)<cn}and Bn=IX EXI cn<g(x)<bn}.

Then An and Bn are disjoint measurable sets whose union is µ{x E X I g(x) E I,, }, a set of
measure 1. Since both An and Bn are invariant under T, we infer from the ergodicity of T
that exactly one of these sets has measure 1. If µ(An) = 1, define In+1 = [an, cn]. Otherwise,
define In+1 = [c,,, bn]. Then 2(In+1) = 1/2n and µ{x E X I g(x) E In+1} = 1. We have
inductively defined a descending countable collection (1n)n° 1 of closed, bounded intervals
such that

t(In)=1/2n_1and ft {xEXI g(x)EIn}=lforall n.

By the Nested Set Theorem for the real numbers, there is a number c that belongs to
every In. We claim that g = c a.e. on X. Indeed, observe that if g(x) belongs to In, then
Ig(x) - cl < 1/2n-1 and therefore

Since

1=µ{xEXI g(x) E 1,,1:5 µ{xEX Ig(x) - cl < 1/2n-1}<1.

{X E X I g(x) = c} = n {xEXI lg(x) - cl < 1/2n-1} ,

we infer from the continuity of measure that

µ{xEXI g(x)=c}=nlimo7.i{xEX Jg(x)-cI<1/2n-1}=1.

0

Theorem 12 (Bogoliubov-Krilov) Let X be a compact metric space and the mapping f : X -a
X be continuous. Then there is a probability measure µ on the Borel (T-algebra 8(X) with
respect to which f is measure preserving.

Proof Consider the Banach space C(X) of continuous real-valued functions on X with the
maximum norm. Since X is a compact metric space, Borsuk's Theorem tells us that C(X) is
separable. Let 77 be any Borel probability measure on B(X ). Define the sequence {1lin } of
linear functionals on C(X) by

l n-1/1n(g)=J- go fk di7forallnENandgEC(X). (23)
X n k=0

Observe that
I+Vn(g)I 11911maxfor all nENand gEC(X).

Thus {I/ln} is a bounded sequence in [C(X)]*. Since the Banach space C(X) is separable, we
infer from Helley's Theorem that there is a subsequence (1olnk) of (on) that converges, with
respect to the weak-* topology, to a bounded functional +/i E [C(X )]*, that is,

k +i (g) = fi(g) for all g E C(X).
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Therefore

klim ootr"k(go f)=i/i(go f) forallgEC(X).

However, for each k and g E C(X),

41., kI J[gofk+x

Take the limit ask oo and conclude that

L

i/i(go f)=ct(g)forall gEC(X). (24)

Since each 0" is a positive functional, the limit functional 0 also is positive. The Riesz-Markov
Theorem tells us that there is a Borel measure µ for which

di(g)=f gdµfor all gEC(X).
X

We infer from (24) that

fgofdIL=J gd µforallgEC(X).
x

According to Proposition 10, f is measure preserving with respect to µ. Finally, for the
constant function g = 1, 0,, (g) = 1 for all n. Therefore i/i(g) = 1, that is, p. is a probability
measure.

Proposition 13 Let f : X -+ X be a continuous mapping on a compact metric space X.
Define M f to be the set of probability measures on 13(X) with respect to which f is measure
preserving. Then a measure µ in M f is an extreme point of M f if and only if f is ergodic with
respect to A.

Proof First suppose that µ is an extreme point of M1. To prove that f is ergodic, we assume
otherwise. Then there is a Borel subset A of X that is invariant under f with respect to µ
and yet 0 < µ(A) < 1. Define

v(E) = µ(E n A)/µ(A) and q(E) = µ(E n fx-A])/,u(X-A) for all E E B(X).

Then, since µ(X) = 1,

µ= A. v+(1-A). where A=µ(A).

Both v and 71 are Borel probability measures on 13(X ). We claim that f is measure preserving
with respect to each of these measures. Indeed, since f is measure preserving with respect
to µ and A is invariant under f with respect to µ, for each E E 13(X),

A(Ef1A)=p-(f-1(EnA))=p-(f-1(E)n f-1(A))=!-.(f-1(E)f1A).

Therefore f is invariant with respect to v. By a similar argument, it is also invariant with
respect to q. Therefore v and q belong to M f and hence µ is not an extreme point of M f.
Therefore f is ergodic.



492 Chapter 22 Invariant Measures

Now suppose f is ergodic with respect to p. E M1. To show that p. is an extreme point
of M f, let A E (0, 1) and v, n E M f be such that

IL =AV +(1-A)'7. (25)

The measure v is absolutely continuous with respect to µ. Since µ(X) < oo, the Radon-
Nikodym Theorem tells us that there isfA a function h E Ll (X, µ) for which

v(A) = hdµ forall A E B(X).

It follows from the Simple Approximation Theorem and the Bounded Convergence Theorem
that

J
gdv=fX g- hdµ for all gEL'(X,µ). (26)

X

Fix e > 0, and define XE = {x E X I h (x) > 1/A + e}. We infer from (25) that

µ(XE) h h o f are essentially bounded on X with respect to µ.
Hence, using (26), first with g = h o f and then with g = h, and the invariance of f with
respect to v, we have

fhofhd
frxr

µ=J h o fdv=J hdv=J h2dµ.

We infer from this equality and the invariance off with respect to µ that

j'[hof_h]2dit =Jx [ho f ] 2 ho f hdµ+ f h2dµ
rx x

=2.J h2dµ-2.J ho f hdµ
X x

h h a.e. [A] on X. By the ergodicity of f and Proposition 11, there is a
constant c for which h = c a.e. [A] on X. But µ and v are probability measures and hence

1 =v(X) =J hdµ=c.µ(X) =c.
X

Hence µ = v and thus it = q. Therefore µ is an extreme point of M f.

Theorem 14 Let f : X -+ X be a continuous mapping on a compact metric space X. Then
there is a probability measure µ on the Borel o--algebra B(X) with respect to which f is
ergodic.
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Proof Let Radon(X) be the Banach space of signed Radon measures on 8(X) and the
linear operator 4): Radon (X) -+ [C(X)]* be defined by

dµ for all µ E Radon(X) and g E C(X).c(µ)(g) = fX g

The Riesz Representation Theorem for the dual of C(X) tells us that ( is a linear
isomorphism of Radon(X) onto [C(X)]*. Define Mf to be the set of probability measures
on 8(X) with respect to which f is measure preserving. Then the measure µ is an extreme
point of Mf if and only if I(µ) is an extreme point of 4(M f ). Therefore, by the preceding
proposition, to prove the theorem we must show that the set b(M1) possesses an extreme
point. According to the Bogoliubov-Krilov Theorem, M f is nonempty. A consequence of
the Krein-Milman Theorem, Corollary 13 of the preceding chapter, tells us that (b(Mf)
possesses an extreme point provided it is bounded, convex, and closed with respect to the
weak-* topology. The Riesz-Markov Theorem tells us that defines an isomorphism of
Radon measures onto positive functionals. The positive functionals are certainly weak-*
closed, as are the functionals that take the value 1 at the constant function 1. According to
Proposition 11, a functional 0 E [C(X )]* is the image under of a measure that is invariant
with respect to f if and only if

4i(go f)-i/i(g)=0forall gEC(X).

Fix g E C(X). Evaluation at the function g o f - g is a linear functional on [C(X)]* that is
continuous with respect to the weak-* topology and therefore its kernel is weak-* closed.
Hence the intersection

n { E [C(X)]* I +6(go.f) _ 0(g)}
gEC(X)

also is a weak-* closed set. This completes the proof of the weak-* closedness of 4(M1)
and also the proof of the theorem.

Asymptotic averaging phenomena were originally introduced in the analysis of the
dynamics of gases. One indication of the significance of ergodicity in the study of such
phenomena is revealed in the statement of the following theorem. Observe that the right-
hand side of (27) is independent of the point x E X.

Theorem 15 Let T be a measure preserving transformation on the probability space
(X, M, µ). Then T is ergodic if and only if for every g E Lt (X, µ),

rl n-1
k Jxgdµ for almost all x E X. (27)li o n g(T (x)) =

AX)k=O

A proof of this theorem may be found in the books Introduction to Dynamical
Systems [BS02] by Michael Brin and Garrett Stuck and Lectures on Ergodic Theory [Ha106]
by Paul Halmos. These books also contain varied examples of measure preserving and
ergodic transformations.
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PROBLEMS

26. Let X be a compact metric space. Use the Stone-Weierstrass Theorem to show that the
Banach space C(X) of continuous functions on X, normed with the maximum norm, is
separable.

27. Does the proof of the the Bogoliubov-Krilov Theorem also provide a proof in the case X is
compact Hausdorff but not necessarily metrizable?

28. Let (X, M, µ) be a finite space and T : X -* X a measurable transformation. For a
measurable function g on X, define the measurable function UT(g) by UT(g)(x) = g(T(x)).
Show that T is measure preserving if and only if for every 1 < p < 00, UT maps LP(X, µ)
into itself and is an isometry.

29. Suppose that T : R" - R" is linear. Establish necessary and sufficient conditions for T to be
measure preserving with respect to Lebesgue measure on R".

30. Let Sl = {z = ei010 E R} be the circle with the group operation of complex multiplication
and µ be Haar measure on this group (see Problem 24). Define T: Sl -* Sl by T(z) = z2.
Show that T preserves µ.

31. Define f : R2 -+ R2 by f (x, y) = (2x, y/2). Show that f is measure preserving with respect
to Lebesgue measure.

32. (Poincare Recurrence) Let T be a measure preserving transformation on a finite measure
space (X, M, µ) and the set A be measurable. Show that for almost all x E X, there are
infinitely many natural numbers n for which T"(x) belongs to A.

33. Let (X, M, µ) be a probability space and T : X X an ergodic transformation. Let the func-
tion g E Ll (X, µ) have the property that g o T = g a.e. on X. For a natural number n, show
that there is a unique integer k(n) for which µ{x E X I k(n)/n < g(x) < (k(n) + 1)/n} = 1.
Then use this to show that if c = fX g dµ, then

f[g_c]di.i n.µ(A)<nforallnENandAEM.

From this conclude that g = c a.e. and thereby provide a different proof of one implication
in Proposition 11.
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Alaoglu's Theorem, 299
Alexandroff one-point compactification, 450
Algebra

of functions, 248
of sets, 37, 357

Almost everywhere (a.e.), 54,339
Archimedean property of R, 11
Arcwise connected space, 238
Arzela-Ascoli Lemma, 207
Arzela-Ascoli Theorem, 208
Ascending sequence of sets, 18, 339
Average value function, Avh f, 107
Axiom of Choice, 5

Baire Category Theorem, 211
Baire measure, 470
Banach Contraction Principle, 216
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Banach space, 255
Banach-Saks Theorem, 175, 314
Banach-Saks-Steinhaus Theorem, 269
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Beppo Levi's Lemma, 84,370
Bessel's Inequality, 316
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Bilinearity of an inner product, 309
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Borel measure, 437, 455
Borel-Cantelli Lemma, 46,340
Borsuk's Theorem, 251
Boundary of a set, 211
Boundary point, 211
Bounded

above, 9
below, 9

finitely additive signed measure, 404
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linear functional, 156
linear operator, 256
sequence,21
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set of real numbers, 9
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Bounded Convergence Theorem, 78

Cantor Intersection Theorem, 195
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in a metric space, 193
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Cauchy-Schwarz Inequality, 142,396
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Chebychev's Inequality, 80,367
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linear operator, 265
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Closed Graph Theorem, 265
Closed linear complement, 266



498 Index

Closed unit ball, 188
Closure of a set

in a metric space, 188
in a topological space, 225
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Alaoglu's Theorem, 299
Arzela-Ascoli Theorem, 208
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Dunford-Pettis Theorem, 412
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Helley's Theorem, 171
Krein-Milman Theorem, 296
Kakutani's Theorem, 301
Riesz Weak Compactness Theorem, 408
Schauder's Theorem, 325
Tychonoff Product Theorem, 244

Complemented Banach space, 312
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measure space, 340
metric space, 193
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of C[a, b], 193
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of a measure space, 340
of a metric space, 196
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Conjugate function, f*, 141
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equicontinuous, 207
of integration, 91, 375
of measure, 44,339
uniform, 192

Continuous function, 25
Continuous mapping

between metric spaces, 191
between topological spaces, 230

Contracting sequence of sets, 195
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in a normed linear space, 150
in a topological space, 229
polynomials in C[a, b], 151
simple functions in LP(E), E C R, 1

p<oo,151
the rationals in R, 12
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Differentiability
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of a convex function, 131
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Essential supremum, 138, 395
Essential upper bound, 136, 395
Essentially bounded function, 136, 395
Euclidean norm, 424
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Finite cover, 18
Finite Intersection Property, 198
Finite measure, 340
Finite rank, operator of, 324
Finite set, 14
Finite subadditivity of measure, 34
Finite support, 79
Finitely additive set function, 352
First category, set of the, 214
First countable space, 229
Fixed point, 215
Fixed point of a representation, 481
Frechet Intersection Theorem, 236
Fredhohn alternative, 332
Fubini's Theorem, 416
Function

absolutely continuous, 119
bounded variation, 116
Cantor-Lebesgue, 50
characteristic, 61
conjugate, 141
continuous, 25, 191
countably monotone set, 346
cumulative distribution, 385, 437
Dirichlet, 74
essentially bounded, 136, 395
finitely additive set, 352
integrable, 85, 373
Lipschitz, 25
measurable, 55, 360
monotone, increasing, decreasing,

27

negative part, 85, 372
positive part, 85, 372
Radamacher, 163
simple, 61,362
unit, 137

Functional, 137
positively homogeneous, 277
subadditive, 277
bounded, 156
continuous, 156
gauge,291
linear, 155
Minkowski, 291

Gs set, 20
Gauge functional, 291
General linear group, 334,478
Goldstine's Theorem, 302
Graph of a mapping, 265
Greatest lower bound (g.l.b.), 9

Haar measure, 486
Hahn decomposition, 345
Hahn Decomposition Theorem, 344
Hahn's Lemma, 343
Hahn-Banach

Lemma, 277
Theorem, 278

Hamel basis, 272
Hausdorff measure, 443
Hausdorff topological space, 227
Helley's Theorem, 171
Hellinger-Toplitz Theorem, 322
Hilbert space, 310
Hilbert-Schmidt

Lemma, 327
Theorem, 327

Hilbertable Banach space, 312
Holder's Inequality, 140,3%
Hollow set, 211
Homeomorphism, 231
Homomorphism, 480
Hyperplane, 272
Hyperplane Separation

Lemma, 291
Theorem, 292

Identity mapping, 4
Image of a mapping, 5
Increasing function, 50
Increasing sequence, 21
Indefinite integral, 125
Index set, 4
Induced measure, 350

Inductive set, 11
Inequality

Cauchy-Schwarz, 142,396
Chebychev's, 80, 367
Holder's, 140,396
Jensen's, 133
Minkowski's, 141,396
triangle, 9, 137, 184
Young's, 140
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Inner product, 309,424
Inner product space, 309
Inner regular set, 471
Integrable

Lebesgue, 73, 84
Riemann, 69
uniformly, 93, 376

Integral
indefinite, 125
Lebesgue-Stieltjes, 438
Riemann, 69
Riemann-Stieltjes, 438

Integral Comparison Test, 86, 373
Interior of a set, 211
Interior point

in a topological space, 211
in R, 20

Intermediate Value Property, 237
Intermediate Value Theorem, 26
Internal point of a set, 287
Invariant measurable transformations, 488
Invariant subset, 481

under a measurable transformation,
489

Inverse image, 4
Inverse mapping, 4
Invertible operator, 332
Isolated point, 20
Isometry, 185
Isomorphism

between linear spaces, 258

isometric, 258
Iterated integration, 416

James' example, 285
Jensen's Inequality, 132
Jordan Decomposition Theorem, 118,345
Jump discontinuity, 27

Kadet's Theorem, 232
Kakutani's Theorem, 301
Kantorovitch Representation Theorem, 405
Krein-Milman

Lemma, 295
Theorem, 296

Lax-Milgram Lemma, 320
Least upper bound (l.u.b.), 9
Lebesgue Covering Lemma, 201
Lebesgue decomposition of a function, 127

Lebesgue decomposition of a measure, 384
Lebesgue Decomposition Theorem, 384
Lebesgue Dominated Convergence Theorem,

88,376
Lebesgue integrable, 73
Lebesgue integrability

characterization of, 103
Lebesgue integral, 73
Lebesgue measurable, 35
Lebesgue measure, 43, 426
Lebesgue number

for a cover, 201
Lebesgue outer measure, 31, 426
Lebesgue-Stieltjes integral, 438
Left-invariant measure, 486
lim inf of a collection of sets, 19
Jim sup of a collection of sets, 19
Limit inferior

lim inf, 24
Limit of a sequence, 21

in a metric space, 189
in a topological space, 228

Limit superior
Jim sup, 24

Lindenstrauss-Tzafriri Theorem, 312
Lindelof property

for a topological space, 230
Linear

combination, 254
complement, 266
functional, 155
mapping, 256
operator, 256
span, 166
subspace,254

Linear Change of Variables Theorem, 433
Linearity and monotonicity of integration

for general measure spaces, 374
Lebesgue integral, functions of one

variable, 87
Lipschitz function, 25
Lipschitz mapping, 192,216
Locally compact extension property, 453
Locally compact separation property, 453
Locally compact space, 447
Locally convex topological vector space,

286
Locally measurable, 342
Lower Darboux sum, 68
Lower derivative, 111
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Lower Lebesgue integral, 73
Lower Riemann integral, 69
Lusin's Theorem, 66,456

Mapping
continuous, 191, 230

linear, 256

Lipschitz, 192, 216
open,264

Maximal member, 6
Maximum norm, 138
Mazur-Ulam Theorem, 434
Mazur's Theorem, 292
Meager set, 214
Measurable

function, 55, 360
Lebesgue,35

locally measurable, 342

rectangle, 414

set, 35, 338, 347
space,338
transformation, 488

Measure, 338
Baire, 470
Borel, 437, 455
bounded finitely additive signed, 404
Caratheodory outer measure, 442
convergence in, 365
counting measure, 338
Dirac measure, 338
finite, 340
Haar, 486
Hausdorff, 443
induced,350
Lebesgue,43
mutually singular, 384
outer, 31, 346
product, 416
Radon, 455
regular, 471
saturated, 342
semifinite, 342
o--finite, 340
signed,342
uniform absolute continuity of a sequence,

392
Measure preserving transformation, 488
Measure space, 338

complete, 340
Metric, 183

pseudometric, 185
uniform, 206

Metric space, 183
compact, 197
complete, 193
discrete metric, 184
metric subspace, 184
Nikodym, 388
product metric, 185
sequentially compact, 199
totally bounded, 198

Metrizable topological space, 229
Minkowski functional, 291
Minkowski's Inequality, 141,396
Monotone

sequence,21
sequences of integrable functions, 83

Monotone Convergence Theorems
sequences of integrable functions, 83, 370
sequences of symmetric operators, 323

Monotone function
continuity property, 108
differentiability property, 109

Monotonicity of measure, 46, 339
Moore Plane, 226
Mutually singular, 345

Natural embedding of a space in its
bidual, 276

Natural numbers, 11
Negative part (variation) of a signed measure,

345
Negative part of a function, 372
Negative set, 343
Neighborhood of a point

in a metric space, 187
in a topological space, 223

Neighborhood of a subset, 227
Nested Set Theorem, 18
Neumann series, 478
Nikodym metric space, 388
Nonmeasurable set, 47
Nonnegative symmetric operator, 321
Norm, 137,254

of a bounded linear operator, 256
maximum, 138

Normal topological space, 227
Normalization, 137
Normally ascending collection, 240
Normed linear space, 137,184
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Nowhere dense set, 212
Null set, 343

Open
ball, 187
cover, 18, 197
mapping, 264
set, 16, 222
unit ball, 255

Open Mapping Theorem, 264
Operator

bounded linear, 256
compact, 324
invertible, 332
linear, 256
nonnegative symmetric, 321
of finite rank, 324
self-adjoint, 321

Ordered pair, 6
Orthogonal

complement, 311
direct sum decomposition, 311
operator, 324
projection, 311
projection sequence, 330
vectors, 311

Orthogonal set, 316
Orthonormal set, 316
Outer measure, 31, 346

Caratheodory,442

Lebesgue,426

Outer regular set, 471

Parameter set, 4
Parseval's Identities, 318
Partial ordering, 6
Perfect set, 53
Picard Existence Theorem, 218
Pigeonhole principle, 14
Parallelogram Law, 310
Point of closure

in a metric space, 188
in a topological space, 225
in the real numbers, 17

Pointwise bounded sequence, 207
Pointwise limit

of measurable functions, 60
Polarization Identity, 312, 321

Positive part (variation) of a signed measure,
345

Positive part of a function, 372
Positive set, 343
Positively homogeneous, 137
Positively homogeneous functional, 277
Positivity Axioms for R, 8
Power set, 3
Premeasure, 353

Radon, 456
Principle of Mathematical Induction, 11
Probability functional, 484
Probability measure, 486,489
Product measure, 416
Product topology, 224, 244
Projection onto a subspace, 266
Proper mapping, 203
Proper subset, 3
Pseudometric, 185
Pseudonorm, 256

Quadratic form, 321

Radon measure, 455
Radon premeasure, 456
Radon-Nikodym derivative, 385
Radon-Nikodym Theorem, 382
Radon-Riesz Theorem, 168, 315
Raleigh quotient, 326
Range of a mapping, 5
Rapidly Cauchy sequence, 146, 398
Rational numbers, 11
Reflexive space, 276
Reflexivity

of LP(E), E C R, 1 <p<1,284
of LP(X, µ),1 <p<oo,409
not of C[a, b], 284
not of LP[a, b]; p =1, oo, 285
not of C(X), X infinite, 302

Regular measure, 471
Regular representation, 483
Regular set, 471
Regular topological space, 227
Relative complement, 3,35
Representation of a group, 480
Residual set, 214
Restriction of a mapping, 5
Riemann integral, 69
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Riemann integrability
characterization of, 104

Riemann-Lebesgue Lemma, 96,167
Riemann-Stieltjes integral, 438
Riesz Representation Theorem

for the dual ofLP(R), 1 <p<oo,160
for the dual of C[a, b], 468
for the dual of C(X ), 464
for the dual of LP (X, A), 1 < p < oo, 400

Riesz's Lemma, 261
Riesz's Theorem, 251, 261
Riesz-Fischer Theorem, 148,398
Riesz-Frechet Representation Theorem, 313
Riesz-Markov Theorem, 458
Riesz-Schauder Theorem, 331
Rigid motion, 434
Ring of sets, 357

Saturated measure, 342
Scalar product, 424
Schauder's Theorem, 325
Second category, set of the, 214
Second countable space, 229
Self-adjoint operator, 321
Semialgebra of sets, 357
Semifmite measure, 342
Semiring, 354
Separability

in a metric space, 204
in a normed linear space, 152
in a topological space, 229
not of L00 [a, b],152
of C[a, b], 151
ofLP(E),ECR,1 <p<oo,152

Separation
by a hyperplane, 290
of points, 248
of subsets in a topological space, 237

Sequence
Cauchy in measure, 365
pointwise bounded, 207
uniformly bounded, 207
uniformly Cauchy, 206

Sequential compactness
in a metric space, 199
in a topological space, 234

Set

Borel subset of R
bounded, 9,195
Cantor, 49

closed, 17
dense, 12
finite measure, 340
meager, 214
measurable subset of R, 35
negative, 343
nowhere dense, 212
null, 343
of the first category, 214
of the second category, 214
open, 16
perfect, 53
positive, 343
residual, 214
o-finite measure, 340

Set function
countably additive, 338
countably monotone, 339,346
excision property of, 339
finitely additive, 339
finitely monotone, 346
monotonicity, 339

a--algebra, 38
o -finite measure, 340
Signed measure, 342
Signed Radon measure, 464
Simple Approximation Lemma, 363
Simple Approximation Theorem, 62,363
Simple function, 61, 362
Singleton set, 3
Singular measures, 384
Singular function, 127
Sorgenfrey Line, 226
Space

Banach space, 255
dual, 157
Euclidean,184

Hilbert, 310
locally convex topological vector, 286
metric, 183
normed linear, 184
topological, 223

Span, 254
Square root of an operator, 323
Stone-Weierstrass Approximation Theorem,

248
Strictly convex norm, 297
Strictly increasing function, 50
Strong topology on a normed space, 275
Stronger topology, 231
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Subadditive functional, 277
Subbase for a topology, 224
Subcover, 18
Subsequence, 21

Support of a function, 448
Supporting set, 295
Supremum; sup, 9
Symmetric difference of sets, 41,388
Symmetric operator, 321
Symmetry of an inner product, 309

Tietze Extension Theorem, 241
Tightness, 98, 377
Tonelli's Theorem, 420
Topological group, 478
Topological space, 223

arcwise connected, 238
compact, 234
connected, 237
discrete topology, 223
first countable, 229
Hausdorff, 227
metrizable, 229
normal, 227
regular, 227
second countable, 229
sequentially compact, 234
subspace topology, 223
trivial topology, 223

Topology
product, 224
strong topology on a normed space, 275
weak topology on a normed space, 275

Torus, 488
Total variation, 404
Total variation of a signed measure, 345
Totally bounded metric space, 198
Totally ordered set, 6
Translate, 255
Translation invariant, 428
Triangle Inequality, 137, 184

for real numbers, 9
Trivial topology, 223
Tychonoff Product Theorem, 245
Tychonoff topological space, 227

Uniform absolute continuity, 392
Uniform Boundedness Principle, 269

in Lt', 171
Uniform integrability, 93, 376
Uniform metric, 206
Uniformly bounded sequence, 207
Uniformly Cauchy sequence, 206
Uniformly continuous function, 26,192
Uniformly equicontinuous, 208
Unit function, 137
Unit vector, 255
Upper Darboux sum, 69
Upper derivative, 111
Upper Lebesgue integral, 73
Upper Riemann integral, 69
Urysohn Metrization Theorem, 229, 242
Urysohn's Lemma, 239

Vitali Convergence Theorem, 94, 98, 376, 377,
399

Vitali covering, 109
Vitali's Covering Lemma, 109
Vitali's Theorem, 48
Vitali-Hahn-Saks Theorem, 392
von Neumann's proof of the Radon-Nikodym

Theorem, 387

Weak topology
on a topological space, 231

Weak topology on a linear space, 275
Weak topology on a normed space, 275
Weak-* convergent sequence of functionals,

275
Weak-* topology on a dual space, 275
Weaker topology, 231
Weakly convergent sequence, 275
Weakly sequentially compact, 173
Weierstrass Approximation Theorem, 247

Young's Inequality, 140

Zorn's Lemma, 6
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