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[Russell’s blurb from the orig-
inal dustcover:]

This book is intended for
those who have no previous
acquaintance with the top-
ics of which it treats, and no
more knowledge of mathe-
matics than can be acquired
at a primary school or even at
Eton. It sets forth in elemen-
tary form the logical defini-
tion of number, the analysis of
the notion of order, the mod-
ern doctrine of the infinite,



and the theory of descriptions
and classes as symbolic fic-
tions. The more controversial
and uncertain aspects of the
subject are subordinated to
those which can by now be
regarded as acquired scien-
tific knowledge. These are
explained without the use of
symbols, but in such a way
as to give readers a general
understanding of the methods
and purposes of mathematical
logic, which, it is hoped, will
be of interest not only to those
who wish to proceed to a more



serious study of the subject,
but also to that wider circle
who feel a desire to know the
bearings of this important
modern science.
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PREFACE

THis book is intended essen-
tially as an “Introduction,”
and does not aim at giving an
exhaustive discussion of the
problems with which it deals.
It seemed desirable to set
forth certain results, hitherto
only available to those who
have mastered logical sym-

X (original page v)



bolism, in a form offering the
minimum of difficulty to the
beginner. The utmost endeav-
our has been made to avoid
dogmatism on such questions
as are still open to serious
doubt, and this endeavour has
to some extent dominated the
choice of topics considered.
The beginnings of mathemat-
ical logic are less definitely
known than its later portions,
but are of at least equal philo-
sophical interest. Much of
what is set forth in the follow-
ing chapters is not properly

xi (original page v)



to be called “philosophy,”
though the matters concerned
were included in philosophy
so long as no satisfactory sci-
ence of them existed. The
nature of infinity and conti-
nuity, for example, belonged
in former days to philosophy,
but belongs now to mathemat-
ics. Mathematical philosophy,
in the strict sense, cannot,
perhaps, be held to include
such definite scientific re-
sults as have been obtained
in this region; the philoso-
phy of mathematics will nat-

xii (original page v)



urally be expected to deal
with questions on the fron-
tier of knowledge, as to which
comparative certainty is not
yet attained. But speculation
on such questions is hardly
likely to be fruitful unless the
more scientific parts of the
principles of mathematics are
known. A book dealing with
those parts may, therefore,
claim to be an introduction
to mathematical philosophy,
though it can hardly claim, ex-
cept where it steps outside its
province, to be actually deal-

xiii (original page v)



ing with a part of philosophy.
It does deal, | however, with a
body of knowledge which, to
those who accept it, appears
to invalidate much traditional
philosophy, and even a good
deal of what is current in the
present day. In this way, as
well as by its bearing on still
unsolved problems, mathe-
matical logic is relevant to
philosophy. For this reason,
as well as on account of the
intrinsic importance of the
subject, some purpose may
be served by a succinct ac-

xiv (original pages v-vi)



count of the main results of
mathematical logic in a form
requiring neither a knowl-
edge of mathematics nor an
aptitude for mathematical
symbolism. Here, however,
as elsewhere, the method is
more important than the re-
sults, from the point of view
of further research; and the
method cannot well be ex-
plained within the framework
of such a book as the follow-
ing. It is to be hoped that
some readers may be suffi-
ciently interested to advance

XV (original page vi)



to a study of the method by
which mathematical logic can
be made helpful in investigat-
ing the traditional problems
of philosophy. But that is a
topic with which the follow-
ing pages have not attempted
to deal.

BERTRAND RUSSELL.

xvi (original page vi)



EDITOR’S NOTE

[The note below was written
by J. H. Muirhead, LL.D., ed-
itor of the Library of Philoso-
phy series in which Introduc-
tion to Mathematical Philoso-
phy was originally published.]

Taose who, relying on the
distinction between Mathe-

xvii (original page vii)



matical Philosophy and the
Philosophy of Mathematics,
think that this book is out of
place in the present Library,
may be referred to what the
author himself says on this
head in the Preface. It is not
necessary to agree with what
he there suggests as to the
readjustment of the field of
philosophy by the transfer-
ence from it to mathematics
of such problems as those of
class, continuity, infinity, in
order to perceive the bearing
of the definitions and discus-

xviii (original page vii)



sions that follow on the work
of “traditional philosophy.” If
philosophers cannot consent
to relegate the criticism of
these categories to any of the
special sciences, it is essential,
at any rate, that they should
know the precise meaning
that the science of mathemat-
ics, in which these concepts
play so large a part, assigns to
them. If, on the other hand,
there be mathematicians to
whom these definitions and
discussions seem to be an
elaboration and complication

Xix (original page vii)



of the simple, it may be well
to remind them from the side
of philosophy that here, as
elsewhere, apparent simplic-
ity may conceal a complexity
which it is the business of
somebody, whether philoso-
pher or mathematician, or,
like the author of this volume,
both in one, to unravel.

XX (original page vii)



CHAPTER I
THE SERIES OF
NATURAL NUMBERS

MaATHEMATICS is a study which,
when we start from its most
familiar portions, may be pur-
sued in either of two opposite
directions. The more famil-
iar direction is constructive,
towards gradually increas-
ing complexity: from integers
to fractions, real numbers,

1 (original page 1)



complex numbers; from ad-
dition and multiplication to
differentiation and integra-
tion, and on to higher math-
ematics. The other direction,
which is less familiar, pro-
ceeds, by analysing, to greater
and greater abstractness and
logical simplicity; instead of
asking what can be defined
and deduced from what is as-
sumed to begin with, we ask
instead what more general
ideas and principles can be
found, in terms of which what
was our starting-point can be

2 (original page 1)



defined or deduced. It is the
fact of pursuing this opposite
direction that characterises
mathematical philosophy as
opposed to ordinary mathe-
matics. But it should be un-
derstood that the distinction
is one, not in the subject mat-
ter, but in the state of mind of
the investigator. Early Greek
geometers, passing from the
empirical rules of Egyptian
land-surveying to the gen-
eral propositions by which
those rules were found to be
justifiable, and thence to Eu-

3 (original page 1)



clid’s axioms and postulates,
were engaged in mathematical
philosophy, according to the
above definition; but when
once the axioms and postu-
lates had been reached, their
deductive employment, as we
find it in Euclid, belonged to
mathematics in the | ordinary
sense. The distinction be-
tween mathematics and math-
ematical philosophy is one
which depends upon the in-
terest inspiring the research,
and upon the stage which
the research has reached; not

4 (original pages 1—2)



upon the propositions with
which the research is con-
cerned.

We may state the same dis-
tinction in another way. The
most obvious and easy things
in mathematics are not those
that come logically at the be-
ginning; they are things that,
from the point of view of
logical deduction, come some-
where in the middle. Just as
the easiest bodies to see are
those that are neither very
near nor very far, neither very
small nor very great, so the

5 (original page 2)



easiest conceptions to grasp
are those that are neither
very complex nor very simple
(using “simple” in a logical
sense). And as we need two
sorts of instruments, the tele-
scope and the microscope, for
the enlargement of our visual
powers, so we need two sorts
of instruments for the en-
largement of our logical pow-
ers, one to take us forward to
the higher mathematics, the
other to take us backward to
the logical foundations of the
things that we are inclined

6 (original page 2)



to take for granted in mathe-
matics. We shall find that by
analysing our ordinary math-
ematical notions we acquire
fresh insight, new powers,
and the means of reaching
whole new mathematical sub-
jects by adopting fresh lines
of advance after our backward
journey. It is the purpose of
this book to explain math-
ematical philosophy simply
and untechnically, without
enlarging upon those por-
tions which are so doubtful
or difficult that an elementary

7 (original page 2)



treatment is scarcely possible.
A full treatment will be found
in Principia Mathematica;' the
treatment in the present vol-
ume is intended merely as an
introduction.

To the average educated
person of the present day,
the obvious starting-point of
mathematics would be the
series of whole numbers,

*Cambridge University Press, vol.
i., 1910; vol. ii., 1912; vol. iii., 1913.
By Whitehead and Russell.
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1, 2,3, 4, ... etc. |

Probably only a person with
some mathematical knowl-
edge would think of begin-
ning with o instead of with
1, but we will presume this
degree of knowledge; we will
take as our starting-point the
series:

0,1,2,3,...1, n+1, ...

and it is this series that we
shall mean when we speak of

9 (original pages 2—3)



the “series of natural num-
bers.”

It is only at a high stage
of civilisation that we could
take this series as our starting-
point. It must have required
many ages to discover that
a brace of pheasants and a
couple of days were both in-
stances of the number 2: the
degree of abstraction involved
is far from easy. And the dis-
covery that 1 is a number must
have been difficult. As for o, it
is a very recent addition; the
Greeks and Romans had no

10 (original page 3)



such digit. If we had been em-
barking upon mathematical
philosophy in earlier days, we
should have had to start with
something less abstract than
the series of natural num-
bers, which we should reach
as a stage on our backward
journey. When the logical
foundations of mathematics
have grown more familiar, we
shall be able to start further
back, at what is now a late
stage in our analysis. But for
the moment the natural num-
bers seem to represent what

11 (original page 3)



is easiest and most familiar in
mathematics.

But though familiar, they
are not understood. Very few
people are prepared with a
definition of what is meant by
“number,” or “o0,” or “1.” It is
not very difficult to see that,
starting from o, any other of
the natural numbers can be
reached by repeated additions
of 1, but we shall have to de-
fine what we mean by “adding
1,” and what we mean by
“repeated.” These questions
are by no means easy. It was

12 (original page 3)



believed until recently that
some, at least, of these first
notions of arithmetic must be
accepted as too simple and
primitive to be defined. Since
all terms that are defined are
defined by means of other
terms, it is clear that human
knowledge must always be
content to accept some terms
as intelligible without defi-
nition, in order | to have a
starting-point for its defi-
nitions. It is not clear that
there must be terms which
are incapable of definition: it

13 (original pages 3—4)



is possible that, however far
back we go in defining, we
always might go further still.
On the other hand, it is also
possible that, when analysis
has been pushed far enough,
we can reach terms that re-
ally are simple, and therefore
logically incapable of the sort
of definition that consists in
analysing. This is a question
which it is not necessary for
us to decide; for our purposes
it is sufficient to observe that,
since human powers are fi-
nite, the definitions known to

14 (original page 4)



us must always begin some-
where, with terms undefined
for the moment, though per-
haps not permanently.

All traditional pure math-
ematics, including analytical
geometry, may be regarded as
consisting wholly of proposi-
tions about the natural num-
bers. That is to say, the terms
which occur can be defined by
means of the natural numbers,
and the propositions can be
deduced from the properties
of the natural numbers—with
the addition, in each case, of
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the ideas and propositions of
pure logic.

That all traditional pure
mathematics can be derived
from the natural numbers is a
fairly recent discovery, though
it had long been suspected.
Pythagoras, who believed that
not only mathematics, but
everything else could be de-
duced from numbers, was the
discoverer of the most serious
obstacle in the way of what is
called the “arithmetising” of
mathematics. It was Pythago-
ras who discovered the exis-
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tence of incommensurables,
and, in particular, the incom-
mensurability of the side of
a square and the diagonal. If
the length of the side is 1 inch,
the number of inches in the
diagonal is the square root of
2, which appeared not to be a
number at all. The problem
thus raised was solved only
in our own day, and was only
solved completely by the help
of the reduction of arithmetic
to logic, which will be ex-
plained in following chapters.
For the present, we shall take

17 (original page 4)



for granted the arithmetisa-
tion of mathematics, though
this was a feat of the very
greatest importance. |
Having reduced all tradi-
tional pure mathematics to
the theory of the natural num-
bers, the next step in logical
analysis was to reduce this
theory itself to the smallest
set of premisses and unde-
fined terms from which it
could be derived. This work
was accomplished by Peano.
He showed that the entire the-
ory of the natural numbers

18 (original pages 4—5)



could be derived from three
primitive ideas and five prim-
itive propositions in addition
to those of pure logic. These
three ideas and five proposi-
tions thus became, as it were,
hostages for the whole of tra-
ditional pure mathematics.
If they could be defined and
proved in terms of others, so
could all pure mathematics.
Their logical “weight,” if one
may use such an expression,
is equal to that of the whole
series of sciences that have
been deduced from the theory
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of the natural numbers; the
truth of this whole series is
assured if the truth of the five
primitive propositions is guar-
anteed, provided, of course,
that there is nothing erro-
neous in the purely logical
apparatus which is also in-
volved. The work of analysing
mathematics is extraordinar-
ily facilitated by this work of
Peano’s.

The three primitive ideas in
Peano’s arithmetic are:

o, number, SucCcCessor.

20 (original page 5)



By “successor” he means the
next number in the natural or-
der. That is to say, the succes-
sor of o is 1, the successor of
1 is 2, and so on. By “num-
ber” he means, in this connec-
tion, the class of the natural
numbers.> He is not assuming
that we know all the members
of this class, but only that we
know what we mean when we
say that this or that is a num-

2We shall use “number” in this
sense in the present chapter. After-
wards the word will be used in a more
general sense.
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ber, just as we know what we
mean when we say “Jones is a
man,” though we do not know
all men individually.

The five primitive propo-
sitions which Peano assumes
are:

(1) o is a number.

(2) The successor of any
number is a number.

(3) No two numbers have the
same successor. |

(4) o is not the successor of
any number.

(5) Any property which be-

22 (original pages 5-6)



longs to o, and also to the
successor of every number
which has the property,
belongs to all numbers.

The last of these is the prin-
ciple of mathematical induc-
tion. We shall have much to
say concerning mathemati-
cal induction in the sequel;
for the present, we are con-
cerned with it only as it occurs
in Peano’s analysis of arith-
metic.

Let us consider briefly the
kind of way in which the the-

23 (original page 6)



ory of the natural numbers
results from these three ideas
and five propositions. To be-
gin with, we define 1 as “the
successor of 0,” 2 as “the suc-
cessor of 1,” and so on. We
can obviously go on as long
as we like with these defini-
tions, since, in virtue of (2),
every number that we reach
will have a successor, and, in
virtue of (3), this cannot be
any of the numbers already
defined, because, if it were,
two different numbers would
have the same successor; and
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in virtue of (4) none of the
numbers we reach in the se-
ries of successors can be o.
Thus the series of successors
gives us an endless series of
continually new numbers. In
virtue of (5) all numbers come
in this series, which begins
with o and travels on through
successive successors: for (a)
o belongs to this series, and
(b) if a number n belongs to it,
so does its successor, whence,
by mathematical induction,
every number belongs to the
series.

25 (original page 6)



Suppose we wish to define
the sum of two numbers. Tak-
ing any number m, we define
m+o as m, and m+(n+1) as the
successor of m +n. In virtue
of (5) this gives a definition of
the sum of m and n, whatever
number n may be. Similarly
we can define the product of
any two numbers. The reader
can easily convince himself
that any ordinary elementary
proposition of arithmetic can
be proved by means of our
five premisses, and if he has
any difficulty he can find the

26 (original page 6)




proof in Peano.

It is time now to turn to the
considerations which make it
necessary to advance beyond
the standpoint of Peano, who
| represents the last perfec-
tion of the “arithmetisation”
of mathematics, to that of
Frege, who first succeeded
in “logicising” mathematics,
i.e. in reducing to logic the
arithmetical notions which
his predecessors had shown
to be sufficient for mathe-
matics. We shall not, in this
chapter, actually give Frege’s

27 (original pages 6-7)



definition of number and of
particular numbers, but we
shall give some of the reasons
why Peano’s treatment is less
final than it appears to be.

In the first place, Peano’s
three primitive ideas—namely,
“0,” “number,” and “suc-
cessor”’—are capable of an
infinite number of different
interpretations, all of which
will satisfy the five primitive
propositions. We will give
some examples.

(1) Let “0” be taken to mean
100, and let “number” be

28 (original page 7)



taken to mean the numbers
from 100 onward in the series
of natural numbers. Then all
our primitive propositions are
satisfied, even the fourth, for,
though 100 is the successor of
99, 99 is not a “number” in
the sense which we are now
giving to the word “number.”
It is obvious that any number
may be substituted for 100 in
this example.

(2) Let “0” have its usual
meaning, but let “number”
mean what we usually call
“even numbers,” and let the

29 (original page 7)



“successor” of a number be
what results from adding two
to it. Then “1” will stand
for the number two, “2” will
stand for the number four,
and so on; the series of “num-
bers” now will be

o, two, four, six, eight ...

All Peano’s five premisses are
satisfied still.

(3) Let “0” mean the num-
ber one, let “number” mean
the set
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and let “successor” mean

“half.” Then all Peano’s five

axioms will be true of this set.
It is clear that such exam-

ples might be multiplied in-

definitely. In fact, given any

series

Xor X1y Xy Xy ooe Xy e

which is endless, contains no
repetitions, has a beginning,
and has no terms that cannot

31 (original pages 7—8)



be reached from the begin-
ning in a finite number of
steps, we have a set of terms
verifying Peano’s axioms. This
is easily seen, though the for-
mal proof is somewhat long.
Let “0” mean x,, let “number”
mean the whole set of terms,
and let the “successor” of x,,
mean X,,,. Then

(1) “ois a number,” i.e. x, is
a member of the set.

(2) “The successor of any
number is a number,” i.e. tak-
ing any term x,, in the set, x,,,,
is also in the set.
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(3) “No two numbers have
the same successor,” i.e. if x,,
and x,, are two different mem-
bers of the set, x,,,, and x,,,,
are different; this results from
the fact that (by hypothesis)
there are no repetitions in the
set.

(4) “ois not the successor of
any number,” i.e. no term in
the set comes before x,.

(5) This becomes: Any
property which belongs to
X,, and belongs to x,,, pro-
vided it belongs to x,,, belongs
to all the x’s.

33 (original page 8)




This follows from the cor-
responding property for num-
bers.

A series of the form

Xor Xq5 Xy oo Xpyy -

in which there is a first term, a
successor to each term (so that
there is no last term), no repe-
titions, and every term can be
reached from the start in a fi-
nite number of steps, is called
a progression. Progressions
are of great importance in the
principles of mathematics.
As we have just seen, every
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progression verifies Peano’s
five axioms. It can be proved,
conversely, that every series
which verifies Peano’s five ax-
ioms is a progression. Hence
these five axioms may be used
to define the class of pro-
gressions: “progressions” are
“those series which verify
these five axioms.” Any pro-
gression may be taken as the
basis of pure mathematics: we
may give the name “o0” to its
first term, the name “number”
to the whole set of its terms,
and the name “successor” to
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the next in the progression.
The progression need not be
composed of numbers: it may
be | composed of points in
space, or moments of time, or
any other terms of which there
is an infinite supply. Each dif-
ferent progression will give
rise to a different interpreta-
tion of all the propositions of
traditional pure mathematics;
all these possible interpreta-
tions will be equally true.

In Peano’s system there is
nothing to enable us to distin-
guish between these different
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interpretations of his primi-
tive ideas. It is assumed that
we know what is meant by
“0,” and that we shall not sup-
pose that this symbol means
100 or Cleopatra’s Needle or
any of the other things that it
might mean.

This point, that “0” and
“number” and “successor”
cannot be defined by means of
Peano’s five axioms, but must
be independently understood,
is important. We want our
numbers not merely to verify
mathematical formule, but
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to apply in the right way to
common objects. We want to
have ten fingers and two eyes
and one nose. A system in
which “1” meant 100, and “2”
meant 101, and so on, mlght
be all right for pure math-
ematics, but would not suit
daily life. We want “0” and
“number” and successor"
to have meanings which will
give us the right allowance of
fingers and eyes and noses.
We have already some knowl-
edge (though not sufficiently
articulate or analytic) of what
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we mean by “1” and “2” and
so on, and our use of numbers
in arithmetic must conform
to this knowledge. We cannot
secure that this shall be the
case by Peano’s method; all
that we can do, if we adopt
his method, is to say “we
know what we mean by ‘o’
and ‘number’ and ‘successor,’
though we cannot explain
what we mean in terms of
other simpler concepts.” It
is quite legitimate to say this
when we must, and at some
point we all must; but it is
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the object of mathematical
philosophy to put off saying
it as long as possible. By the
logical theory of arithmetic
we are able to put it off for a
very long time.

It might be suggested that,
instead of setting up “o” and
“number” and “successor” as
terms of which we know the
meaning although we can-
not define them, we might
let them | stand for any three
terms that verify Peano’s five
axioms. They will then no
longer be terms which have
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a meaning that is definite
though undefined: they will
be “variables,” terms concern-
ing which we make certain hy-
potheses, namely, those stated
in the five axioms, but which
are otherwise undetermined.
If we adopt this plan, our
theorems will not be proved
concerning an ascertained set
of terms called “the natural
numbers,” but concerning all
sets of terms having certain
properties. Such a procedure
is not fallacious; indeed for
certain purposes it represents
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a valuable generalisation. But
from two points of view it
fails to give an adequate basis
for arithmetic. In the first
place, it does not enable us
to know whether there are
any sets of terms verifying
Peano’s axioms; it does not
even give the faintest sugges-
tion of any way of discovering
whether there are such sets.
In the second place, as al-
ready observed, we want our
numbers to be such as can be
used for counting common
objects, and this requires that

42 (original page 10)



our numbers should have a
definite meaning, not merely
that they should have certain
formal properties. This defi-
nite meaning is defined by the
logical theory of arithmetic.
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CHAPTERII
DEFINITION OF
NUMBER

THE question “What is a num-
ber?” is one which has been
often asked, but has only been
correctly answered in our
own time. The answer was
given by Frege in 1884, in his
Grundlagen der Arithmetik."

1The same answer is given more
fully and with more development in
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Although this book is quite
short, not difficult, and of the
very highest importance, it
attracted almost no attention,
and the definition of number
which it contains remained
practically unknown until
it was rediscovered by the
present author in 1901.

In seeking a definition of
number, the first thing to be
clear about is what we may
call the grammar of our in-

his Grundgesetze der Arithmetik, vol.
i., 1893.

45 (original page 11)



quiry. Many philosophers,
when attempting to define
number, are really setting
to work to define plurality,
which is quite a different
thing. Number is what is char-
acteristic of numbers, as man
is what is characteristic of
men. A plurality is not an
instance of number, but of
some particular number. A
trio of men, for example, is an
instance of the number 3, and
the number 3 is an instance
of number; but the trio is not
an instance of number. This
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point may seem elementary
and scarcely worth mention-
ing; yet it has proved too
subtle for the philosophers,
with few exceptions.

A particular number is not
identical with any collection
of terms having that number:
the number 3 is not identical
with | the trio consisting of
Brown, Jones, and Robinson.
The number 3 is something
which all trios have in com-
mon, and which distinguishes
them from other collections.
A number is something that
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characterises certain collec-
tions, namely, those that have
that number.

Instead of speaking of a
“collection,” we shall as a rule
speak of a “class,” or some-
times a “set.” Other words
used in mathematics for the
same thing are “aggregate”
and “manifold.” We shall
have much to say later on
about classes. For the present,
we will say as little as pos-
sible. But there are some
remarks that must be made
immediately.
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A class or collection may
be defined in two ways that
at first sight seem quite dis-
tinct. We may enumerate
its members, as when we
say, “The collection I mean
is Brown, Jones, and Robin-
son.” Or we may mention a
defining property, as when
we speak of “mankind” or
“the inhabitants of London.”
The definition which enu-
merates is called a definition
by “extension,” and the one
which mentions a defining
property is called a definition
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by “intension.” Of these two
kinds of definition, the one
by intension is logically more
fundamental. This is shown
by two considerations: (1)
that the extensional definition
can always be reduced to an
intensional one; (2) that the
intensional one often cannot
even theoretically be reduced
to the extensional one. Each
of these points needs a word
of explanation.

(1) Brown, Jones, and Robin-
son all of them possess a cer-
tain property which is pos-
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sessed by nothing else in
the whole universe, namely,
the property of being either
Brown or Jones or Robinson.
This property can be used
to give a definition by inten-
sion of the class consisting of
Brown and Jones and Robin-
son. Consider such a formula
as “x is Brown or x is Jones or
x is Robinson.” This formula
will be true for just three x’s,
namely, Brown and Jones and
Robinson. In this respect it
resembles a cubic equation
with its three roots. It may be
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taken as assigning a property
common to the members of
the class consisting of these
three | men, and peculiar to
them. A similar treatment can
obviously be applied to any
other class given in extension.

(2) It is obvious that in prac-
tice we can often know a great
deal about a class without
being able to enumerate its
members. No one man could
actually enumerate all men,
or even all the inhabitants of
London, yet a great deal is
known about each of these
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classes. This is enough to
show that definition by exten-
sion is not necessary to knowl-
edge about a class. But when
we come to consider infinite
classes, we find that enumera-
tion is not even theoretically
possible for beings who only
live for a finite time. We can-
not enumerate all the natural
numbers: they are o, 1, 2,
3, and so on. At some point
we must content ourselves
with “and so on.” We cannot
enumerate all fractions or all
irrational numbers, or all of
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any other infinite collection.
Thus our knowledge in regard
to all such collections can only
be derived from a definition
by intension.

These remarks are relevant,
when we are seeking the defi-
nition of number, in three dif-
ferent ways. In the first place,
numbers themselves form an
infinite collection, and can-
not therefore be defined by
enumeration. In the second
place, the collections having a
given number of terms them-
selves presumably form an
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infinite collection: it is to be
presumed, for example, that
there are an infinite collec-
tion of trios in the world, for
if this were not the case the
total number of things in the
world would be finite, which,
though possible, seems un-
likely. In the third place, we
wish to define “number” in
such a way that infinite num-
bers may be possible; thus
we must be able to speak of
the number of terms in an
infinite collection, and such a
collection must be defined by
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intension, i.e. by a property
common to all its members
and peculiar to them.

For many purposes, a class
and a defining characteris-
tic of it are practically inter-
changeable. The vital differ-
ence between the two consists
in the fact that there is only
one class having a given set of
members, whereas there are
always many different char-
acteristics by which a given
class may be defined. Men |
may be defined as featherless
bipeds, or as rational animals,
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or (more correctly) by the
traits by which Swift delin-
eates the Yahoos. It is this
fact that a defining charac-
teristic is never unique which
makes classes useful; other-
wise we could be content with
the properties common and
peculiar to their members.?
Any one of these properties

2 As will be explained later, classes
may be regarded as logical fictions,
manufactured out of defining char-
acteristics. But for the present it
will simplify our exposition to treat
classes as if they were real.
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can be used in place of the
class whenever uniqueness is
not important.

Returning now to the def-
inition of number, it is clear
that number is a way of bring-
ing together certain collec-
tions, namely, those that have
a given number of terms. We
can suppose all couples in
one bundle, all trios in an-
other, and so on. In this way
we obtain various bundles of
collections, each bundle con-
sisting of all the collections
that have a certain number of
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terms. Each bundle is a class
whose members are collec-
tions, i.e. classes; thus each is
a class of classes. The bundle
consisting of all couples, for
example, is a class of classes:
each couple is a class with
two members, and the whole
bundle of couples is a class
with an infinite number of
members, each of which is a
class of two members.

How shall we decide wheth-
er two collections are to be-
long to the same bundle? The
answer that suggests itself is:
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“Find out how many members
each has, and put them in
the same bundle if they have
the same number of mem-
bers.” But this presupposes
that we have defined num-
bers, and that we know how
to discover how many terms a
collection has. We are so used
to the operation of counting
that such a presupposition
might easily pass unnoticed.
In fact, however, counting,
though familiar, is logically
a very complex operation;
moreover it is only available,
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as a means of discovering
how many terms a collec-
tion has, when the collection
is finite. Our definition of
number must not assume in
advance that all numbers are
finite; and we cannot in any
case, without a vicious circle,
| use counting to define num-
bers, because numbers are
used in counting. We need,
therefore, some other method
of deciding when two collec-
tions have the same number
of terms.

In actual fact, it is simpler
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logically to find out whether
two collections have the same
number of terms than it is
to define what that number
is. An illustration will make
this clear. If there were no
polygamy or polyandry any-
where in the world, it is clear
that the number of husbands
living at any moment would
be exactly the same as the
number of wives. We do not
need a census to assure us of
this, nor do we need to know
what is the actual number of
husbands and of wives. We
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know the number must be
the same in both collections,
because each husband has
one wife and each wife has
one husband. The relation of
husband and wife is what is
called “one-one.”

A relation is said to be “one-
one” when, if x has the rela-
tion in question to y, no other
term x’ has the same relation
to y, and x does not have the
same relation to any term y’
other than y. When only the
first of these two conditions is
fulfilled, the relation is called
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“one-many”; when only the
second is fulfilled, it is called
“many-one.” It should be ob-
served that the number 1 is
not used in these definitions.
In Christian countries, the
relation of husband to wife is
one-one; in Mahometan coun-
tries it is one-many; in Tibet it
is many-one. The relation of
father to son is one-many; that
of son to father is many-one,
but that of eldest son to father
is one-one. If # is any number,
the relation of n to n+ 1 is
one-one; so is the relation of
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n to 2n or to 3n. When we
are considering only positive
numbers, the relation of n to
n? is one-one; but when neg-
ative numbers are admitted,
it becomes two-one, since n
and —#n have the same square.
These instances should suf-
fice to make clear the notions
of one-one, one-many, and
many-one relations, which
play a great part in the princi-
ples of mathematics, not only
in relation to the definition of
numbers, but in many other
connections.
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Two classes are said to be
“similar” when there is a one-
one | relation which correlates
the terms of the one class
each with one term of the
other class, in the same man-
ner in which the relation of
marriage correlates husbands
with wives. A few prelimi-
nary definitions will help us
to state this definition more
precisely. The class of those
terms that have a given re-
lation to something or other
is called the domain of that
relation: thus fathers are the
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domain of the relation of fa-
ther to child, husbands are
the domain of the relation of
husband to wife, wives are the
domain of the relation of wife
to husband, and husbands
and wives together are the
domain of the relation of mar-
riage. The relation of wife to
husband is called the converse
of the relation of husband to
wife. Similarly less is the con-
verse of greater, later is the
converse of earlier, and so on.
Generally, the converse of a
given relation is that relation
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which holds between y and x
whenever the given relation
holds between x and y. The
converse domain of a relation
is the domain of its converse:
thus the class of wives is the
converse domain of the rela-
tion of husband to wife. We
may now state our definition
of similarity as follows:—

One class is said to be “sim-
ilar” to another when there is
a one-one relation of which the
one class is the domain, while
the other is the converse do-
main.
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It is easy to prove (1) that
every class is similar to itself,
(2) that if a class « is similar
to a class g, then B is similar
to a, (3) that if « is similar to
B and B to y, then «a is similar
to y. A relation is said to be
reflexive when it possesses the
first of these properties, sym-
metrical when it possesses the
second, and transitive when
it possesses the third. It is
obvious that a relation which
is symmetrical and transitive
must be reflexive throughout
its domain. Relations which
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possess these properties are
an important kind, and it is
worth while to note that sim-
ilarity is one of this kind of
relations.

It is obvious to common
sense that two finite classes
have the same number of
terms if they are similar, but
not otherwise. The act of
counting consists in estab-
lishing a one-one correlation
| between the set of objects
counted and the natural num-
bers (excluding o) that are
used up in the process. Ac-
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cordingly common sense con-
cludes that there are as many
objects in the set to be counted
as there are numbers up to
the last number used in the
counting. And we also know
that, so long as we confine
ourselves to finite numbers,
there are just n numbers from
1 up to n. Hence it follows
that the last number used in
counting a collection is the
number of terms in the collec-
tion, provided the collection
is finite. But this result, be-
sides being only applicable

71 (original page 17)



to finite collections, depends
upon and assumes the fact
that two classes which are
similar have the same number
of terms; for what we do when
we count (say) 10 objects is
to show that the set of these
objects is similar to the set
of numbers 1 to 10. The no-
tion of similarity is logically
presupposed in the operation
of counting, and is logically
simpler though less familiar.
In counting, it is necessary to
take the objects counted in a
certain order, as first, second,
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third, etc., but order is not of
the essence of number: it is
an irrelevant addition, an un-
necessary complication from
the logical point of view. The
notion of similarity does not
demand an order: for exam-
ple, we saw that the number
of husbands is the same as
the number of wives, without
having to establish an order of
precedence among them. The
notion of similarity also does
not require that the classes
which are similar should be
finite. Take, for example, the
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natural numbers (excluding o)
on the one hand, and the frac-
tions which have 1 for their
numerator on the other hand:
it is obvious that we can cor-
relate 2 with 1/2, 3 with 1/3,
and so on, thus proving that
the two classes are similar.
We may thus use the notion
of “similarity” to decide when
two collections are to belong
to the same bundle, in the
sense in which we were ask-
ing this question earlier in this
chapter. We want to make one
bundle containing the class
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that has no members: this will
be for the number o. Then
we want a bundle of all the
classes that have one member:
this will be for the number
1. Then, for the number 2,
we want a bundle consisting
| of all couples; then one of
all trios; and so on. Given
any collection, we can define
the bundle it is to belong to
as being the class of all those
collections that are “similar”
to it. It is very easy to see that
if (for example) a collection
has three members, the class
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of all those collections that are
similar to it will be the class
of trios. And whatever num-
ber of terms a collection may
have, those collections that
are “similar” to it will have
the same number of terms. We
may take this as a definition
of “having the same number
of terms.” It is obvious that it
gives results conformable to
usage so long as we confine
ourselves to finite collections.

So far we have not sug-
gested anything in the slight-
est degree paradoxical. But
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when we come to the actual
definition of numbers we can-
not avoid what must at first
sight seem a paradox, though
this impression will soon wear
off. We naturally think that
the class of couples (for ex-
ample) is something different
from the number 2. But there
is no doubt about the class
of couples: it is indubitable
and not difficult to define,
whereas the number 2, in any
other sense, is a metaphysical
entity about which we can
never feel sure that it exists or
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that we have tracked it down.
It is therefore more prudent
to content ourselves with the
class of couples, which we
are sure of, than to hunt for
a problematical number 2
which must always remain
elusive. Accordingly we set
up the following definition:—

The number of a class is the
class of all those classes that are
similar to it.

Thus the number of a cou-
ple will be the class of all
couples. In fact, the class of
all couples will be the number
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2, according to our defini-
tion. At the expense of a little
oddity, this definition secures
definiteness and indubitable-
ness; and it is not difficult to
prove that numbers so defined
have all the properties that we
expect numbers to have.

We may now go on to define
numbers in general as any one
of the bundles into which sim-
ilarity collects classes. A num-
ber will be a set of classes such
as that any two are similar to
each | other, and none outside
the set are similar to any in-
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side the set. In other words,
a number (in general) is any
collection which is the num-
ber of one of its members; or,
more simply still:

A number is anything which
is the number of some class.

Such a definition has a ver-
bal appearance of being cir-
cular, but in fact it is not.
We define “the number of a
given class” without using
the notion of number in gen-
eral; therefore we may define
number in general in terms of
“the number of a given class”
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without committing any logi-
cal error.

Definitions of this sort are
in fact very common. The
class of fathers, for example,
would have to be defined by
first defining what it is to be
the father of somebody; then
the class of fathers will be all
those who are somebody’s fa-
ther. Similarly if we want to
define square numbers (say),
we must first define what
we mean by saying that one
number is the square of an-
other, and then define square
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numbers as those that are the
squares of other numbers.
This kind of procedure is very
common, and it is important
to realise that it is legitimate
and even often necessary.

We have now given a defi-
nition of numbers which will
serve for finite collections.
It remains to be seen how it
will serve for infinite collec-
tions. But first we must decide
what we mean by “finite” and
“infinite,” which cannot be
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done within the limits of the
present chapter.
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CHAPTER III
FINITUDE AND
MATHEMATICAL
INDUCTION

THE series of natural num-
bers, as we saw in Chapter
I., can all be defined if we
know what we mean by the
three terms “o0,” “number,”
and “successor.” But we may
go a step farther: we can de-
fine all the natural numbers
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if we know what we mean
by “0” and “successor.” It
will help us to understand the
difference between finite and
infinite to see how this can be
done, and why the method by
which it is done cannot be ex-
tended beyond the finite. We
will not yet consider how “0”
and “successor” are to be de-
fined: we will for the moment
assume that we know what
these terms mean, and show
how thence all other natural
numbers can be obtained.

It is easy to see that we can
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reach any assigned number,
say 30,000. We first define “1”
as “the successor of o,” then
we define “2” as “the succes-
sor of 1,” and so on. In the
case of an assigned number,
such as 30,000, the proof that
we can reach it by proceeding
step by step in this fashion
may be made, if we have the
patience, by actual experi-
ment: we can go on until we
actually arrive at 30,000. But
although the method of ex-
periment is available for each
particular natural number, it
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is not available for proving the
general proposition that all
such numbers can be reached
in this way, i.e. by proceeding
from o step by step from each
number to its successor. Is
there any other way by which
this can be proved?

Let us consider the ques-
tion the other way round.
What are the numbers that
can be reached, given the
terms “o0” and | “successor”?
Is there any way by which we
can define the whole class of
such numbers? We reach 1,
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as the successor of o; 2, as
the successor of 1; 3, as the
successor of 2; and so on. It
is this “and so on” that we
wish to replace by something
less vague and indefinite. We
might be tempted to say that
“and so on” means that the
process of proceeding to the
successor may be repeated
any finite number of times; but
the problem upon which we
are engaged is the problem of
defining “finite number,” and
therefore we must not use this
notion in our definition. Our
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definition must not assume
that we know what a finite
number is.

The key to our problem lies
in mathematical induction. It
will be remembered that, in
Chapter 1., this was the fifth
of the five primitive propo-
sitions which we laid down
about the natural numbers.
It stated that any property
which belongs to o, and to
the successor of any number
which has the property, be-
longs to all the natural num-
bers. This was then presented
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as a principle, but we shall
now adopt it as a definition. It
is not difficult to see that the
terms obeying it are the same
as the numbers that can be
reached from o by successive
steps from next to next, but as
the point is important we will
set forth the matter in some
detail.

We shall do well to begin
with some definitions, which
will be useful in other connec-
tions also.

A property is said to be
“hereditary” in the natural-
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number series if, whenever it
belongs to a number #, it also
belongs to n+ 1, the successor
of n. Similarly a class is said to
be “hereditary” if, whenever n
is a member of the class, so is
n+ 1. It is easy to see, though
we are not yet supposed to
know, that to say a property
is hereditary is equivalent to
saying that it belongs to all
the natural numbers not less
than some one of them, e.g. it
must belong to all that are not
less than 100, or all that are
not less than 1000, or it may
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be that it belongs to all that
are not less than o, i.e. to all
without exception.

A property is said to be “in-
ductive” when it is a heredi-
tary | property which belongs
to o. Similarly a class is “in-
ductive” when it is a heredi-
tary class of which o is a mem-
ber.

Given a hereditary class of
which o is a member, it fol-
lows that 1 is a member of
it, because a hereditary class
contains the successors of its
members, and 1 is the suc-
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cessor of o. Similarly, given
a hereditary class of which 1
is a member, it follows that
2 is a member of it; and so
on. Thus we can prove by a
step-by-step procedure that
any assigned natural number,
say 30,000, is a member of
every inductive class.

We will define the “poster-
ity” of a given natural num-
ber with respect to the rela-
tion “immediate predecessor”
(which is the converse of “suc-
cessor”) as all those terms that
belong to every hereditary
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class to which the given num-
ber belongs. It is again easy
to see that the posterity of a
natural number consists of
itself and all greater natural
numbers; but this also we do
not yet officially know.

By the above definitions,
the posterity of o will consist
of those terms which belong
to every inductive class.

It is now not difficult to
make it obvious that the pos-
terity of o is the same set
as those terms that can be
reached from o by successive
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steps from next to next. For,
in the first place, o belongs to
both these sets (in the sense
in which we have defined our
terms); in the second place,
if n belongs to both sets, so
does n+ 1. It is to be observed
that we are dealing here with
the kind of matter that does
not admit of precise proof,
namely, the comparison of a
relatively vague idea with a
relatively precise one. The no-
tion of “those terms that can
be reached from o by succes-
sive steps from next to next”
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is vague, though it seems as if
it conveyed a definite mean-
ing; on the other hand, “the
posterity of 0” is precise and
explicit just where the other
idea is hazy. It may be taken
as giving what we meant to
mean when we spoke of the
terms that can be reached
from o by successive steps.

We now lay down the fol-
lowing definition:—

The “natural numbers” are
the posterity of o with respect to
the | relation “immediate prede-
cessor” (which is the converse
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of “successor”).

We have thus arrived at a
definition of one of Peano’s
three primitive ideas in terms
of the other two. As a re-
sult of this definition, two of
his primitive propositions—
namely, the one asserting
that o is a number and the
one asserting mathematical
induction—become unneces-
sary, since they result from the
definition. The one asserting
that the successor of a natural
number is a natural number is
only needed in the weakened
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form “every natural number
has a successor.”

We can, of course, easily
define “0” and “successor”
by means of the definition
of number in general which
we arrived at in Chapter II.
The number o is the num-
ber of terms in a class which
has no members, i.e. in the
class which is called the “null-
class.” By the general defini-
tion of number, the number
of terms in the null-class is
the set of all classes similar to
the null-class, i.e. (as is easily
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proved) the set consisting of
the null-class all alone, i.e.
the class whose only member
is the null-class. (This is not
identical with the null-class:
it has one member, namely,
the null-class, whereas the
null-class itself has no mem-
bers. A class which has one
member is never identical
with that one member, as we
shall explain when we come
to the theory of classes.) Thus
we have the following purely
logical definition:—

o is the class whose only
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member is the null-class.

It remains to define “suc-
cessor.” Given any number 1,
let « be a class which has n
members, and let x be a term
which is not a member of a.
Then the class consisting of a
with x added on will have n+1
members. Thus we have the
following definition:—

The successor of the number
of terms in the class a is the
number of terms in the class
consisting of a together with x,
where X is any term not belong-
ing to the class.
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Certain niceties are re-
quired to make this defini-
tion perfect, but they need not
concern us.” It will be remem-
bered that we | have already
given (in Chapter II.) a logi-
cal definition of the number
of terms in a class, namely,
we defined it as the set of all
classes that are similar to the
given class.

We have thus reduced Pea-
no’s three primitive ideas to

See Principia Mathematica, vol. ii.
*110.
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ideas of logic: we have given
definitions of them which
make them definite, no longer
capable of an infinity of dif-
ferent meanings, as they were
when they were only deter-
minate to the extent of obey-
ing Peano’s five axioms. We
have removed them from the
fundamental apparatus of
terms that must be merely
apprehended, and have thus
increased the deductive artic-
ulation of mathematics.

As regards the five prim-
itive propositions, we have
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already succeeded in making
two of them demonstrable
by our definition of “natu-
ral number.” How stands it
with the remaining three? It
is very easy to prove that o is
not the successor of any num-
ber, and that the successor of
any number is a number. But
there is a difficulty about the
remaining primitive proposi-
tion, namely, “no two num-
bers have the same successor.”
The difficulty does not arise
unless the total number of
individuals in the universe is
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finite; for given two numbers
m and n, neither of which is
the total number of individu-
als in the universe, it is easy
to prove that we cannot have
m+1 = n+ 1 unless we have
m = n. But let us suppose that
the total number of individu-
als in the universe were (say)
10; then there would be no
class of 11 individuals, and
the number 11 would be the
null-class. So would the num-
ber 12. Thus we should have
11 = 12; therefore the succes-
sor of 10 would be the same as
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the successor of 11, although
10 would not be the same
as 11. Thus we should have
two different numbers with
the same successor. This fail-
ure of the third axiom cannot
arise, however, if the number
of individuals in the world is
not finite. We shall return to
this topic at a later stage.”
Assuming that the number
of individuals in the universe
is not finite, we have now suc-
ceeded not only in defining

2See Chapter XIII.
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Peano’s | three primitive ideas,
but in seeing how to prove his
five primitive propositions,
by means of primitive ideas
and propositions belonging
to logic. It follows that all
pure mathematics, in so far as
it is deducible from the the-
ory of the natural numbers, is
only a prolongation of logic.
The extension of this result
to those modern branches of
mathematics which are not
deducible from the theory of
the natural numbers offers no
difficulty of principle, as we
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have shown elsewhere.3

The process of mathemat-
ical induction, by means of
which we defined the natural
numbers, is capable of gen-
eralisation. We defined the
natural numbers as the “pos-
terity” of o with respect to the
relation of a number to its im-
mediate successor. If we call
this relation N, any number m
will have this relation to m+1.

3For geometry, in so far as it is
not purely analytical, see Principles

of Mathematics, part vi.; for rational
dynamics, ibid., part vii.
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A property is “hereditary with
respect to N,” or simply “N-
hereditary,” if, whenever the
property belongs to a number
m, it also belongs to m+ 1, i.e.
to the number to which m has
the relation N. And a number
n will be said to belong to
the “posterity” of m with re-
spect to the relation N if #n has
every N-hereditary property
belonging to m. These defini-
tions can all be applied to any
other relation just as well as
to N. Thus if R is any relation
whatever, we can lay down
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the following definitions:*—
A property is called “R-
hereditary” when, if it belongs
to a term x, and x has the rela-
tion R to p, then it belongs to
V.
A class is R-hereditary when
its defining property is R-
hereditary.

4These definitions, and the gener-
alised theory of induction, are due to
Frege, and were published so long ago
as 1879 in his Begriffsschrift. In spite
of the great value of this work, I was, I
believe, the first person who ever read
it—more than twenty years after its
publication.
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A term x is said to be an
“R-ancestor” of the term y if
y has every R-hereditary prop-
erty that x has, provided x is
a term which has the relation
R to something or to which
something has the relation R.
(This is only to exclude trivial
cases.) |

The “R-posterity” of x is all
the terms of which x is an R-
ancestor.

We have framed the above
definitions so that if a term is
the ancestor of anything it is
its own ancestor and belongs
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to its own posterity. This is
merely for convenience.

It will be observed that if we
take for R the relation “par-
ent,” “ancestor” and “pos-
terity” will have the usual
meanings, except that a per-
son will be included among
his own ancestors and poster-
ity. It is, of course, obvious at
once that “ancestor” must be
capable of definition in terms
of “parent,” but until Frege
developed his generalised the-
ory of induction, no one could
have defined “ancestor” pre-
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cisely in terms of “parent.”
A brief consideration of this
point will serve to show the
importance of the theory. A
person confronted for the
first time with the problem of
defining “ancestor” in terms
of “parent” would naturally
say that A is an ancestor of Z
if, between A and Z, there are
a certain number of people, B,
C, ..., of whom B is a child of
A, each is a parent of the next,
until the last, who is a parent
of Z. But this definition is not
adequate unless we add that

112 (original page 26)



the number of intermediate
terms is to be finite. Take, for
example, such a series as the
following:—

-1, =3, —i, —5r e o i, 2 1.
Here we have first a series
of negative fractions with no
end, and then a series of pos-
itive fractions with no begin-
ning. Shall we say that, in this
series, —1/8 is an ancestor of
1/8? It will be so according to
the beginner’s definition sug-
gested above, but it will not be
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so according to any definition
which will give the kind of
idea that we wish to define.
For this purpose, it is essential
that the number of interme-
diaries should be finite. But,
as we saw, “finite” is to be
defined by means of mathe-
matical induction, and it is
simpler to define the ances-
tral relation generally at once
than to define it first only for
the case of the relation of n
to n+ 1, and then extend it
to other cases. Here, as con-
stantly elsewhere, generality
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from the first, though it may
| require more thought at the
start, will be found in the long
run to economise thought and
increase logical power.

The use of mathematical
induction in demonstrations
was, in the past, something of
a mystery. There seemed no
reasonable doubt that it was
a valid method of proof, but
no one quite knew why it was
valid. Some believed it to be
really a case of induction, in
the sense in which that word
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is used in logic. Poincaré>
considered it to be a principle
of the utmost importance, by
means of which an infinite
number of syllogisms could
be condensed into one argu-
ment. We now know that all
such views are mistaken, and
that mathematical induction
is a definition, not a principle.
There are some numbers to
which it can be applied, and
there are others (as we shall
see in Chapter VIII.) to which

5Science and Method, chap. iv.
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it cannot be applied. We de-
fine the “natural numbers”
as those to which proofs by
mathematical induction can
be applied, i.e. as those that
possess all inductive prop-
erties. It follows that such
proofs can be applied to the
natural numbers, not in virtue
of any mysterious intuition
or axiom or principle, but
as a purely verbal proposi-
tion. If “quadrupeds” are
defined as animals having
four legs, it will follow that
animals that have four legs
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are quadrupeds; and the case
of numbers that obey math-
ematical induction is exactly
similar.

We shall use the phrase “in-
ductive numbers” to mean
the same set as we have hith-
erto spoken of as the “natural
numbers.” The phrase “in-
ductive numbers” is prefer-
able as affording a reminder
that the definition of this set
of numbers is obtained from
mathematical induction.

Mathematical induction af-
fords, more than anything
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else, the essential characteris-
tic by which the finite is dis-
tinguished from the infinite.
The principle of mathemati-
cal induction might be stated
popularly in some such form
as “what can be inferred from
next to next can be inferred
from first to last.” This is true
when the number of inter-
mediate steps between first
and last is finite, not other-
wise. Anyone who has ever |
watched a goods train begin-
ning to move will have noticed
how the impulse is commu-
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nicated with a jerk from each
truck to the next, until at last
even the hindmost truck is
in motion. When the train is
very long, it is a very long time
before the last truck moves.
If the train were infinitely
long, there would be an infi-
nite succession of jerks, and
the time would never come
when the whole train would
be in motion. Nevertheless, if
there were a series of trucks
no longer than the series of
inductive numbers (which, as
we shall see, is an instance
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of the smallest of infinites),
every truck would begin to
move sooner or later if the
engine persevered, though
there would always be other
trucks further back which had
not yet begun to move. This
image will help to elucidate
the argument from next to
next, and its connection with
finitude. When we come to
infinite numbers, where ar-
guments from mathematical
induction will be no longer
valid, the properties of such
numbers will help to make
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clear, by contrast, the almost
unconscious use that is made
of mathematical induction
where finite numbers are con-
cerned.
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CHAPTER IV
THE DEFINITION OF
ORDER

WE have now carried our anal-
ysis of the series of natural
numbers to the point where
we have obtained logical defi-
nitions of the members of this
series, of the whole class of its
members, and of the relation
of a number to its immediate
successor. We must now con-

123 (original page 29)



sider the serial character of the
natural numbers in the order
0, 1, 2, 3, ... We ordinar-
ily think of the numbers as in
this order, and it is an essential
part of the work of analysing
our data to seek a definition of
“order” or “series” in logical
terms.

The notion of order is one
which has enormous impor-
tance in mathematics. Not
only the integers, but also ra-
tional fractions and all real
numbers have an order of
magnitude, and this is essen-
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tial to most of their mathe-
matical properties. The order
of points on a line is essential
to geometry; so is the slightly
more complicated order of
lines through a point in a
plane, or of planes through
a line. Dimensions, in ge-
ometry, are a development
of order. The conception of
a limit, which underlies all
higher mathematics, is a serial
conception. There are parts
of mathematics which do not
depend upon the notion of
order, but they are very few in
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comparison with the parts in
which this notion is involved.
In seeking a definition of
order, the first thing to realise
is that no set of terms has just
one order to the exclusion of
others. A set of terms has
all the orders of which it is
capable. Sometimes one or-
der is so much more familiar
and natural to our | thoughts
that we are inclined to regard
it as the order of that set of
terms; but this is a mistake.
The natural numbers—or the
“inductive” numbers, as we
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shall also call them—occur
to us most readily in order
of magnitude; but they are
capable of an infinite number
of other arrangements. We
might, for example, consider
first all the odd numbers and
then all the even numbers;
or first 1, then all the even
numbers, then all the odd
multiples of 3, then all the
multiples of 5 but not of 2 or
3, then all the multiples of 7
but not of 2 or 3 or 5, and so
on through the whole series
of primes. When we say that
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we “arrange” the numbers in
these various orders, that is an
inaccurate expression: what
we really do is to turn our
attention to certain relations
between the natural numbers,
which themselves generate
such-and-such an arrange-
ment. We can no more “ar-
range” the natural numbers
than we can the starry heav-
ens; but just as we may notice
among the fixed stars either
their order of brightness or
their distribution in the sky,
so there are various relations
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among numbers which may
be observed, and which give
rise to various different orders
among numbers, all equally
legitimate. And what is true
of numbers is equally true
of points on a line or of the
moments of time: one order
is more familiar, but others
are equally valid. We might,
for example, take first, on a
line, all the points that have
integral co-ordinates, then all
those that have non-integral
rational co-ordinates, then all
those that have algebraic non-
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rational co-ordinates, and so
on, through any set of com-
plications we please. The
resulting order will be one
which the points of the line
certainly have, whether we
choose to notice it or not; the
only thing that is arbitrary
about the various orders of a
set of terms is our attention,
for the terms themselves have
always all the orders of which
they are capable.

One important result of this
consideration is that we must
not look for the definition of
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order in the nature of the set
of terms to be ordered, since
one set of terms has many or-
ders. The order lies, not in the
class of terms, but in a relation
among | the members of the
class, in respect of which some
appear as earlier and some as
later. The fact that a class may
have many orders is due to the
fact that there can be many
relations holding among the
members of one single class.
What properties must a rela-
tion have in order to give rise
to an order?
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The essential characteris-
tics of a relation which is to
give rise to order may be dis-
covered by considering that
in respect of such a relation
we must be able to say, of
any two terms in the class
which is to be ordered, that
one “precedes” and the other
“follows.” Now, in order that
we may be able to use these
words in the way in which we
should naturally understand
them, we require that the or-
dering relation should have
three properties:—
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(1) If x precedes y, y must
not also precede x. This is an
obvious characteristic of the
kind of relations that lead to
series. If x is less than y, v is
not also less than x. If x is ear-
lier in time than y, y is not also
earlier than x. If x is to the
left of , v is not to the left of
x. On the other hand, rela-
tions which do not give rise to
series often do not have this
property. If x is a brother or
sister of v, v is a brother or sis-
ter of x. If x is of the same
height as y, y is of the same
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height as x. If x is of a dif-
ferent height from y, y is of
a different height from x. In
all these cases, when the re-
lation holds between x and v,
it also holds between v and x.
But with serial relations such
a thing cannot happen. A rela-
tion having this first property
is called asymmetrical.

(2) If x precedes y and p
precedes z, x must precede z.
This may be illustrated by the
same instances as before: less,
earlier, left of. But as instances
of relations which do not have
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this property only two of our
previous three instances will
serve. If x is brother or sister
of v, and y of z, x may not be
brother or sister of z, since x
and z may be the same person.
The same applies to difference
of height, but not to same-
ness of height, which has our
second property but not our
first. The relation “father,” on
the other hand, has our first
property but not | our second.
A relation having our second
property is called transitive.
(3) Given any two terms
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of the class which is to be
ordered, there must be one
which precedes and the other
which follows. For example,
of any two integers, or frac-
tions, or real numbers, one is
smaller and the other greater;
but of any two complex num-
bers this is not true. Of any
two moments in time, one
must be earlier than the other;
but of events, which may be
simultaneous, this cannot be
said. Of two points on a line,
one must be to the left of the
other. A relation having this
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third property is called con-
nected.

When a relation possesses
these three properties, it is of
the sort to give rise to an or-
der among the terms between
which it holds; and wherever
an order exists, some relation
having these three properties
can be found generating it.

Before illustrating this the-
sis, we will introduce a few
definitions.

(1) A relation is said to be
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an aliorelative,* or to be con-
tained in or imply diversity,
if no term has this relation
to itself. Thus, for example,
“greater,” “different in size,”
“brother,” “husband,” “fa-
ther” are aliorelatives; but
“equal,” “born of the same
parents,” “dear friend” are
not.

(2) The square of a relation
is that relation which holds
between two terms x and z
when there is an intermediate

1This term is due to C. S. Peirce.
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term p such that the given
relation holds between x and
v and between y and z. Thus
“paternal grandfather” is the
square of “father,” “greater by
2” is the square of “greater by
1,” and so on.

(3) The domain of a relation
consists of all those terms that
have the relation to something
or other, and the converse
domain consists of all those
terms to which something or
other has the relation. These
words have been already de-
fined, but are recalled here
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for the sake of the following
definition:—

(4) The field of a relation
consists of its domain and
converse domain together. |

(5) One relation is said to
contain or be implied by an-
other if it holds whenever the
other holds.

It will be seen that an asym-
metrical relation is the same
thing as a relation whose
square is an aliorelative. It
often happens that a rela-
tion is an aliorelative without
being asymmetrical, though
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an asymmetrical relation is
always an aliorelative. For ex-
ample, “spouse” is an aliorela-
tive, but is symmetrical, since
if x is the spouse of y, v is the
spouse of x. But among transi-
tive relations, all aliorelatives
are asymmetrical as well as
vice versa.

From the definitions it will
be seen that a transitive rela-
tion is one which is implied by
its square, or, as we also say,
“contains” its square. Thus
“ancestor” is transitive, be-
cause an ancestor’s ancestor
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is an ancestor; but “father”
is not transitive, because a
father’s father is not a fa-
ther. A transitive aliorela-
tive is one which contains its
square and is contained in
diversity; or, what comes to
the same thing, one whose
square implies both it and
diversity—because, when a
relation is transitive, asymme-
try is equivalent to being an
aliorelative.

A relation is connected when,
given any two different terms
of its field, the relation holds
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between the first and the sec-
ond or between the second
and the first (not excluding
the possibility that both may
happen, though both cannot
happen if the relation is asym-
metrical).

It will be seen that the rela-
tion “ancestor,” for example,
is an aliorelative and transi-
tive, but not connected; it is
because it is not connected
that it does not suffice to ar-
range the human race in a
series.

The relation “less than or
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equal to,” among numbers,
is transitive and connected,
but not asymmetrical or an
aliorelative.

The relation “greater or
less” among numbers is an
aliorelative and is connected,
but is not transitive, for if x is
greater or less than y, and y is
greater or less than z, it may
happen that x and z are the
same number.

Thus the three properties of
being (1) an aliorelative, (2) |
transitive, and (3) connected,
are mutually independent,
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since a relation may have any
two without having the third.

We now lay down the fol-
lowing definition:—

A relation is serial when it is
an aliorelative, transitive, and
connected; or, what is equiva-
lent, when it is asymmetrical,
transitive, and connected.

A series is the same thing as
a serial relation.

It might have been thought
that a series should be the field
of a serial relation, not the se-
rial relation itself. But this
would be an error. For exam-
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ple,

1,2,31,3,2,2,3,1,2,1, 35

31,23 2,1

are six different series which
all have the same field. If
the field were the series, there
could only be one series with
a given field. What distin-
guishes the above six series
is simply the different or-
dering relations in the six
cases. Given the ordering re-
lation, the field and the order
are both determinate. Thus
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the ordering relation may be
taken to be the series, but the
field cannot be so taken.
Given any serial relation,
say P, we shall say that, in re-
spect of this relation, x “pre-
cedes” y if x has the relation
P to y, which we shall write
“xPy” for short. The three
characteristics which P must
have in order to be serial are:

(1) We must never have xPx,
i.e. no term must precede
itself.

(2) P? must imply P, i.e. if x
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precedes y and y precedes
z, x must precede z.

(3) If x and y are two different
terms in the field of P, we
shall have xPy or yPx, i.e.
one of the two must pre-
cede the other.

The reader can easily convince
himself that, where these
three properties are found
in an ordering relation, the
characteristics we expect of
series will also be found, and
vice versa. We are therefore
justified in taking the above
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as a definition of order | or
series. And it will be observed
that the definition is effected
in purely logical terms.
Although a transitive asym-
metrical connected relation
always exists wherever there
is a series, it is not always
the relation which would
most naturally be regarded
as generating the series. The
natural-number series may
serve as an illustration. The
relation we assumed in con-
sidering the natural numbers
was the relation of immediate
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succession, i.e. the relation
between consecutive integers.
This relation is asymmetri-
cal, but not transitive or con-
nected. We can, however,
derive from it, by the method
of mathematical induction,
the “ancestral” relation which
we considered in the preced-
ing chapter. This relation will
be the same as “less than or
equal to” among inductive
integers. For purposes of gen-
erating the series of natural
numbers, we want the relation
“less than,” excluding “equal
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to.” This is the relation of m
to n when m is an ancestor
of n but not identical with n,
or (what comes to the same
thing) when the successor of
m is an ancestor of n in the
sense in which a number is
its own ancestor. That is to
say, we shall lay down the
following definition:—

An inductive number m is
said to be less than another
number n when n possesses
every hereditary property
possessed by the successor
of m.
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It is easy to see, and not dif-
ficult to prove, that the rela-
tion “less than,” so defined, is
asymmetrical, transitive, and
connected, and has the in-
ductive numbers for its field.
Thus by means of this rela-
tion the inductive numbers
acquire an order in the sense
in which we defined the term
“order,” and this order is the
so-called “natural” order, or
order of magnitude.

The generation of series by
means of relations more or
less resembling that of n to
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n+1 is very common. The
series of the Kings of England,
for example, is generated by
relations of each to his suc-
cessor. This is probably the
easiest way, where it is ap-
plicable, of conceiving the
generation of a series. In this
method we pass on from each
term to the next, as long as
there | is a next, or back to the
one before, as long as there is
one before. This method al-
ways requires the generalised
form of mathematical induc-
tion in order to enable us to
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define “earlier” and “later” in
a series so generated. On the
analogy of “proper fractions,”
let us give the name “proper
posterity of x with respect to
R” to the class of those terms
that belong to the R-posterity
of some term to which x has
the relation R, in the sense
which we gave before to “pos-
terity,” which includes a term
in its own posterity. Reverting
to the fundamental defini-
tions, we find that the “proper
posterity” may be defined as
follows:—
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The “proper posterity” of x
with respect to R consists of
all terms that possess every R-
hereditary property possessed
by every term to which x has
the relation R.

It is to be observed that this
definition has to be so framed
as to be applicable not only
when there is only one term
to which x has the relation R,
but also in cases (as e.g. that of
father and child) where there
may be many terms to which
x has the relation R. We define
further:
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A term x is a “proper ances-
tor” of y with respect to R if y
belongs to the proper poster-
ity of x with respect to R.

We shall speak for short of
“R-posterity” and “R-ances-
tors” when these terms seem
more convenient.

Reverting now to the gener-
ation of series by the relation
R between consecutive terms,
we see that, if this method
is to be possible, the relation
“proper R-ancestor” must be
an aliorelative, transitive, and
connected. Under what cir-
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cumstances will this occur?
It will always be transitive:
no matter what sort of rela-
tion R may be, “R-ancestor”
and “proper R-ancestor” are
always both transitive. But
it is only under certain cir-
cumstances that it will be
an aliorelative or connected.
Consider, for example, the
relation to one’s left-hand
neighbour at a round dinner-
table at which there are twelve
people. If we call this relation
R, the proper R-posterity of a
person consists of all who can
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be reached by going round the
table from right to left. This
includes everybody at the
table, including the person
himself, since | twelve steps
bring us back to our starting-
point. Thus in such a case,
though the relation “proper
R-ancestor” is connected, and
though R itself is an aliorel-
ative, we do not get a series
because “proper R-ancestor”
is not an aliorelative. It is for
this reason that we cannot say
that one person comes before
another with respect to the
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relation “right of” or to its
ancestral derivative.

The above was an instance
in which the ancestral rela-
tion was connected but not
contained in diversity. An in-
stance where it is contained
in diversity but not connected
is derived from the ordinary
sense of the word “ancestor.”
If x is a proper ancestor of p,
x and y cannot be the same
person; but it is not true that
of any two persons one must
be an ancestor of the other.

The question of the circum-
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stances under which series
can be generated by ances-
tral relations derived from
relations of consecutiveness
is often important. Some of
the most important cases are
the following: Let R be a
many-one relation, and let
us confine our attention to
the posterity of some term x.
When so confined, the rela-
tion “proper R-ancestor” must
be connected; therefore all
that remains to ensure its be-
ing serial is that it shall be
contained in diversity. This
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is a generalisation of the in-
stance of the dinner-table.
Another generalisation con-
sists in taking R to be a one-
one relation, and including
the ancestry of x as well as the
posterity. Here again, the one
condition required to secure
the generation of a series is
that the relation “proper R-
ancestor” shall be contained
in diversity.

The generation of order by
means of relations of consecu-
tiveness, though important in
its own sphere, is less general
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than the method which uses
a transitive relation to define
the order. It often happens
in a series that there are an
infinite number of interme-
diate terms between any two
that may be selected, how-
ever near together these may
be. Take, for instance, frac-
tions in order of magnitude.
Between any two fractions
there are others—for exam-
ple, the arithmetic mean of
the two. Consequently there
is no such thing as a pair of
consecutive fractions. If we
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depended | upon consecu-
tiveness for defining order,
we should not be able to de-
fine the order of magnitude
among fractions. But in fact
the relations of greater and
less among fractions do not
demand generation from rela-
tions of consecutiveness, and
the relations of greater and
less among fractions have the
three characteristics which we
need for defining serial rela-
tions. In all such cases the or-
der must be defined by means
of a transitive relation, since
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only such a relation is able
to leap over an infinite num-
ber of intermediate terms.
The method of consecutive-
ness, like that of counting for
discovering the number of
a collection, is appropriate
to the finite; it may even be
extended to certain infinite
series, namely, those in which,
though the total number of
terms is infinite, the num-
ber of terms between any two
is always finite; but it must
not be regarded as general.
Not only so, but care must
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be taken to eradicate from
the imagination all habits of
thought resulting from sup-
posing it general. If this is not
done, series in which there
are no consecutive terms will
remain difficult and puzzling.
And such series are of vital
importance for the under-
standing of continuity, space,
time, and motion.

There are many ways in
which series may be gener-
ated, but all depend upon
the finding or construction
of an asymmetrical transitive
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connected relation. Some of
these ways have considerable
importance. We may take as
illustrative the generation of
series by means of a three-
term relation which we may
call “between.” This method
is very useful in geometry,
and may serve as an intro-
duction to relations having
more than two terms; it is best
introduced in connection with
elementary geometry.

Given any three points on
a straight line in ordinary
space, there must be one of
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them which is between the
other two. This will not be
the case with the points on
a circle or any other closed
curve, because, given any
three points on a circle, we
can travel from any one to any
other without passing through
the third. In fact, the notion
“between” is characteristic of
open series—or series in the
strict sense—as opposed to
what may be called | “cyclic”
series, where, as with people
at the dinner-table, a suffi-
cient journey brings us back
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to our starting-point. This
notion of “between” may be
chosen as the fundamental
notion of ordinary geometry;
but for the present we will
only consider its application
to a single straight line and to
the ordering of the points on
a straight line.> Taking any
two points a, b, the line (ab)
consists of three parts (besides
a and b themselves):

2Cf. Rivista di Matematica, iv. pp.
s5ff.; Principles of Mathematics, p. 394

(§375)-
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(1) Points between a and b.

(2) Points x such that a is be-
tween x and b.

(3) Points p such that b is be-
tween y and a.

Thus the line (ab) can be de-
fined in terms of the relation
“between.”

In order that this relation
“between” may arrange the
points of the line in an order
from left to right, we need
certain assumptions, namely,
the following:—

(1) If anything is between a
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and b, a and b are not identi-
cal.

(2) Anything between a and
b is also between b and 4.

(3) Anything between a and
b is not identical with a (nor,
consequently, with b, in virtue
of (2)).

(4) If x is between a and b,
anything between a and x is
also between a and b.

(5) If x is between a and b,
and b is between x and yp, then
b is between a and y.

(6) If x and y are between
a and b, then either x and y
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are identical, or x is between a
and yp, or x is between y and b.

(7) If b is between a and x
and also between a and y, then
either x and y are identical, or
x is between b and y, or y is
between b and x.

These seven properties are
obviously verified in the case
of points on a straight line in
ordinary space. Any three-
term relation which verifies
them gives rise to series, as
may be seen from the fol-
lowing definitions. For the
sake of definiteness, let us
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assume | that a is to the left
of b. Then the points of the
line (ab) are (1) those between
which and b, a lies—these we
will call to the left of a; (2)
a itself; (3) those between a
and b; (4) b itself; (5) those
between which and a lies b—
these we will call to the right
of b. We may now define gen-
erally that of two points x, p,
on the line (ab), we shall say
that x is “to the left of” p in
any of the following cases:—

(1) When x and y are both to
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the left of a, and y is be-
tween x and g;

(2) When x is to the left of a,
and y is a or b or between
a and b or to the right of b;

(3) When x is a, and p is be-
tween a and b or is b or is
to the right of b;

(4) When x and y are both be-
tween a and b, and y is be-
tween x and b;

(5) When x is between a and
b, and y is b or to the right
of b;

(6) When x is b and v is to the
right of b;
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(7) When x and y are both to
the right of b and x is be-
tween b and v.

It will be found that, from
the seven properties which we
have assigned to the relation
“between,” it can be deduced
that the relation “to the left
of,” as above defined, is a
serial relation as we defined
that term. It is important
to notice that nothing in the
definitions or the argument
depends upon our meaning
by “between” the actual re-
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lation of that name which
occurs in empirical space: any
three-term relation having the
above seven purely formal
properties will serve the pur-
pose of the argument equally
well.

Cyclic order, such as that
of the points on a circle, can-
not be generated by means
of three-term relations of
“between.” We need a re-
lation of four terms, which
may be called “separation of
couples.” The point may be
illustrated by considering a
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journey round the world. One
may go from England to New
Zealand by way of Suez or
by way of San Francisco; we
cannot | say definitely that
either of these two places is
“between” England and New
Zealand. But if a man chooses
that route to go round the
world, whichever way round
he goes, his times in England
and New Zealand are sepa-
rated from each other by his
times in Suez and San Fran-
cisco, and conversely. Gen-
eralising, if we take any four
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points on a circle, we can sep-
arate them into two couples,
say a and b and x and y, such
that, in order to get from a
to b one must pass through
either x or y, and in order to
get from x to y one must pass
through either a or b. Under
these circumstances we say
that the couple (a, b) are “sep-
arated” by the couple (x, ).
Out of this relation a cyclic
order can be generated, in a
way resembling that in which
we generated an open order
from “between,” but some-
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what more complicated.3
The purpose of the latter
half of this chapter has been
to suggest the subject which
one may call “generation of
serial relations.” When such
relations have been defined,
the generation of them from
other relations possessing
only some of the properties
required for series becomes
very important, especially in
the philosophy of geometry
3Cf. Principles of Mathematics, p.

205 (§194), and references there
given.
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and physics. But we can-
not, within the limits of the
present volume, do more than
make the reader aware that
such a subject exists.

179 (original page 41)



CHAPTER V
KINDS OF
RELATIONS

A Grear part of the philos-
ophy of mathematics is con-
cerned with relations, and
many different kinds of rela-
tions have different kinds of
uses. It often happens that
a property which belongs to
all relations is only important
as regards relations of certain
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sorts; in these cases the reader
will not see the bearing of
the proposition asserting such
a property unless he has in
mind the sorts of relations for
which it is useful. For reasons
of this description, as well as
from the intrinsic interest of
the subject, it is well to have
in our minds a rough list of
the more mathematically ser-
viceable varieties of relations.
We dealt in the preced-
ing chapter with a supremely
important class, namely, se-
rial relations. Each of the
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three properties which we
combined in defining series—
namely, asymmetry, transitive-
ness, and connexity—has its
own importance. We will be-
gin by saying something on
each of these three.
Asymmetry, i.e. the property
of being incompatible with
the converse, is a characteris-
tic of the very greatest interest
and importance. In order to
develop its functions, we will
consider various examples.
The relation husband is asym-
metrical, and so is the relation
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wife; i.e. if a is husband of b, b
cannot be husband of a, and
similarly in the case of wife.
On the other hand, the rela-
tion “spouse” is symmetrical:
if a is spouse of b, then b is
spouse of a. Suppose now we
are given the relation spouse,
and we wish to derive the re-
lation husband. Husband is the
same as male spouse or spouse
of a female; thus the relation
husband can | be derived from
spouse either by limiting the
domain to males or by lim-
iting the converse domain to
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females. We see from this
instance that, when a sym-
metrical relation is given, it is
sometimes possible, without
the help of any further rela-
tion, to separate it into two
asymmetrical relations. But
the cases where this is possi-
ble are rare and exceptional:
they are cases where there
are two mutually exclusive
classes, say a and §, such that
whenever the relation holds
between two terms, one of the
terms is a member of a and
the other is a member of f—
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as, in the case of spouse, one
term of the relation belongs to
the class of males and one to
the class of females. In such
a case, the relation with its
domain confined to a will be
asymmetrical, and so will the
relation with its domain con-
fined to . But such cases are
not of the sort that occur when
we are dealing with series of
more than two terms; for in
a series, all terms, except the
first and last (if these exist),
belong both to the domain
and to the converse domain
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of the generating relation, so
that a relation like husband,
where the domain and con-
verse domain do not overlap,
is excluded.

The question how to con-
struct relations having some
useful property by means
of operations upon relations
which only have rudiments of
the property is one of consid-
erable importance. Transitive-
ness and connexity are easily
constructed in many cases
where the originally given re-
lation does not possess them:
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for example, if R is any rela-
tion whatever, the ancestral
relation derived from R by
generalised induction is tran-
sitive; and if R is a many-one
relation, the ancestral relation
will be connected if confined
to the posterity of a given
term. But asymmetry is a
much more difficult property
to secure by construction. The
method by which we derived
husband from spouse is, as we
have seen, not available in the
most important cases, such as
greater, before, to the right of,

187 (original page 43)



where domain and converse
domain overlap. In all these
cases, we can of course ob-
tain a symmetrical relation
by adding together the given
relation and its converse, but
we cannot pass back from
this symmetrical relation to
the original asymmetrical re-
lation except by the help of
some asymmetrical | relation.
Take, for example, the re-
lation greater: the relation
greater or less—i.e. unequal—
is symmetrical, but there is
nothing in this relation to
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show that it is the sum of two
asymmetrical relations. Take
such a relation as “differing in
shape.” This is not the sum of
an asymmetrical relation and
its converse, since shapes do
not form a single series; but
there is nothing to show that it
differs from “differing in mag-
nitude” if we did not already
know that magnitudes have
relations of greater and less.
This illustrates the fundamen-
tal character of asymmetry as
a property of relations.

From the point of view of

189 (original page 44)



the classification of relations,
being asymmetrical is a much
more important characteris-
tic than implying diversity.
Asymmetrical relations imply
diversity, but the converse is
not the case. “Unequal,” for
example, implies diversity,
but is symmetrical. Broadly
speaking, we may say that,
if we wished as far as possi-
ble to dispense with relational
propositions and replace them
by such as ascribed predicates
to subjects, we could succeed
in this so long as we confined
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ourselves to symmetrical rela-
tions: those that do not imply
diversity, if they are transitive,
may be regarded as asserting
a common predicate, while
those that do imply diversity
may be regarded as asserting
incompatible predicates. For
example, consider the relation
of similarity between classes,
by means of which we de-
fined numbers. This relation
is symmetrical and transitive
and does not imply diversity.
It would be possible, though
less simple than the proce-
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dure we adopted, to regard
the number of a collection as
a predicate of the collection:
then two similar classes will
be two that have the same
numerical predicate, while
two that are not similar will
be two that have different
numerical predicates. Such
a method of replacing rela-
tions by predicates is formally
possible (though often very
inconvenient) so long as the
relations concerned are sym-
metrical; but it is formally
impossible when the relations
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are asymmetrical, because
both sameness and difference
of predicates are symmetri-
cal. Asymmetrical relations
are, we may | say, the most
characteristically relational of
relations, and the most impor-
tant to the philosopher who
wishes to study the ultimate
logical nature of relations.
Another class of relations
that is of the greatest use is
the class of one-many rela-
tions, i.e. relations which at
most one term can have to
a given term. Such are fa-
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ther, mother, husband (except
in Tibet), square of, sine of,
and so on. But parent, square
root, and so on, are not one-
many. It is possible, formally,
to replace all relations by one-
many relations by means of
a device. Take (say) the rela-
tion less among the inductive
numbers. Given any number
n greater than 1, there will not
be only one number having
the relation less to n, but we
can form the whole class of
numbers that are less than
n. This is one class, and its
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relation to n is not shared by
any other class. We may call
the class of numbers that are
less than n the “proper an-
cestry” of n, in the sense in
which we spoke of ancestry
and posterity in connection
with mathematical induction.
Then “proper ancestry” is a
one-many relation (one-many
will always be used so as to
include one-one), since each
number determines a single
class of numbers as consti-
tuting its proper ancestry.
Thus the relation less than can
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be replaced by being a mem-
ber of the proper ancestry of.
In this way a one-many re-
lation in which the one is a
class, together with member-
ship of this class, can always
formally replace a relation
which is not one-many. Peano,
who for some reason always
instinctively conceives of a
relation as one-many, deals in
this way with those that are
naturally not so. Reduction
to one-many relations by this
method, however, though pos-
sible as a matter of form, does
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not represent a technical sim-
plification, and there is every
reason to think that it does
not represent a philosophi-
cal analysis, if only because
classes must be regarded as
“logical fictions.” We shall
therefore continue to regard
one-many relations as a spe-
cial kind of relations.
One-many relations are in-
volved in all phrases of the
form “the so-and-so of such-
and-such.” “The King of Eng-
land,” | “the wife of Socrates,”
“the father of John Stuart
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Mill,” and so on, all describe
some person by means of a
one-many relation to a given
term. A person cannot have
more than one father, there-
fore “the father of John Stuart
Mill” described some one per-
son, even if we did not know
whom. There is much to say
on the subject of descriptions,
but for the present it is rela-
tions that we are concerned
with, and descriptions are
only relevant as exemplifying
the uses of one-many rela-
tions. It should be observed
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that all mathematical func-
tions result from one-many re-
lations: the logarithm of x, the
cosine of x, etc., are, like the
father of x, terms described by
means of a one-many relation
(logarithm, cosine, etc.) to a
given term (x). The notion
of function need not be con-
fined to numbers, or to the
uses to which mathematicians
have accustomed us; it can
be extended to all cases of
one-many relations, and “the
father of x” is just as legiti-
mately a function of which x
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is the argument as is “the log-
arithm of x.” Functions in this
sense are descriptive functions.
As we shall see later, there
are functions of a still more
general and more fundamen-
tal sort, namely, propositional
functions; but for the present
we shall confine our attention
to descriptive functions, i.e.
“the term having the relation
R to x,” or, for short, “the R of
x,” where R is any one-many
relation.

It will be observed that if
“the R of x” is to describe
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a definite term, x must be a
term to which something has
the relation R, and there must
not be more than one term
having the relation R to x,
since “the,” correctly used,
must imply uniqueness. Thus
we may speak of “the father
of x” if x is any human be-
ing except Adam and Eve;
but we cannot speak of “the
father of x” if x is a table or
a chair or anything else that
does not have a father. We
shall say that the R of x “ex-
ists” when there is just one

201 (original page 46)



term, and no more, having the
relation R to x. Thus if R is
a one-many relation, the R of
x exists whenever x belongs
to the converse domain of R,
and not otherwise. Regarding
“the R of x” as a function in
the mathematical | sense, we
say that x is the “argument”
of the function, and if y is the
term which has the relation R
to x, i.e. if p is the R of x, then
y is the “value” of the function
for the argument x. If Ris a
one-many relation, the range
of possible arguments to the
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function is the converse do-
main of R, and the range of
values is the domain. Thus the
range of possible arguments
to the function “the father
of x” is all who have fathers,
i.e. the converse domain of
the relation father, while the
range of possible values for
the function is all fathers, i.e.
the domain of the relation.
Many of the most impor-
tant notions in the logic of
relations are descriptive func-
tions, for example: converse,
domain, converse domain, field.
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Other examples will occur as
we proceed.

Among one-many relations,
one-one relations are a spe-
cially important class. We
have already had occasion to
speak of one-one relations
in connection with the def-
inition of number, but it is
necessary to be familiar with
them, and not merely to know
their formal definition. Their
formal definition may be de-
rived from that of one-many
relations: they may be de-
fined as one-many relations
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which are also the converses
of one-many relations, i.e. as
relations which are both one-
many and many-one. One-
many relations may be de-
fined as relations such that, if
x has the relation in question
to y, there is no other term
x” which also has the relation
to y. Or, again, they may be
defined as follows: Given two
terms x and x’, the terms to
which x has the given relation
and those to which x’ has it
have no member in common.
Or, again, they may be de-
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fined as relations such that
the relative product of one of
them and its converse implies
identity, where the “relative
product” of two relations R
and S is that relation which
holds between x and z when
there is an intermediate term
y, such that x has the relation
R to v and p has the relation
S to z. Thus, for example, if
R is the relation of father to
son, the relative product of R
and its converse will be the
relation which holds between
x and a man z when there is
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a person y, such that x is the
father of y and v is the son of
z. It is obvious that x and z
must be | the same person. If,
on the other hand, we take the
relation of parent and child,
which is not one-many, we can
no longer argue that, if x is a
parent of y and v is a child of z,
x and z must be the same per-
son, because one may be the
father of y and the other the
mother. This illustrates that it
is characteristic of one-many
relations when the relative
product of a relation and its
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converse implies identity. In
the case of one-one relations
this happens, and also the
relative product of the con-
verse and the relation implies
identity. Given a relation R,
it is convenient, if x has the
relation R to y, to think of y
as being reached from x by
an “R-step” or an “R-vector.”
In the same case x will be
reached from y by a “back-
ward R-step.” Thus we may
state the characteristic of one-
many relations with which we
have been dealing by saying
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that an R-step followed by a
backward R-step must bring
us back to our starting-point.
With other relations, this is by
no means the case; for exam-
ple, if R is the relation of child
to parent, the relative product
of R and its converse is the
relation “self or brother or
sister,” and if R is the relation
of grandchild to grandparent,
the relative product of R and
its converse is “self or brother
or sister or first cousin.” It
will be observed that the rela-
tive product of two relations
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is not in general commutative,
i.e. the relative product of R
and S is not in general the
same relation as the relative
product of S and R. E.g. the
relative product of parent and
brother is uncle, but the rel-
ative product of brother and
parent is parent.

One-one relations give a
correlation of two classes,
term for term, so that each
term in either class has its
correlate in the other. Such
correlations are simplest to
grasp when the two classes
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have no members in common,
like the class of husbands and
the class of wives; for in that
case we know at once whether
a term is to be considered as
one from which the correlating
relation R goes, or as one fo
which it goes. It is convenient
to use the word referent for the
term from which the relation
goes, and the term relatum
for the term to which it goes.
Thus if x and y are husband
and wife, then, with respect
to the relation | “husband,” x
is referent and y relatum, but
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with respect to the relation
“wife,” y is referent and x re-
latum. We say that a relation
and its converse have opposite
“senses”; thus the “sense” of a
relation that goes from x to y
is the opposite of that of the
corresponding relation from
v to x. The fact that a relation
has a “sense” is fundamental,
and is part of the reason why
order can be generated by
suitable relations. It will be
observed that the class of all
possible referents to a given
relation is its domain, and the
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class of all possible relata is
its converse domain.

But it very often happens
that the domain and converse
domain of a one-one relation
overlap. Take, for example,
the first ten integers (exclud-
ing o), and add 1 to each; thus
instead of the first ten integers
we now have the integers

2,3, 4,5 6,7,8,9, 10, 11.

These are the same as those we
had before, except that 1 has
been cut off at the beginning
and 11 has been joined on at

213 (original page 49)



the end. There are still ten
integers: they are correlated
with the previous ten by the
relation of n to n+ 1, which is
a one-one relation. Or, again,
instead of adding 1 to each of
our original ten integers, we
could have doubled each of
them, thus obtaining the in-
tegers

2,4, 6,8, 10,

12, 14, 16, 18, 20.

Here we still have five of
our previous set of integers,
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namely, 2, 4, 6, 8, 10. The cor-
relating relation in this case
is the relation of a number to
its double, which is again a
one-one relation. Or we might
have replaced each number
by its square, thus obtaining
the set

1, 4, 9, 16, 25, 36, 49, 64,
81, 100.

On this occasion only three
of our original set are left,
namely, 1, 4, 9. Such pro-
cesses of correlation may be
varied endlessly.
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The most interesting case
of the above kind is the case
where our one-one relation
has a converse domain which
is part, but | not the whole,
of the domain. If, instead
of confining the domain to
the first ten integers, we had
considered the whole of the
inductive numbers, the above
instances would have illus-
trated this case. We may place
the numbers concerned in two
rows, putting the correlate
directly under the number
whose correlate it is. Thus
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when the correlator is the re-
lation of n to n+ 1, we have
the two rows:

1,2,3,4,5 ...1...
2,3,4,5 6,...04+1...

When the correlator is the re-
lation of a number to its dou-
ble, we have the two rows:

1,2,3, 4,5 -..1...
2,4,6,8 10,...21n...

When the correlator is the
relation of a number to its
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square, the rows are:

1,2,3,4,5 ...1...
1, 4,9, 16, 25, ... 71

2

In all these cases, all inductive
numbers occur in the top row,
and only some in the bottom
row.

Cases of this sort, where the
converse domain is a “proper
part” of the domain (i.e. a part
not the whole), will occupy us
again when we come to deal
with infinity. For the present,
we wish only to note that they
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exist and demand considera-
tion.

Another class of correla-
tions which are often im-
portant is the class called
“permutations,” where the
domain and converse domain
are identical. Consider, for
example, the six possible ar-
rangements of three letters:

a, b, ¢
a, ¢, b
b, ¢, a
b, a, ¢
¢, a b
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Each of these can be obtained
from any one of the others by
means of a correlation. Take,
for example, the first and last,
(a, b, c) and (c, b, a). Here a is
correlated with ¢, b with itself,
and ¢ with a. It is obvious that
the combination of two per-
mutations is again a permuta-
tion, i.e. the permutations of a
given class form what is called
a “group.”

These various kinds of cor-
relations have importance in
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various connections, some
for one purpose, some for
another. The general notion
of one-one correlations has
boundless importance in the
philosophy of mathematics, as
we have partly seen already,
but shall see much more fully
as we proceed. One of its uses
will occupy us in our next
chapter.
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CHAPTER VI
SIMILARITY OF
RELATIONS

WE saw in Chapter II. that two
classes have the same number
of terms when they are “sim-
ilar,” i.e. when there is a one-
one relation whose domain is
the one class and whose con-
verse domain is the other. In
such a case we say that there
is a “one-one correlation” be-
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tween the two classes.

In the present chapter we
have to define a relation be-
tween relations, which will
play the same part for them
that similarity of classes plays
for classes. We will call this
relation “similarity of rela-
tions,” or “likeness” when it
seems desirable to use a dif-
ferent word from that which
we use for classes. How is
likeness to be defined?

We shall employ still the
notion of correlation: we shall
assume that the domain of the
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one relation can be correlated
with the domain of the other,
and the converse domain with
the converse domain; but that
is not enough for the sort of
resemblance which we desire
to have between our two re-
lations. What we desire is
that, whenever either relation
holds between two terms, the
other relation shall hold be-
tween the correlates of these
two terms. The easiest ex-
ample of the sort of thing we
desire is a map. When one
place is north of another, the
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place on the map correspond-
ing to the one is above the
place on the map correspond-
ing to the other; when one
place is west of another, the
place on the map correspond-
ing to the one is to the left
of the place on the map cor-
responding to the other; and
so on. The structure of the
map corresponds with that of
| the country of which it is a
map. The space-relations in
the map have “likeness” to the
space-relations in the country
mapped. It is this kind of
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connection between relations
that we wish to define.

We may, in the first place,
profitably introduce a certain
restriction. We will confine
ourselves, in defining like-
ness, to such relations as have
“fields,” i.e. to such as permit
of the formation of a single
class out of the domain and
the converse domain. This
is not always the case. Take,
for example, the relation “do-
main,” i.e. the relation which
the domain of a relation has
to the relation. This relation
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has all classes for its domain,
since every class is the domain
of some relation; and it has
all relations for its converse
domain, since every relation
has a domain. But classes and
relations cannot be added to-
gether to form a new single
class, because they are of dif-
ferent logical “types.” We do
not need to enter upon the
difficult doctrine of types, but
it is well to know when we
are abstaining from entering
upon it. We may say, without
entering upon the grounds for
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the assertion, that a relation
only has a “field” when it is
what we call “homogeneous,”
i.e. when its domain and con-
verse domain are of the same
logical type; and as a rough-
and-ready indication of what
we mean by a “type,” we may
say that individuals, classes of
individuals, relations between
individuals, relations between
classes, relations of classes to
individuals, and so on, are dif-
ferent types. Now the notion
of likeness is not very useful
as applied to relations that are
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not homogeneous; we shall,
therefore, in defining like-
ness, simplify our problem by
speaking of the “field” of one
of the relations concerned.
This somewhat limits the gen-
erality of our definition, but
the limitation is not of any
practical importance. And
having been stated, it need no
longer be remembered.

We may define two rela-
tions P and Q as “similar,” or
as having “likeness,” when
there is a one-one relation S
whose domain is the field of
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P and whose converse domain
is the field of Q, and which
is such that, if one term has
the relation P | to another, the
correlate of the one has the
relation Q to the correlate of
the other, and vice versa. A
figure will make this clearer.

X P v
z Q w
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Let x and p be two terms hav-
ing the relation P. Then there
are to be two terms z, w, such
that x has the relation S to z,
v has the relation S to w, and
z has the relation Q to w. If
this happens with every pair
of terms such as x and v, and
if the converse happens with
every pair of terms such as z
and w, it is clear that for every
instance in which the relation
P holds there is a correspond-
ing instance in which the re-
lation Q holds, and vice versa;
and this is what we desire to
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secure by our definition. We
can eliminate some redundan-
cies in the above sketch of a
definition, by observing that,
when the above conditions are
realised, the relation P is the
same as the relative product
of S and Q and the converse
of S, i.e. the P-step from x to
y may be replaced by the suc-
cession of the S-step from x to
z, the Q-step from z to w, and
the backward S-step from w
to y. Thus we may set up the
following definitions:—

A relation S is said to be
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a “correlator” or an “ordinal
correlator” of two relations
P and Q if S is one-one, has
the field of Q for its converse
domain, and is such that P is
the relative product of S and
Q and the converse of S.

Two relations P and Q are
said to be “similar,” or to have
“likeness,” when there is at
least one correlator of P and
Q.

These definitions will be
found to yield what we above
decided to be necessary.

It will be found that, when
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two relations are similar, they
share all properties which
do not depend upon the ac-
tual terms in their fields. For
instance, if one implies di-
versity, so does the other; if
one is transitive, so is the
other; if one is connected, so
is the other. Hence if one is
serial, so is the other. Again,
if one is one-many or one-
one, the other is one-many | or
one-one; and so on, through
all the general properties of
relations. Even statements in-
volving the actual terms of the
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field of a relation, though they
may not be true as they stand
when applied to a similar re-
lation, will always be capable
of translation into statements
that are analogous. We are
led by such considerations
to a problem which has, in
mathematical philosophy, an
importance by no means ad-
equately recognised hitherto.
Our problem may be stated as
follows:—

Given some statement in a
language of which we know
the grammar and the syn-
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tax, but not the vocabulary,
what are the possible mean-
ings of such a statement, and
what are the meanings of the
unknown words that would
make it true?

The reason that this ques-
tion is important is that it
represents, much more nearly
than might be supposed, the
state of our knowledge of
nature. We know that cer-
tain scientific propositions—
which, in the most advanced
sciences, are expressed in
mathematical symbols—are
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more or less true of the world,
but we are very much at sea as
to the interpretation to be put
upon the terms which occur in
these propositions. We know
much more (to use, for a mo-
ment, an old-fashioned pair
of terms) about the form of
nature than about the matter.
Accordingly, what we really
know when we enunciate a
law of nature is only that there
is probably some interpreta-
tion of our terms which will
make the law approximately
true. Thus great importance
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attaches to the question: What
are the possible meanings of
a law expressed in terms of
which we do not know the
substantive meaning, but only
the grammar and syntax? And
this question is the one sug-
gested above.

For the present we will ig-
nore the general question,
which will occupy us again
at a later stage; the subject of
likeness itself must first be
further investigated.

Owing to the fact that,
when two relations are sim-
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ilar, their properties are the
same except when they de-
pend upon the fields being
composed of just the terms of
which they are composed, it
is desirable to have a nomen-
clature which collects | to-
gether all the relations that
are similar to a given rela-
tion. Just as we called the
set of those classes that are
similar to a given class the
“number” of that class, so we
may call the set of all those
relations that are similar to a
given relation the “number”
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of that relation. But in or-
der to avoid confusion with
the numbers appropriate to
classes, we will speak, in this
case, of a “relation-number.”
Thus we have the following
definitions:—

The “relation-number” of a
given relation is the class of all
those relations that are similar
to the given relation.

“Relation-numbers”  are
the set of all those classes
of relations that are relation-
numbers of various relations;
or, what comes to the same
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thing, a relation-number is a
class of relations consisting
of all those relations that are
similar to one member of the
class.

When it is necessary to
speak of the numbers of class-
es in a way which makes it
impossible to confuse them
with relation-numbers, we
shall call them “cardinal num-
bers.” Thus cardinal numbers
are the numbers appropri-
ate to classes. These include
the ordinary integers of daily
life, and also certain infinite
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numbers, of which we shall
speak later. When we speak of
“numbers” without qualifica-
tion, we are to be understood
as meaning cardinal numbers.
The definition of a cardinal
number, it will be remem-
bered, is as follows:—

The “cardinal number” of
a given class is the set of all
those classes that are similar
to the given class.

The most obvious appli-
cation of relation-numbers
is to series. Two series may
be regarded as equally long
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when they have the same
relation-number.  Two fi-
nite series will have the same
relation-number when their
fields have the same cardi-
nal number of terms, and
only then—i.e. a series of (say)
15 terms will have the same
relation-number as any other
series of fifteen terms, but will
not have the same relation-
number as a series of 14 or
16 terms, nor, of course, the
same relation-number as a
relation which is not serial.
Thus, in the quite special
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case of finite series, there is
parallelism between cardinal
and relation-numbers. The
relation-numbers applicable
to series may be | called “se-
rial numbers” (what are com-
monly called “ordinal num-
bers” are a sub-class of these);
thus a finite serial number is
determinate when we know
the cardinal number of terms
in the field of a series having
the serial number in question.
If n is a finite cardinal num-
ber, the relation-number of
a series which has n terms is
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called the “ordinal” number n.
(There are also infinite ordi-
nal numbers, but of them we
shall speak in a later chapter.)
When the cardinal number of
terms in the field of a series is
infinite, the relation-number
of the series is not determined
merely by the cardinal num-
ber, indeed an infinite number
of relation-numbers exist for
one infinite cardinal num-
ber, as we shall see when we
come to consider infinite se-
ries. When a series is infinite,
what we may call its “length,”
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i.e. its relation-number, may
vary without change in the
cardinal number; but when
a series is finite, this cannot
happen.

We can define addition and
multiplication for relation-
numbers as well as for car-
dinal numbers, and a whole
arithmetic of relation-num-
bers can be developed. The
manner in which this is to be
done is easily seen by con-
sidering the case of series.
Suppose, for example, that
we wish to define the sum of
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two non-overlapping series in
such a way that the relation-
number of the sum shall be ca-
pable of being defined as the
sum of the relation-numbers
of the two series. In the first
place, it is clear that there is
an order involved as between
the two series: one of them
must be placed before the
other. Thus if P and Q are
the generating relations of the
two series, in the series which
is their sum with P put before
Q, every member of the field
of P will precede every mem-
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ber of the field of Q. Thus the
serial relation which is to be
defined as the sum of P and
Q is not “P or Q” simply, but
“P or Q or the relation of any
member of the field of P to
any member of the field of
Q.” Assuming that P and Q do
not overlap, this relation is se-
rial, but “P or Q” is not serial,
being not connected, since
it does not hold between a
member of the field of P and a
member of the field of Q. Thus
the sum of P and Q, as above
defined, is what we need in
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order | to define the sum of
two relation-numbers. Simi-
lar modifications are needed
for products and powers. The
resulting arithmetic does not
obey the commutative law:
the sum or product of two
relation-numbers generally
depends upon the order in
which they are taken. But it
obeys the associative law, one
form of the distributive law,
and two of the formal laws for
powers, not only as applied to
serial numbers, but as applied
to relation-numbers generally.
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Relation-arithmetic, in fact,
though recent, is a thoroughly
respectable branch of mathe-
matics.

It must not be supposed,
merely because series afford
the most obvious application
of the idea of likeness, that
there are no other applications
that are important. We have
already mentioned maps, and
we might extend our thoughts
from this illustration to geom-
etry generally. If the system
of relations by which a ge-
ometry is applied to a certain
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set of terms can be brought
fully into relations of like-
ness with a system applying
to another set of terms, then
the geometry of the two sets
is indistinguishable from the
mathematical point of view,
i.e. all the propositions are
the same, except for the fact
that they are applied in one
case to one set of terms and in
the other to another. We may
illustrate this by the relations
of the sort that may be called
“between,” which we consid-
ered in Chapter IV. We there
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saw that, provided a three-
term relation has certain for-
mal logical properties, it will
give rise to series, and may be
called a “between-relation.”
Given any two points, we can
use the between-relation to
define the straight line deter-
mined by those two points; it
consists of a and b together
with all points x, such that
the between-relation holds
between the three points a,
b, x in some order or other.
It has been shown by O. Ve-
blen that we may regard our
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whole space as the field of a
three-term between-relation,
and define our geometry by
the properties we assign to
our between-relation.” Now
likeness is just as easily | de-
finable between three-term
relations as between two-term
relations. If B and B’ are
two between-relations, so that

'This does not apply to elliptic
space, but only to spaces in which the
straight line is an open series. Modern
Mathematics, edited by J. W. A. Young,
pp- 3-51 (monograph by O. Veblen on
“The Foundations of Geometry”).
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“xB(y, z)” means “x is between
y and z with respect to B,”
we shall call S a correlator of
B and B’ if it has the field of
B’ for its converse domain,
and is such that the relation
B holds between three terms
when B’ holds between their
S-correlates, and only then.
And we shall say that B is like
B’ when there is at least one
correlator of B with B’. The
reader can easily convince
himself that, if B is like B’
in this sense, there can be no
difference between the geom-
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etry generated by B and that
generated by B’.

It follows from this that
the mathematician need not
concern himself with the par-
ticular being or intrinsic na-
ture of his points, lines, and
planes, even when he is spec-
ulating as an applied math-
ematician. We may say that
there is empirical evidence
of the approximate truth of
such parts of geometry as are
not matters of definition. But
there is no empirical evidence
as to what a “point” is to be.
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It has to be something that as
nearly as possible satisfies our
axioms, but it does not have
to be “very small” or “with-
out parts.” Whether or not
it is those things is a matter
of indifference, so long as it
satisfies the axioms. If we
can, out of empirical material,
construct a logical structure,
no matter how complicated,
which will satisfy our geomet-
rical axioms, that structure
may legitimately be called
a “point.” We must not say
that there is nothing else that
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could legitimately be called
a “point”; we must only say:
“This object we have con-
structed is sufficient for the
geometer; it may be one of
many objects, any of which
would be sufficient, but that is
no concern of ours, since this
object is enough to vindicate
the empirical truth of geom-
etry, in so far as geometry is
not a matter of definition.”
This is only an illustration
of the general principle that
what matters in mathematics,
and to a very great extent in
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physical science, is not the
intrinsic nature of our terms,
but the logical nature of their
interrelations.

We may say, of two similar
relations, that they have the
same | “structure.” For mathe-
matical purposes (though not
for those of pure philosophy)
the only thing of importance
about a relation is the cases in
which it holds, not its intrinsic
nature. Just as a class may be
defined by various different
but co-extensive concepts—
e.g. “man” and “featherless bi-
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ped”—so two relations which
are conceptually different may
hold in the same set of in-
stances. An “instance” in
which a relation holds is to
be conceived as a couple of
terms, with an order, so that
one of the terms comes first
and the other second; the cou-
ple is to be, of course, such
that its first term has the rela-
tion in question to its second.
Take (say) the relation “fa-
ther”: we can define what we
may call the “extension” of
this relation as the class of all

259 (original page 60)



ordered couples (x, y) which
are such that x is the father
of y. From the mathematical
point of view, the only thing
of importance about the rela-
tion “father” is that it defines
this set of ordered couples.
Speaking generally, we say:

The “extension” of a re-
lation is the class of those
ordered couples (x, y) which
are such that x has the relation
in question to .

We can now go a step fur-
ther in the process of abstrac-
tion, and consider what we
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mean by “structure.” Given
any relation, we can, if it is a
sufficiently simple one, con-
struct a map of it. For the sake
of definiteness, let us take a
relation of which the exten-
sion is the following couples:
ab, ac, ad, bc, ce, dc, de, where
a, b, c, d, e are five terms, no
matter what. We may make a
“map” of this relation by tak-
ing five points on a plane and
connecting them by arrows, as
in the accompanying figure.
What is revealed by the map
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is what we call the “structure”
of the relation.

It is clear that the “struc-
ture” of the relation does not
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depend upon the particular
terms that make up the field
of the relation. The field may
be changed without chang-
ing the structure, and the
structure may be changed
without changing the field—
for | example, if we were
to add the couple ae in the
above illustration we should
alter the structure but not the
field. Two relations have the
same “structure,” we shall
say, when the same map will
do for both—or, what comes
to the same thing, when ei-
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ther can be a map for the
other (since every relation
can be its own map). And
that, as a moment’s reflec-
tion shows, is the very same
thing as what we have called
“likeness.” That is to say, two
relations have the same struc-
ture when they have likeness,
i.e. when they have the same
relation-number. Thus what
we defined as the “relation-
number” is the very same
thing as is obscurely intended
by the word “structure”—a
word which, important as it
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is, is never (so far as we know)
defined in precise terms by
those who use it.

There has been a great deal
of speculation in traditional
philosophy which might have
been avoided if the impor-
tance of structure, and the
difficulty of getting behind it,
had been realised. For exam-
ple, it is often said that space
and time are subjective, but
they have objective counter-
parts; or that phenomena are
subjective, but are caused by
things in themselves, which
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must have differences inter se
corresponding with the dif-
ferences in the phenomena to
which they give rise. Where
such hypotheses are made,
it is generally supposed that
we can know very little about
the objective counterparts. In
actual fact, however, if the
hypotheses as stated were
correct, the objective coun-
terparts would form a world
having the same structure as
the phenomenal world, and
allowing us to infer from phe-
nomena the truth of all propo-
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sitions that can be stated in
abstract terms and are known
to be true of phenomena. If
the phenomenal world has
three dimensions, so must
the world behind phenomena;
if the phenomenal world is
Euclidean, so must the other
be; and so on. In short, every
proposition having a commu-
nicable significance must be
true of both worlds or of nei-
ther: the only difference must
lie in just that essence of indi-
viduality which always eludes
words and baffles descrip-
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tion, but which, for that very
reason, is irrelevant to sci-
ence. Now the only purpose
that philosophers | have in
view in condemning phenom-
ena is in order to persuade
themselves and others that
the real world is very different
from the world of appearance.
We can all sympathise with
their wish to prove such a
very desirable proposition,
but we cannot congratulate
them on their success. It is
true that many of them do not
assert objective counterparts
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to phenomena, and these es-
cape from the above argu-
ment. Those who do assert
counterparts are, as a rule,
very reticent on the subject,
probably because they feel
instinctively that, if pursued,
it will bring about too much
of a rapprochement between
the real and the phenomenal
world. If they were to pursue
the topic, they could hardly
avoid the conclusions which
we have been suggesting. In
such ways, as well as in many
others, the notion of structure
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or relation-number is impor-
tant.
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CHAPTER VII
RATIONAL, REAL,
AND COMPLEX
NUMBERS

WE have now seen how to de-
fine cardinal numbers, and
also relation-numbers, of
which what are commonly
called ordinal numbers are
a particular species. It will
be found that each of these
kinds of number may be in-
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finite just as well as finite.
But neither is capable, as it
stands, of the more famil-
iar extensions of the idea of
number, namely, the exten-
sions to negative, fractional,
irrational, and complex num-
bers. In the present chapter
we shall briefly supply logical
definitions of these various
extensions.

One of the mistakes that
have delayed the discovery
of correct definitions in this
region is the common idea
that each extension of number
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included the previous sorts as
special cases. It was thought
that, in dealing with posi-
tive and negative integers,
the positive integers might be
identified with the original
signless integers. Again it was
thought that a fraction whose
denominator is 1 may be iden-
tified with the natural number
which is its numerator. And
the irrational numbers, such
as the square root of 2, were
supposed to find their place
among rational fractions, as
being greater than some of
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them and less than the others,
so that rational and irrational
numbers could be taken to-
gether as one class, called
“real numbers.” And when
the idea of number was fur-
ther extended so as to include
“complex” numbers, i.e. num-
bers involving the square root
of —1, it was thought that real
numbers could be regarded as
those among complex num-
bers in which the imaginary
part (i.e. the part | which was
a multiple of the square root
of —1) was zero. All these sup-
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positions were erroneous, and
must be discarded, as we shall
find, if correct definitions are
to be given.

Let us begin with positive
and negative integers. It is
obvious on a moment’s con-
sideration that +1 and -1
must both be relations, and
in fact must be each other’s
converses. The obvious and
sufficient definition is that
+1 is the relation of n + 1 to
n, and —1 is the relation of
n to n+ 1. Generally, if m is
any inductive number, +m
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will be the relation of n + m
to n (for any n), and —m will
be the relation of n to n + m.
According to this definition,
+m is a relation which is one-
one so long as n is a cardinal
number (finite or infinite) and
m is an inductive cardinal
number. But +m is under no
circumstances capable of be-
ing identified with m, which
is not a relation, but a class of
classes. Indeed, +m is every
bit as distinct from m as —m
is.

Fractions are more interest-
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ing than positive or negative
integers. We need fractions
for many purposes, but per-
haps most obviously for pur-
poses of measurement. My
friend and collaborator Dr A.
N. Whitehead has developed
a theory of fractions specially
adapted for their application
to measurement, which is set
forth in Principia Mathemat-
ica." But if all that is needed
is to define objects having the
required purely mathemati-

1Vol. iii. *300ff., especially 303.

277 (original page 64)



cal properties, this purpose
can be achieved by a simpler
method, which we shall here
adopt. We shall define the
fraction m/n as being that re-
lation which holds between
two inductive numbers x, y
when xn = ym. This definition
enables us to prove that m/n is
a one-one relation, provided
neither m nor n is zero. And
of course n/m is the converse
relation to m/n.

From the above definition it
is clear that the fraction m/1
is that relation between two
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integers x and y which con-
sists in the fact that x = my.
This relation, like the relation
+m, is by no means capable
of being identified with the
inductive cardinal number
m, because a relation and a
class of classes are objects |
of utterly different kinds.> It

20f course in practice we shall
continue to speak of a fraction as (say)
greater or less than 1, meaning greater
or less than the ratio 1/1. So long as
it is understood that the ratio 1/1 and
the cardinal number 1 are different, it
is not necessary to be always pedantic
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will be seen that o/n is always
the same relation, whatever
inductive number n may be;
it is, in short, the relation of
o to any other inductive car-
dinal. We may call this the
zero of rational numbers; it
is not, of course, identical
with the cardinal number o.
Conversely, the relation m/o
is always the same, whatever
inductive number m may be.
There is not any inductive car-
dinal to correspond to m/o.

in emphasising the difference.
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We may call it “the infinity
of rationals.” It is an instance
of the sort of infinite that is
traditional in mathematics,
and that is represented by
“00.” This is a totally different
sort from the true Cantorian
infinite, which we shall con-
sider in our next chapter. The
infinity of rationals does not
demand, for its definition or
use, any infinite classes or
infinite integers. It is not,
in actual fact, a very impor-
tant notion, and we could
dispense with it altogether if
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there were any object in doing
so. The Cantorian infinite, on
the other hand, is of the great-
est and most fundamental im-
portance; the understanding
of it opens the way to whole
new realms of mathematics
and philosophy.

It will be observed that zero
and infinity, alone among ra-
tios, are not one-one. Zero
is one-many, and infinity is
many-one.

There is not any difficulty
in defining greater and less
among ratios (or fractions).
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Given two ratios m/n and p/q,
we shall say that m/n is less
than p/q if mgq is less than
pn. There is no difficulty in
proving that the relation “less
than,” so defined, is serial, so
that the ratios form a series in
order of magnitude. In this se-
ries, zero is the smallest term
and infinity is the largest.
If we omit zero and infinity
from our series, there is no
longer any smallest or largest
ratio; it is obvious that if m/n
is any ratio other than zero
and infinity, m/2n is smaller
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and 2m/n is larger, though
neither is zero or infinity, so
that m/n is neither the small-
est | nor the largest ratio, and
therefore (when zero and in-
finity are omitted) there is
no smallest or largest, since
m/n was chosen arbitrarily.
In like manner we can prove
that however nearly equal two
fractions may be, there are al-
ways other fractions between
them. For, let m/n and p/q
be two fractions, of which
p/q is the greater. Then it is
easy to see (or to prove) that
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(m+ p)/(n+q) will be greater
than m/n and less than p/q.
Thus the series of ratios is
one in which no two terms
are consecutive, but there are
always other terms between
any two. Since there are other
terms between these others,
and so on ad infinitum, it is
obvious that there are an infi-
nite number of ratios between
any two, however nearly equal
these two may be.3 A series

3Strictly speaking, this statement,
as well as those following to the end of
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having the property that there
are always other terms be-
tween any two, so that no
two are consecutive, is called
“compact.” Thus the ratios
in order of magnitude form a
“compact” series. Such series
have many important prop-
erties, and it is important to
observe that ratios afford an
instance of a compact series
generated purely logically,
without any appeal to space

the paragraph, involves what is called
the “axiom of infinity,” which will be
discussed in a later chapter.
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or time or any other empirical
datum.

Positive and negative ratios
can be defined in a way anal-
ogous to that in which we de-
fined positive and negative in-
tegers. Having first defined
the sum of two ratios m/n and
p/q as (mq + pn)/nq, we define
+p/q as the relation of m/n +
p/q to m/n, where m/n is any
ratio; and —p/q is of course the
converse of +p/q. This is not
the only possible way of defin-
ing positive and negative ra-
tios, but it is a way which, for
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our purpose, has the merit of
being an obvious adaptation
of the way we adopted in the
case of integers.

We come now to a more
interesting extension of the
idea of number, i.e. the exten-
sion to what are called “real”
numbers, which are the kind
that embrace irrationals. In
Chapter I. we had occasion
to mention “incommensu-
rables” and their | discovery
by Pythagoras. It was through
them, i.e. through geometry,
that irrational numbers were
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first thought of. A square of
which the side is one inch long
will have a diagonal of which
the length is the square root
of 2 inches. But, as the an-
cients discovered, there is no
fraction of which the square is
2. This proposition is proved
in the tenth book of Euclid,
which is one of those books
that schoolboys supposed to
be fortunately lost in the days
when Euclid was still used
as a text-book. The proof is
extraordinarily simple. If pos-
sible, let m/n be the square

289 (original page 67)



root of 2, so that m?/n? = 2,
i.e. m> = 2n*>. Thus m? is an
even number, and therefore
m must be an even number,
because the square of an odd
number is odd. Now if m is
even, m> must divide by 4,
for if m = 2p, then m> = 4p>.
Thus we shall have 4p> = 21>,
where p is half of m. Hence
2p® = n?, and therefore n/p
will also be the square root of
2. But then we can repeat the
argument: if n = 2¢, p/q will
also be the square root of 2,
and so on, through an unend-
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ing series of numbers that are
each half of its predecessor.
But this is impossible; if we
divide a number by 2, and
then halve the half, and so on,
we must reach an odd number
after a finite number of steps.
Or we may put the argument
even more simply by assum-
ing that the m/n we start with
is in its lowest terms; in that
case, m and n cannot both be
even; yet we have seen that, if
m?/n> = 2, they must be. Thus
there cannot be any fraction
m/n whose square is 2.
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Thus no fraction will ex-
press exactly the length of the
diagonal of a square whose
side is one inch long. This
seems like a challenge thrown
out by nature to arithmetic.
However the arithmetician
may boast (as Pythagoras did)
about the power of numbers,
nature seems able to baffle
him by exhibiting lengths
which no numbers can esti-
mate in terms of the unit. But
the problem did not remain
in this geometrical form. As
soon as algebra was invented,
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the same problem arose as
regards the solution of equa-
tions, though here it took on
a wider form, since it also
involved complex numbers.
It is clear that fractions
can be found which approach
nearer | and nearer to hav-
ing their square equal to 2.
We can form an ascending
series of fractions all of which
have their squares less than 2,
but differing from 2 in their
later members by less than
any assigned amount. That is
to say, suppose I assign some
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small amount in advance, say
one-billionth, it will be found
that all the terms of our se-
ries after a certain one, say
the tenth, have squares that
differ from 2 by less than this
amount. And if I had as-
signed a still smaller amount,
it might have been necessary
to go further along the series,
but we should have reached
sooner or later a term in the
series, say the twentieth, after
which all terms would have
had squares differing from 2
by less than this still smaller
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amount. If we set to work to
extract the square root of 2 by
the usual arithmetical rule,
we shall obtain an unending
decimal which, taken to so-
and-so many places, exactly
fulfils the above conditions.
We can equally well form a
descending series of fractions
whose squares are all greater
than 2, but greater by con-
tinually smaller amounts as
we come to later terms of the
series, and differing, sooner
or later, by less than any as-
signed amount. In this way
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we seem to be drawing a cor-
don round the square root of
2, and it may seem difficult
to believe that it can perma-
nently escape us. Neverthe-
less, it is not by this method
that we shall actually reach
the square root of 2.

If we divide all ratios into
two classes, according as their
squares are less than 2 or not,
we find that, among those
whose squares are not less
than 2, all have their squares
greater than 2. There is no
maximum to the ratios whose
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square is less than 2, and
no minimum to those whose
square is greater than 2. There
is no lower limit short of zero
to the difference between the
numbers whose square is a
little less than 2 and the num-
bers whose square is a little
greater than 2. We can, in
short, divide all ratios into
two classes such that all the
terms in one class are less
than all in the other, there is
no maximum to the one class,
and there is no minimum to
the other. Between these two
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classes, where 2 ought to
be, there is nothing. Thus
our | cordon, though we have
drawn it as tight as possible,
has been drawn in the wrong
place, and has not caught V2.

The above method of divid-
ing all the terms of a series
into two classes, of which the
one wholly precedes the other,
was brought into prominence
by Dedekind,* and is there-
fore called a “Dedekind cut.”

4Stetigkeit und irrationale Zahlen,
2nd edition, Brunswick, 1892.
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With respect to what happens
at the point of section, there
are four possibilities: (1) there
may be a maximum to the
lower section and a minimum
to the upper section, (2) there
may be a maximum to the one
and no minimum to the other,
(3) there may be no maximum
to the one, but a minimum
to the other, (4) there may be
neither a maximum to the one
nor a minimum to the other.
Of these four cases, the first
is illustrated by any series in
which there are consecutive
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terms: in the series of integers,
for instance, a lower section
must end with some number
n and the upper section must
then begin with n+ 1. The
second case will be illustrated
in the series of ratios if we
take as our lower section all
ratios up to and including
1, and in our upper section
all ratios greater than 1. The
third case is illustrated if we
take for our lower section all
ratios less than 1, and for our
upper section all ratios from
1 upward (including 1 itself).
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The fourth case, as we have
seen, is illustrated if we put
in our lower section all ratios
whose square is less than 2,
and in our upper section all
ratios whose square is greater
than 2.

We may neglect the first of
our four cases, since it only
arises in series where there
are consecutive terms. In the
second of our four cases, we
say that the maximum of the
lower section is the lower limit
of the upper section, or of
any set of terms chosen out
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of the upper section in such a
way that no term of the upper
section is before all of them.
In the third of our four cases,
we say that the minimum of
the upper section is the up-
per limit of the lower section,
or of any set of terms chosen
out of the lower section in
such a way that no term of
the lower section is after all
of them. In the fourth case,
we say that | there is a “gap”:
neither the upper section nor
the lower has a limit or a last
term. In this case, we may
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also say that we have an “irra-
tional section,” since sections
of the series of ratios have
“gaps” when they correspond
to irrationals.

What delayed the true the-
ory of irrationals was a mis-
taken belief that there must be
“limits” of series of ratios. The
notion of “limit” is of the ut-
most importance, and before
proceeding further it will be
well to define it.

A term x is said to be an
“upper limit” of a class a with
respect to a relation P if (1)
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a has no maximum in P, (2)
every member of a which
belongs to the field of P pre-
cedes x, (3) every member of
the field of P which precedes
x precedes some member of a.
(By “precedes” we mean “has
the relation P to.”)

This presupposes the fol-
lowing definition of a “maxi-
mum”:—

A term x is said to be a
“maximum” of a class a with
respect to a relation P if x is a
member of a and of the field
of P and does not have the re-
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lation P to any other member
of a.

These definitions do not de-
mand that the terms to which
they are applied should be
quantitative. For example,
given a series of moments of
time arranged by earlier and
later, their “maximum” (if
any) will be the last of the
moments; but if they are ar-
ranged by later and earlier,
their “maximum” (if any) will
be the first of the moments.

The “minimum” of a class
with respect to P is its maxi-
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mum with respect to the con-
verse of P; and the “lower
limit” with respect to P is the
upper limit with respect to
the converse of P.

The notions of limit and
maximum do not essentially
demand that the relation in
respect to which they are de-
fined should be serial, but
they have few important ap-
plications except to cases
when the relation is serial or
quasi-serial. A notion which is
often important is the notion
“upper limit or maximum,” to
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which we may give the name
“upper boundary.” Thus the
“upper boundary” of a set of
terms chosen out of a series is
their last member if they have
one, but, if not, it is the first
term after all of them, if there
is such a term. If there is nei-
ther | a maximum nor a limit,
there is no upper boundary.
The “lower boundary” is the
lower limit or minimum.
Reverting to the four kinds
of Dedekind section, we see
that in the case of the first
three kinds each section has
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a boundary (upper or lower
as the case may be), while in
the fourth kind neither has
a boundary. It is also clear
that, whenever the lower sec-
tion has an upper boundary,
the upper section has a lower
boundary. In the second and
third cases, the two bound-
aries are identical; in the first,
they are consecutive terms of
the series.

A series is called “Dedekin-
dian” when every section has
a boundary, upper or lower as
the case may be.
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We have seen that the series
of ratios in order of magnitude
is not Dedekindian.

From the habit of being
influenced by spatial imagi-
nation, people have supposed
that series must have lim-
its in cases where it seems
odd if they do not. Thus,
perceiving that there was no
rational limit to the ratios
whose square is less than 2,
they allowed themselves to
“postulate” an irrational limit,
which was to fill the Dedekind
gap. Dedekind, in the above-
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mentioned work, set up the
axiom that the gap must al-
ways be filled, i.e. that every
section must have a boundary.
It is for this reason that series
where his axiom is verified
are called “Dedekindian.” But
there are an infinite number
of series for which it is not
verified.

The method of “postulat-
ing” what we want has many
advantages; they are the same
as the advantages of theft over
honest toil. Let us leave them
to others and proceed with

310 (original page 71)



our honest toil.

It is clear that an irrational
Dedekind cut in some way
“represents” an irrational. In
order to make use of this,
which to begin with is no
more than a vague feeling,
we must find some way of
eliciting from it a precise defi-
nition; and in order to do this,
we must disabuse our minds
of the notion that an irrational
must be the limit of a set of
ratios. Just as ratios whose
denominator is 1 are not iden-
tical with integers, so those
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rational | numbers which can
be greater or less than irra-
tionals, or can have irrationals
as their limits, must not be
identified with ratios. We
have to define a new kind of
numbers called “real num-
bers,” of which some will be
rational and some irrational.
Those that are rational “corre-
spond” to ratios, in the same
kind of way in which the ratio
n/1 corresponds to the integer
n; but they are not the same as
ratios. In order to decide what
they are to be, let us observe
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that an irrational is repre-
sented by an irrational cut,
and a cut is represented by its
lower section. Let us confine
ourselves to cuts in which the
lower section has no maxi-
mum; in this case we will call
the lower section a “segment.”
Then those segments that cor-
respond to ratios are those
that consist of all ratios less
than the ratio they correspond
to, which is their boundary;
while those that represent ir-
rationals are those that have
no boundary. Segments, both
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those that have boundaries
and those that do not, are
such that, of any two pertain-
ing to one series, one must
be part of the other; hence
they can all be arranged in a
series by the relation of whole
and part. A series in which
there are Dedekind gaps, i.e.
in which there are segments
that have no boundary, will
give rise to more segments
than it has terms, since each
term will define a segment
having that term for bound-
ary, and then the segments
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without boundaries will be
extra.

We are now in a position to
define a real number and an
irrational number.

A “real number” is a seg-
ment of the series of ratios in
order of magnitude.

An “irrational number” is a
segment of the series of ratios
which has no boundary.

A “rational real number” is
a segment of the series of ra-
tios which has a boundary.

Thus a rational real num-
ber consists of all ratios less
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than a certain ratio, and it is
the rational real number cor-
responding to that ratio. The
real number 1, for instance, is
the class of proper fractions. |

In the cases in which we
naturally supposed that an
irrational must be the limit
of a set of ratios, the truth
is that it is the limit of the
corresponding set of rational
real numbers in the series of
segments ordered by whole
and part. For example, v/2 is
the upper limit of all those
segments of the series of ra-
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tios that correspond to ratios
whose square is less than 2.
More simply still, 2 is the
segment consisting of all those
ratios whose square is less
than 2.

It is easy to prove that the
series of segments of any se-
ries is Dedekindian. For, given
any set of segments, their
boundary will be their logical
sum, i.e. the class of all those
terms that belong to at least
one segment of the set.5

5For a fuller treatment of the sub-
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The above definition of
real numbers is an example
of “construction” as against
“postulation,” of which we
had another example in the
definition of cardinal num-
bers. The great advantage
of this method is that it re-
quires no new assumptions,
but enables us to proceed de-

ject of segments and Dedekindian re-
lations, see Principia Mathematica, vol.
ii. *210-214. For a fuller treatment of
real numbers, see ibid., vol. iii. *310ff.,
and Principles of Mathematics, chaps.
xxxiii. and xxxiv.
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ductively from the original
apparatus of logic.

There is no difficulty in
defining addition and multi-
plication for real numbers as
above defined. Given two real
numbers p and v, each be-
ing a class of ratios, take any
member of y and any member
of v and add them together
according to the rule for the
addition of ratios. Form the
class of all such sums obtain-
able by varying the selected
members of y and v. This
gives a new class of ratios, and
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it is easy to prove that this
new class is a segment of the
series of ratios. We define it
as the sum of y and v. We
may state the definition more
shortly as follows:—

The arithmetical sum of two
real numbers is the class of the
arithmetical sums of a mem-
ber of the one and a member
of the other chosen in all pos-
sible ways. |

We can define the arith-
metical product of two real
numbers in exactly the same
way, by multiplying a member
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of the one by a member of the
other in all possible ways. The
class of ratios thus generated
is defined as the product of
the two real numbers. (In all
such definitions, the series
of ratios is to be defined as
excluding o and infinity.)

There is no difficulty in ex-
tending our definitions to pos-
itive and negative real num-
bers and their addition and
multiplication.

It remains to give the defi-
nition of complex numbers.

Complex numbers, though
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capable of a geometrical inter-
pretation, are not demanded
by geometry in the same im-
perative way in which irra-
tionals are demanded. A
“complex” number means a
number involving the square
root of a negative number,
whether integral, fractional,
or real. Since the square of
a negative number is posi-
tive, a number whose square
is to be negative has to be a
new sort of number. Using
the letter i for the square root
of —1, any number involving
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the square root of a nega-
tive number can be expressed
in the form x + yi, where x
and v are real. The part yi is
called the “imaginary” part
of this number, x being the
“real” part. (The reason for
the phrase “real numbers”
is that they are contrasted
with such as are “imaginary.”)
Complex numbers have been
for a long time habitually used
by mathematicians, in spite
of the absence of any precise
definition. It has been simply
assumed that they would obey
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the usual arithmetical rules,
and on this assumption their
employment has been found
profitable. They are required
less for geometry than for al-
gebra and analysis. We desire,
for example, to be able to say
that every quadratic equation
has two roots, and every cu-
bic equation has three, and
so on. But if we are con-
fined to real numbers, such an
equation as x*> + 1 = o has no
roots, and such an equation as
x3 —1 = o has only one. Ev-
ery generalisation of number
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has first presented itself as
needed for some simple prob-
lem: negative numbers were
needed in order that subtrac-
tion might be always possible,
since otherwise a — b would
be meaningless if a were less
than b; fractions were needed
| in order that division might
be always possible; and com-
plex numbers are needed in
order that extraction of roots
and solution of equations may
be always possible. But ex-
tensions of number are not
created by the mere need for
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them: they are created by the
definition, and it is to the def-
inition of complex numbers
that we must now turn our
attention.

A complex number may be
regarded and defined as sim-
ply an ordered couple of real
numbers. Here, as elsewhere,
many definitions are possible.
All that is necessary is that
the definitions adopted shall
lead to certain properties. In
the case of complex numbers,
if they are defined as ordered
couples of real numbers, we
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secure at once some of the
properties required, namely,
that two real numbers are
required to determine a com-
plex number, and that among
these we can distinguish a
first and a second, and that
two complex numbers are
only identical when the first
real number involved in the
one is equal to the first in-
volved in the other, and the
second to the second. What is
needed further can be secured
by defining the rules of addi-
tion and multiplication. We
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are to have
(x+pi)+ (X" +9'1) = (x+x)+
(v+v)i
(x +9i)(x"+9'i) = (xx" - py’)
+(xy" +x'p)i.

Thus we shall define that,
given two ordered couples
of real numbers, (x,y) and
(x’,v’), their sum is to be the
couple (x+x’, y+v’), and their
product is to be the couple
(xx” =y, xy’ + x’y). By these
definitions we shall secure
that our ordered couples shall

328 (original page 75)



have the properties we desire.
For example, take the product
of the two couples (o,y) and
(0,’). This will, by the above
rule, be the couple (-yy’,0).
Thus the square of the cou-
ple (o,1) will be the couple
(—1,0). Now those couples in
which the second term is o
are those which, according to
the usual nomenclature, have
their imaginary part zero; in
the notation x + pi, they are
x + oi, which it is natural to
write simply x. Just as it is
natural (but erroneous) | to
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identify ratios whose denom-
inator is unity with integers,
so it is natural (but erroneous)
to identify complex numbers
whose imaginary part is zero
with real numbers. Although
this is an error in theory, it
is a convenience in practice;
“x + 0i” may be replaced sim-
ply by “x” and “o + yi” by
“pi,” provided we remember
that the “x” is not really a real
number, but a special case of
a complex number. And when
y is 1, “yi” may of course be

«w:

replaced by “i.” Thus the
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couple (o,1) is represented
by i, and the couple (-1,0) is
represented by —1. Now our
rules of multiplication make
the square of (o,1) equal to
(-1,0), i.e. the square of i is
—1. This is what we desired to
secure. Thus our definitions
serve all necessary purposes.
It is easy to give a geometri-
cal interpretation of complex
numbers in the geometry of
the plane. This subject was
agreeably expounded by W. K.
Clifford in his Common Sense
of the Exact Sciences, a book of
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great merit, but written before
the importance of purely log-
ical definitions had been re-
alised.

Complex numbers of a
higher order, though much
less useful and important
than those what we have been
defining, have certain uses
that are not without impor-
tance in geometry, as may
be seen, for example, in Dr
Whitehead’s Universal Alge-
bra. The definition of complex
numbers of order # is obtained
by an obvious extension of the
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definition we have given. We
define a complex number of
order n as a one-many rela-
tion whose domain consists
of certain real numbers and
whose converse domain con-
sists of the integers from 1
to n.° This is what would or-
dinarily be indicated by the
notation (x;, x5, X5, ... Xy),
where the suffixes denote cor-
relation with the integers used
as suffixes, and the correlation

OCt. Principles of Mathematics,
§360, p- 379-
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is one-many, not necessarily
one-one, because x, and x;
may be equal when r and s are
not equal. The above defini-
tion, with a suitable rule of
multiplication, will serve all
purposes for which complex
numbers of higher orders are
needed.

We have now completed our
review of those extensions of
number which do not involve
infinity. The application of
number to infinite collections
must be our next topic.
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CHAPTER VIII
INFINITE CARDINAL
NUMBERS

Tue definition of cardinal
numbers which we gave in
Chapter II. was applied in
Chapter III. to finite numbers,
i.e. to the ordinary natural
numbers. To these we gave
the name “inductive num-
bers,” because we found that
they are to be defined as num-
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bers which obey mathematical
induction starting from o. But
we have not yet considered
collections which do not have
an inductive number of terms,
nor have we inquired whether
such collections can be said
to have a number at all. This
is an ancient problem, which
has been solved in our own
day, chiefly by Georg Can-
tor. In the present chapter
we shall attempt to explain
the theory of transfinite or
infinite cardinal numbers as it
results from a combination of
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his discoveries with those of
Frege on the logical theory of
numbers.

It cannot be said to be cer-
tain that there are in fact
any infinite collections in the
world. The assumption that
there are is what we call the
“axiom of infinity.” Although
various ways suggest them-
selves by which we might
hope to prove this axiom,
there is reason to fear that
they are all fallacious, and
that there is no conclusive
logical reason for believing it
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to be true. At the same time,
there is certainly no logical
reason against infinite collec-
tions, and we are therefore
justified, in logic, in inves-
tigating the hypothesis that
there are such collections. The
practical form of this hypoth-
esis, for our present purposes,
is the assumption that, if n
is any inductive number, # is
not equal to n+ 1. Various
subtleties arise in identifying
this form of our assumption
with | the form that asserts the
existence of infinite collec-
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tions; but we will leave these
out of account until, in a later
chapter, we come to consider
the axiom of infinity on its
own account. For the present
we shall merely assume that,
if n is an inductive number, n
is not equal to n+ 1. This is in-
volved in Peano’s assumption
that no two inductive num-
bers have the same successor;
for,if n=n+1, then n—1 and
n have the same successor,
namely n. Thus we are as-
suming nothing that was not
involved in Peano’s primitive
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propositions.

Let us now consider the
collection of the inductive
numbers themselves. This is
a perfectly well-defined class.
In the first place, a cardi-
nal number is a set of classes
which are all similar to each
other and are not similar to
anything except each other.
We then define as the “induc-
tive numbers” those among
cardinals which belong to the
posterity of o with respect
to the relation of n to n+ 1,
i.e. those which possess every
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property possessed by o and
by the successors of posses-
sors, meaning by the “succes-
sor” of n the number n + 1.
Thus the class of “inductive
numbers” is perfectly definite.
By our general definition of
cardinal numbers, the number
of terms in the class of induc-
tive numbers is to be defined
as “all those classes that are
similar to the class of induc-
tive numbers”—i.e. this set of
classes is the number of the
inductive numbers according
to our definitions.
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Now it is easy to see that
this number is not one of the
inductive numbers. If n is
any inductive number, the
number of numbers from o
to n (both included) is n + 1;
therefore the total number of
inductive numbers is greater
than 7, no matter which of the
inductive numbers n may be.
If we arrange the inductive
numbers in a series in order
of magnitude, this series has
no last term; but if n is an
inductive number, every se-
ries whose field has n terms
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has a last term, as it is easy to
prove. Such differences might
be multiplied ad lib. Thus the
number of inductive numbers
is a new number, different
from all of them, not possess-
ing all inductive properties.
It may happen that o has a
certain | property, and that if
n has it so has n+ 1, and yet
that this new number does not
have it. The difficulties that
so long delayed the theory of
infinite numbers were largely
due to the fact that some, at
least, of the inductive prop-

343 (original pages 78-79)



erties were wrongly judged
to be such as must belong to
all numbers; indeed it was
thought that they could not be
denied without contradiction.
The first step in understand-
ing infinite numbers consists
in realising the mistakenness
of this view.

The most noteworthy and
astonishing difference be-
tween an inductive num-
ber and this new number
is that this new number is
unchanged by adding 1 or
subtracting 1 or doubling or
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halving or any of a number
of other operations which we
think of as necessarily making
a number larger or smaller.
The fact of being not altered
by the addition of 1 is used
by Cantor for the definition
of what he calls “transfinite”
cardinal numbers; but for var-
ious reasons, some of which
will appear as we proceed, it
is better to define an infinite
cardinal number as one which
does not possess all induc-
tive properties, i.e. simply as
one which is not an inductive
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number. Nevertheless, the
property of being unchanged
by the addition of 1 is a very
important one, and we must
dwell on it for a time.

To say that a class has a
number which is not altered
by the addition of 1 is the
same thing as to say that, if
we take a term x which does
not belong to the class, we can
find a one-one relation whose
domain is the class and whose
converse domain is obtained
by adding x to the class. For in
that case, the class is similar
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to the sum of itself and the
term x, i.e. to a class having
one extra term; so that it has
the same number as a class
with one extra term, so that
if n is this number, n = n+ 1.
In this case, we shall also have
n =mn-1, i.e. there will be
one-one relations whose do-
mains consist of the whole
class and whose converse do-
mains consist of just one term
short of the whole class. It
can be shown that the cases
in which this happens are the
same as the apparently more
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general cases in which some
part (short of the whole) can
be put into one-one relation
with the whole. When this
can be done, | the correlator
by which it is done may be
said to “reflect” the whole
class into a part of itself; for
this reason, such classes will
be called “reflexive.” Thus:

A “reflexive” class is one
which is similar to a proper
part of itself. (A “proper part”
is a part short of the whole.)

A “reflexive” cardinal num-
ber is the cardinal number of
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a reflexive class.

We have now to consider
this property of reflexiveness.

One of the most striking
instances of a “reflexion” is
Royce’s illustration of the
map: he imagines it decided
to make a map of England
upon a part of the surface of
England. A map, if it is ac-
curate, has a perfect one-one
correspondence with its orig-
inal; thus our map, which is
part, is in one-one relation
with the whole, and must
contain the same number of
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points as the whole, which
must therefore be a reflexive
number. Royce is interested
in the fact that the map, if it is
correct, must contain a map of
the map, which must in turn
contain a map of the map of
the map, and so on ad infini-
tum. This point is interesting,
but need not occupy us at this
moment. In fact, we shall do
well to pass from picturesque
illustrations to such as are
more completely definite, and
for this purpose we cannot
do better than consider the
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number-series itself.

The relation of n to n+ 1,
confined to inductive num-
bers, is one-one, has the whole
of the inductive numbers for
its domain, and all except o
for its converse domain. Thus
the whole class of inductive
numbers is similar to what the
same class becomes when we
omit o. Consequently it is a
“reflexive” class according to
the definition, and the num-
ber of its terms is a “reflexive”
number. Again, the relation
of n to 2n, confined to in-
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ductive numbers, is one-one,
has the whole of the induc-
tive numbers for its domain,
and the even inductive num-
bers alone for its converse
domain. Hence the total num-
ber of inductive numbers is
the same as the number of
even inductive numbers. This
property was used by Leib-
niz (and many others) as a
proof that infinite numbers
are impossible; it was thought
self-contradictory that | “the
part should be equal to the
whole.” But this is one of
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those phrases that depend
for their plausibility upon
an unperceived vagueness:
the word “equal” has many
meanings, but if it is taken
to mean what we have called
“similar,” there is no con-
tradiction, since an infinite
collection can perfectly well
have parts similar to itself.
Those who regard this as im-
possible have, unconsciously
as a rule, attributed to num-
bers in general properties
which can only be proved by
mathematical induction, and
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which only their familiarity
makes us regard, mistakenly,
as true beyond the region of
the finite.

Whenever we can “reflect”
a class into a part of itself, the
same relation will necessarily
reflect that part into a smaller
part, and so on ad infinitum.
For example, we can reflect,
as we have just seen, all the
inductive numbers into the
even numbers; we can, by the
same relation (that of n to
an) reflect the even numbers
into the multiples of 4, these
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into the multiples of 8, and
so on. This is an abstract ana-
logue to Royce’s problem of
the map. The even numbers
are a “map” of all the induc-
tive numbers; the multiples of
4 are a map of the map; the
multiples of 8 are a map of the
map of the map; and so on.
If we had applied the same
process to the relation of n to
n+ 1, our “map” would have
consisted of all the inductive
numbers except o; the map
of the map would have con-
sisted of all from 2 onward,

355 (original page 81)



the map of the map of the
map of all from 3 onward;
and so on. The chief use of
such illustrations is in order
to become familiar with the
idea of reflexive classes, so
that apparently paradoxical
arithmetical propositions can
be readily translated into the
language of reflexions and
classes, in which the air of
paradox is much less.

It will be useful to give
a definition of the number
which is that of the inductive
cardinals. For this purpose
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we will first define the kind
of series exemplified by the
inductive cardinals in order
of magnitude. The kind of
series which is called a “pro-
gression” has already been
considered in Chapter I. Itis a
series which can be generated
by a relation of consecutive-
ness: | every member of the
series is to have a successor,
but there is to be just one
which has no predecessor, and
every member of the series is
to be in the posterity of this
term with respect to the rela-

357 (original pages 81—-82)



tion “immediate predecessor.”
These characteristics may be
summed up in the following
definition:—"*

A “progression” is a one-
one relation such that there
is just one term belonging to
the domain but not to the con-
verse domain, and the domain
is identical with the posterity
of this one term.

It is easy to see that a pro-
gression, so defined, satisfies

1Cf. Principia Mathematica, vol. ii.
*123.
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Peano’s five axioms. The term
belonging to the domain but
not to the converse domain
will be what he calls “0”; the
term to which a term has the
one-one relation will be the
“successor” of the term; and
the domain of the one-one
relation will be what he calls
“number.” Taking his five
axioms in turn, we have the
following translations:—

(1) “o is a number” be-
comes: “The member of the
domain which is not a mem-
ber of the converse domain
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is a member of the domain.”
This is equivalent to the ex-
istence of such a member,
which is given in our defini-
tion. We will call this member
“the first term.”

(2) “The successor of any
number is a number” be-
comes: “The term to which
a given member of the do-
main has the relation in ques-
tion is again a member of the
domain.” This is proved as
follows: By the definition, ev-
ery member of the domain
is a member of the posterity
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of the first term; hence the
successor of a member of the
domain must be a member
of the posterity of the first
term (because the posterity
of a term always contains its
own successors, by the gen-
eral definition of posterity),
and therefore a member of
the domain, because by the
definition the posterity of the
first term is the same as the
domain.

(3) “No two numbers have
the same successor.” This is
only to say that the relation is
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one-many, which it is by defi-
nition (being one-one). |

(4) “o is not the successor of
any number” becomes: “The
first term is not a member of
the converse domain,” which
is again an immediate result
of the definition.

(5) This is mathematical in-
duction, and becomes: “Ev-
ery member of the domain be-
longs to the posterity of the
first term,” which was part of
our definition.

Thus progressions as we
have defined them have the
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five formal properties from
which Peano deduces arith-
metic. It is easy to show that
two progressions are “similar”
in the sense defined for simi-
larity of relations in Chapter
VI. We can, of course, derive
a relation which is serial from
the one-one relation by which
we define a progression: the
method used is that explained
in Chapter IV, and the re-
lation is that of a term to a
member of its proper poster-
ity with respect to the original
one-one relation.
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Two transitive asymmetri-
cal relations which generate
progressions are similar, for
the same reasons for which
the corresponding one-one
relations are similar. The class
of all such transitive genera-
tors of progressions is a “serial
number” in the sense of Chap-
ter VI.; it is in fact the smallest
of infinite serial numbers, the
number to which Cantor has
given the name w, by which
he has made it famous.

But we are concerned, for
the moment, with cardinal
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numbers. Since two progres-
sions are similar relations, it
follows that their domains
(or their fields, which are the
same as their domains) are
similar classes. The domains
of progressions form a cardi-
nal number, since every class
which is similar to the do-
main of a progression is easily
shown to be itself the domain
of a progression. This cardi-
nal number is the smallest of
the infinite cardinal numbers;
it is the one to which Cantor
has appropriated the Hebrew
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Aleph with the suffix o, to dis-
tinguish it from larger infinite
cardinals, which have other
suffixes. Thus the name of the
smallest of infinite cardinals
is N,.

To say that a class has N,
terms is the same thing as to
say that it is a member of N,
and this is the same thing as
to say | that the members of
the class can be arranged in a
progression. It is obvious that
any progression remains a
progression if we omit a finite
number of terms from it, or
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every other term, or all except
every tenth term or every hun-
dredth term. These methods
of thinning out a progression
do not make it cease to be a
progression, and therefore do
not diminish the number of
its terms, which remains .
In fact, any selection from a
progression is a progression
if it has no last term, however
sparsely it may be distributed.
Take (say) inductive numbers
of the form n", or n"". Such
numbers grow very rare in the
higher parts of the number
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series, and yet there are just
as many of them as there are
inductive numbers altogether,
namely, N,.

Conversely, we can add
terms to the inductive num-
bers without increasing their
number. Take, for example,
ratios. One might be inclined
to think that there must be
many more ratios than inte-
gers, since ratios whose de-
nominator is 1 correspond to
the integers, and seem to be
only an infinitesimal propor-
tion of ratios. But in actual
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fact the number of ratios (or
fractions) is exactly the same
as the number of inductive
numbers, namely, X,. This is
easily seen by arranging ratios
in a series on the following
plan: If the sum of numera-
tor and denominator in one
is less than in the other, put
the one before the other; if the
sum is equal in the two, put
first the one with the smaller
numerator. This gives us the
series

1 1 1 2 1
1, 5; 2, 51 3; Zr 51 %r 4y E:

369 (original page 84)



This series is a progression,
and all ratios occur in it sooner
or later. Hence we can arrange
all ratios in a progression, and
their number is therefore .
It is not the case, however,
that all infinite collections
have 8, terms. The number
of real numbers, for example,
is greater than N,; it is, in
fact, 280, and it is not hard to
prove that 2" is greater than
n even when n is infinite. The
easiest way of proving this is
to prove, first, that if a class
has n members, it contains 2"
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sub-classes—in other words,
that there are 2" ways | of se-
lecting some of its members
(including the extreme cases
where we select all or none);
and secondly, that the number
of sub-classes contained in a
class is always greater than
the number of members of the
class. Of these two proposi-
tions, the first is familiar in
the case of finite numbers,
and is not hard to extend to
infinite numbers. The proof
of the second is so simple and
so instructive that we shall
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give it:

In the first place, it is clear
that the number of sub-classes
of a given class (say «a) is at
least as great as the number of
members, since each member
constitutes a sub-class, and
we thus have a correlation of
all the members with some
of the sub-classes. Hence it
follows that, if the number
of sub-classes is not equal to
the number of members, it
must be greater. Now it is easy
to prove that the number is
not equal, by showing that,
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given any one-one relation
whose domain is the members
and whose converse domain
is contained among the set
of sub-classes, there must
be at least one sub-class not
belonging to the converse do-
main. The proof is as follows:>
When a one-one correlation
R is established between all
the members of @ and some

2This proof is taken from Can-
tor, with some simplifications:
see Jahresbericht der Deutschen
Mathematiker-Vereinigung, i. (1892),
p-77.
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of the sub-classes, it may hap-
pen that a given member x
is correlated with a sub-class
of which it is a member; or,
again, it may happen that x is
correlated with a sub-class of
which it is not a member. Let
us form the whole class, f say,
of those members x which are
correlated with sub-classes
of which they are not mem-
bers. This is a sub-class of «,
and it is not correlated with
any member of a. For, taking
first the members of 8, each
of them is (by the definition
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of B) correlated with some
sub-class of which it is not a
member, and is therefore not
correlated with . Taking next
the terms which are not mem-
bers of 8, each of them (by the
definition of ) is correlated
with some sub-class of which
it is a member, and therefore
again is not correlated with
B. Thus no member of « is
correlated with . Since R
was any one-one correlation
of all members | with some
sub-classes, it follows that
there is no correlation of all
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members with all sub-classes.
It does not matter to the proof
if p has no members: all that
happens in that case is that
the sub-class which is shown
to be omitted is the null-class.
Hence in any case the number
of sub-classes is not equal to
the number of members, and
therefore, by what was said
earlier, it is greater. Combin-
ing this with the proposition
that, if n is the number of
members, 2" is the number of
sub-classes, we have the theo-
rem that 2" is always greater
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than n, even when n is infi-
nite.

It follows from this proposi-
tion that there is no maximum
to the infinite cardinal num-
bers. However great an infi-
nite number # may be, 2" will
be still greater. The arithmetic
of infinite numbers is some-
what surprising until one be-
comes accustomed to it. We
have, for example,
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No+1=N,,
No +n=28,, where nis any
inductive number,

8,2 =N,

(This follows from the case of
the ratios, for, since a ratio is
determined by a pair of induc-
tive numbers, it is easy to see
that the number of ratios is the
square of the number of in-
ductive numbers, i.e. it is N,>;
but we saw that it is also )
Ro" =N, where
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n is any inductive number.
(This follows from

No2 = No
by induction; for if
R, =R,

then
Non+1 — No2 =N,.)

But 2% >N,

In fact, as we shall see later,
2% is a very important num-
ber, namely, the number of
terms in a series which has
“continuity” in the sense in
which this word is used by
Cantor. Assuming space and
time to be continuous in this
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sense (as we commonly do
in analytical geometry and
kinematics), this will be the
number of points in space or
of instants in time; it will also
be the number of points in
any finite portion of space,
whether | line, area, or vol-
ume. After 8, 2% is the most
important and interesting of
infinite cardinal numbers.
Although addition and
multiplication are always pos-
sible with infinite cardinals,
subtraction and division no
longer give definite results,
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and cannot therefore be em-
ployed as they are employed
in elementary arithmetic.
Take subtraction to begin
with: so long as the num-
ber subtracted is finite, all
goes well; if the other number
is reflexive, it remains un-
changed. Thus 8, —n =K, if
n is finite; so far, subtraction
gives a perfectly definite re-
sult. But it is otherwise when
we subtract N, from itself;
we may then get any result,
from o up to N,. This is easily
seen by examples. From the
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inductive numbers, take away
the following collections of N,
terms:—

(1) All the inductive num-
bers—remainder, zero.

(2) All the inductive num-
bers from n onwards—re-
mainder, the numbers from o
to n—1, numbering n terms in
all.

(3) All the odd numbers—
remainder, all the even num-
bers, numbering N, terms.

All these are different ways
of subtracting 8, from N,,
and all give different results.
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As regards division, very
similar results follow from
the fact that N, is unchanged
when multiplied by 2 or 3 or
any finite number # or by N,.
It follows that 8, divided by
N, may have any value from 1
up to N,.

From the ambiguity of sub-
traction and division it results
that negative numbers and
ratios cannot be extended
to infinite numbers. Addi-
tion, multiplication, and ex-
ponentiation proceed quite
satisfactorily, but the inverse
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operations—subtraction, divi-
sion, and extraction of roots—
are ambiguous, and the no-
tions that depend upon them
fail when infinite numbers are
concerned.

The characteristic by which
we defined finitude was math-
ematical induction, i.e. we de-
fined a number as finite when
it obeys mathematical induc-
tion starting from o, and a
class as finite when its num-
ber is finite. This definition
yields the sort of result that
a definition ought to yield,
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namely, that the finite | num-
bers are those that occur in
the ordinary number-series o,
1,2, 3, ... Butin the present
chapter, the infinite numbers
we have discussed have not
merely been non-inductive:
they have also been reflexive.
Cantor used reflexiveness as
the definition of the infinite,
and believes that it is equiv-
alent to non-inductiveness;
that is to say, he believes that
every class and every cardinal
is either inductive or reflex-
ive. This may be true, and
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may very possibly be capable
of proof; but the proofs hith-
erto offered by Cantor and
others (including the present
author in former days) are fal-
lacious, for reasons which will
be explained when we come
to consider the “multiplica-
tive axiom.” At present, it is
not known whether there are
classes and cardinals which
are neither reflexive nor in-
ductive. If n were such a
cardinal, we should not have
n =mn+ 1, but n would not be
one of the “natural numbers,”
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and would be lacking in some
of the inductive properties.
All known infinite classes and
cardinals are reflexive; but
for the present it is well to
preserve an open mind as to
whether there are instances,
hitherto unknown, of classes
and cardinals which are nei-
ther reflexive nor inductive.
Meanwhile, we adopt the fol-
lowing definitions:—

A finite class or cardinal is
one which is inductive.

An infinite class or cardinal
is one which is not inductive.
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All reflexive classes and cardi-
nals are infinite; but it is not
known at present whether all
infinite classes and cardinals
are reflexive. We shall return
to this subject in Chapter XII.
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CHAPTER IX
INFINITE SERIES
AND ORDINALS

AN “infinite series” may be
defined as a series of which
the field is an infinite class.
We have already had occa-
sion to consider one kind of
infinite series, namely, pro-
gressions. In this chapter
we shall consider the subject
more generally.
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The most noteworthy char-
acteristic of an infinite se-
ries is that its serial number
can be altered by merely re-
arranging its terms. In this
respect there is a certain oppo-
siteness between cardinal and
serial numbers. It is possible
to keep the cardinal number
of a reflexive class unchanged
in spite of adding terms to it;
on the other hand, it is possi-
ble to change the serial num-
ber of a series without adding
or taking away any terms, by
mere re-arrangement. At the
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same time, in the case of any
infinite series it is also possi-
ble, as with cardinals, to add
terms without altering the
serial number: everything de-
pends upon the way in which
they are added.

In order to make matters
clear, it will be best to be-
gin with examples. Let us
first consider various differ-
ent kinds of series which can
be made out of the inductive
numbers arranged on various
plans. We start with the series
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1,2,3 4, ... 1, ..o,

which, as we have already
seen, represents the smallest
of infinite serial numbers, the
sort that Cantor calls w. Let
us proceed to thin out this se-
ries by repeatedly performing
the | operation of removing to
the end the first even number
that occurs. We thus obtain in
succession the various series:
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1,3, 4,5 ... 1, ...2,
1,35 6,...n+1,...2, 4,
1,35 7 ...1+2,...2, 4, 6,
and so on. If we imagine this
process carried on as long as
possible, we finally reach the
series

1,3,5 7, ...20+1,...2, 4,

6,8,...21n, ...,

in which we have first all the
odd numbers and then all the
even numbers.
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The serial numbers of these
various series are w + 1, w +
2, w+3, ... 2w. Each of these
numbers is “greater” than any
of its predecessors, in the fol-
lowing sense:—

One serial number is said
to be “greater” than another
if any series having the first
number contains a part hav-
ing the second number, but no
series having the second num-
ber contains a part having the
first number.

If we compare the two series
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1,2,3 4, ...1, ...

1,3, 4,5 ...0+1,...2,

we see that the first is simi-
lar to the part of the second
which omits the last term,
namely, the number 2, but
the second is not similar to
any part of the first. (This is
obvious, but is easily demon-
strated.) Thus the second se-
ries has a greater serial num-
ber than the first, according
to the definition—i.e. w + 1
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is greater than w. But if we
add a term at the beginning
of a progression instead of the
end, we still have a progres-
sion. Thus 1 + w = w. Thus
1+w is not equal to w+1. This
is characteristic of relation-
arithmetic generally: if y and
v are two relation-numbers,
the general rule is that yp+v
is not equal to v + p. The case
of finite ordinals, in which
there is equality, is quite ex-
ceptional.

The series we finally reach-
ed just now consisted of first
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all the odd numbers and then
all the even numbers, and its
serial | number is 2w. This
number is greater than w or
w + n, where n is finite. It is
to be observed that, in accor-
dance with the general defi-
nition of order, each of these
arrangements of integers is to
be regarded as resulting from
some definite relation. E.g. the
one which merely removes 2
to the end will be defined by
the following relation: “x and
y are finite integers, and ei-
ther y is 2 and x is not 2, or
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neither is 2 and x is less than
y.” The one which puts first
all the odd numbers and then
all the even ones will be de-
fined by: “x and p are finite
integers, and either x is odd
and y is even or x is less than
v and both are odd or both
are even.” We shall not trou-
ble, as a rule, to give these for-
mule in future; but the fact
that they could be given is es-
sential.

The number which we have
called 2w, namely, the num-
ber of a series consisting of
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two progressions, is some-
times called w. 2. Multiplica-
tion, like addition, depends
upon the order of the factors:
a progression of couples gives
a series such as

X1 V1r X2y Yoy X35 Y30 -

Xps Vs «-os

which is itself a progression;
but a couple of progressions
gives a series which is twice
as long as a progression. It is
therefore necessary to distin-
guish between 2w and w . 2.
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Usage is variable; we shall
use 2w for a couple of pro-
gressions and w. 2 for a pro-
gression of couples, and this
decision of course governs
our general interpretation
of “a.p” when a and § are
relation-numbers: “a. 7 will
have to stand for a suitably
constructed sum of « relations
each having f§ terms.

We can proceed indefinitely
with the process of thinning
out the inductive numbers.
For example, we can place
first the odd numbers, then
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their doubles, then the dou-
bles of these, and so on. We
thus obtain the series

1,357 .52,6,10,14,..; 4,
12, 20, 28, ...;8, 24, 40, 56, ...,

of which the number is w?,
since it is a progression of
progressions. Any one of the
progressions in this new series
can of course be | thinned out
as we thinned out our original
progression. We can proceed
to w3, w4, ... w¥, and so on;
however far we have gone, we
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can always go further.

The series of all the ordi-
nals that can be obtained in
this way, i.e. all that can be
obtained by thinning out a
progression, is itself longer
than any series that can be
obtained by re-arranging the
terms of a progression. (This
is not difficult to prove.) The
cardinal number of the class
of such ordinals can be shown
to be greater than N; it is the
number which Cantor calls
N, . The ordinal number of the
series of all ordinals that can
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be made out of an N, taken in
order of magnitude, is called
w,. Thus a series whose ordi-
nal number is w, has a field
whose cardinal number is N;.

We can proceed from w,
and N, to w, and N, by a pro-
cess exactly analogous to that
by which we advanced from
w and N, to w, and N,. And
there is nothing to prevent us
from advancing indefinitely
in this way to new cardinals
and new ordinals. It is not
known whether 2™ is equal
to any of the cardinals in the
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series of Alephs. It is not even
known whether it is compara-
ble with them in magnitude;
for aught we know, it may be
neither equal to nor greater
nor less than any one of the
Alephs. This question is con-
nected with the multiplicative
axiom, of which we shall treat
later.

All the series we have been
considering so far in this
chapter have been what is
called “well-ordered.” A well-
ordered series is one which
has a beginning, and has con-
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secutive terms, and has a term
next after any selection of its
terms, provided there are any
terms after the selection. This
excludes, on the one hand,
compact series, in which there
are terms between any two,
and on the other hand series
which have no beginning, or
in which there are subordi-
nate parts having no begin-
ning. The series of negative
integers in order of magni-
tude, having no beginning,
but ending with —1, is not
well-ordered; but taken in the
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reverse order, beginning with
-1, it is well-ordered, being
in fact a progression. The
definition is: |

A “well-ordered” series is
one in which every sub-class
(except, of course, the null-
class) has a first term.

An  “ordinal” number
means the relation-number
of a well-ordered series. It is
thus a species of serial num-
ber.

Among well-ordered series,
a generalised form of mathe-
matical induction applies. A
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property may be said to be
“transfinitely hereditary” if,
when it belongs to a certain
selection of the terms in a
series, it belongs to their im-
mediate successor provided
they have one. In a well-
ordered series, a transfinitely
hereditary property belong-
ing to the first term of the
series belongs to the whole
series. This makes it possible
to prove many propositions
concerning well-ordered se-
ries which are not true of all
series.
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It is easy to arrange the
inductive numbers in series
which are not well-ordered,
and even to arrange them in
compact series. For example,
we can adopt the following
plan: consider the decimals
from -1 (inclusive) to 1 (ex-
clusive), arranged in order
of magnitude. These form a
compact series; between any
two there are always an infi-
nite number of others. Now
omit the dot at the beginning
of each, and we have a com-
pact series consisting of all
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finite integers except such as
divide by 10. If we wish to
include those that divide by
10, there is no difficulty; in-
stead of starting with -1, we
will include all decimals less
than 1, but when we remove
the dot, we will transfer to
the right any o’s that occur at
the beginning of our decimal.
Omitting these, and returning
to the ones that have no o’s
at the beginning, we can state
the rule for the arrangement
of our integers as follows: Of
two integers that do not begin
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with the same digit, the one
that begins with the smaller
digit comes first. Of two that
do begin with the same digit,
but differ at the second digit,
the one with the smaller sec-
ond digit comes first, but first
of all the one with no second
digit; and so on. Generally, if
two integers agree as regards
the first n digits, but not as
regards the (n + 1)t that one
comes first which has either
no (n+1)" digit or a smaller
one than the other. This rule
of arrangement, | as the reader
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can easily convince himself,
gives rise to a compact series
containing all the integers
not divisible by 10; and, as
we saw, there is no difficulty
about including those that
are divisible by 10. It follows
from this example that it is
possible to construct compact
series having N, terms. In
fact, we have already seen that
there are N, ratios, and ratios
in order of magnitude form a
compact series; thus we have
here another example. We
shall resume this topic in the
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next chapter.

Of the usual formal laws
of addition, multiplication,
and exponentiation, all are
obeyed by transfinite car-
dinals, but only some are
obeyed by transfinite ordinals,
and those that are obeyed
by them are obeyed by all
relation-numbers. By the
“usual formal laws” we mean
the following:—
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I. The commutative law:
a+p=p+a and
axp=pxa.
II. The associative law:
(a+p)+y=a+(B+y)
and (a xB)xy =ax(fxy).
III. The distributive law:
a(p+y)=af+ay.

When the commutative law
does not hold, the above form
of the distributive law must be
distinguished from

(B+y)a=pa+tya.

As we shall see immedi-
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ately, one form may be true
and the other false.

IV. The laws of exponentia-
tion:
af . a? = abt7,

a” Y = (ap),

(aP)r = ab7.

All these laws hold for car-
dinals, whether finite or in-
finite, and for finite ordinals.
But when we come to infi-
nite ordinals, or indeed to
relation-numbers in general,
some hold and some do not.
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The commutative law does
not hold; the associative law
does hold; the distributive law
(adopting the convention | we
have adopted above as regards
the order of the factors in a
product) holds in the form

(B+y)a=patya
but not in the form

alp+y)=ap+ay;
the exponential laws

af.a? = aP*7 and (aP)? = P
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still hold, but not the law
o = (ap),

which is obviously connected
with the commutative law for
multiplication.

The definitions of multi-
plication and exponentiation
that are assumed in the above
propositions are somewhat
complicated. The reader who
wishes to know what they
are and how the above laws
are proved must consult the
second volume of Principia
Mathematica, *172-176.
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Ordinal transfinite arith-
metic was developed by Can-
tor at an earlier stage than car-
dinal transfinite arithmetic,
because it has various techni-
cal mathematical uses which
led him to it. But from the
point of view of the philoso-
phy of mathematics it is less
important and less fundamen-
tal than the theory of transfi-
nite cardinals. Cardinals are
essentially simpler than ordi-
nals, and it is a curious his-
torical accident that they first
appeared as an abstraction
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from the latter, and only grad-
ually came to be studied on
their own account. This does
not apply to Frege’s work, in
which cardinals, finite and
transfinite, were treated in
complete independence of
ordinals; but it was Cantor’s
work that made the world
aware of the subject, while
Frege’s remained almost un-
known, probably in the main
on account of the difficulty
of his symbolism. And math-
ematicians, like other peo-
ple, have more difficulty in
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understanding and using no-
tions which are comparatively
“simple” in the logical sense
than in manipulating more
complex notions which are |
more akin to their ordinary
practice. For these reasons, it
was only gradually that the
true importance of cardinals
in mathematical philosophy
was recognised. The impor-
tance of ordinals, though by
no means small, is distinctly
less than that of cardinals,
and is very largely merged in
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that of the more general con-
ception of relation-numbers.
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CHAPTER X
LIMITS AND
CONTINUITY

THE conception of a “limit”
is one of which the impor-
tance in mathematics has been
found continually greater
than had been thought. The
whole of the differential and
integral calculus, indeed prac-
tically everything in higher
mathematics, depends upon
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limits. Formerly, it was sup-
posed that infinitesimals were
involved in the foundations
of these subjects, but Weier-
strass showed that this is an
error: wherever infinitesimals
were thought to occur, what
really occurs is a set of fi-
nite quantities having zero for
their lower limit. It used to
be thought that “limit” was
an essentially quantitative no-
tion, namely, the notion of a
quantity to which others ap-
proached nearer and nearer,
so that among those others
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there would be some differ-
ing by less than any assigned
quantity. But in fact the no-
tion of “limit” is a purely
ordinal notion, not involv-
ing quantity at all (except by
accident when the series con-
cerned happens to be quan-
titative). A given point on a
line may be the limit of a set
of points on the line, without
its being necessary to bring in
co-ordinates or measurement
or anything quantitative. The
cardinal number N, is the
limit (in the order of magni-

423 (original page 977)



tude) of the cardinal numbers
1,2,3,... 1,...,although the
numerical difference between
N, and a finite cardinal is
constant and infinite: from a
quantitative point of view, fi-
nite numbers get no nearer to
N, as they grow larger. What
makes N, the limit of the fi-
nite numbers is the fact that,
in the series, it comes imme-
diately after them, which is an
ordinal fact, not a quantitative
fact. |

There are various forms of
the notion of “limit,” of in-
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creasing complexity. The sim-
plest and most fundamental
form, from which the rest are
derived, has been already de-
fined, but we will here repeat
the definitions which lead to
it, in a general form in which
they do not demand that the
relation concerned shall be
serial. The definitions are as
follows:—

The “minima” of a class a
with respect to a relation P are
those members of & and the
field of P (if any) to which no
member of & has the relation
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P.

The “maxima” with respect
to P are the minima with re-
spect to the converse of P.

The “sequents” of a class
a with respect to a relation P
are the minima of the “suc-
cessors” of @, and the “succes-
sors” of @ are those members
of the field of P to which every
member of the common part
of a and the field of P has the
relation P.

The “precedents” with re-
spect to P are the sequents
with respect to the converse
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of P.

The “upper limits” of a
with respect to P are the se-
quents provided a has no
maximum; but if a has a max-
imum, it has no upper limits.

The “lower limits” with re-
spect to P are the upper limits
with respect to the converse of
P.

Whenever P has connex-
ity, a class can have at most
one maximum, one minimum,
one sequent, etc. Thus, in the
cases we are concerned with
in practice, we can speak of
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“the limit” (if any).

When P is a serial relation,
we can greatly simplify the
above definition of a limit. We
can, in that case, define first
the “boundary” of a class «,
i.e. its limit or maximum, and
then proceed to distinguish
the case where the bound-
ary is the limit from the case
where it is a maximum. For
this purpose it is best to use
the notion of “segment.”

We will speak of the “seg-
ment of P defined by a class
a” as all those terms that have
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the relation P to some one
or more of the members of
a. This will be a segment in
the sense defined | in Chapter
VII.; indeed, every segment in
the sense there defined is the
segment defined by some class
a. If P is serial, the segment
defined by a consists of all
the terms that precede some
term or other of a. If @ has a
maximum, the segment will
be all the predecessors of the
maximum. But if @ has no
maximum, every member of a
precedes some other member
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of a, and the whole of a is
therefore included in the seg-
ment defined by a. Take, for
example, the class consisting
of the fractions

Ny
N

15
7 47 8 167

N[

i.e. of all fractions of the form
1 — 1/2" for different finite
values of n. This series of frac-
tions has no maximum, and
it is clear that the segment
which it defines (in the whole
series of fractions in order of
magnitude) is the class of all
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proper fractions. Or, again,
consider the prime numbers,
considered as a selection from
the cardinals (finite and infi-
nite) in order of magnitude. In
this case the segment defined
consists of all finite integers.

Assuming that P is serial,
the “boundary” of a class «a
will be the term x (if it ex-
ists) whose predecessors are
the segment defined by a.

A “maximum” of «a is a
boundary which is a member
of a.

An “upper limit” of a is a
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boundary which is not a mem-
ber of a.

If a class has no boundary,
it has neither maximum nor
limit. This is the case of an
“irrational” Dedekind cut, or
of what is called a “gap.”

Thus the “upper limit” of a
set of terms « with respect to a
series P is that term x (if it ex-
ists) which comes after all the
a’s, but is such that every ear-
lier term comes before some
of the a’s.

We may define all the “up-
per limiting-points” of a set
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of terms B as all those that
are the upper limits of sets
of terms chosen out of . We
shall, of course, have to distin-
guish upper limiting-points
from lower limiting-points. If
we consider, for example, the
series of ordinal numbers:

1,2,3... 0, W+1,... 20,
20+1, ... 30, ... W, ...

w3, ..., |

the upper limiting-points of
the field of this series are those
that have no immediate pre-
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decessors, i.e.

1, w, 2w, 30, ... W,

W+, ... 207, ... @03 ...

The upper limiting-points of
the field of this new series will
be

1, 03, 207, ... @3, W3+ w* ...

On the other hand, the series
of ordinals—and indeed every
well-ordered series—has no
lower limiting-points, because
there are no terms except the
last that have no immediate
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successors. But if we consider
such a series as the series
of ratios, every member of
this series is both an upper
and a lower limiting-point
for suitably chosen sets. If
we consider the series of real
numbers, and select out of it
the rational real numbers, this
set (the rationals) will have
all the real numbers as up-
per and lower limiting-points.
The limiting-points of a set
are called its “first derivative,”
and the limiting-points of the
first derivative are called the
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second derivative, and so on.
With regard to limits, we
may distinguish various grades
of what may be called “conti-
nuity” in a series. The word
“continuity” had been used
for a long time, but had re-
mained without any precise
definition until the time of
Dedekind and Cantor. Each
of these two men gave a pre-
cise significance to the term,
but Cantor’s definition is nar-
rower than Dedekind’s: a se-
ries which has Cantorian con-
tinuity must have Dedekin-
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dian continuity, but the con-
verse does not hold.

The first definition that
would naturally occur to a
man seeking a precise mean-
ing for the continuity of series
would be to define it as con-
sisting in what we have called
“compactness,” i.e. in the fact
that between any two terms
of the series there are others.
But this would be an inade-
quate definition, because of
the existence of “gaps” in se-
ries such as the series of ratios.
We saw in Chapter VII. that

437 (original page 100)




there are innumerable ways
in which the series of ratios
can be divided into two parts,
of which one wholly precedes
the other, and of which the
first has no last term, | while
the second has no first term.
Such a state of affairs seems
contrary to the vague feel-
ing we have as to what should
characterise “continuity,” and,
what is more, it shows that the
series of ratios is not the sort
of series that is needed for
many mathematical purposes.
Take geometry, for example:
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we wish to be able to say that
when two straight lines cross
each other they have a point
in common, but if the series of
points on a line were similar
to the series of ratios, the two
lines might cross in a “gap”
and have no point in common.
This is a crude example, but
many others might be given
to show that compactness is
inadequate as a mathematical
definition of continuity.

It was the needs of geom-
etry, as much as anything,
that led to the definition of
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“Dedekindian” continuity. It
will be remembered that we
defined a series as Dedekin-
dian when every sub-class of
the field has a boundary. (It is
sufficient to assume that there
is always an upper bound-
ary, or that there is always
a lower boundary. If one of
these is assumed, the other
can be deduced.) That is to
say, a series is Dedekindian
when there are no gaps. The
absence of gaps may arise ei-
ther through terms having
successors, or through the ex-
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istence of limits in the absence
of maxima. Thus a finite se-
ries or a well-ordered series
is Dedekindian, and so is the
series of real numbers. The
former sort of Dedekindian
series is excluded by assuming
that our series is compact; in
that case our series must have
a property which may, for
many purposes, be fittingly
called continuity. Thus we are
led to the definition:

A series has “Dedekin-
dian continuity” when it is
Dedekindian and compact.
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But this definition is still
too wide for many purposes.
Suppose, for example, that
we desire to be able to assign
such properties to geometrical
space as shall make it certain
that every point can be speci-
fied by means of co-ordinates
which are real numbers: this
is not insured by Dedekindian
continuity alone. We want to
be sure that every point which
cannot be specified by rational
co-ordinates can be specified
as the limit of a progression
of points | whose co-ordinates
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are rational, and this is a fur-
ther property which our def-
inition does not enable us to
deduce.

We are thus led to a closer
investigation of series with
respect to limits. This inves-
tigation was made by Cantor
and formed the basis of his
definition of continuity, al-
though, in its simplest form,
this definition somewhat con-
ceals the considerations which
have given rise to it. We shall,
therefore, first travel through
some of Cantor’s conceptions
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in this subject before giving
his definition of continuity.
Cantor defines a series as
“perfect” when all its points
are limiting-points and all
its limiting-points belong to
it. But this definition does
not express quite accurately
what he means. There is no
correction required so far as
concerns the property that all
its points are to be limiting-
points; this is a property be-
longing to compact series, and
to no others if all points are
to be upper limiting- or all
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lower limiting-points. But if
it is only assumed that they
are limiting-points one way,
without specifying which,
there will be other series
that will have the property
in question—for example, the
series of decimals in which a
decimal ending in a recurring
9 is distinguished from the
corresponding terminating
decimal and placed immedi-
ately before it. Such a series
is very nearly compact, but
has exceptional terms which
are consecutive, and of which
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the first has no immediate
predecessor, while the second
has no immediate successor.
Apart from such series, the
series in which every point is
a limiting-point are compact
series; and this holds without
qualification if it is specified
that every point is to be an
upper limiting-point (or that
every point is to be a lower
limiting-point).

Although Cantor does not
explicitly consider the matter,
we must distinguish different
kinds of limiting-points ac-
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cording to the nature of the
smallest sub-series by which
they can be defined. Cantor
assumes that they are to be
defined by progressions, or
by regressions (which are the
converses of progressions).
When every member of our
series is the limit of a pro-
gression or regression, Cantor
calls our series “condensed in
itself” (insichdicht). |

We come now to the second
property by which perfection
was to be defined, namely,
the property which Cantor
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calls that of being “closed”
(abgeschlossen). This, as we
saw, was first defined as con-
sisting in the fact that all the
limiting-points of a series
belong to it. But this only
has any effective significance
if our series is given as con-
tained in some other larger
series (as is the case, e.g., with
a selection of real numbers),
and limiting-points are taken
in relation to the larger se-
ries. Otherwise, if a series is
considered simply on its own
account, it cannot fail to con-
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tain its limiting-points. What
Cantor means is not exactly
what he says; indeed, on other
occasions he says something
rather different, which is what
he means. What he really
means is that every subor-
dinate series which is of the
sort that might be expected
to have a limit does have a
limit within the given series;
i.e. every subordinate series
which has no maximum has
a limit, i.e. every subordinate
series has a boundary. But
Cantor does not state this for
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every subordinate series, but
only for progressions and re-
gressions. (It is not clear how
far he recognises that this is
a limitation.) Thus, finally,
we find that the definition we
want is the following:—

A series is said to be “clos-
ed” (abgeschlossen) when every
progression or regression con-
tained in the series has a limit
in the series.

We then have the further
definition:—

A series is “perfect” when
it is condensed in itself and
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closed, i.e. when every term is
the limit of a progression or
regression, and every progres-
sion or regression contained
in the series has a limit in the
series.

In seeking a definition of
continuity, what Cantor has
in mind is the search for a
definition which shall apply
to the series of real numbers
and to any series similar to
that, but to no others. For this
purpose we have to add a fur-
ther property. Among the real
numbers some are rational,
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some are irrational; although
the number of irrationals is
greater than the number of ra-
tionals, yet there are rationals
between any two real num-
bers, however | little the two
may differ. The number of ra-
tionals, as we saw, is X,. This
gives a further property which
suffices to characterise conti-
nuity completely, namely, the
property of containing a class
of 8, members in such a way
that some of this class occur
between any two terms of our
series, however near together.
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This property, added to per-
fection, suffices to define a
class of series which are all
similar and are in fact a serial
number. This class Cantor
defines as that of continuous
series.

We may slightly simplify
his definition. To begin with,
we say:

A “median class” of a series
is a sub-class of the field such
that members of it are to be
found between any two terms
of the series.

Thus the rationals are a
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median class in the series of
real numbers. It is obvious
that there cannot be median
classes except in compact se-
ries.

We then find that Cantor’s
definition is equivalent to the
following:—

A series is “continuous”
when (1) it is Dedekindian,
(2) it contains a median class
having N, terms.

To avoid confusion, we shall
speak of this kind as “Can-
torian continuity.” It will be
seen that it implies Dedekin-
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dian continuity, but the con-
verse is not the case. All series
having Cantorian continuity
are similar, but not all series
having Dedekindian continu-
ity.

The notions of limit and
continuity which we have been
defining must not be con-
founded with the notions of
the limit of a function for ap-
proaches to a given argument,
or the continuity of a func-
tion in the neighbourhood of
a given argument. These are
different notions, very impor-
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tant, but derivative from the
above and more complicated.
The continuity of motion (if
motion is continuous) is an
instance of the continuity of a
function; on the other hand,
the continuity of space and
time (if they are continuous)
is an instance of the continu-
ity of series, or (to speak more
cautiously) of a kind of conti-
nuity which can, by sufficient
mathematical | manipulation,
be reduced to the continuity
of series. In view of the funda-
mental importance of motion
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in applied mathematics, as
well as for other reasons, it
will be well to deal briefly
with the notions of limits and
continuity as applied to func-
tions; but this subject will be
best reserved for a separate
chapter.

The definitions of conti-
nuity which we have been
considering, namely, those of
Dedekind and Cantor, do not
correspond very closely to the
vague idea which is associated
with the word in the mind of
the man in the street or the
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philosopher. They conceive
continuity rather as absence
of separateness, the sort of
general obliteration of dis-
tinctions which characterises
a thick fog. A fog gives an
impression of vastness with-
out definite multiplicity or
division. It is this sort of thing
that a metaphysician means
by “continuity,” declaring it,
very truly, to be characteristic
of his mental life and of that
of children and animals.

The general idea vaguely
indicated by the word “con-

458 (original page 105)



tinuity” when so employed,
or by the word “flux,” is one
which is certainly quite differ-
ent from that which we have
been defining. Take, for exam-
ple, the series of real numbers.
Each is what it is, quite defi-
nitely and uncompromisingly;
it does not pass over by imper-
ceptible degrees into another;
it is a hard, separate unit, and
its distance from every other
unit is finite, though it can
be made less than any given
finite amount assigned in ad-
vance. The question of the
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relation between the kind of
continuity existing among the
real numbers and the kind
exhibited, e.g. by what we see
at a given time, is a difficult
and intricate one. It is not
to be maintained that the two
kinds are simply identical, but
it may, I think, be very well
maintained that the mathe-
matical conception which we
have been considering in this
chapter gives the abstract log-
ical scheme to which it must
be possible to bring empirical
material by suitable manip-
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ulation, if that material is to
be called “continuous” in any
precisely definable sense. It
would be quite impossible | to
justify this thesis within the
limits of the present volume.
The reader who is interested
may read an attempt to justify
it as regards time in particular
by the present author in the
Monist for 1914—5, as well as
in parts of Our Knowledge of
the External World. With these
indications, we must leave
this problem, interesting as it
is, in order to return to topics
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more closely connected with
mathematics.
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CHAPTER XI
LIMITS AND
CONTINUITY OF
FUNCTIONS

In this chapter we shall be
concerned with the defini-
tion of the limit of a function
(if any) as the argument ap-
proaches a given value, and
also with the definition of
what is meant by a “continu-
ous function.” Both of these
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ideas are somewhat technical,
and would hardly demand
treatment in a mere intro-
duction to mathematical phi-
losophy but for the fact that,
especially through the so-
called infinitesimal calculus,
wrong views upon our present
topics have become so firmly
embedded in the minds of
professional philosophers that
a prolonged and considerable
effort is required for their up-
rooting. It has been thought
ever since the time of Leib-
niz that the differential and
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integral calculus required in-
finitesimal quantities. Math-
ematicians (especially Weier-
strass) proved that this is an
error; but errors incorporated,
e.g. in what Hegel has to say
about mathematics, die hard,
and philosophers have tended
to ignore the work of such
men as Weierstrass.

Limits and continuity of
functions, in works on ordi-
nary mathematics, are defined
in terms involving number.
This is not essential, as Dr
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Whitehead has shown." We
will, however, begin with the
definitions in the text-books,
and proceed afterwards to
show how these definitions
can be generalised so as to
apply to series in general, and
not only to such as are numer-
ical or numerically measur-
able.

Let us consider any ordi-
nary mathematical function
fx, where | x and fx are both

1See Principia Mathematica, vol. ii.
*230-234.
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real numbers, and fx is one-
valued—i.e. when x is given,
there is only one value that fx
can have. We call x the “ar-
gument,” and fx the “value
for the argument x.” When a
function is what we call “con-
tinuous,” the rough idea for
which we are seeking a pre-
cise definition is that small
differences in x shall corre-
spond to small differences in
fx, and if we make the dif-
ferences in x small enough,
we can make the differences
in fx fall below any assigned
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amount. We do not want, if a
function is to be continuous,
that there shall be sudden
jumps, so that, for some value
of x, any change, however
small, will make a change in
fx which exceeds some as-
signed finite amount. The
ordinary simple functions of
mathematics have this prop-
erty: it belongs, for example,
to x>, x3, ... logx, sinx, and
so on. But it is not at all dif-
ficult to define discontinuous
functions. Take, as a non-
mathematical example, “the
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place of birth of the youngest
person living at time t.” This
is a function of t; its value is
constant from the time of one
person’s birth to the time of
the next birth, and then the
value changes suddenly from
one birthplace to the other.
An analogous mathematical
example would be “the inte-
ger next below x,” where x is
a real number. This function
remains constant from one
integer to the next, and then
gives a sudden jump. The
actual fact is that, though con-
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tinuous functions are more
familiar, they are the excep-
tions: there are infinitely more
discontinuous functions than
continuous ones.

Many functions are discon-
tinuous for one or several val-
ues of the variable, but contin-
uous for all other values. Take
as an example sin1/x. The
function sin O passes through
all values from —1 to 1 every
time that 6 passes from —m/2
to ©/2, or from 1/2 to 37/2,
or generally from (2n—1)7/2
to (2n+ 1)1t/2, where n is any
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integer. Now if we consider
1/x when x is very small, we
see that as x diminishes 1/x
grows faster and faster, so
that it passes more and more
quickly through the cycle of
values from one multiple of
7t/2 to another as x becomes
smaller and smaller. Conse-
quently sin1/x passes more
and more quickly from —1 | to
1 and back again, as x grows
smaller. In fact, if we take any
interval containing o, say the
interval from —e to +e€ where
€ is some very small num-
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ber, sin1/x will go through
an infinite number of oscilla-
tions in this interval, and we
cannot diminish the oscilla-
tions by making the interval
smaller. Thus round about
the argument o the function
is discontinuous. It is easy to
manufacture functions which
are discontinuous in several
places, or in N, places, or
everywhere. Examples will
be found in any book on the
theory of functions of a real
variable.

Proceeding now to seek a
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precise definition of what
is meant by saying that a
function is continuous for
a given argument, when argu-
ment and value are both real
numbers, let us first define a
“neighbourhood” of a num-
ber x as all the numbers from
x —€ to x + €, where € is some
number which, in important
cases, will be very small. It is
clear that continuity at a given
point has to do with what hap-
pens in any neighbourhood of
that point, however small.
What we desire is this: If
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a is the argument for which
we wish our function to be
continuous, let us first define
a neighbourhood (a say) con-
taining the value fa which the
function has for the argument
a; we desire that, if we take a
sufficiently small neighbour-
hood containing a, all values
for arguments throughout this
neighbourhood shall be con-
tained in the neighbourhood
«, no matter how small we
may have made a. That is to
say, if we decree that our func-
tion is not to differ from fa
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by more than some very tiny
amount, we can always find a
stretch of real numbers, hav-
ing a in the middle of it, such
that throughout this stretch
fx will not differ from fa by
more than the prescribed tiny
amount. And this is to remain
true whatever tiny amount we
may select. Hence we are led
to the following definition:—

The function f(x) is said
to be “continuous” for the
argument q if, for every posi-
tive number o, different from
o, but as small as we please,
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there exists a positive num-
ber ¢, different from o, such
that, for all values of 6 which
are numerically | less? than e,
the difference f(a+96)— f(a)is
numerically less than o.

In this definition, o first
defines a neighbourhood of
f(a), namely, the neighbour-
hood from f(a)-o to f(a)+o.
The definition then proceeds
to say that we can (by means
of €) define a neighbourhood,

2 A number is said to be “numeri-
cally less” than € when it lies between
—€ and +e.
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namely, that from a—e toa+e,
such that, for all arguments
within this neighbourhood,
the value of the function lies
within the neighbourhood
from f(a)—o to f(a)+o. If
this can be done, however
o may be chosen, the func-
tion is “continuous” for the
argument a.

So far we have not defined
the “limit” of a function for
a given argument. If we had
done so, we could have de-
fined the continuity of a func-
tion differently: a function is
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continuous at a point where
its value is the same as the
limit of its values for ap-
proaches either from above or
from below. But it is only the
exceptionally “tame” function
that has a definite limit as the
argument approaches a given
point. The general rule is that
a function oscillates, and that,
given any neighbourhood of
a given argument, however
small, a whole stretch of val-
ues will occur for arguments
within this neighbourhood.
As this is the general rule, let
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us consider it first.

Let us consider what may
happen as the argument ap-
proaches some value a from
below. That is to say, we wish
to consider what happens for
arguments contained in the
interval from a — € to a, where
€ is some number which, in
important cases, will be very
small.

The values of the function
for arguments from a—e toa (a
excluded) will be a set of real
numbers which will define a
certain section of the set of
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real numbers, namely, the sec-
tion consisting of those num-
bers that are not greater than
all the values for arguments
from a — € to a. Given any
number in this section, there
are values at least as great as
this number for arguments
between a — € and a, i.e. for
arguments that fall very little
short | of a (if € is very small).
Let us take all possible €’s and
all possible corresponding
sections. The common part of
all these sections we will call
the “ultimate section” as the
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argument approaches a. To
say that a number z belongs to
the ultimate section is to say
that, however small we may
make €, there are arguments
between a — € and a for which
the value of the function is
not less than z.

We may apply exactly the
same process to upper sec-
tions, i.e. to sections that go
from some point up to the
top, instead of from the bot-
tom up to some point. Here
we take those numbers that
are not less than all the val-
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ues for arguments from a — €
to a; this defines an upper
section which will vary as e
varies. Taking the common
part of all such sections for
all possible €’s, we obtain the
“ultimate upper section.” To
say that a number z belongs to
the ultimate upper section is
to say that, however small we
make €, there are arguments
between a — € and a for which
the value of the function is
not greater than z.

If a term z belongs both to
the ultimate section and to
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the ultimate upper section,
we shall say that it belongs
to the “ultimate oscillation.”
We may illustrate the mat-
ter by considering once more
the function sin1/x as x ap-
proaches the value o. We shall
assume, in order to fit in with
the above definitions, that
this value is approached from
below.

Let us begin with the “ul-
timate section.” Between —e
and o, whatever € may be,
the function will assume the
value 1 for certain arguments,
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but will never assume any
greater value. Hence the ul-
timate section consists of all
real numbers, positive and
negative, up to and including
1; i.e. it consists of all nega-
tive numbers together with
o, together with the positive
numbers up to and including
1.

Similarly the “ultimate up-
per section” consists of all
positive numbers together
with o, together with the neg-
ative numbers down to and
including —1.

484 (original page 111)



Thus the “ultimate oscil-
lation” consists of all real
numbers from —1 to 1, both
included. |

We may say generally that
the “ultimate oscillation” of a
function as the argument ap-
proaches a from below con-
sists of all those numbers x
which are such that, however
near we come to a, we shall
still find values as great as x
and values as small as x.

The wultimate oscillation
may contain no terms, or one
term, or many terms. In the
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first two cases the function
has a definite limit for ap-
proaches from below. If the
ultimate oscillation has one
term, this is fairly obvious. It
is equally true if it has none;
for it is not difficult to prove
that, if the ultimate oscillation
is null, the boundary of the
ultimate section is the same
as that of the ultimate upper
section, and may be defined
as the limit of the function
for approaches from below.
But if the ultimate oscillation
has many terms, there is no
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definite limit to the function
for approaches from below.
In this case we can take the
lower and upper boundaries
of the ultimate oscillation (i.e.
the lower boundary of the
ultimate upper section and
the upper boundary of the
ultimate section) as the lower
and upper limits of its “ulti-
mate” values for approaches
from below. Similarly we ob-
tain lower and upper limits
of the “ultimate” values for
approaches from above. Thus
we have, in the general case,
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four limits to a function for
approaches to a given argu-
ment. The limit for a given
argument a only exists when
all these four are equal, and
is then their common value.
If it is also the value for the
argument a, the function is
continuous for this argument.
This may be taken as defining
continuity: it is equivalent to
our former definition.

We can define the limit of a
function for a given argument
(if it exists) without passing
through the ultimate oscil-
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lation and the four limits of
the general case. The defi-
nition proceeds, in that case,
just as the earlier definition
of continuity proceeded. Let
us define the limit for ap-
proaches from below. If there
is to be a definite limit for
approaches to a from below,
it is necessary and sufficient
that, given any small number
o, two values for arguments
sufficiently near to a (but both
less than a) will differ | by less
than o; i.e. if € is sufficiently
small, and our arguments
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both lie between a — ¢ and a (a
excluded), then the difference
between the values for these
arguments will be less than
o. This is to hold for any o,
however small; in that case
the function has a limit for
approaches from below. Simi-
larly we define the case when
there is a limit for approaches
from above. These two limits,
even when both exist, need
not be identical; and if they
are identical, they still need
not be identical with the value
for the argument 4. It is only
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in this last case that we call
the function continuous for
the argument a.

A function is called “contin-
uous” (without qualification)
when it is continuous for ev-
ery argument.

Another slightly different
method of reaching the def-
inition of continuity is the
following:—

Let us say that a function
“ultimately converges into a
class a” if there is some real
number such that, for this
argument and all arguments
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greater than this, the value
of the function is a member
of the class a. Similarly we
shall say that a function “con-
verges into « as the argument
approaches x from below” if
there is some argument p less
than x such that throughout
the interval from y (included)
to x (excluded) the function
has values which are members
of . We may now say that a
function is continuous for the
argument 4, for which it has
the value fa, if it satisfies four
conditions, namely:—
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(1) Given any real number
less than fa, the function con-
verges into the successors of
this number as the argument
approaches a from below;

(2) Given any real number
greater than fa, the function
converges into the predeces-
sors of this number as the ar-
gument approaches a from be-
low;

(3) and (4) Similar condi-
tions for approaches to a from
above.

The advantage of this form
of definition is that it analyses
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the conditions of continuity
into four, derived from con-
sidering arguments and val-
ues respectively greater or less
than the argument and value
for which continuity is to be
defined. |

We may now generalise our
definitions so as to apply to
series which are not numer-
ical or known to be numer-
ically measurable. The case
of motion is a convenient one
to bear in mind. There is a
story by H. G. Wells which
will illustrate, from the case
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of motion, the difference be-
tween the limit of a function
for a given argument and
its value for the same argu-
ment. The hero of the story,
who possessed, without his
knowledge, the power of re-
alising his wishes, was being
attacked by a policeman, but
on ejaculating “Go to !
he found that the policeman
disappeared. If f(t) was the
policeman’s position at time
t, and t, the moment of the
ejaculation, the limit of the
policeman’s positions as t ap-
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proached to t, from below
would be in contact with the
hero, whereas the value for the
argument t, was —. But such
occurrences are supposed to
be rare in the real world, and
it is assumed, though without
adequate evidence, that all
motions are continuous, i.e.
that, given any body, if f(¢) is
its position at time ¢, f(t)is a
continuous function of t. It is
the meaning of “continuity”
involved in such statements
which we now wish to define
as simply as possible.
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The definitions given for
the case of functions where
argument and value are real
numbers can readily be adapt-
ed for more general use.

Let P and Q be two re-
lations, which it is well to
imagine serial, though it is
not necessary to our defini-
tions that they should be so.
Let R be a one-many relation
whose domain is contained in
the field of P, while its con-
verse domain is contained in
the field of Q. Then R is (in a
generalised sense) a function,
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whose arguments belong to
the field of Q, while its val-
ues belong to the field of P.
Suppose, for example, that
we are dealing with a particle
moving on a line: let Q be
the time-series, P the series of
points on our line from left
to right, R the relation of the
position of our particle on
the line at time a to the time
a, so that “the R of a” is its
position at time 4. This illus-
tration may be borne in mind
throughout our definitions.
We shall say that the func-
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tion R is continuous for the ar-
gument | a if, given any inter-
val a on the P-series contain-
ing the value of the function
for the argument g, there is an
interval on the Q-series con-
taining 4 not as an end-point
and such that, throughout this
interval, the function has val-
ues which are members of «a.
(We mean by an “interval” all
the terms between any two;
i.e. if x and y are two members
of the field of P, and x has the
relation P to y, we shall mean
by the “P-interval x to y” all
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terms z such that x has the re-
lation P to z and z has the re-
lation P to y—together, when
so stated, with x or y them-
selves.)

We can easily define the
“ultimate section” and the
“ultimate oscillation.” To de-
fine the “ultimate section” for
approaches to the argument
a from below, take any ar-
gument y which precedes a
(i.e. has the relation Q to a),
take the values of the func-
tion for all arguments up to
and including y, and form the
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section of P defined by these
values, i.e. those members of
the P-series which are earlier
than or identical with some
of these values. Form all such
sections for all p’s that pre-
cede a, and take their common
part; this will be the ultimate
section. The ultimate upper
section and the ultimate oscil-
lation are then defined exactly
as in the previous case.

The adaptation of the defi-
nition of convergence and the
resulting alternative defini-
tion of continuity offers no
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difficulty of any kind.

We say that a function R is
“ultimately Q-convergent into
a” if there is a member y of
the converse domain of R and
the field of Q such that the
value of the function for the
argument y and for any argu-
ment to which p has the rela-
tion Q is a member of a. We
say that R “Q-converges into
a as the argument approaches
a given argument a” if there is
a term y having the relation Q
to a and belonging to the con-
verse domain of R and such
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that the value of the function
for any argument in the Q-
interval from p (inclusive) to a
(exclusive) belongs to a.

Of the four conditions that
a function must fulfil in order
to be continuous for the argu-
ment a, the first is, putting b
for the value for the argument
a: |

Given any term having the
relation P to b, R Q-converges
into the successors of b (with
respect to P) as the argument
approaches a from below.

The second condition is ob-
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tained by replacing P by its
converse; the third and fourth
are obtained from the first and
second by replacing Q by its
converse.

There is thus nothing, in
the notions of the limit of a
function or the continuity of
a function, that essentially
involves number. Both can be
defined generally, and many
propositions about them can
be proved for any two se-
ries (one being the argument-
series and the other the value-
series). It will be seen that
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the definitions do not involve
infinitesimals. They involve
infinite classes of intervals,
growing smaller without any
limit short of zero, but they
do not involve any intervals
that are not finite. This is
analogous to the fact that if a
line an inch long be halved,
then halved again, and so on
indefinitely, we never reach
infinitesimals in this way: af-
ter n bisections, the length of
our bit is 1/2" of an inch; and
this is finite whatever finite
number n may be. The process

505 (original page 116)



of successive bisection does
not lead to divisions whose or-
dinal number is infinite, since
it is essentially a one-by-one
process. Thus infinitesimals
are not to be reached in this
way. Confusions on such top-
ics have had much to do with
the difficulties which have
been found in the discussion
of infinity and continuity.
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CHAPTER XII
SELECTIONS AND
THE
MULTIPLICATIVE
AXIOM

In this chapter we have to con-
sider an axiom which can be
enunciated, but not proved,
in terms of logic, and which
is convenient, though not in-
dispensable, in certain por-
tions of mathematics. It is
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convenient, in the sense that
many interesting proposi-
tions, which it seems natu-
ral to suppose true, cannot
be proved without its help;
but it is not indispensable,
because even without those
propositions the subjects in
which they occur still exist,
though in a somewhat muti-
lated form.

Before enunciating the mul-
tiplicative axiom, we must
first explain the theory of se-
lections, and the definition of
multiplication when the num-

508 (original page 117)



ber of factors may be infinite.

In defining the arithmetical
operations, the only correct
procedure is to construct an
actual class (or relation, in
the case of relation-numbers)
having the required number
of terms. This sometimes de-
mands a certain amount of
ingenuity, but it is essential in
order to prove the existence
of the number defined. Take,
as the simplest example, the
case of addition. Suppose we
are given a cardinal number
#, and a class a which has p
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terms. How shall we define
u+ pn? For this purpose we
must have fwo classes having
u terms, and they must not
overlap. We can construct
such classes from « in various
ways, of which the following
is perhaps the simplest: Form
first all the ordered couples
whose first term is a class con-
sisting of a single member of
a, and whose second term is
the null-class; then, secondly,
form all the ordered couples
whose first term is | the null-
class and whose second term
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is a class consisting of a sin-
gle member of @. These two
classes of couples have no
member in common, and the
logical sum of the two classes
will have p + p terms. Exactly
analogously we can define
u+v, given that p is the num-
ber of some class @ and v is
the number of some class f.
Such definitions, as a rule,
are merely a question of a
suitable technical device. But
in the case of multiplication,
where the number of factors
may be infinite, important
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problems arise out of the defi-
nition.

Multiplication when the
number of factors is finite of-
fers no difficulty. Given two
classes a and f8, of which the
first has y terms and the sec-
ond v terms, we can define
uxv as the number of ordered
couples that can be formed by
choosing the first term out of
a and the second out of . It
will be seen that this defini-
tion does not require that «a
and g should not overlap; it
even remains adequate when
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a and B are identical. For
example, let a be the class
whose members are x,, x,, X5
Then the class which is used
to define the product y x y is
the class of couples:

(x1,%1), (x1,%5), (xvx3);
(%2, %), (X5,%5), (x21x3);
(x3rx1 ), (x3’x2>r (xgrx3)'

This definition remains ap-
plicable when u or v or both
are infinite, and it can be ex-
tended step by step to three or
four or any finite number of
factors. No difficulty arises as
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regards this definition, except
that it cannot be extended to
an infinite number of factors.
The problem of multipli-
cation when the number of
factors may be infinite arises
in this way: Suppose we have
a class « consisting of classes;
suppose the number of terms
in each of these classes is
given. How shall we define
the product of all these num-
bers? If we can frame our
definition generally, it will be
applicable whether « is finite
or infinite. It is to be observed
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that the problem is to be able
to deal with the case when «
is infinite, not with the case
when its members are. If |
x is not infinite, the method
defined above is just as ap-
plicable when its members
are infinite as when they are
finite. It is the case when « is
infinite, even though its mem-
bers may be finite, that we
have to find a way of dealing
with.

The following method of
defining multiplication gener-
ally is due to Dr Whitehead.
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It is explained and treated at
length in Principia Mathemat-
ica, vol. i. *8off., and vol. ii.
*114.

Let us suppose to begin
with that « is a class of classes
no two of which overlap—
say the constituencies in a
country where there is no plu-
ral voting, each constituency
being considered as a class
of voters. Let us now set to
work to choose one term out
of each class to be its repre-
sentative, as constituencies do
when they elect members of
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Parliament, assuming that by
law each constituency has to
elect a man who is a voter in
that constituency. We thus
arrive at a class of representa-
tives, who make up our Par-
liament, one being selected
out of each constituency. How
many different possible ways
of choosing a Parliament are
there? Each constituency can
select any one of its voters,
and therefore if there are p
voters in a constituency, it can
make p choices. The choices
of the different constituencies
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are independent; thus it is
obvious that, when the total
number of constituencies is
finite, the number of possi-
ble Parliaments is obtained
by multiplying together the
numbers of voters in the var-
ious constituencies. When
we do not know whether the
number of constituencies is
finite or infinite, we may take
the number of possible Parlia-
ments as defining the product
of the numbers of the sepa-
rate constituencies. This is
the method by which infi-

518 (original page 119)




nite products are defined. We
must now drop our illustra-
tion, and proceed to exact
statements.

Let x be a class of classes,
and let us assume to begin
with that no two members of
k overlap, i.e. that if @ and S
are two different members of
x, then no member of the one
is a member of the other. We
shall call a class a “selection”
from x when it consists of
just one term from each mem-
ber of «; i.e. yis a “selection”
from « if every member of p
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belongs to some member | of
k, and if a be any member of
k, y and a have exactly one
term in common. The class
of all “selections” from x we
shall call the “multiplicative
class” of k. The number of
terms in the multiplicative
class of x, i.e. the number of
possible selections from «, is
defined as the product of the
numbers of the members of
x. This definition is equally
applicable whether « is finite
or infinite.

Before we can be wholly sat-
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isfied with these definitions,
we must remove the restric-
tion that no two members
of x are to overlap. For this
purpose, instead of defining
first a class called a “selec-
tion,” we will define first a
relation which we will call a
“selector.” A relation R will
be called a “selector” from «
if, from every member of «,
it picks out one term as the
representative of that mem-
ber, i.e. if, given any member
a of x, there is just one term
x which is a member of & and
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has the relation R to a; and
this is to be all that R does.
The formal definition is:

A “selector” from a class of
classes « is a one-many rela-
tion, having « for its converse
domain, and such that, if x has
the relation to a, then x is a
member of a.

If R is a selector from «, and
a is a member of x, and x is
the term which has the rela-
tion R to a, we call x the “rep-
resentative” of « in respect of
the relation R.

A “selection” from x will
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now be defined as the domain
of a selector; and the multi-
plicative class, as before, will
be the class of selections.

But when the members of
K overlap, there may be more
selectors than selections, since
a term x which belongs to two
classes a and p may be se-
lected once to represent @ and
once to represent f, giving
rise to different selectors in
the two cases, but to the same
selection. For purposes of
defining multiplication, it is
the selectors we require rather
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than the selections. Thus we
define:

“The product of the num-
bers of the members of a class
of classes x” is the number of
selectors from «.

We can define exponentia-
tion by an adaptation of the
above | plan. We might, of
course, define y¥ as the num-
ber of selectors from v classes,
each of which has p terms.
But there are objections to
this definition, derived from
the fact that the multiplica-
tive axiom (of which we shall
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speak shortly) is unnecessarily
involved if it is adopted. We
adopt instead the following
construction:—

Let a be a class having p
terms, and B a class having v
terms. Let y be a member of
B, and form the class of all or-
dered couples that have y for
their second term and a mem-
ber of a for their first term.
There will be y such couples
for a given p, since any mem-
ber of @ may be chosen for
the first term, and « has p
members. If we now form all
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the classes of this sort that
result from varying y, we ob-
tain altogether v classes, since
v may be any member of §,
and $ has v members. These
v classes are each of them
a class of couples, namely,
all the couples that can be
formed of a variable member
of a and a fixed member of f.
We define " as the number of
selectors from the class con-
sisting of these v classes. Or
we may equally well define p”
as the number of selections,
for, since our classes of cou-
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ples are mutually exclusive,
the number of selectors is the
same as the number of selec-
tions. A selection from our
class of classes will be a set
of ordered couples, of which
there will be exactly one hav-
ing any given member of f for
its second term, and the first
term may be any member of
a. Thus u” is defined by the
selectors from a certain set of
v classes each having p terms,
but the set is one having a
certain structure and a more
manageable composition than
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is the case in general. The
relevance of this to the mul-
tiplicative axiom will appear
shortly.

What applies to exponen-
tiation applies also to the
product of two cardinals.
We might define “u x v” as
the sum of the numbers of v
classes each having p terms,
but we prefer to define it as
the number of ordered cou-
ples to be formed consisting
of a member of & followed by
a member of 8, where « has p
terms and f has v terms. This

528 (original page 121)



definition, also, is designed to
evade the necessity of assum-
ing the multiplicative axiom. |

With our definitions, we
can prove the usual formal
laws of multiplication and
exponentiation. But there is
one thing we cannot prove:
we cannot prove that a prod-
uct is only zero when one of
its factors is zero. We can
prove this when the number
of factors is finite, but not
when it is infinite. In other
words, we cannot prove that,
given a class of classes none
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of which is null, there must
be selectors from them; or
that, given a class of mutually
exclusive classes, there must
be at least one class consist-
ing of one term out of each
of the given classes. These
things cannot be proved; and
although, at first sight, they
seem obviously true, yet re-
flection brings gradually in-
creasing doubt, until at last
we become content to register
the assumption and its con-
sequences, as we register the
axiom of parallels, without
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assuming that we can know
whether it is true or false. The
assumption, loosely worded,
is that selectors and selec-
tions exist when we should
expect them. There are many
equivalent ways of stating it
precisely. We may begin with
the following:—

“Given any class of mutu-
ally exclusive classes, of which
none is null, there is at least
one class which has exactly
one term in common with
each of the given classes.”

This proposition we will
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call the “multiplicative ax-
iom.”* We will first give var-
ious equivalent forms of the
proposition, and then con-
sider certain ways in which
its truth or falsehood is of
interest to mathematics.

The multiplicative axiom is
equivalent to the proposition
that a product is only zero
when at least one of its factors
is zero; i.e. that, if any num-
ber of cardinal numbers be

'See Principia Mathematica, vol. i.
*88. Also vol. iii. *257-258.
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multiplied together, the result
cannot be o unless one of the
numbers concerned is o.

The multiplicative axiom is
equivalent to the proposition
that, if R be any relation, and
x any class contained in the
converse domain of R, then
there is at least one one-many
relation implying R and hav-
ing « for its converse domain.

The multiplicative axiom is
equivalent to the assumption
that if a be any class, and « all
the sub-classes of @ with the
exception | of the null-class,

533 (original pages 122-123)



then there is at least one selec-
tor from x. This is the form
in which the axiom was first
brought to the notice of the
learned world by Zermelo, in
his “Beweis, dass jede Menge
wohlgeordnet werden kann.”?
Zermelo regards the axiom as
an unquestionable truth. It
must be confessed that, un-
til he made it explicit, mathe-
maticians had used it without
a qualm; but it would seem

2 Mathematische Annalen, vol. lix.
pPp- 514-6. In this form we shall speak
of it as Zermelo’s axiom.
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that they had done so uncon-
sciously. And the credit due
to Zermelo for having made
it explicit is entirely indepen-
dent of the question whether
it is true or false.

The multiplicative axiom
has been shown by Zermelo,
in the above-mentioned proof,
to be equivalent to the propo-
sition that every class can be
well-ordered, i.e. can be ar-
ranged in a series in which
every sub-class has a first
term (except, of course, the
null-class). The full proof of
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this proposition is difficult,
but it is not difficult to see
the general principle upon
which it proceeds. It uses the
form which we call “Zermelo’s
axiom,” i.e. it assumes that,
given any class a, there is at
least one one-many relation R
whose converse domain con-
sists of all existent sub-classes
of a and which is such that, if
x has the relation R to &, then
x is a member of £. Such a
relation picks out a “represen-
tative” from each sub-class; of
course, it will often happen
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that two sub-classes have the
same representative. What
Zermelo does, in effect, is to
count off the members of «,
one by one, by means of R and
transfinite induction. We put
first the representative of «;
call it x,. Then take the rep-
resentative of the class con-
sisting of all of a except x,;
call it x,. It must be different
from x,, because every repre-
sentative is a member of its
class, and x, is shut out from
this class. Proceed similarly to
take away x,, and let X, be the
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representative of what is left.
In this way we first obtain a
progression X, X,, ... Xy, ...,
assuming that « is not finite.
We then take away the whole
progression; let x,, be the rep-
resentative of what is left of a.
In this way we can go on until
nothing is left. The succes-
sive representatives will form
a | well-ordered series con-
taining all the members of a.
(The above is, of course, only
a hint of the general lines of
the proof.) This proposition is
called “Zermelo’s theorem.”
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The multiplicative axiom is
also equivalent to the assump-
tion that of any two cardinals
which are not equal, one must
be the greater. If the axiom is
false, there will be cardinals
u and v such that y is neither
less than, equal to, nor greater
than v. We have seen that N,
and 2™ possibly form an in-
stance of such a pair.

Many other forms of the ax-
iom might be given, but the
above are the most important
of the forms known at present.
As to the truth or falsehood of
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the axiom in any of its forms,
nothing is known at present.
The propositions that de-
pend upon the axiom, without
being known to be equivalent
to it, are numerous and impor-
tant. Take first the connection
of addition and multiplica-
tion. We naturally think that
the sum of v mutually exclu-
sive classes, each having pu
terms, must have y x v terms.
When v is finite, this can be
proved. But when v is infinite,
it cannot be proved without
the multiplicative axiom, ex-
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cept where, owing to some
special circumstance, the ex-
istence of certain selectors
can be proved. The way the
multiplicative axiom enters
in is as follows: Suppose we
have two sets of v mutually
exclusive classes, each having
u terms, and we wish to prove
that the sum of one set has as
many terms as the sum of the
other. In order to prove this,
we must establish a one-one
relation. Now, since there are
in each case v classes, there
is some one-one relation be-

541 (original page 124)



tween the two sets of classes;
but what we want is a one-one
relation between their terms.
Let us consider some one-one
relation S between the classes.
Then if ¥ and A are the two
sets of classes, and a is some
member of «, there will be a
member § of A which will be
the correlate of a with respect
to S. Now a and f each have p
terms, and are therefore sim-
ilar. There are, accordingly,
one-one correlations of & and
B. The trouble is that there are
so many. In order to obtain
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a one-one correlation of the
sum of k¥ with the sum of A, we
have to pick out one correlator
of a with B, and similarly for
every other pair. This requires
a selection from a set of classes
| of correlators, one class of
the set being all the one-one
correlators of a with . If «
and A are infinite, we cannot
in general know that such a
selection exists, unless we can
know that the multiplicative
axiom is true. Hence we can-
not establish the usual kind of
connection between addition
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and multiplication.

This fact has various curi-
ous consequences. To begin
with, we know that N > =
No x Ny = 8,. It is commonly
inferred from this that the
sum of N, classes each having
N, members must itself have
N, members, but this infer-
ence is fallacious, since we do
not know that the number of
terms in such a sum is 8, x N,
nor consequently that it is .
This has a bearing upon the
theory of transfinite ordinals.
It is easy to prove that an ordi-
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nal which has X, predecessors
must be one of what Cantor
calls the “second class,” i.e.
such that a series having this
ordinal number will have &,
terms in its field. It is also
easy to see that, if we take any
progression of ordinals of the
second class, the predecessors
of their limit form at most the
sum of N, classes each hav-
ing N, terms. It is inferred
thence—fallaciously, unless
the multiplicative axiom is
true—that the predecessors
of the limit are N, in number,
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and therefore that the limit
is a number of the “second
class.” That is to say, it is sup-
posed to be proved that any
progression of ordinals of the
second class has a limit which
is again an ordinal of the sec-
ond class. This proposition,
with the corollary that w, (the
smallest ordinal of the third
class) is not the limit of any
progression, is involved in
most of the recognised theory
of ordinals of the second class.
In view of the way in which
the multiplicative axiom is in-
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volved, the proposition and its
corollary cannot be regarded
as proved. They may be true,
or they may not. All that can
be said at present is that we
do not know. Thus the greater
part of the theory of ordinals
of the second class must be
regarded as unproved.
Another illustration may
help to make the point clearer.
We know that 2 x 8, = N,.
Hence we might suppose that
the sum of 8, pairs must have
N, terms. But this, though we
can prove that it is sometimes
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the case, cannot be proved
to happen always | unless we
assume the multiplicative ax-
iom. This is illustrated by
the millionaire who bought
a pair of socks whenever he
bought a pair of boots, and
never at any other time, and
who had such a passion for
buying both that at last he
had N, pairs of boots and X,
pairs of socks. The problem
is: How many boots had he,
and how many socks? One
would naturally suppose that
he had twice as many boots
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and twice as many socks as
he had pairs of each, and that
therefore he had N, of each,
since that number is not in-
creased by doubling. But this
is an instance of the difficulty,
already noted, of connect-
ing the sum of v classes each
having u terms with u x v.
Sometimes this can be done,
sometimes it cannot. In our
case it can be done with the
boots, but not with the socks,
except by some very artifi-
cial device. The reason for
the difference is this: Among
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boots we can distinguish right
and left, and therefore we can
make a selection of one out
of each pair, namely, we can
choose all the right boots or all
the left boots; but with socks
no such principle of selection
suggests itself, and we can-
not be sure, unless we assume
the multiplicative axiom, that
there is any class consisting
of one sock out of each pair.
Hence the problem.

We may put the matter in
another way. To prove that a
class has &, terms, it is nec-
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essary and sufficient to find
some way of arranging its
terms in a progression. There
is no difficulty in doing this
with the boots. The pairs are
given as forming an N,, and
therefore as the field of a pro-
gression. Within each pair,
take the left boot first and
the right second, keeping the
order of the pair unchanged;
in this way we obtain a pro-
gression of all the boots. But
with the socks we shall have to
choose arbitrarily, with each
pair, which to put first; and an
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infinite number of arbitrary
choices is an impossibility.
Unless we can find a rule for
selecting, i.e. a relation which
is a selector, we do not know
that a selection is even theo-
retically possible. Of course,
in the case of objects in space,
like socks, we always can find
some principle of selection.
For example, take the centres
of mass of the socks: there
will be points p in space such
that, with any | pair, the cen-
tres of mass of the two socks
are not both at exactly the
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same distance from p; thus we
can choose, from each pair,
that sock which has its centre
of mass nearer to p. But there
is no theoretical reason why
a method of selection such as
this should always be possi-
ble, and the case of the socks,
with a little goodwill on the
part of the reader, may serve
to show how a selection might
be impossible.

It is to be observed that, if it
were impossible to select one
out of each pair of socks, it
would follow that the socks
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could not be arranged in a pro-
gression, and therefore that
there were not &, of them.
This case illustrates that, if
u is an infinite number, one
set of y pairs may not contain
the same number of terms
as another set of y pairs; for,
given N, pairs of boots, there
are certainly N, boots, but we
cannot be sure of this in the
case of the socks unless we as-
sume the multiplicative axiom
or fall back upon some fortu-
itous geometrical method of
selection such as the above.
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Another important problem
involving the multiplicative
axiom is the relation of reflex-
iveness to non-inductiveness.
It will be remembered that in
Chapter VIII. we pointed out
that a reflexive number must
be non-inductive, but that the
converse (so far as is known at
present) can only be proved if
we assume the multiplicative
axiom. The way in which this
comes about is as follows:—

It is easy to prove that a
reflexive class is one which
contains sub-classes having
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N, terms. (The class may, of
course, itself have 8, terms.)
Thus we have to prove, if
we can, that, given any non-
inductive class, it is possible
to choose a progression out
of its terms. Now there is no
difficulty in showing that a
non-inductive class must con-
tain more terms than any in-
ductive class, or, what comes
to the same thing, that if a
is a non-inductive class and
v is any inductive number,
there are sub-classes of « that
have v terms. Thus we can
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form sets of finite sub-classes
of a: First one class having
no terms, then classes having
1 term (as many as there are
members of a), then classes
having | 2 terms, and so on.
We thus get a progression of
sets of sub-classes, each set
consisting of all those that
have a certain given finite
number of terms. So far we
have not used the multiplica-
tive axiom, but we have only
proved that the number of
collections of sub-classes of a
is a reflexive number, i.e. that,
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if p is the number of members
of a, so that 2# is the number
of sub-classes of a and 22" is
the number of collections of
sub-classes, then, provided p
is not inductive, 22" must be
reflexive. But this is a long
way from what we set out to
prove.

In order to advance be-
yond this point, we must em-
ploy the multiplicative axiom.
From each set of sub-classes
let us choose out one, omitting
the sub-class consisting of the
null-class alone. That is to say,
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we select one sub-class con-
taining one term, ¢, say; one
containing two terms, a,, say;
one containing three, a3, say;
and so on. (We can do this if
the multiplicative axiom is as-
sumed; otherwise, we do not
know whether we can always
do it or not.) We have now a
progression @, @, s, ... of
sub-classes of ¢, instead of a
progression of collections of
sub-classes; thus we are one
step nearer to our goal. We
now know that, assuming the
multiplicative axiom, if y is
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a non-inductive number, 2#
must be a reflexive number.
The next step is to notice
that, although we cannot be
sure that new members of
a come in at any one speci-
fied stage in the progression
@y, @5, Ay, ... We can be sure
that new members keep on
coming in from time to time.
Let us illustrate. The class a;,
which consists of one term,
is a new beginning; let the
one term be x,. The class
a,, consisting of two terms,
may or may not contain x;;
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if it does, it introduces one
new term; and if it does not,
it must introduce two new
terms, say x,, x5 In this case
it is possible that a; consists
of x;, x,, x5, and so intro-
duces no new terms, but in
that case @, must introduce a
new term. The first v classes
Ay, Oy Oy one @ contain, at
the very most, 1+2+3+...+v
terms, ie. v(v + 1)/2 terms;
thus it would be possible, if
there were no repetitions in
the first v classes, to go on
with only repetitions from

561 (original page 128)



the (v + 1) | class to the
v(v +1)/2'" class. But by that
time the old terms would no
longer be sufficiently numer-
ous to form a next class with
the right number of members,
i.e. v(v +1)/2 + 1, therefore
new terms must come in at
this point if not sooner. It
follows that, if we omit from
our progression a,, @,, s, ...
all those classes that are com-
posed entirely of members
that have occurred in pre-
vious classes, we shall still
have a progression. Let our
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new progression be called
Bi» Bar By --- (We shall have
a, = B, and a, = f8,, because
a, and a, must introduce new
terms. We may or may not
have a, = f,, but, speaking
generally, f, will be a,,, where
v is some number greater than
u; i.e. the B’s are some of the
a’s.) Now these B’s are such
that any one of them, say By
contains members which have
not occurred in any of the pre-
vious B’s. Let y, be the part
of B, which consists of new
members. Thus we get a new
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progression yy, V., Vi .-
(Again y, will be identical
with g, and with a; if a, does
not contain the one member of
a,, weshall have y, =, = a,,
but if @, does contain this one
member, y, will consist of the
other member of «,.) This
new progression of y’s con-
sists of mutually exclusive
classes. Hence a selection
from them will be a progres-
sion; i.e. if x; is the member
of y,, x, is a member of y,,
X3 is a member of V3 and so
on; then x,, x,, Xy oo is a pro-
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gression, and is a sub-class of
a. Assuming the multiplica-
tive axiom, such a selection
can be made. Thus by twice
using this axiom we can prove
that, if the axiom is true, every
non-inductive cardinal must
be reflexive. This could also
be deduced from Zermelo’s
theorem, that, if the axiom is
true, every class can be well-
ordered; for a well-ordered
series must have either a finite
or a reflexive number of terms
in its field.

There is one advantage in
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the above direct argument, as
against deduction from Zer-
melo’s theorem, that the above
argument does not demand
the universal truth of the mul-
tiplicative axiom, but only its
truth as applied to a set of
N, classes. It may happen
that the axiom holds for &,
classes, though not for larger
numbers of classes. For this
reason it is better, when | it is
possible, to content ourselves
with the more restricted as-
sumption. The assumption
made in the above direct ar-
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gument is that a product of
N, factors is never zero unless
one of the factors is zero. We
may state this assumption in
the form: “N, is a multipliable
number,” where a number v
is defined as “multipliable”
when a product of v factors
is never zero unless one of
the factors is zero. We can
prove that a finite number is
always multipliable, but we
cannot prove that any infinite
number is so. The multiplica-
tive axiom is equivalent to the
assumption that all cardinal
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numbers are multipliable. But
in order to identify the reflex-
ive with the non-inductive,
or to deal with the problem
of the boots and socks, or to
show that any progression of
numbers of the second class
is of the second class, we only
need the very much smaller
assumption that N, is multi-
pliable.

It is not improbable that
there is much to be discovered
in regard to the topics dis-
cussed in the present chapter.
Cases may be found where
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propositions which seem to
involve the multiplicative ax-
iom can be proved without
it. It is conceivable that the
multiplicative axiom in its
general form may be shown
to be false. From this point
of view, Zermelo’s theorem
offers the best hope: the con-
tinuum or some still more
dense series might be proved
to be incapable of having its
terms well-ordered, which
would prove the multiplica-
tive axiom false, in virtue of
Zermelo’s theorem. But so
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far, no method of obtaining
such results has been discov-
ered, and the subject remains
wrapped in obscurity.
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CHAPTER XIII
THE AXIOM OF
INFINITY AND

LOGICAL TYPES

THE axiom of infinity is an as-
sumption which may be enun-
ciated as follows:—

“If n be any inductive car-
dinal number, there is at least
one class of individuals hav-
ing n terms.”

If this is true, it follows, of
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course, that there are many
classes of individuals having n
terms, and that the total num-
ber of individuals in the world
is not an inductive number.
For, by the axiom, there is at
least one class having n + 1
terms, from which it follows
that there are many classes of
n terms and that # is not the
number of individuals in the
world. Since n is any induc-
tive number, it follows that
the number of individuals in
the world must (if our axiom
be true) exceed any inductive
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number. In view of what we
found in the preceding chap-
ter, about the possibility of
cardinals which are neither
inductive nor reflexive, we
cannot infer from our axiom
that there are at least 8, indi-
viduals, unless we assume the
multiplicative axiom. But we
do know that there are at least
N, classes of classes, since
the inductive cardinals are
classes of classes, and form
a progression if our axiom is
true.

The way in which the need
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for this axiom arises may be
explained as follows. One of
Peano’s assumptions is that no
two inductive cardinals have
the same successor, i.e. that
we shall not have m+1=n+1
unless m = n, if m and n are
inductive cardinals. In Chap-
ter VIII. we had occasion to
use what is virtually the same
as the above assumption of
Peano’s, namely, that, if #n is
an inductive cardinal, | n is
not equal to n+ 1. It might
be thought that this could be
proved. We can prove that,
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if a is an inductive class, and
n is the number of members
of a, then n is not equal to
n+ 1. This proposition is eas-
ily proved by induction, and
might be thought to imply the
other. But in fact it does not,
since there might be no such
class as @. What it does imply
is this: If # is an inductive car-
dinal such that there is at least
one class having n members,
then n is not equal to n + 1.
The axiom of infinity assures
us (whether truly or falsely)
that there are classes having
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n members, and thus enables
us to assert that n is not equal
to n + 1. But without this ax-
iom we should be left with
the possibility that n and n+1
might both be the null-class.
Let us illustrate this possi-
bility by an example: Suppose
there were exactly nine indi-
viduals in the world. (As to
what is meant by the word
“individual,” T must ask the
reader to be patient.) Then the
inductive cardinals from o up
to 9 would be such as we ex-
pect, but 10 (defined as 9 + 1)
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would be the null-class. It will
be remembered that 7+ 1 may
be defined as follows: n + 1
is the collection of all those
classes which have a term x
such that, when x is taken
away, there remains a class of
n terms. Now applying this
definition, we see that, in the
case supposed, 9 + 1 is a class
consisting of no classes, i.e.
it is the null-class. The same
will be true of 9 + 2, or gener-
ally of 9 +n, unless #n is zero.
Thus 10 and all subsequent
inductive cardinals will all be
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identical, since they will all be
the null-class. In such a case
the inductive cardinals will
not form a progression, nor
will it be true that no two have
the same successor, for g and
10 will both be succeeded by
the null-class (10 being itself
the null-class). It is in order
to prevent such arithmetical
catastrophes that we require
the axiom of infinity.

As a matter of fact, so long
as we are content with the
arithmetic of finite integers,
and do not introduce either

578 (original page 132)



infinite integers or infinite
classes or series of finite in-
tegers or ratios, it is possible
to obtain all desired results
without the axiom of infinity.
That is to say, we can deal with
the addition, | multiplication,
and exponentiation of finite
integers and of ratios, but
we cannot deal with infinite
integers or with irrationals.
Thus the theory of the trans-
finite and the theory of real
numbers fails us. How these
various results come about
must now be explained.
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Assuming that the number
of individuals in the world
is n, the number of classes
of individuals will be 2".
This is in virtue of the gen-
eral proposition mentioned in
Chapter VIII. that the num-
ber of classes contained in a
class which has n members is
2". Now 2" is always greater
than n. Hence the number of
classes in the world is greater
than the number of individ-
uals. If, now, we suppose the
number of individuals to be g,
as we did just now, the num-
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ber of classes will be 29, i.e.
512. Thus if we take our num-
bers as being applied to the
counting of classes instead of
to the counting of individuals,
our arithmetic will be nor-
mal until we reach 512: the
first number to be null will
be 513. And if we advance
to classes of classes we shall
do still better: the number of
them will be 252, a number
which is so large as to stag-
ger imagination, since it has
about 153 digits. And if we
advance to classes of classes
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of classes, we shall obtain
a number represented by 2
raised to a power which has
about 153 digits; the number
of digits in this number will
be about three times 10"5%. In
a time of paper shortage it is
undesirable to write out this
number, and if we want larger
ones we can obtain them by
travelling further along the
logical hierarchy. In this way
any assigned inductive car-
dinal can be made to find its
place among numbers which
are not null, merely by travel-
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ling along the hierarchy for a
sufficient distance."

As regards ratios, we have
a very similar state of affairs.
If a ratio p/v is to have the ex-
pected properties, there must
be enough objects of whatever
sort is being counted to insure
that the null-class does not
suddenly obtrude itself. But
this can be insured, for any
given ratio u/v, without the

1On this subject see Principia
Mathematica, vol. ii. *120ff. On the
corresponding problems as regards
ratio, see ibid., vol. iii. »303ff.
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axiom of | infinity, by merely
travelling up the hierarchy
a sufficient distance. If we
cannot succeed by counting
individuals, we can try count-
ing classes of individuals; if
we still do not succeed, we
can try classes of classes, and
so on. Ultimately, however
few individuals there may be
in the world, we shall reach
a stage where there are many
more than p objects, what-
ever inductive number y may
be. Even if there were no in-
dividuals at all, this would
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still be true, for there would
then be one class, namely,
the null-class, 2 classes of
classes (namely, the null-class
of classes and the class whose
only member is the null-class
of individuals), 4 classes of
classes of classes, 16 at the
next stage, 65,536 at the next
stage, and so on. Thus no such
assumption as the axiom of
infinity is required in order to
reach any given ratio or any
given inductive cardinal.

It is when we wish to deal
with the whole class or series
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of inductive cardinals or of ra-
tios that the axiom is required.
We need the whole class of in-
ductive cardinals in order to
establish the existence of &,
and the whole series in order
to establish the existence of
progressions: for these results,
it is necessary that we should
be able to make a single class
or series in which no induc-
tive cardinal is null. We need
the whole series of ratios in
order of magnitude in order
to define real numbers as seg-
ments: this definition will not
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give the desired result unless
the series of ratios is compact,
which it cannot be if the total
number of ratios, at the stage
concerned, is finite.

It would be natural to sup-
pose—as I supposed myself in
former days—that, by means
of constructions such as we
have been considering, the
axiom of infinity could be
proved. It may be said: Let
us assume that the number
of individuals is n, where n
may be o without spoiling our
argument; then if we form the
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complete set of individuals,
classes, classes of classes, etc.,
all taken together, the number
of terms in our whole set will
be

n .
n+2"+2> ... adinf,

which is 8,. Thus taking all
kinds of objects together, and
not | confining ourselves to
objects of any one type, we
shall certainly obtain an infi-
nite class, and shall therefore
not need the axiom of infinity.
So it might be said.
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Now, before going into this
argument, the first thing to
observe is that there is an
air of hocus-pocus about it:
something reminds one of the
conjurer who brings things
out of the hat. The man who
has lent his hat is quite sure
there wasn't a live rabbit in it
before, but he is at a loss to
say how the rabbit got there.
So the reader, if he has a ro-
bust sense of reality, will feel
convinced that it is impossi-
ble to manufacture an infinite
collection out of a finite col-
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lection of individuals, though
he may be unable to say where
the flaw is in the above con-
struction. It would be a mis-
take to lay too much stress on
such feelings of hocus-pocus;
like other emotions, they may
easily lead us astray. But they
afford a prima facie ground
for scrutinising very closely
any argument which arouses
them. And when the above ar-
gument is scrutinised it will,
in my opinion, be found to
be fallacious, though the fal-
lacy is a subtle one and by no
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means easy to avoid consis-
tently.

The fallacy involved is the
fallacy which may be called
“confusion of types.” To ex-
plain the subject of “types”
fully would require a whole
volume; moreover, it is the
purpose of this book to avoid
those parts of the subjects
which are still obscure and
controversial, isolating, for
the convenience of beginners,
those parts which can be ac-
cepted as embodying mathe-
matically ascertained truths.
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Now the theory of types em-
phatically does not belong
to the finished and certain
part of our subject: much of
this theory is still inchoate,
confused, and obscure. But
the need of some doctrine of
types is less doubtful than
the precise form the doctrine
should take; and in connec-
tion with the axiom of infinity
it is particularly easy to see
the necessity of some such
doctrine.

This necessity results, for
example, from the “contra-
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diction of the greatest cardi-
nal.” We saw in Chapter VIII.
that the number of classes
contained in a given class is
always greater than the | num-
ber of members of the class,
and we inferred that there is
no greatest cardinal number.
But if we could, as we sug-
gested a moment ago, add to-
gether into one class the indi-
viduals, classes of individuals,
classes of classes of individ-
uals, etc., we should obtain
a class of which its own sub-
classes would be members.
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The class consisting of all ob-
jects that can be counted, of
whatever sort, must, if there
be such a class, have a car-
dinal number which is the
greatest possible. Since all its
sub-classes will be members
of it, there cannot be more
of them than there are mem-
bers. Hence we arrive at a
contradiction.

When 1 first came upon
this contradiction, in the year
1901, [ attempted to discover
some flaw in Cantor’s proof
that there is no greatest cardi-
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nal, which we gave in Chapter
VIII. Applying this proof to
the supposed class of all imag-
inable objects, I was led to a
new and simpler contradic-
tion, namely, the following:—

The comprehensive class
we are considering, which is
to embrace everything, must
embrace itself as one of its
members. In other words, if
there is such a thing as “ev-
erything,” then “everything”
is something, and is a mem-
ber of the class “everything.”
But normally a class is not a
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member of itself. Mankind,
for example, is not a man.
Form now the assemblage
of all classes which are not
members of themselves. This
is a class: is it a member of
itself or not? If it is, it is
one of those classes that are
not members of themselves,
i.e. it is not a member of it-
self. If it is not, it is not one
of those classes that are not
members of themselves, i.e. it
is a member of itself. Thus of
the two hypotheses—that it
is, and that it is not, a mem-
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ber of itself—each implies
its contradictory. This is a
contradiction.

There is no difficulty in
manufacturing similar con-
tradictions ad lib. The solution
of such contradictions by the
theory of types is set forth
fully in Principia Mathemat-
ica,” and also, more briefly, in
articles by the present author
in the American Journal | of
Mathematics3 and in the Revue

2Vol. i., Introduction, chap. ii., *12

and #20; vol. ii., Prefatory Statement.
3“Mathematical Logic as based on
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de Métaphysique et de Morale.*
For the present an outline of
the solution must suffice.

The fallacy consists in the
formation of what we may
call “impure” classes, i.e.
classes which are not pure
as to “type.” As we shall see in
a later chapter, classes are log-
ical fictions, and a statement
which appears to be about a
class will only be significant if

the Theory of Types,” vol. xxx., 1908,
pp. 222-262.

4“Les paradoxes de la logique,”
1906, pp. 627-650.
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it is capable of translation into
a form in which no mention is
made of the class. This places
a limitation upon the ways
in which what are nominally,
though not really, names for
classes can occur significantly:
a sentence or set of symbols
in which such pseudo-names
occur in wrong ways is not
false, but strictly devoid of
meaning. The supposition
that a class is, or that it is not,
a member of itself is mean-
ingless in just this way. And
more generally, to suppose
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that one class of individu-
als is a member, or is not a
member, of another class of
individuals will be to suppose
nonsense; and to construct
symbolically any class whose
members are not all of the
same grade in the logical hi-
erarchy is to use symbols in
a way which makes them no
longer symbolise anything.
Thus if there are n indi-
viduals in the world, and 2"
classes of individuals, we can-
not form a new class, con-
sisting of both individuals
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and classes and having n + 2"
members. In this way the
attempt to escape from the
need for the axiom of infinity
breaks down. I do not pre-
tend to have explained the
doctrine of types, or done
more than indicate, in rough
outline, why there is need
of such a doctrine. I have
aimed only at saying just so
much as was required in or-
der to show that we cannot
prove the existence of infinite
numbers and classes by such
conjurer’s methods as we have

601 (original page 137)



been examining. There re-
main, however, certain other
possible methods which must
be considered.

Various arguments profess-
ing to prove the existence of
infinite classes are given in
the Principles of Mathematics,
§339 (p- 357). | In so far as
these arguments assume that,
if n is an inductive cardinal,
n is not equal to n + 1, they
have been already dealt with.
There is an argument, sug-
gested by a passage in Plato’s
Parmenides, to the effect that,
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if there is such a number as
1, then 1 has being; but 1 is
not identical with being, and
therefore 1 and being are two,
and therefore there is such a
number as 2, and 2 together
with 1 and being gives a class
of three terms, and so on.
This argument is fallacious,
partly because “being” is not
a term having any definite
meaning, and still more be-
cause, if a definite meaning
were invented for it, it would
be found that numbers do
not have being—they are, in
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fact, what are called “logi-
cal fictions,” as we shall see
when we come to consider the
definition of classes.

The argument that the
number of numbers from o
to n (both inclusive) is n + 1
depends upon the assump-
tion that up to and including
n no number is equal to its
successor, which, as we have
seen, will not be always true if
the axiom of infinity is false.
It must be understood that
the equation n = n+ 1, which
might be true for a finite n if
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n exceeded the total number
of individuals in the world,
is quite different from the
same equation as applied to
a reflexive number. As ap-
plied to a reflexive number, it
means that, given a class of n
terms, this class is “similar”
to that obtained by adding
another term. But as applied
to a number which is too great
for the actual world, it merely
means that there is no class of
n individuals, and no class of
n + 1 individuals; it does not
mean that, if we mount the
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hierarchy of types sufficiently
far to secure the existence of
a class of n terms, we shall
then find this class “similar”
to one of n+1 terms, for if n is
inductive this will not be the
case, quite independently of
the truth or falsehood of the
axiom of infinity.

There is an argument em-
ployed by both Bolzano> and
Dedekind® to prove the exis-

5Bolzano, Paradoxien des Un-
endlichen, 13.

6Dedekind, Was sind und was sollen
die Zahlen? No. 66.
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tence of reflexive classes. The
argument, in brief, is this: An
object is not identical with
the idea of the | object, but
there is (at least in the realm
of being) an idea of any object.
The relation of an object to the
idea of it is one-one, and ideas
are only some among objects.
Hence the relation “idea of”
constitutes a reflexion of the
whole class of objects into a
part of itself, namely, into that
part which consists of ideas.
Accordingly, the class of ob-
jects and the class of ideas are
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both infinite. This argument
is interesting, not only on
its own account, but because
the mistakes in it (or what I
judge to be mistakes) are of a
kind which it is instructive to
note. The main error consists
in assuming that there is an
idea of every object. It is, of
course, exceedingly difficult
to decide what is meant by
an “idea”; but let us assume
that we know. We are then
to suppose that, starting (say)
with Socrates, there is the idea
of Socrates, and then the idea
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of the idea of Socrates, and
so on ad inf. Now it is plain
that this is not the case in the
sense that all these ideas have
actual empirical existence in
people’s minds. Beyond the
third or fourth stage they
become mythical. If the ar-
gument is to be upheld, the
“ideas” intended must be Pla-
tonic ideas laid up in heaven,
for certainly they are not on
earth. But then it at once be-
comes doubtful whether there
are such ideas. If we are to
know that there are, it must
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be on the basis of some logi-
cal theory, proving that it is
necessary to a thing that there
should be an idea of it. We
certainly cannot obtain this
result empirically, or apply it,
as Dedekind does, to “meine
Gedankenwelt”—the world of
my thoughts.

If we were concerned to
examine fully the relation of
idea and object, we should
have to enter upon a number
of psychological and logical
inquiries, which are not rele-
vant to our main purpose. But
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a few further points should
be noted. If “idea” is to be
understood logically, it may
be identical with the object, or
it may stand for a description
(in the sense to be explained
in a subsequent chapter). In
the former case the argument
fails, because it was essential
to the proof of reflexiveness
that object and idea should
be distinct. In the second
case the argument also fails,
because the relation of ob-
ject and description is not |
one-one: there are innumer-
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able correct descriptions of
any given object. Socrates
(e.g.) may be described as “the
master of Plato,” or as “the
philosopher who drank the
hemlock,” or as “the husband
of Xantippe.” If—to take up
the remaining hypothesis—
“idea” is to be interpreted
psychologically, it must be
maintained that there is not
any one definite psychological
entity which could be called
the idea of the object: there are
innumerable beliefs and atti-
tudes, each of which could be
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called an idea of the object in
the sense in which we might
say “my idea of Socrates is
quite different from yours,”
but there is not any central
entity (except Socrates him-
self) to bind together various
“ideas of Socrates,” and thus
there is not any such one-one
relation of idea and object as
the argument supposes. Nor,
of course, as we have already
noted, is it true psychologi-
cally that there are ideas (in
however extended a sense) of
more than a tiny proportion of
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the things in the world. For all
these reasons, the above argu-
ment in favour of the logical
existence of reflexive classes
must be rejected.

It might be thought that,
whatever may be said of log-
ical arguments, the empirical
arguments derivable from
space and time, the diver-
sity of colours, etc., are quite
sufficient to prove the ac-
tual existence of an infinite
number of particulars. I do
not believe this. We have no
reason except prejudice for
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believing in the infinite ex-
tent of space and time, at any
rate in the sense in which
space and time are physical
facts, not mathematical fic-
tions. We naturally regard
space and time as continuous,
or, at least, as compact; but
this again is mainly preju-
dice. The theory of “quanta”
in physics, whether true or
false, illustrates the fact that
physics can never afford proof
of continuity, though it might
quite possibly afford disproof.
The senses are not sufficiently
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exact to distinguish between
continuous motion and rapid
discrete succession, as any-
one may discover in a cinema.
A world in which all motion
consisted of a series of small
finite jerks would be empiri-
cally indistinguishable from
one in which motion was con-
tinuous. It would take up
too much space to | defend
these theses adequately; for
the present I am merely sug-
gesting them for the reader’s
consideration. If they are
valid, it follows that there is

616 (original pages 140-141)



no empirical reason for believ-
ing the number of particulars
in the world to be infinite,
and that there never can be;
also that there is at present
no empirical reason to be-
lieve the number to be finite,
though it is theoretically con-
ceivable that some day there
might be evidence pointing,
though not conclusively, in
that direction.

From the fact that the infi-
nite is not self-contradictory,
but is also not demonstrable
logically, we must conclude
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that nothing can be known a
priori as to whether the num-
ber of things in the world is
finite or infinite. The conclu-
sion is, therefore, to adopt a
Leibnizian phraseology, that
some of the possible worlds
are finite, some infinite, and
we have no means of knowing
to which of these two kinds
our actual world belongs. The
axiom of infinity will be true
in some possible worlds and
false in others; whether it is
true or false in this world, we
cannot tell.
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Throughout this chapter
the synonyms “individual”
and “particular” have been
used without explanation. It
would be impossible to ex-
plain them adequately with-
out a longer disquisition on
the theory of types than would
be appropriate to the present
work, but a few words before
we leave this topic may do
something to diminish the
obscurity which would other-
wise envelop the meaning of
these words.

In an ordinary statement
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we can distinguish a verb,
expressing an attribute or re-
lation, from the substantives
which express the subject of
the attribute or the terms of
the relation. “Ceesar lived”
ascribes an attribute to Ceesar;
“Brutus killed Ceesar” ex-
presses a relation between
Brutus and Caesar. Using the
word “subject” in a gener-
alised sense, we may call both
Brutus and Ceesar subjects
of this proposition: the fact
that Brutus is grammatically
subject and Caesar object is
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logically irrelevant, since the
same occurrence may be ex-
pressed in the words “Czesar
was killed by Brutus,” where
Ceesar is the grammatical sub-
ject. | Thus in the simpler sort
of proposition we shall have
an attribute or relation hold-
ing of or between one, two
or more “subjects” in the ex-
tended sense. (A relation may
have more than two terms: e.g.
“A gives B to C” is a relation
of three terms.) Now it of-
ten happens that, on a closer
scrutiny, the apparent sub-
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jects are found to be not really
subjects, but to be capable of
analysis; the only result of
this, however, is that new sub-
jects take their places. It also
happens that the verb may
grammatically be made sub-
ject: e.g. we may say, “Killing
is a relation which holds be-
tween Brutus and Caesar.” But
in such cases the grammar is
misleading, and in a straight-
forward statement, following
the rules that should guide
philosophical grammar, Bru-
tus and Caesar will appear as
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the subjects and killing as the
verb.

We are thus led to the con-
ception of terms which, when
they occur in propositions,
can only occur as subjects, and
never in any other way. This is
part of the old scholastic def-
inition of substance; but per-
sistence through time, which
belonged to that notion, forms
no part of the notion with
which we are concerned. We
shall define “proper names”
as those terms which can only
occur as subjects in propo-

623 (original page 142)



sitions (using “subject” in
the extended sense just ex-
plained). We shall further de-
fine “individuals” or “partic-
ulars” as the objects that can
be named by proper names.
(It would be better to define
them directly, rather than by
means of the kind of symbols
by which they are symbolised;
but in order to do that we
should have to plunge deeper
into metaphysics than is de-
sirable here.) It is, of course,
possible that there is an end-
less regress: that whatever
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appears as a particular is re-
ally, on closer scrutiny, a class
or some kind of complex. If
this be the case, the axiom
of infinity must of course be
true. But if it be not the case, it
must be theoretically possible
for analysis to reach ultimate
subjects, and it is these that
give the meaning of “particu-
lars” or “individuals.” It is to
the number of these that the
axiom of infinity is assumed
to apply. If it is true of them, it
is true | of classes of them, and
classes of classes of them, and
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so on; similarly if it is false of
them, it is false throughout
this hierarchy. Hence it is nat-
ural to enunciate the axiom
concerning them rather than
concerning any other stage in
the hierarchy. But whether the
axiom is true or false, there
seems no known method of
discovering.
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CHAPTER XIV
INCOMPATIBILITY
AND THE THEORY OF
DEDUCTION

WE have now explored, some-
what hastily it is true, that
part of the philosophy of
mathematics which does not
demand a critical examina-
tion of the idea of class. In
the preceding chapter, how-
ever, we found ourselves con-
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fronted by problems which
make such an examination
imperative. Before we can
undertake it, we must con-
sider certain other parts of
the philosophy of mathemat-
ics, which we have hitherto
ignored. In a synthetic treat-
ment, the parts which we shall
now be concerned with come
first: they are more funda-
mental than anything that
we have discussed hitherto.
Three topics will concern us
before we reach the theory of
classes, namely: (1) the theory
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of deduction, (2) proposi-
tional functions, (3) descrip-
tions. Of these, the third is
not logically presupposed in
the theory of classes, but it
is a simpler example of the
kind of theory that is needed
in dealing with classes. It is
the first topic, the theory of
deduction, that will concern
us in the present chapter.
Mathematics is a deductive
science: starting from cer-
tain premisses, it arrives, by
a strict process of deduction,
at the various theorems which
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constitute it. It is true that,
in the past, mathematical de-
ductions were often greatly
lacking in rigour; it is true
also that perfect rigour is a
scarcely attainable ideal. Nev-
ertheless, in so far as rigour
is lacking in a mathematical
proof, the proof is defective; it
is no defence to urge that com-
mon sense shows the result
to be correct, for if we were
to rely upon that, it would be
better to dispense with argu-
ment altogether, | rather than
bring fallacy to the rescue of
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common sense. No appeal to
common sense, or “intuition,”
or anything except strict de-
ductive logic, ought to be
needed in mathematics after
the premisses have been laid
down.

Kant, having observed that
the geometers of his day could
not prove their theorems by
unaided argument, but re-
quired an appeal to the figure,
invented a theory of math-
ematical reasoning accord-
ing to which the inference is
never strictly logical, but al-

631 (original page 145)



ways requires the support of
what is called “intuition.” The
whole trend of modern math-
ematics, with its increased
pursuit of rigour, has been
against this Kantian theory.
The things in the mathematics
of Kant’s day which cannot be
proved, cannot be known—for
example, the axiom of par-
allels. What can be known,
in mathematics and by math-
ematical methods, is what
can be deduced from pure
logic. What else is to belong
to human knowledge must
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be ascertained otherwise—
empirically, through the senses
or through experience in some
form, but not a priori. The
positive grounds for this the-
sis are to be found in Principia
Mathematica, passim; a contro-
versial defence of it is given
in the Principles of Mathemat-
ics. We cannot here do more
than refer the reader to those
works, since the subject is
too vast for hasty treatment.
Meanwhile, we shall assume
that all mathematics is deduc-
tive, and proceed to inquire as
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to what is involved in deduc-
tion.

In deduction, we have one
or more propositions called
premisses, from which we in-
fer a proposition called the
conclusion. For our purposes,
it will be convenient, when
there are originally several
premisses, to amalgamate
them into a single proposi-
tion, so as to be able to speak
of the premiss as well as of
the conclusion. Thus we may
regard deduction as a process
by which we pass from knowl-
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edge of a certain proposition,
the premiss, to knowledge of
a certain other proposition,
the conclusion. But we shall
not regard such a process as
logical deduction unless it is
correct, i.e. unless there is such
a relation between premiss
and conclusion that we have a
right to believe the conclusion
| if we know the premiss to
be true. It is this relation that
is chiefly of interest in the
logical theory of deduction.
In order to be able validly
to infer the truth of a proposi-
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tion, we must know that some
other proposition is true, and
that there is between the two
a relation of the sort called
“implication,” i.e. that (as we
say) the premiss “implies” the
conclusion. (We shall define
this relation shortly.) Or we
may know that a certain other
proposition is false, and that
there is a relation between the
two of the sort called “disjunc-
tion,” expressed by “p or ¢,”*

!We shall use the letters p, g, 1,5, t
to denote variable propositions.
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so that the knowledge that the
one is false allows us to infer
that the other is true. Again,
what we wish to infer may be
the falsehood of some propo-
sition, not its truth. This may
be inferred from the truth
of another proposition, pro-
vided we know that the two
are “incompatible,” i.e. that
if one is true, the other is
false. It may also be inferred
from the falsehood of another
proposition, in just the same
circumstances in which the
truth of the other might have
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been inferred from the truth
of the one; i.e. from the false-
hood of p we may infer the
falsehood of g, when g implies
p. All these four are cases of
inference. When our minds
are fixed upon inference, it
seems natural to take “im-
plication” as the primitive
fundamental relation, since
this is the relation which must
hold between p and q if we are
to be able to infer the truth
of g from the truth of p. But
for technical reasons this is
not the best primitive idea
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to choose. Before proceeding
to primitive ideas and defi-
nitions, let us consider fur-
ther the various functions of
propositions suggested by the
above-mentioned relations of
propositions.

The simplest of such func-
tions is the negative, “not-
p.” This is that function of
p which is true when p is
false, and false when p is true.
It is convenient to speak of
the truth of a proposition, or
its falsehood, as its “truth-
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value”?; i.e. truth is the “truth-
value” of a true proposition,
and falsehood of a false one.
Thus not-p has the opposite
truth-value to p. |

We may take next disjunc-
tion, “p or q.” This is a func-
tion whose truth-value is
truth when p is true and also
when ¢ is true, but is false-
hood when both p and g are
false.

Next we may take conjunc-
tion, “p and q.” This has truth

2This term is due to Frege.
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for its truth-value when p and
q are both true; otherwise it
has falsehood for its truth-
value.

Take next incompatibility,
i.e. “p and q are not both true.”
This is the negation of con-
junction; it is also the disjunc-
tion of the negations of p and
q, i.e. it is “not-p or not-q.” Its
truth-value is truth when p is
false and likewise when g is
false; its truth-value is false-
hood when p and g are both
true.

Last take implication, i.e. “p
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implies ¢,” or “if p, then q.”
This is to be understood in the
widest sense that will allow
us to infer the truth of g if
we know the truth of p. Thus
we interpret it as meaning:
“Unless p is false, g is true,”
or “either p is false or g is
true.” (The fact that “implies”
is capable of other meanings
does not concern us; this is
the meaning which is conve-
nient for us.) That is to say, “p
implies ¢” is to mean “not-p
or q”: its truth-value is to be
truth if p is false, likewise if g
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is true, and is to be falsehood
if p is true and q is false.

We have thus five func-
tions: negation, disjunction,
conjunction, incompatibility,
and implication. We might
have added others, for exam-
ple, joint falsehood, “not-p
and not-g,” but the above five
will suffice. Negation differs
from the other four in being
a function of one proposition,
whereas the others are func-
tions of two. But all five agree
in this, that their truth-value
depends only upon that of the
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propositions which are their
arguments. Given the truth
or falsehood of p, or of p and
q (as the case may be), we are
given the truth or falsehood
of the negation, disjunction,
conjunction, incompatibility,
or implication. A function of
propositions which has this
property is called a “truth-
function.”

The whole meaning of a
truth-function is exhausted
by the statement of the cir-
cumstances under which it
is true or false. “Not-p,” for
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example, is simply that func-
tion of p which is true when
p is false, and false when p
is true: there is no further |
meaning to be assigned to it.
The same applies to “p or g”
and the rest. It follows that
two truth-functions which
have the same truth-value for
all values of the argument are
indistinguishable. For exam-
ple, “p and gq” is the negation
of “not-p or not-q” and vice
versa; thus either of these may
be defined as the negation of
the other. There is no further
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meaning in a truth-function
over and above the conditions
under which it is true or false.

It is clear that the above
five truth-functions are not
all independent. We can de-
fine some of them in terms of
others. There is no great diffi-
culty in reducing the number
to two; the two chosen in Prin-
cipia Mathematica are negation
and disjunction. Implication
is then defined as “not-p or
q”; incompatibility as “not-p
or not-q”; conjunction as the
negation of incompatibility.
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But it has been shown by Shef-
fer3 that we can be content
with one primitive idea for all
five, and by Nicod#* that this
enables us to reduce the prim-
itive propositions required
in the theory of deduction
to two non-formal principles
and one formal one. For this
purpose, we may take as our
one indefinable either incom-
patibility or joint falsehood.

3Trans. Am. Math. Soc., vol. xiv. pp.
481—488.

4Proc. Camb. Phil. Soc., vol. xix., i.,
January 1917.
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We will choose the former.
Our primitive idea, now, is
a certain truth-function called
“incompatibility,” which we
will denote by p/q. Nega-
tion can be at once defined
as the incompatibility of a
proposition with itself, i.e.
“not-p” is defined as “p/p.”
Disjunction is the incompat-
ibility of not-p and not-g, i.e.
itis (p/p) | (q/q). Implica-
tion is the incompatibility
of p and not-q, i.e. p | (q/9)-
Conjunction is the negation
of incompatibility, i.e. it is
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(plq)|(plq). Thus all our four
other functions are defined in
terms of incompatibility.

It is obvious that there is
no limit to the manufacture
of truth-functions, either by
introducing more arguments
or by repeating arguments.
What we are concerned with
is the connection of this sub-
ject with inference. |

If we know that p is true
and that p implies g, we can
proceed to assert g. There is
always unavoidably something
psychological about infer-
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ence: inference is a method
by which we arrive at new
knowledge, and what is not
psychological about it is the
relation which allows us to
infer correctly; but the actual
passage from the assertion
of p to the assertion of g is a
psychological process, and we
must not seek to represent it
in purely logical terms.

In mathematical practice,
when we infer, we have always
some expression containing
variable propositions, say p
and g, which is known, in
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virtue of its form, to be true
for all values of p and g; we
have also some other expres-
sion, part of the former, which
is also known to be true for
all values of p and g; and in
virtue of the principles of in-
ference, we are able to drop
this part of our original ex-
pression, and assert what is
left. This somewhat abstract
account may be made clearer
by a few examples.

Let us assume that we know
the five formal principles
of deduction enumerated in
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Principia Mathematica. (M.
Nicod has reduced these to
one, but as it is a complicated
proposition, we will begin
with the five.) These five
propositions are as follows:—

(1) “p or p” implies p—i.e.
if either p is true or p is true,
then p is true.

(2) q implies “p or g”"—i.e.
the disjunction “p or q” is true
when one of its alternatives is
true.

(3) “p or q” implies “g or
p.”  This would not be re-
quired if we had a theoreti-
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cally more perfect notation,
since in the conception of
disjunction there is no order
involved, so that “p or ¢” and
“q or p” should be identi-
cal. But since our symbols,
in any convenient form, in-
evitably introduce an order,
we need suitable assumptions
for showing that the order is
irrelevant.

(4) If either p is true or “g or
r” is true, then either g is true
or “p or r” is true. (The twist
in this proposition serves to
increase its deductive power.) |
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(5) If g implies r, then “p or
q” implies “p or r.”

These are the formal prin-
ciples of deduction employed
in Principia Mathematica. A
formal principle of deduction
has a double use, and it is in
order to make this clear that
we have cited the above five
propositions. It has a use as
the premiss of an inference,
and a use as establishing the
fact that the premiss implies
the conclusion. In the schema
of an inference we have a
proposition p, and a proposi-
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tion “p implies ¢,” from which
we infer g. Now when we are
concerned with the principles
of deduction, our apparatus
of primitive propositions has
to yield both the p and the “p
implies g” of our inferences.
That is to say, our rules of
deduction are to be used, not
only as rules, which is their
use for establishing “p implies
q,” but also as substantive
premisses, i.e. as the p of our
schema. Suppose, for exam-
ple, we wish to prove that if
p implies g, then if g implies
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r it follows that p implies r.
We have here a relation of
three propositions which state
implications. Put

p, =p implies g, p, =
g implies r, p, = p implies r.

Then we have to prove that
p, implies that p, implies
p5- Now take the fifth of our
above principles, substitute
not-p for p, and remember
that “not-p or q” is by defi-
nition the same as “p implies

»”

q.” Thus our fifth principle
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yields:

“If g implies r, then ‘p im-
plies g’ implies ‘p implies
r,/” ie. “p, implies that
p, implies p;.” Call this
proposition A.

But the fourth of our princi-
ples, when we substitute not-
p, not-q, for p and g, and re-
member the definition of im-
plication, becomes:

“If p implies that g implies r,
then g implies that p im-
plies r.”
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Writing p, in place of p, p, in
place of g, and p; in place of
r, this becomes:

“If p, implies that p, implies
py, then p, implies that p,
implies p,.” Call this B. |

Now we proved by means of
our fifth principle that
“p, implies that p, implies
psy” which was what we
called A.

Thus we have here an instance
of the schema of inference,
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since A represents the p of our
scheme, and B represents the
“p implies q.” Hence we arrive
at g, namely,

“p, implies that p,

implies p,,”

which was the proposition to
be proved. In this proof, the
adaptation of our fifth princi-
ple, which yields A, occurs as
a substantive premiss; while
the adaptation of our fourth
principle, which yields B, is
used to give the form of the
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inference. The formal and
material employments of pre-
misses in the theory of deduc-
tion are closely intertwined,
and it is not very important
to keep them separated, pro-
vided we realise that they are
in theory distinct.

The earliest method of ar-
riving at new results from
a premiss is one which is
illustrated in the above de-
duction, but which itself can
hardly be called deduction.
The primitive propositions,
whatever they may be, are
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to be regarded as asserted
for all possible values of the
variable propositions p, ¢, r
which occur in them. We may
therefore substitute for (say)
p any expression whose value
is always a proposition, e.g.
not-p, “s implies t,” and so
on. By means of such substi-
tutions we really obtain sets
of special cases of our orig-
inal proposition, but from a
practical point of view we ob-
tain what are virtually new
propositions. The legitimacy
of substitutions of this kind
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has to be insured by means
of a non-formal principle of
inference.5

We may now state the one
formal principle of inference
to which M. Nicod has re-
duced the five given above.
For this purpose we will first
show how certain truth-functior
can be defined in terms of in-
compatibility. We saw already
that

5No such principle is enunciated
in Principia Mathematica or in M.
Nicod’s article mentioned above. But
this would seem to be an omission.
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pl(g/q) means “p implies q.” |
We now observe that

p|(q/r) means “p implies
both g and r.”

For this expression means “p
is incompatible with the in-
compatibility of g and r,” i.e.
“p implies that g and r are not
incompatible,” i.e. “p implies
that g and r are both true”—
for, as we saw, the conjunction
of g and r is the negation of
their incompatibility.
Observe next that t | (¢/t)
means “t implies itself.” This
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is a particular case of p |
(/49).

Let us write p for the nega-
tion of p; thus p /s will mean
the negation of p /s, i.e. it will
mean the conjunction of p and

s. It follows that

(slq)lpls

expresses the incompatibility
of s/g with the conjunction
of p and s; in other words, it
states that if p and s are both
true, s/q is false, i.e. s and g
are both true; in still simpler
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words, it states that p and s
jointly imply s and g jointly.
Now, putP=p|(q/r),
m=t|(t[t),

Q=(s/q)lpls.

Then M. Nicod’s sole formal
principle of deduction is

Pln/Q,

in other words, P implies both
7t and Q.

He employs in addition one
non-formal principle belong-
ing to the theory of types
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(which need not concern us),
and one corresponding to the
principle that, given p, and
given that p implies g, we can
assert q. This principle is:

“If p|(r/q)is true, and p is
true, then g is true.” From this
apparatus the whole theory
of deduction follows, except
in so far as we are concerned
with deduction from or to
the existence or the univer-
sal truth of “propositional
functions,” which we shall
consider in the next chapter.

There is, if I am not mis-
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taken, a certain confusion
in the | minds of some au-
thors as to the relation, be-
tween propositions, in virtue
of which an inference is valid.
In order that it may be valid
to infer g from p, it is only
necessary that p should be
true and that the proposition
“not-p or q” should be true.
Whenever this is the case, it is
clear that g must be true. But
inference will only in fact take
place when the proposition
“not-p or q” is known other-
wise than through knowledge
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of not-p or knowledge of g.
Whenever p is false, “not-p
or q” is true, but is useless
for inference, which requires
that p should be true. When-
ever g is already known to be
true, “not-p or q” is of course
also known to be true, but is
again useless for inference,
since g is already known, and
therefore does not need to be
inferred. In fact, inference
only arises when “not-p or g”
can be known without our
knowing already which of
the two alternatives it is that
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makes the disjunction true.
Now, the circumstances under
which this occurs are those
in which certain relations of
form exist between p and gq.
For example, we know that
if r implies the negation of s,
then s implies the negation of
r. Between “r implies not-s”
and “s implies not-r” there is
a formal relation which en-
ables us to know that the first
implies the second, without
having first to know that the
first is false or to know that
the second is true. It is un-
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der such circumstances that
the relation of implication is
practically useful for drawing
inferences.

But this formal relation is
only required in order that
we may be able to know that
either the premiss is false or
the conclusion is true. It is the
truth of “not-p or g” that is
required for the validity of the
inference; what is required
further is only required for
the practical feasibility of
the inference. Professor C. L.
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Lewis® has especially studied
the narrower, formal relation
which we may call “formal de-
ducibility.” He urges that the
wider relation, that expressed
by “not-p or gq,” should not be
called “implication.” That is,
however, a matter of words.
| Provided our use of words
is consistent, it matters lit-
tle how we define them. The
essential point of difference
between the theory which I
6See Mind, vol. xxi., 1912, pp. 522-
531; and vol. xxiii., 1914, pp. 240—
247.
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advocate and the theory ad-
vocated by Professor Lewis
is this: He maintains that,
when one proposition g is
“formally deducible” from
another p, the relation which
we perceive between them is
one which he calls “strict im-
plication,” which is not the
relation expressed by “not-p
or q” but a narrower relation,
holding only when there are
certain formal connections
between p and g. I maintain
that, whether or not there be
such a relation as he speaks
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of, it is in any case one that
mathematics does not need,
and therefore one that, on
general grounds of economy,
ought not to be admitted into
our apparatus of fundamen-
tal notions; that, whenever
the relation of “formal de-
ducibility” holds between two
propositions, it is the case that
we can see that either the first
is false or the second true, and
that nothing beyond this fact
is necessary to be admitted
into our premisses; and that,
finally, the reasons of detail
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which Professor Lewis ad-
duces against the view which
I advocate can all be met in
detail, and depend for their
plausibility upon a covert and
unconscious assumption of
the point of view which I re-
ject. I conclude, therefore,
that there is no need to admit
as a fundamental notion any
form of implication not ex-
pressible as a truth-function.
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CHAPTER XV
PROPOSITIONAL
FUNCTIONS

WHEN, in the preceding chap-
ter, we were discussing propo-
sitions, we did not attempt to
give a definition of the word
“proposition.” But although
the word cannot be formally
defined, it is necessary to say
something as to its meaning,
in order to avoid the very com-
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mon confusion with “propo-
sitional functions,” which are
to be the topic of the present
chapter.

We mean by a “proposition”
primarily a form of words
which expresses what is either
true or false. I say “primar-
ily,” because I do not wish
to exclude other than ver-
bal symbols, or even mere
thoughts if they have a sym-
bolic character. But I think the
word “proposition” should be
limited to what may, in some
sense, be called “symbols,”
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and further to such symbols
as give expression to truth
and falsehood. Thus “two and
two are four” and “two and
two are five” will be proposi-
tions, and so will “Socrates is
a man” and “Socrates is not a
man.” The statement: “What-
ever numbers 4 and b may be,
(a+b)*> =a*>+2ab+1b*>" is a
proposition; but the bare for-
mula “(a+b)? = a® + 2ab + b*”
alone is not, since it asserts
nothing definite unless we are
further told, or led to sup-
pose, that a and b are to have
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all possible values, or are to
have such-and-such values.
The former of these is tac-
itly assumed, as a rule, in the
enunciation of mathematical
formule, which thus become
propositions; but if no such
assumption were made, they
would be “propositional func-
tions.” A “propositional func-
tion,” in fact, is an expression
containing one or more unde-
termined constituents, | such
that, when values are assigned
to these constituents, the ex-
pression becomes a propo-
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sition. In other words, it is
a function whose values are
propositions. But this latter
definition must be used with
caution. A descriptive func-
tion, e.g. “the hardest propo-
sition in A’s mathematical
treatise,” will not be a propo-
sitional function, although its
values are propositions. But
in such a case the proposi-
tions are only described: in
a propositional function, the
values must actually enunciate
propositions.

Examples of propositional
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functions are easy to give:
“x is human” is a proposi-
tional function; so long as
x remains undetermined, it
is neither true nor false, but
when a value is assigned to
x it becomes a true or false
proposition. Any mathemati-
cal equation is a propositional
function. So long as the vari-
ables have no definite value,
the equation is merely an ex-
pression awaiting determina-
tion in order to become a true
or false proposition. If it is an
equation containing one vari-
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able, it becomes true when
the variable is made equal to
a root of the equation, other-
wise it becomes false; but if it
is an “identity” it will be true
when the variable is any num-
ber. The equation to a curve
in a plane or to a surface in
space is a propositional func-
tion, true for values of the co-
ordinates belonging to points
on the curve or surface, false
for other values. Expressions
of traditional logic such as
“all A is B” are propositional
functions: A and B have to be
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determined as definite classes
before such expressions be-
come true or false.

The notion of “cases” or
“instances” depends upon
propositional functions. Con-
sider, for example, the kind of
process suggested by what is
called “generalisation,” and
let us take some very primi-
tive example, say, “lightning
is followed by thunder.” We
have a number of “instances”
of this, i.e. a number of propo-
sitions such as: “this is a flash
of lightning and is followed
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by thunder.” What are these
occurrences “instances” of?
They are instances of the
propositional function: “If x
is a flash of lightning, x is fol-
lowed by thunder.” The pro-
cess of generalisation (with
whose validity we are | fortu-
nately not concerned) consists
in passing from a number of
such instances to the univer-
sal truth of the propositional
function: “If x is a flash of
lightning, x is followed by
thunder.” It will be found
that, in an analogous way,
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propositional functions are
always involved whenever we
talk of instances or cases or
examples.

We do not need to ask, or at-
tempt to answer, the question:
“What is a propositional func-
tion?” A propositional func-
tion standing all alone may be
taken to be a mere schema, a
mere shell, an empty recep-
tacle for meaning, not some-
thing already significant. We
are concerned with propo-
sitional functions, broadly
speaking, in two ways: first,
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as involved in the notions
“true in all cases” and “true in
some cases”; secondly, as in-
volved in the theory of classes
and relations. The second of
these topics we will postpone
to a later chapter; the first
must occupy us now.

When we say that some-
thing is “always true” or “true
in all cases,” it is clear that the
“something” involved cannot
be a proposition. A proposi-
tion is just true or false, and
there is an end of the mat-
ter. There are no instances or
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cases of “Socrates is a man”
or “Napoleon died at St He-
lena.” These are propositions,
and it would be meaningless
to speak of their being true
“in all cases.” This phrase
is only applicable to propo-
sitional functions. Take, for
example, the sort of thing that
is often said when causation is
being discussed. (We are not
concerned with the truth or
falsehood of what is said, but
only with its logical analysis.)
We are told that A is, in every
instance, followed by B. Now
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if there are “instances” of A, A
must be some general concept
of which it is significant to say
“xpis A “x, is A “xyis A
and so on, where x,, x,, X5
are particulars which are not
identical one with another.
This applies, e.g., to our previ-
ous case of lightning. We say
that lightning (A) is followed
by thunder (B). But the sep-
arate flashes are particulars,
not identical, but sharing the
common property of being
lightning. The only way of ex-
pressing a | common property
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generally is to say that a com-
mon property of a number
of objects is a propositional
function which becomes true
when any one of these ob-
jects is taken as the value of
the variable. In this case all
the objects are “instances” of
the truth of the propositional
function—for a propositional
function, though it cannot it-
self be true or false, is true in
certain instances and false in
certain others, unless it is “al-
ways true” or “always false.”
When, to return to our exam-
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ple, we say that A is in every
instance followed by B, we
mean that, whatever x may be,
if x is an A, it is followed by
a B; that is, we are asserting
that a certain propositional
function is “always true.”
Sentences involving such
words as “all,” “every,” “a,”
“the,” “some” require propo-
sitional functions for their
interpretation. The way in
which propositional functions
occur can be explained by
means of two of the above
words, namely, “all” and
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“some.”

There are, in the last anal-
ysis, only two things that can
be done with a propositional
function: one is to assert that
it is true in all cases, the other
to assert that it is true in at
least one case, or in some cases
(as we shall say, assuming that
there is to be no necessary
implication of a plurality of
cases). All the other uses of
propositional functions can be
reduced to these two. When
we say that a propositional
function is true “in all cases,”
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or “always” (as we shall also
say, without any temporal
suggestion), we mean that all
its values are true. If “¢px”
is the function, and a is the
right sort of object to be an
argument to “¢x,” then ¢a
is to be true, however a may
have been chosen. For ex-
ample, “if a is human, a is
mortal” is true whether a is
human or not; in fact, every
proposition of this form is
true. Thus the propositional
function “if x is human, x is
mortal” is “always true,” or
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“true in all cases.” Or, again,
the statement “there are no
unicorns” is the same as the
statement “the propositional
function ‘x is not a unicorn’ is
true in all cases.” The asser-
tions in the preceding chapter
about propositions, e.g. “‘p or
q’ implies ‘g or p,”” are really
assertions | that certain propo-
sitional functions are true in
all cases. We do not assert the
above principle, for example,
as being true only of this or
that particular p or g, but as
being true of any p or g con-
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cerning which it can be made
significantly. The condition
that a function is to be signif-
icant for a given argument is
the same as the condition that
it shall have a value for that
argument, either true or false.
The study of the conditions
of significance belongs to the
doctrine of types, which we
shall not pursue beyond the
sketch given in the preceding
chapter.

Not only the principles of
deduction, but all the prim-
itive propositions of logic,
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consist of assertions that cer-
tain propositional functions
are always true. If this were
not the case, they would have
to mention particular things
or concepts—Socrates, or red-
ness, or east and west, or what
not—and clearly it is not the
province of logic to make
assertions which are true con-
cerning one such thing or
concept but not concerning
another. It is part of the def-
inition of logic (but not the
whole of its definition) that
all its propositions are com-
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pletely general, i.e. they all
consist of the assertion that
some propositional function
containing no constant terms
is always true. We shall re-
turn in our final chapter to
the discussion of proposi-
tional functions containing
no constant terms. For the
present we will proceed to the
other thing that is to be done
with a propositional function,
namely, the assertion that it is
“sometimes true,” i.e. true in
at least one instance.

When we say “there are
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men,” that means that the
propositional function “x is
a man” is sometimes true.
When we say “some men
are Greeks,” that means that
the propositional function
“x is a man and a Greek” is
sometimes true. When we
say “cannibals still exist in
Africa,” that means that the
propositional function “x is
a cannibal now in Africa” is
sometimes true, i.e. is true for
some values of x. To say “there
are at least n individuals in
the world” is to say that the
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propositional function “a is
a class of individuals and a
member of the cardinal num-
ber n” is sometimes true, or,
as we may say, is true for cer-
tain | values of a. This form
of expression is more conve-
nient when it is necessary to
indicate which is the variable
constituent which we are tak-
ing as the argument to our
propositional function. For
example, the above propo-
sitional function, which we
may shorten to “a is a class of
n individuals,” contains two
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variables, ¢ and n. The axiom
of infinity, in the language of
propositional functions, is:
“The propositional function
‘if n is an inductive number,
it is true for some values of
a that «a is a class of n indi-
viduals’ is true for all possible
values of n.” Here there is a
subordinate function, “« is a
class of n individuals,” which
is said to be, in respect of a,
sometimes true; and the asser-
tion that this happens if n is
an inductive number is said
to be, in respect of n, always
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true.

The statement that a func-
tion ¢x is always true is the
negation of the statement that
not-¢x is sometimes true, and
the statement that ¢x is some-
times true is the negation of
the statement that not-¢x is
always true. Thus the state-
ment “all men are mortals”
is the negation of the state-
ment that the function “x is
an immortal man” is some-
times true. And the state-
ment “there are unicorns” is
the negation of the statement
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that the function “x is not a
unicorn” is always true." We
say that ¢x is “never true”
or “always false” if not-¢x
is always true. We can, if
we choose, take one of the
pair “always,” “sometimes”
as a primitive idea, and de-
fine the other by means of
the one and negation. Thus

'For linguistic reasons, to avoid
suggesting either the plural or the sin-
gular, it is often convenient to say
“¢x is not always false” rather than
“¢x sometimes” or “¢px is sometimes
true.”
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if we choose “sometimes” as
our primitive idea, we can
define: ““¢px is always true’ is
to mean ‘it is false that not-¢x
is sometimes true.”” But for
reasons connected with the
theory of types it seems more
correct to take both “always”
and “sometimes” as primi-
tive ideas, and define by their
means the negation of propo-
sitions in which they occur.
That is to say, assuming that
we have already | defined (or
adopted as a primitive idea)
the negation of propositions
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of the type to which ¢x be-
longs, we define: “The nega-
tion of ‘¢px always’ is ‘not-¢x
sometimes’; and the negation
of ‘¢px sometimes’ is ‘not-¢x
always.”” In like manner we
can re-define disjunction and
the other truth-functions, as
applied to propositions con-
taining apparent variables, in
terms of the definitions and
primitive ideas for proposi-
tions containing no apparent
variables. Propositions con-
taining no apparent variables
are called “elementary propo-
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sitions.” From these we can
mount up step by step, us-
ing such methods as have just
been indicated, to the theory
of truth-functions as applied
to propositions containing
one, two, three ... variables,
or any number up to n, where
n is any assigned finite num-
ber.”

The forms which are taken
as simplest in traditional for-
mal logic are really far from

2The method of deduction is given
in Principia Mathematica, vol. i. 9.
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being so, and all involve the
assertion of all values or some
values of a compound propo-
sitional function. Take, to
begin with, “all S is P.” We
will take it that S is defined
by a propositional function
¢x, and P by a propositional
function x. E.g., if S is men,
¢x will be “x is human”; if P
is mortals, px will be “there is
a time at which x dies.” Then
“all S is P” means: “‘¢px im-
plies x’ is always true.” It
is to be observed that “all S
is P” does not apply only to
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those terms that actually are
S’s; it says something equally
about terms which are not S’s.
Suppose we come across an
x of which we do not know
whether it is an S or not; still,
our statement “all S is P” tells
us something about x, namely,
that if xisan S, then x is a P.
And this is every bit as true
when x is not an S as when x is
an S. If it were not equally true
in both cases, the reductio ad
absurdum would not be a valid
method; for the essence of this
method consists in using im-
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plications in cases where (as
it afterwards turns out) the
hypothesis is false. We may
put the matter another way.
In order to understand “all S
is P,” it is not necessary to be
able to enumerate what terms
are S’s; provided we know
what is meant by being an S
and what by being a P, we can
understand completely what
is actually affirmed | by “all S
is P,” however little we may
know of actual instances of ei-
ther. This shows that it is not
merely the actual terms that
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are S’s that are relevant in the
statement “all S is P,” but all
the terms concerning which
the supposition that they are
S’s is significant, i.e. all the
terms that are S’s, together
with all the terms that are not
S’s—i.e. the whole of the ap-
propriate logical “type.” What
applies to statements about
all applies also to statements
about some. “There are men,”
e.g., means that “x is human”
is true for some values of x.
Here all values of x (i.e. all
values for which “x is human”
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is significant, whether true or
false) are relevant, and not
only those that in fact are hu-
man. (This becomes obvious
if we consider how we could
prove such a statement to be
false.) Every assertion about
“all” or “some” thus involves
not only the arguments that
make a certain function true,
but all that make it signifi-
cant, i.e. all for which it has a
value at all, whether true or
false.

We may now proceed with
our interpretation of the tra-
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ditional forms of the old-
fashioned formal logic. We
assume that S is those terms x
for which ¢x is true, and P is
those for which ¢x is true. (As
we shall see in a later chap-
ter, all classes are derived in
this way from propositional
functions.) Then:

“All S is P” means “‘¢x im-
plies ix’ is always true.”
“Some S is P” means “‘¢x

and ¢x’ is sometimes true.”
“No S is P” means “‘¢x im-
plies not-ix’ is always
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true.”

“Some S is not P” means “‘¢x
and not-1x’ is sometimes
true.”

It will be observed that the
propositional functions which
are here asserted for all or
some values are not ¢x and
tx themselves, but truth-
functions of ¢x and Px for
the same argument x. The
easiest way to conceive of the
sort of thing that is intended
is to start not from ¢x and x
in general, but from ¢a and
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ta, where a is some constant.
Suppose we are considering
“all men are mortal”: we will
begin with

“If Socrates is human,
Socrates is mortal,” |

and then we will regard “Soc-
rates” as replaced by a vari-
able x wherever “Socrates” oc-
curs. The object to be secured
is that, although x remains a
variable, without any definite
value, yet it is to have the same
value in “¢x” as in “ipx” when
we are asserting that “¢x im-
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plies ¢x” is always true. This
requires that we shall start
with a function whose values
are such as “¢a implies pa,”
rather than with two separate
functions ¢x and yx; for if
we start with two separate
functions we can never secure
that the x, while remaining
undetermined, shall have the
same value in both.

For brevity we say “¢x al-
ways implies x” when we
mean that “¢x implies px” is
always true. Propositions of
the form “¢x always implies
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tx” are called “formal impli-
cations”; this name is given
equally if there are several
variables.

The above definitions show
how far removed from the
simplest forms are such propo-
sitions as “all S is P,” with
which traditional logic be-
gins. It is typical of the lack of
analysis involved that tradi-
tional logic treats “all S is P”
as a proposition of the same
form as “x is P”—e.g., it treats
“all men are mortal” as of
the same form as “Socrates is
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mortal.” As we have just seen,
the first is of the form “¢x
always implies ¢x,” while the
second is of the form “ix.”
The emphatic separation of
these two forms, which was
effected by Peano and Frege,
was a very vital advance in
symbolic logic.

It will be seen that “all S
is P” and “no S is P” do not
really differ in form, except by
the substitution of not-¢x for
x, and that the same applies
to “some S is P” and “some
S is not P.” It should also be
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observed that the traditional
rules of conversion are faulty,
if we adopt the view, which is
the only technically tolerable
one, that such propositions
as “all S is P” do not involve
the “existence” of S’s, i.e. do
not require that there should
be terms which are S’s. The
above definitions lead to the
result that, if ¢x is always
false, i.e. if there are no S’s,
then “all Sis P” and “no Sis P”
will both be true, | whatever
P may be. For, according to
the definition in the last chap-
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ter, “¢x implies x” means
“not-¢x or x,” which is al-
ways true if not-¢x is always
true. At the first moment, this
result might lead the reader
to desire different definitions,
but a little practical expe-
rience soon shows that any
different definitions would be
inconvenient and would con-
ceal the important ideas. The
proposition “¢x always im-
plies 1x, and ¢x is sometimes
true” is essentially composite,
and it would be very awkward
to give this as the definition of
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“all S is P,” for then we should
have no language left for “¢x
always implies 1x,” which is
needed a hundred times for
once that the other is needed.
But, with our definitions, “all
S is P” does not imply “some
S is P,” since the first allows
the non-existence of S and the
second does not; thus con-
version per accidens becomes
invalid, and some moods of
the syllogism are fallacious,
e.g. Darapti: “All M is S, all
M is P, therefore some S is P,”
which fails if there is no M.
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The notion of “existence”
has several forms, one of
which will occupy us in the
next chapter; but the funda-
mental form is that which is
derived immediately from the
notion of “sometimes true.”
We say that an argument a
“satisfies” a function ¢x if
¢a is true; this is the same
sense in which the roots of
an equation are said to sat-
isfy the equation. Now if ¢x
is sometimes true, we may
say there are x’s for which it
is true, or we may say “ar-
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guments satisfying ¢x ex-
ist.” This is the fundamental
meaning of the word “exis-
tence.” Other meanings are
either derived from this, or
embody mere confusion of
thought. We may correctly
say “men exist,” meaning
that “x is a man” is some-
times true. But if we make a
pseudo-syllogism: “Men exist,
Socrates is a man, therefore
Socrates exists,” we are talk-
ing nonsense, since “Socrates”
is not, like “men,” merely an
undetermined argument to a
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given propositional function.
The fallacy is closely analo-
gous to that of the argument:
“Men are numerous, Socrates
is a man, therefore Socrates
is numerous.” In this case it
is obvious that the conclu-
sion is nonsensical, but | in
the case of existence it is not
obvious, for reasons which
will appear more fully in the
next chapter. For the present
let us merely note the fact
that, though it is correct to say
“men exist,” it is incorrect, or
rather meaningless, to ascribe

720 (original pages 164-165)



existence to a given particular
x who happens to be a man.
Generally, “terms satisfying
¢x exist” means “¢x is some-
times true”; but “a exists”
(where a is a term satisfying
¢x) is a mere noise or shape,
devoid of significance. It will
be found that by bearing in
mind this simple fallacy we
can solve many ancient philo-
sophical puzzles concerning
the meaning of existence.
Another set of notions as to
which philosophy has allowed
itself to fall into hopeless
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confusions through not suf-
ficiently separating proposi-
tions and propositional func-
tions are the notions of “modal-
ity”: necessary, possible, and
impossible. (Sometimes con-
tingent or assertoric is used
instead of possible.) The tradi-
tional view was that, among
true propositions, some were
necessary, while others were
merely contingent or asser-
toric; while among false propo-
sitions some were impossible,
namely, those whose con-
tradictories were necessary,
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while others merely happened
not to be true. In fact, how-
ever, there was never any clear
account of what was added to
truth by the conception of ne-
cessity. In the case of proposi-
tional functions, the threefold
division is obvious. If “¢x”
is an undetermined value of
a certain propositional func-
tion, it will be necessary if the
function is always true, pos-
sible if it is sometimes true,
and impossible if it is never
true. This sort of situation
arises in regard to probability,
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for example. Suppose a ball
x is drawn from a bag which
contains a number of balls: if
all the balls are white, “x is
white” is necessary; if some
are white, it is possible; if
none, it is impossible. Here all
that is known about x is that
it satisfies a certain propo-
sitional function, namely, “x
was a ball in the bag.” This
is a situation which is general
in probability problems and
not uncommon in practical
life—e.g. when a person calls
of whom we know nothing

724 (original page 165)



except that he brings a let-
ter of introduction from our
friend so-and-so. In all such |
cases, as in regard to modality
in general, the propositional
function is relevant. For clear
thinking, in many very di-
verse directions, the habit of
keeping propositional func-
tions sharply separated from
propositions is of the utmost
importance, and the failure to
do so in the past has been a
disgrace to philosophy.
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CHAPTER XVI
DESCRIPTIONS

WE dealt in the preceding
chapter with the words all
and some; in this chapter we
shall consider the word the in
the singular, and in the next
chapter we shall consider the
word the in the plural. It may
be thought excessive to devote
two chapters to one word, but
to the philosophical mathe-
matician it is a word of very
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great importance: like Brown-
ing’s Grammarian with the
enclitic oe, I would give the
doctrine of this word if I were
“dead from the waist down”
and not merely in a prison.

We have already had occa-
sion to mention “descriptive
functions,” i.e. such expres-
sions as “the father of x” or
“the sine of x.” These are to
be defined by first defining
“descriptions.”

A “description” may be of
two sorts, definite and indefi-
nite (or ambiguous). An indef-
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inite description is a phrase
of the form “a so-and-so,”
and a definite description is
a phrase of the form “the so-
and-so” (in the singular). Let
us begin with the former.
“Who did you meet?” “I
met a man.” “That is a very
indefinite description.” We
are therefore not departing
from usage in our terminol-
ogy. Our question is: What
do I really assert when I as-
sert “I met a man”? Let us
assume, for the moment, that
my assertion is true, and that
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in fact I met Jones. It is clear
that what I assert is not “I met
Jones.” I may say “I met a
man, but it was not Jones”; in
that case, though I lie, I do not
contradict myself, as I should
do if when I say I met a | man
I really mean that I met Jones.
It is clear also that the person
to whom I am speaking can
understand what I say, even if
he is a foreigner and has never
heard of Jones.

But we may go further: not
only Jones, but no actual man,
enters into my statement. This
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becomes obvious when the
statement is false, since then
there is no more reason why
Jones should be supposed to
enter into the proposition
than why anyone else should.
Indeed the statement would
remain significant, though it
could not possibly be true,
even if there were no man at
all. “I'met a unicorn” or “I met
a sea-serpent” is a perfectly
significant assertion, if we
know what it would be to be
a unicorn or a sea-serpent, i.e.
what is the definition of these
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fabulous monsters. Thus it
is only what we may call the
concept that enters into the
proposition. In the case of
“unicorn,” for example, there
is only the concept: there is
not also, somewhere among
the shades, something unreal
which may be called “a uni-
corn.” Therefore, since it is
significant (though false) to
say “I met a unicorn,” it is
clear that this proposition,
rightly analysed, does not
contain a constituent “a uni-
corn,” though it does contain
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the concept “unicorn.”

The question of “unreal-
ity,” which confronts us at
this point, is a very important
one. Misled by grammar, the
great majority of those logi-
cians who have dealt with this
question have dealt with it
on mistaken lines. They have
regarded grammatical form as
a surer guide in analysis than,
in fact, it is. And they have
not known what differences
in grammatical form are im-
portant. “I met Jones” and “I
met a man” would count tra-
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ditionally as propositions of
the same form, but in actual
fact they are of quite differ-
ent forms: the first names an
actual person, Jones; while
the second involves a proposi-
tional function, and becomes,
when made explicit: “The
function ‘I met x and x is hu-
man’ is sometimes true.” (It
will be remembered that we
adopted the convention of
using “sometimes” as not im-
plying more than once.) This
proposition is obviously not
of the form “I met x,” which

733 (original page 168)



accounts | for the existence
of the proposition “I met a
unicorn” in spite of the fact
that there is no such thing as
“a unicorn.”

For want of the apparatus
of propositional functions,
many logicians have been
driven to the conclusion that
there are unreal objects. It
is argued, e.g. by Meinong,'
that we can speak about “the
golden mountain,” “the round

1 Untersuchungen zur Gegenstands-
theorie und Psychologie, 1904.
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square,” and so on; we can
make true propositions of
which these are the subjects;
hence they must have some
kind of logical being, since
otherwise the propositions in
which they occur would be
meaningless. In such theo-
ries, it seems to me, there is
a failure of that feeling for
reality which ought to be pre-
served even in the most ab-
stract studies. Logic, I should
maintain, must no more admit
a unicorn than zoology can;
for logic is concerned with
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the real world just as truly as
zoology, though with its more
abstract and general features.
To say that unicorns have an
existence in heraldry, or in lit-
erature, or in imagination, is
a most pitiful and paltry eva-
sion. What exists in heraldry
is not an animal, made of
flesh and blood, moving and
breathing of its own initiative.
What exists is a picture, or a
description in words. Simi-
larly, to maintain that Hamlet,
for example, exists in his own
world, namely, in the world
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of Shakespeare’s imagination,
just as truly as (say) Napoleon
existed in the ordinary world,
is to say something deliber-
ately confusing, or else con-
fused to a degree which is
scarcely credible. There is
only one world, the “real”
world: Shakespeare’s imag-
ination is part of it, and the
thoughts that he had in writ-
ing Hamlet are real. So are
the thoughts that we have in
reading the play. But it is of
the very essence of fiction that
only the thoughts, feelings,
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etc., in Shakespeare and his
readers are real, and that there
is not, in addition to them, an
objective Hamlet. When you
have taken account of all the
feelings roused by Napoleon
in writers and readers of his-
tory, you have not touched the
actual man; but in the case of
Hamlet you have come to the
end of him. If no one thought
about Hamlet, there would be
nothing | left of him; if no one
had thought about Napoleon,
he would have soon seen to it
that some one did. The sense
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of reality is vital in logic, and
whoever juggles with it by
pretending that Hamlet has
another kind of reality is do-
ing a disservice to thought. A
robust sense of reality is very
necessary in framing a correct
analysis of propositions about
unicorns, golden mountains,
round squares, and other such
pseudo-objects.

In obedience to the feeling
of reality, we shall insist that,
in the analysis of proposi-
tions, nothing “unreal” is to
be admitted. But, after all, if
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there is nothing unreal, how, it
may be asked, could we admit
anything unreal? The reply is
that, in dealing with propo-
sitions, we are dealing in the
first instance with symbols,
and if we attribute signifi-
cance to groups of symbols
which have no significance,
we shall fall into the error of
admitting unrealities, in the
only sense in which this is
possible, namely, as objects
described. In the proposition
“T met a unicorn,” the whole
four words together make a
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significant proposition, and
the word “unicorn” by itself
is significant, in just the same
sense as the word “man.” But
the two words “a unicorn”
do not form a subordinate
group having a meaning of
its own. Thus if we falsely
attribute meaning to these
two words, we find ourselves
saddled with “a unicorn,” and
with the problem how there
can be such a thing in a world
where there are no unicorns.
“A unicorn” is an indefinite
description which describes
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nothing. It is not an indefinite
description which describes
something unreal. Such a
proposition as “x is unreal”
only has meaning when “x”
is a description, definite or
indefinite; in that case the
proposition will be true if
“x” is a description which de-
scribes nothing. But whether
the description “x” describes
something or describes noth-
ing, it is in any case not a
constituent of the proposi-
tion in which it occurs; like
“a unicorn” just now, it is not
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a subordinate group having
a meaning of its own. All
this results from the fact that,
when “x” is a description, “x
is unreal” or “x does not ex-
ist” is not nonsense, but is
always significant and some-
times true. |

We may now proceed to
define generally the meaning
of propositions which con-
tain ambiguous descriptions.
Suppose we wish to make
some statement about “a so-
and-so,” where “so-and-so’s”
are those objects that have a
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certain property ¢, i.e. those
objects x for which the propo-
sitional function ¢x is true.
(E.g. if we take “a man” as our
instance of “a so-and-so,” ¢x
will be “x is human.”) Let us
now wish to assert the prop-
erty i of “a so-and-so,” i.e. we
wish to assert that “a so-and-
so” has that property which x
has when ¥x is true. (E.g. in
the case of “I met a man,” ¥x
will be “I met x.”) Now the
proposition that “a so-and-so”
has the property ¢ is not a
proposition of the form “ix.”
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If it were, “a so-and-so” would
have to be identical with x for
a suitable x; and although (in
a sense) this may be true in
some cases, it is certainly not
true in such a case as “a uni-
corn.” It is just this fact, that
the statement that a so-and-so
has the property ¢ is not of
the form t¢x, which makes
it possible for “a so-and-so”
to be, in a certain clearly de-
finable sense, “unreal.” The
definition is as follows:—

The statement that “an object
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having the property ¢ has
the property ¢”

means:

“The joint assertion of ¢x
and 1x is not always false.”

So far as logic goes, this is
the same proposition as might
be expressed by “some ¢’s are
1’s”; but rhetorically there is
a difference, because in the
one case there is a sugges-
tion of singularity, and in the
other case of plurality. This,
however, is not the important
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point. The important point is
that, when rightly analysed,
propositions verbally about
“a so-and-so” are found to
contain no constituent repre-
sented by this phrase. And
that is why such propositions
can be significant even when
there is no such thing as a
so-and-so.

The definition of existence,
as applied to ambiguous de-
scriptions, results from what
was said at the end of the pre-
ceding chapter. We say that
“men exist” or “a man exists”
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if the | propositional function
“x is human” is sometimes
true; and generally “a so-and-
so” exists if “x is so-and-so”
is sometimes true. We may
put this in other language.
The proposition “Socrates is a
man” is no doubt equivalent to
“Socrates is human,” but it is
not the very same proposition.
The is of “Socrates is human”
expresses the relation of sub-
ject and predicate; the is of
“Socrates is a man” expresses
identity. It is a disgrace to the
human race that it has chosen
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to employ the same word “is”
for these two entirely differ-
ent ideas—a disgrace which a
symbolic logical language of
course remedies. The iden-
tity in “Socrates is a man” is
identity between an object
named (accepting “Socrates”
as a name, subject to qualifica-
tions explained later) and an
object ambiguously described.
An object ambiguously de-
scribed will “exist” when at
least one such proposition is
true, i.e. when there is at least
one true proposition of the

749 (original page 172)



form “x is a so-and-so,” where
“x” is aname. It is characteris-
tic of ambiguous (as opposed
to definite) descriptions that
there may be any number of
true propositions of the above
form—Socrates is a man, Plato
is a man, etc. Thus “a man ex-
ists” follows from Socrates, or
Plato, or anyone else. With
definite descriptions, on the
other hand, the corresponding
form of proposition, namely,
“x is the so-and-so” (where
“x” is a name), can only be
true for one value of x at most.
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This brings us to the subject of
definite descriptions, which
are to be defined in a way
analogous to that employed
for ambiguous descriptions,
but rather more complicated.

We come now to the main
subject of the present chap-
ter, namely, the definition of
the word the (in the singular).
One very important point
about the definition of “a so-
and-so” applies equally to
“the so-and-so”; the definition
to be sought is a definition
of propositions in which this
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phrase occurs, not a defini-
tion of the phrase itself in
isolation. In the case of “a
so-and-so,” this is fairly ob-
vious: no one could suppose
that “a man” was a definite
object, which could be de-
fined by itself. | Socrates is a
man, Plato is a man, Aristotle
is a man, but we cannot infer
that “a man” means the same
as “Socrates” means and also
the same as “Plato” means
and also the same as “Aristo-
tle” means, since these three
names have different mean-
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ings. Nevertheless, when we
have enumerated all the men
in the world, there is noth-
ing left of which we can say,
“This is a man, and not only
so, but it is the ‘a man,” the
quintessential entity that is
just an indefinite man without
being anybody in particular.”
It is of course quite clear that
whatever there is in the world
is definite: if it is a man it
is one definite man and not
any other. Thus there cannot
be such an entity as “a man”
to be found in the world, as
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opposed to specific men. And
accordingly it is natural that
we do not define “a man” it-
self, but only the propositions
in which it occurs.

In the case of “the so-and-
so” this is equally true, though
at first sight less obvious. We
may demonstrate that this
must be the case, by a con-
sideration of the difference
between a name and a definite
description. Take the propo-
sition, “Scott is the author of
Waverley.” We have here a
name, “Scott,” and a descrip-
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tion, “the author of Waverley,”
which are asserted to apply
to the same person. The dis-
tinction between a name and
all other symbols may be ex-
plained as follows:—

A name is a simple symbol
whose meaning is something
that can only occur as subject,
i.e. something of the kind that,
in Chapter XIII., we defined as
an “individual” or a “particu-
lar” And a “simple” symbol
is one which has no parts that
are symbols. Thus “Scott”
is a simple symbol, because,
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though it has parts (namely,
separate letters), these parts
are not symbols. On the other
hand, “the author of Waver-
ley” is not a simple symbol,
because the separate words
that compose the phrase are
parts which are symbols. If,
as may be the case, whatever
seems to be an “individual”
is really capable of further
analysis, we shall have to con-
tent ourselves with what may
be called “relative individ-
uals,” which will be terms
that, throughout the context
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in question, are never anal-
ysed and never occur | other-
wise than as subjects. And in
that case we shall have cor-
respondingly to content our-
selves with “relative names.”
From the standpoint of our
present problem, namely,
the definition of descriptions,
this problem, whether these
are absolute names or only
relative names, may be ig-
nored, since it concerns dif-
ferent stages in the hierarchy
of “types,” whereas we have
to compare such couples as
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“Scott” and “the author of
Waverley,” which both apply
to the same object, and do not
raise the problem of types.
We may, therefore, for the
moment, treat names as capa-
ble of being absolute; nothing
that we shall have to say will
depend upon this assump-
tion, but the wording may be
a little shortened by it.

We have, then, two things to
compare: (1) a name, which is
a simple symbol, directly des-
ignating an individual which
is its meaning, and having
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this meaning in its own right,
independently of the mean-
ings of all other words; (2) a
description, which consists of
several words, whose mean-
ings are already fixed, and
from which results whatever
is to be taken as the “mean-
ing” of the description.

A proposition containing
a description is not identical
with what that proposition
becomes when a name is sub-
stituted, even if the name
names the same object as the
description describes. “Scott
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is the author of Waverley” is
obviously a different propo-
sition from “Scott is Scott”:
the first is a fact in literary
history, the second a trivial
truism. And if we put anyone
other than Scott in place of
“the author of Waverley,” our
proposition would become
false, and would therefore cer-
tainly no longer be the same
proposition. But, it may be
said, our proposition is essen-
tially of the same form as (say)
“Scott is Sir Walter,” in which
two names are said to apply
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to the same person. The reply
is that, if “Scott is Sir Wal-
ter” really means “the person
named ‘Scott’ is the person
named ‘Sir Walter,”” then the
names are being used as de-
scriptions: i.e. the individual,
instead of being named, is
being described as the per-
son having that name. This
is a way in which names are
frequently used | in practice,
and there will, as a rule, be
nothing in the phraseology to
show whether they are being
used in this way or as names.
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When a name is used directly,
merely to indicate what we
are speaking about, it is no
part of the fact asserted, or
of the falsehood if our asser-
tion happens to be false: it
is merely part of the symbol-
ism by which we express our
thought. What we want to
express is something which
might (for example) be trans-
lated into a foreign language;
it is something for which the
actual words are a vehicle,
but of which they are no part.
On the other hand, when we
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make a proposition about “the
person called ‘Scott,”” the ac-
tual name “Scott” enters into
what we are asserting, and
not merely into the language
used in making the assertion.
Our proposition will now be
a different one if we substi-
tute “the person called ‘Sir
Walter.”” But so long as we
are using names 4s names,
whether we say “Scott” or
whether we say “Sir Walter”
is as irrelevant to what we
are asserting as whether we
speak English or French. Thus

763 (original page 175)



so long as names are used as
names, “Scott is Sir Walter” is
the same trivial proposition
as “Scott is Scott.” This com-
pletes the proof that “Scott
is the author of Waverley” is
not the same proposition as
results from substituting a
name for “the author of Wa-
verley,” no matter what name
may be substituted.

When we use a variable,
and speak of a propositional
function, ¢x say, the pro-
cess of applying general state-
ments about ¢x to particular
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cases will consist in substi-
tuting a name for the letter
“x,” assuming that ¢ is a func-
tion which has individuals for
its arguments. Suppose, for
example, that ¢x is “always
true”; let it be, say, the “law
of identity,” x = x. Then we
may substitute for “x” any
name we choose, and we shall
obtain a true proposition. As-
suming for the moment that
“Socrates,” “Plato,” and “Aris-
totle” are names (a very rash
assumption), we can infer
from the law of identity that
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Socrates is Socrates, Plato is
Plato, and Aristotle is Aris-
totle. But we shall commit a
fallacy if we attempt to infer,
without further premisses,
that the author of Waverley is
the author of Waverley. This
results | from what we have
just proved, that, if we sub-
stitute a name for “the author
of Waverley” in a proposition,
the proposition we obtain is
a different one. That is to
say, applying the result to
our present case: If “x” is a
name, “x = x” is not the same
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proposition as “the author of
Waverley is the author of Wa-
verley,” no matter what name
“x” may be. Thus from the
fact that all propositions of
the form “x = x” are true we
cannot infer, without more
ado, that the author of Waver-
ley is the author of Waverley.
In fact, propositions of the
form “the so-and-so is the so-
and-so” are not always true: it
is necessary that the so-and-so
should exist (a term which
will be explained shortly). It
is false that the present King
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of France is the present King
of France, or that the round
square is the round square.
When we substitute a descrip-
tion for a name, propositional
functions which are “always
true” may become false, if the
description describes nothing.
There is no mystery in this
as soon as we realise (what
was proved in the preceding
paragraph) that when we sub-
stitute a description the result
is not a value of the proposi-
tional function in question.
We are now in a position to
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define propositions in which
a definite description occurs.
The only thing that distin-
guishes “the so-and-so” from
“a so-and-so” is the impli-
cation of uniqueness. We
cannot speak of “the inhab-
itant of London,” because
inhabiting London is an at-
tribute which is not unique.
We cannot speak about “the
present King of France,” be-
cause there is none; but we can
speak about “the present King
of England.” Thus proposi-
tions about “the so-and-so”
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always imply the correspond-
ing propositions about “a so-
and-so,” with the addendum
that there is not more than
one so-and-so. Such a propo-
sition as “Scott is the author of
Waverley” could not be true if
Waverley had never been writ-
ten, or if several people had
written it; and no more could
any other proposition result-
ing from a propositional func-
tion ¢x by the substitution of
“the author of Waverley” for
“x.” We may say that “the au-
thor of Waverley” means “the
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value of x for which ‘x wrote
| Waverley’ is true.” Thus the
proposition “the author of
Waverley was Scotch,” for ex-
ample, involves:

(1) “x wrote Waverley” is not
always false;

(2) “if x and y wrote Waver-
ley, x and p are identical”
is always true;

(3) “if x wrote Waverley, x
was Scotch” is always true.

These three propositions,
translated into ordinary lan-
guage, state:
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(1) at least one person wrote
Waverley;

(2) at most one person wrote
Waverley;

(3) whoever wrote Waverley
was Scotch.

All these three are implied by
“the author of Waverley was
Scotch.” Conversely, the three
together (but no two of them)
imply that the author of Wa-
verley was Scotch. Hence the
three together may be taken
as defining what is meant by
the proposition “the author of
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Waverley was Scotch.”

We may somewhat simplify
these three propositions. The
first and second together are
equivalent to: “There is a term
c such that ‘x wrote Waverley’
is true when x is ¢ and is false
when x is not ¢.” In other
words, “There is a term ¢ such
that ‘x wrote Waverley’ is al-
ways equivalent to ‘x is ¢.”
(Two propositions are “equiv-
alent” when both are true or
both are false.) We have here,
to begin with, two functions
of x, “x wrote Waverley” and
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“xis ¢,” and we form a func-
tion of ¢ by considering the
equivalence of these two func-
tions of x for all values of x;
we then proceed to assert that
the resulting function of c is
“sometimes true,” i.e. that it
is true for at least one value
of c. (It obviously cannot be
true for more than one value
of ¢.) These two conditions
together are defined as giving
the meaning of “the author of
Waverley exists.”

We may now define “the
term satisfying the function
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¢x exists.” This is the general
form of which the above is a
particular case. “The author
of Waverley” is “the term sat-
isfying the function ‘x wrote
Waverley.”” And “the so-and-
so” will | always involve ref-
erence to some propositional
function, namely, that which
defines the property that
makes a thing a so-and-so.
Our definition is as follows:—
“The term satisfying the
function ¢x exists” means:
“There is a term c¢ such that
¢x is always equivalent to ‘x
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isc.””

In order to define “the au-
thor of Waverley was Scotch,”
we have still to take account of
the third of our three propo-
sitions, namely, “Whoever
wrote Waverley was Scotch.”
This will be satisfied by merely
adding that the ¢ in question
is to be Scotch. Thus “the au-
thor of Waverley was Scotch”
is:

“There is a term ¢ such that
(1) ‘x wrote Waverley’ is al-
ways equivalent to x is ¢,
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(2) ¢ is Scotch.”

And generally: “the term sat-
isfying ¢x satisfies 1px” is de-
fined as meaning:

“There is a term ¢ such that
(1) ¢x is always equivalent
to ‘xis ¢, (2) Pcis true.”

This is the definition of propo-
sitions in which descriptions
occur.

It is possible to have much
knowledge concerning a term
described, i.e. to know many
propositions concerning “the
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so-and-so,” without actually
knowing what the so-and-so
is, i.e. without knowing any
proposition of the form “x is
the so-and-so,” where “x” is
a name. In a detective story
propositions about “the man
who did the deed” are ac-
cumulated, in the hope that
ultimately they will suffice
to demonstrate that it was A
who did the deed. We may
even go so far as to say that,
in all such knowledge as can
be expressed in words—with
the exception of “this” and
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“that” and a few other words
of which the meaning varies
on different occasions—no
names, in the strict sense,
occur, but what seem like
names are really descrip-
tions. We may inquire sig-
nificantly whether Homer ex-
isted, which we could not do
if “Homer” were a name. The
proposition “the so-and-so
exists” is significant, whether
true or false; but if a is the
so-and-so (where “a” is a
name), the words “a exists”
are meaningless. It is only
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of descriptions | —definite or
indefinite—that existence can
be significantly asserted; for,
if “a” is a name, it must name
something: what does not
name anything is not a name,
and therefore, if intended to
be a name, is a symbol de-
void of meaning, whereas a
description, like “the present
King of France,” does not be-
come incapable of occurring
significantly merely on the
ground that it describes noth-
ing, the reason being that it
is a complex symbol, of which
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the meaning is derived from
that of its constituent sym-
bols. And so, when we ask
whether Homer existed, we
are using the word “Homer”
as an abbreviated description:
we may replace it by (say)
“the author of the Iliad and
the Odyssey.” The same con-
siderations apply to almost all
uses of what look like proper
names.

When descriptions occur in
propositions, it is necessary
to distinguish what may be
called “primary” and “sec-
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ondary” occurrences. The
abstract distinction is as fol-
lows. A description has a
“primary” occurrence when
the proposition in which it
occurs results from substi-
tuting the description for “x”
in some propositional func-
tion ¢x; a description has a
“secondary” occurrence when
the result of substituting the
description for x in ¢x gives
only part of the proposition
concerned. An instance will
make this clearer. Consider
“the present King of France is
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bald.” Here “the present King
of France” has a primary oc-
currence, and the proposition
is false. Every proposition in
which a description which de-
scribes nothing has a primary
occurrence is false. But now
consider “the present King
of France is not bald.” This
is ambiguous. If we are first
to take “x is bald,” then sub-
stitute “the present King of
France” for “x,” and then deny
the result, the occurrence of
“the present King of France”
is secondary and our propo-
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sition is true; but if we are
to take “x is not bald” and
substitute “the present King
of France” for “x,” then “the
present King of France” has a
primary occurrence and the
proposition is false. Confu-
sion of primary and secondary
occurrences is a ready source
of fallacies where descriptions
are concerned. |

Descriptions occur in math-
ematics chiefly in the form of
descriptive functions, i.e. “the
term having the relation R to
y,” or “the R of y” as we may
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say, on the analogy of “the fa-
ther of y” and similar phrases.
To say “the father of y is rich,”
for example, is to say that the
following propositional func-
tion of ¢: “cis rich, and ‘x be-
gat y’ is always equivalent to
‘xis ¢,”” is “sometimes true,”
i.e. is true for at least one value
of c. It obviously cannot be
true for more than one value.

The theory of descriptions,
briefly outlined in the present
chapter, is of the utmost im-
portance both in logic and
in theory of knowledge. But
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for purposes of mathematics,
the more philosophical parts
of the theory are not essen-
tial, and have therefore been
omitted in the above account,
which has confined itself to
the barest mathematical re-
quisites.
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CHAPTER XVII
CLASSES

INn the present chapter we
shall be concerned with the in
the plural: the inhabitants of
London, the sons of rich men,
and so on. In other words,
we shall be concerned with
classes. We saw in Chapter II.
that a cardinal number is to
be defined as a class of classes,
and in Chapter III. that the
number 1 is to be defined as
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the class of all unit classes, i.e.
of all that have just one mem-
ber, as we should say but for
the vicious circle. Of course,
when the number 1 is defined
as the class of all unit classes,
“unit classes” must be defined
so as not to assume that we
know what is meant by “one”;
in fact, they are defined in
a way closely analogous to
that used for descriptions,
namely: A class « is said to be
a “unit” class if the proposi-
tional function “x is an «’ is
always equivalent to ‘x is ¢””
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(regarded as a function of c) is
not always false, i.e., in more
ordinary language, if there is
a term c such that x will be a
member of @ when x is ¢ but
not otherwise. This gives us a
definition of a unit class if we
already know what a class is
in general. Hitherto we have,
in dealing with arithmetic,
treated “class” as a primitive
idea. But, for the reasons set
forth in Chapter XIIL., if for
no others, we cannot accept
“class” as a primitive idea.
We must seek a definition on
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the same lines as the defi-
nition of descriptions, i.e. a
definition which will assign
a meaning to propositions in
whose verbal or symbolic ex-
pression words or symbols ap-
parently representing classes
occur, but which will assign a
meaning that altogether elim-
inates all mention of classes
from a right analysis | of such
propositions. We shall then
be able to say that the sym-
bols for classes are mere con-
veniences, not representing
objects called “classes,” and
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that classes are in fact, like
descriptions, logical fictions,
or (as we say) “incomplete
symbols.”

The theory of classes is less
complete than the theory of
descriptions, and there are
reasons (which we shall give
in outline) for regarding the
definition of classes that will
be suggested as not finally sat-
isfactory. Some further sub-
tlety appears to be required;
but the reasons for regard-
ing the definition which will
be offered as being approx-
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imately correct and on the
right lines are overwhelming.

The first thing is to re-
alise why classes cannot be
regarded as part of the ulti-
mate furniture of the world. It
is difficult to explain precisely
what one means by this state-
ment, but one consequence
which it implies may be used
to elucidate its meaning. If
we had a complete symbolic
language, with a definition for
everything definable, and an
undefined symbol for every-
thing indefinable, the unde-
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fined symbols in this language
would represent symbolically
what I mean by “the ultimate
furniture of the world.” I am
maintaining that no symbols
either for “class” in general or
for particular classes would
be included in this apparatus
of undefined symbols. On the
other hand, all the particular
things there are in the world
would have to have names
which would be included
among undefined symbols.
We might try to avoid this
conclusion by the use of de-
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scriptions. Take (say) “the last
thing Caesar saw before he
died.” This is a description
of some particular; we might
use it as (in one perfectly le-
gitimate sense) a definition of
that particular. But if “a” is a
name for the same particular,
a proposition in which “a”
occurs is not (as we saw in the
preceding chapter) identical
with what this proposition
becomes when for “a” we sub-
stitute “the last thmg Ceesar
saw before he died.” If our
language does not contain
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the name “a,” or some other
name for the same particu-
lar, we shall have no means
of expressing the proposi-
tion which we expressed by
means of “a” as opposed to
the one that | we expressed
by means of the description.
Thus descriptions would not
enable a perfect language to
dispense with names for all
particulars. In this respect,
we are maintaining, classes
differ from particulars, and
need not be represented by
undefined symbols. Our first
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business is to give the reasons
for this opinion.

We have already seen that
classes cannot be regarded as
a species of individuals, on
account of the contradiction
about classes which are not
members of themselves (ex-
plained in Chapter XIII.), and
because we can prove that the
number of classes is greater
than the number of individu-
als.

We cannot take classes in
the pure extensional way as
simply heaps or conglomera-
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tions. If we were to attempt
to do that, we should find it
impossible to understand how
there can be such a class as
the null-class, which has no
members at all and cannot
be regarded as a “heap”; we
should also find it very hard
to understand how it comes
about that a class which has
only one member is not iden-
tical with that one member.
I do not mean to assert, or to
deny, that there are such en-
tities as “heaps.” As a math-
ematical logician, I am not
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called upon to have an opin-
ion on this point. All that
I am maintaining is that, if
there are such things as heaps,
we cannot identify them with
the classes composed of their
constituents.

We shall come much nearer
to a satisfactory theory if we
try to identify classes with
propositional functions. Ev-
ery class, as we explained
in Chapter II., is defined by
some propositional function
which is true of the members
of the class and false of other
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things. But if a class can be
defined by one propositional
function, it can equally well
be defined by any other which
is true whenever the first is
true and false whenever the
first is false. For this reason
the class cannot be identified
with any one such proposi-
tional function rather than
with any other—and given a
propositional function, there
are always many others which
are true when it is true and
false when it is false. We say
that two propositional func-

799 (original page 183)



tions are “formally equiva-
lent” when this happens. Two
propositions are | “equivalent”
when both are true or both
false; two propositional func-
tions ¢x, Px are “formally
equivalent” when ¢x is al-
ways equivalent to x. It is
the fact that there are other
functions formally equivalent
to a given function that makes
it impossible to identify a
class with a function; for we
wish classes to be such that
no two distinct classes have
exactly the same members,
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and therefore two formally
equivalent functions will have
to determine the same class.
When we have decided that
classes cannot be things of
the same sort as their mem-
bers, that they cannot be just
heaps or aggregates, and also
that they cannot be identified
with propositional functions,
it becomes very difficult to see
what they can be, if they are
to be more than symbolic fic-
tions. And if we can find any
way of dealing with them as
symbolic fictions, we increase
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the logical security of our po-
sition, since we avoid the need
of assuming that there are
classes without being com-
pelled to make the opposite
assumption that there are no
classes. We merely abstain
from both assumptions. This
is an example of Occam’s ra-
zor, namely, “entities are not
to be multiplied without ne-
cessity.” But when we refuse
to assert that there are classes,
we must not be supposed to
be asserting dogmatically that
there are none. We are merely
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agnostic as regards them: like
Laplace, we can say, “je n'ai
pas besoin de cette hypotheése.”

Let us set forth the condi-
tions that a symbol must ful-
fil if it is to serve as a class. I
think the following conditions
will be found necessary and
sufficient:—

(1) Every propositional
function must determine a
class, consisting of those argu-
ments for which the function
is true. Given any proposi-
tion (true or false), say about
Socrates, we can imagine
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Socrates replaced by Plato
or Aristotle or a gorilla or the
man in the moon or any other
individual in the world. In
general, some of these substi-
tutions will give a true propo-
sition and some a false one.
The class determined will
consist of all those substitu-
tions that give a true one. Of
course, we have still to decide
what we mean by “all those
which, etc.” All that | we are
observing at present is that a
class is rendered determinate
by a propositional function,
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and that every propositional
function determines an ap-
propriate class.

(2) Two formally equivalent
propositional functions must
determine the same class, and
two which are not formally
equivalent must determine
different classes. That is,
a class is determined by its
membership, and no two dif-
ferent classes can have the
same membership. (If a class
is determined by a function
¢x, we say that a is a “mem-
ber” of the class if ¢a is true.)
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(3) We must find some way
of defining not only classes,
but classes of classes. We saw
in Chapter II. that cardinal
numbers are to be defined
as classes of classes. The or-
dinary phrase of elementary
mathematics, “The combina-
tions of n things m at a time”
represents a class of classes,
namely, the class of all classes
of m terms that can be se-
lected out of a given class of
n terms. Without some sym-
bolic method of dealing with
classes of classes, mathemati-
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cal logic would break down.
(4) It must under all cir-
cumstances be meaningless
(not false) to suppose a class
a member of itself or not a
member of itself. This results
from the contradiction which
we discussed in Chapter XIIL
(5) Lastly—and this is the
condition which is most dif-
ficult of fulfilment—it must
be possible to make proposi-
tions about all the classes that
are composed of individuals,
or about all the classes that
are composed of objects of
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any one logical “type.” If this
were not the case, many uses
of classes would go astray—
for example, mathematical
induction. In defining the
posterity of a given term, we
need to be able to say that a
member of the posterity be-
longs to all hereditary classes
to which the given term be-
longs, and this requires the
sort of totality that is in ques-
tion. The reason there is a
difficulty about this condition
is that it can be proved to be
impossible to speak of all the
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propositional functions that
can have arguments of a given
type.

We will, to begin with, ig-
nore this last condition and
the problems which it raises.
The first two conditions may
be | taken together. They state
that there is to be one class,
no more and no less, for each
group of formally equivalent
propositional functions; e.g.
the class of men is to be the
same as that of featherless
bipeds or rational animals
or Yahoos or whatever other
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characteristic may be pre-
ferred for defining a human
being. Now, when we say
that two formally equivalent
propositional functions may
be not identical, although
they define the same class, we
may prove the truth of the
assertion by pointing out that
a statement may be true of
the one function and false of
the other; e.g. “I believe that
all men are mortal” may be
true, while “I believe that all
rational animals are mortal”
may be false, since I may be-
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lieve falsely that the Pheenix is
an immortal rational animal.
Thus we are led to consider
statements about functions, or
(more correctly) functions of
functions.

Some of the things that may
be said about a function may
be regarded as said about the
class defined by the function,
whereas others cannot. The
statement “all men are mor-
tal” involves the functions “x
is human” and “x is mortal”;
or, if we choose, we can say
that it involves the classes
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men and mortals. We can in-
terpret the statement in either
way, because its truth-value
is unchanged if we substitute
for “x is human” or for “x is
mortal” any formally equiv-
alent function. But, as we
have just seen, the statement
“I believe that all men are
mortal” cannot be regarded
as being about the class de-
termined by either function,
because its truth-value may
be changed by the substitu-
tion of a formally equivalent
function (which leaves the
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class unchanged). We will
call a statement involving a
function ¢x an “extensional”
function of the function ¢x, if
it is like “all men are mortal,”
ie. if its truth-value is un-
changed by the substitution of
any formally equivalent func-
tion; and when a function of
a function is not extensional,
we will call it “intensional,”
so that “I believe that all men
are mortal” is an intensional
function of “x is human” or “x
is mortal.” Thus extensional
functions of a function ¢x
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may, for practical | purposes,
be regarded as functions of
the class determined by ¢x,
while intensional functions
cannot be so regarded.

It is to be observed that all
the specific functions of func-
tions that we have occasion
to introduce in mathematical
logic are extensional. Thus,
for example, the two funda-
mental functions of functions
are: “¢x is always true” and
“¢x is sometimes true.” Each
of these has its truth-value
unchanged if any formally
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equivalent function is sub-
stituted for ¢x. In the lan-
guage of classes, if a is the
class determined by ¢x, “¢px
is always true” is equivalent
to “everything is a member
of a,” and “¢x is sometimes
true” is equivalent to “a has
members” or (better) “a has
at least one member.” Take,
again, the condition, dealt
with in the preceding chapter,
for the existence of “the term
satisfying ¢x.” The condition
is that there is a term ¢ such
that ¢x is always equivalent
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to “x is ¢.” This is obviously
extensional. It is equivalent
to the assertion that the class
defined by the function ¢x is
a unit class, i.e. a class having
one member; in other words, a
class which is a member of 1.

Given a function of a func-
tion which may or may not
be extensional, we can always
derive from it a connected and
certainly extensional function
of the same function, by the
following plan: Let our origi-
nal function of a function be
one which attributes to ¢x
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the property f; then consider
the assertion “there is a func-
tion having the property f and
formally equivalent to ¢x.”
This is an extensional func-
tion of ¢x; it is true when our
original statement is true, and
it is formally equivalent to
the original function of ¢x if
this original function is exten-
sional; but when the original
function is intensional, the
new one is more often true
than the old one. For exam-
ple, consider again “I believe
that all men are mortal,” re-
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garded as a function of “x is
human.” The derived exten-
sional function is: “There is a
function formally equivalent
to ‘x is human’ and such that I
believe that whatever satisfies
it is mortal.” This remains
true when we substitute “x
is a rational animal” | for “x
is human,” even if I believe
falsely that the Phoenix is ra-
tional and immortal.

We give the name of “de-
rived extensional function” to
the function constructed as
above, namely, to the func-
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tion: “There is a function
having the property f and
formally equivalent to ¢x,”
where the original function
was “the function ¢x has the
property f.”

We may regard the derived
extensional function as having
for its argument the class de-
termined by the function ¢x,
and as asserting f of this class.
This may be taken as the def-
inition of a proposition about
a class. I.e. we may define:

To assert that “the class de-
termined by the function ¢x
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has the property f” is to as-
sert that ¢x satisfies the exten-
sional function derived from

f.

This gives a meaning to
any statement about a class
which can be made signifi-
cantly about a function; and it
will be found that technically
it yields the results which are
required in order to make a
theory symbolically satisfac-
tory."

'See Principia Mathematica, vol. i.
PpP- 75-84 and *20.
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What we have said just now
as regards the definition of
classes is sufficient to sat-
isfy our first four conditions.
The way in which it secures
the third and fourth, namely,
the possibility of classes of
classes, and the impossibility
of a class being or not being
a member of itself, is some-
what technical; it is explained
in Principia Mathematica, but
may be taken for granted here.
It results that, but for our fifth
condition, we might regard
our task as completed. But
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this condition—at once the
most important and the most
difficult—is not fulfilled in
virtue of anything we have
said as yet. The difficulty is
connected with the theory of
types, and must be briefly
discussed.?

We saw in Chapter XIII.
that there is a hierarchy of
logical types, and that it is
a fallacy to allow an object

2The reader who desires a fuller
discussion should consult Principia
Mathematica, Introduction, chap. ii.;
also *12.
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belonging to one of these to
be substituted for an object
belonging to another. | Now
it is not difficult to show that
the various functions which
can take a given object a as
argument are not all of one
type. Let us call them all
a-functions. We may take
first those among them which
do not involve reference to
any collection of functions;
these we will call “predica-
tive a-functions.” If we now
proceed to functions involv-
ing reference to the totality
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of predicative a-functions, we
shall incur a fallacy if we re-
gard these as of the same type
as the predicative a-functions.
Take such an every-day state-
ment as “a is a typical French-
man.” How shall we define
a “typical Frenchman”? We
may define him as one “pos-
sessing all qualities that are
possessed by most French-
men.” But unless we confine
“all qualities” to such as do
not involve a reference to any
totality of qualities, we shall
have to observe that most
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Frenchmen are not typical in
the above sense, and therefore
the definition shows that to
be not typical is essential to
a typical Frenchman. This is
not a logical contradiction,
since there is no reason why
there should be any typical
Frenchmen; but it illustrates
the need for separating off
qualities that involve refer-
ence to a totality of qualities
from those that do not.
Whenever, by statements
about “all” or “some” of the
values that a variable can sig-
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nificantly take, we generate
a new object, this new ob-
ject must not be among the
values which our previous
variable could take, since, if
it were, the totality of val-
ues over which the variable
could range would only be
definable in terms of itself,
and we should be involved
in a vicious circle. For exam-
ple, if I say “Napoleon had
all the qualities that make a
great general,” I must define
“qualities” in such a way that
it will not include what I am
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now saying, i.e. “having all
the qualities that make a great
general” must not be itself a
quality in the sense supposed.
This is fairly obvious, and is
the principle which leads to
the theory of types by which
vicious-circle paradoxes are
avoided. As applied to a-
functions, we may suppose
that “qualities” is to mean
“predicative functions.” Then
when I say “Napoleon had all
the qualities, etc.,” I mean |
“Napoleon satisfied all the
predicative functions, etc.”
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This statement attributes a
property to Napoleon, but not
a predicative property; thus
we escape the vicious circle.
But wherever “all functions
which” occurs, the functions
in question must be limited to
one type if a vicious circle is to
be avoided; and, as Napoleon
and the typical Frenchman
have shown, the type is not
rendered determinate by that
of the argument. It would re-
quire a much fuller discussion
to set forth this point fully,
but what has been said may

828 (original page 190)



suffice to make it clear that
the functions which can take
a given argument are of an
infinite series of types. We
could, by various technical
devices, construct a variable
which would run through the
first n of these types, where n
is finite, but we cannot con-
struct a variable which will
run through them all, and,
if we could, that mere fact
would at once generate a new
type of function with the same
arguments, and would set the
whole process going again.
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We call predicative a-func-
tions the first type of a-func-
tions; a-functions involving
reference to the totality of the
first type we call the second
type; and so on. No variable
a-function can run through all
these different types: it must
stop short at some definite
one.

These considerations are
relevant to our definition of
the derived extensional func-
tion. We there spoke of “a
function formally equiva-
lent to ¢x.” It is necessary
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to decide upon the type of
our function. Any decision
will do, but some decision
is unavoidable. Let us call
the supposed formally equiv-
alent function . Then o
appears as a variable, and
must be of some determinate
type. All that we know nec-
essarily about the type of ¢
is that it takes arguments of
a given type—that it is (say)
an a-function. But this, as
we have just seen, does not
determine its type. If we are
to be able (as our fifth requi-
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site demands) to deal with
all classes whose members
are of the same type as a,
we must be able to define all
such classes by means of func-
tions of some one type; that
is to say, there must be some
type of a-function, say the nth,
such that any a-function is
formally | equivalent to some
a-function of the n'"* type.
If this is the case, then any
extensional function which
holds of all a-functions of
the n'" type will hold of any
a-function whatever. It is

832 (original pages 190-191)



chiefly as a technical means
of embodying an assump-
tion leading to this result that
classes are useful. The as-
sumption is called the “axiom
of reducibility,” and may be
stated as follows:—

“There is a type (7 say) of
a-functions such that, given
any a-function, it is formally
equivalent to some function of
the type in question.”

If this axiom is assumed,
we use functions of this type
in defining our associated
extensional function. State-
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ments about all a-classes
(i.e. all classes defined by a-
functions) can be reduced
to statements about all a-
functions of the type 7. So
long as only extensional func-
tions of functions are in-
volved, this gives us in prac-
tice results which would oth-
erwise have required the im-
possible notion of “all a-
functions.” One particular
region where this is vital is
mathematical induction.

The axiom of reducibility
involves all that is really es-
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sential in the theory of classes.
It is therefore worth while to
ask whether there is any rea-
son to suppose it true.

This axiom, like the multi-
plicative axiom and the axiom
of infinity, is necessary for
certain results, but not for
the bare existence of deduc-
tive reasoning. The theory
of deduction, as explained in
Chapter XIV., and the laws
for propositions involving
“all” and “some,” are of the
very texture of mathemati-
cal reasoning: without them,
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or something like them, we
should not merely not ob-
tain the same results, but we
should not obtain any results
at all. We cannot use them as
hypotheses, and deduce hy-
pothetical consequences, for
they are rules of deduction
as well as premisses. They
must be absolutely true, or
else what we deduce accord-
ing to them does not even
follow from the premisses.
On the other hand, the ax-
iom of reducibility, like our
two previous mathematical
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axioms, could perfectly well
be stated as an hypothesis
whenever it is used, instead
of being assumed to be actu-
ally true. We can deduce | its
consequences hypothetically;
we can also deduce the conse-
quences of supposing it false.
It is therefore only convenient,
not necessary. And in view of
the complication of the theory
of types, and of the uncer-
tainty of all except its most
general principles, it is im-
possible as yet to say whether
there may not be some way of
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dispensing with the axiom of
reducibility altogether. How-
ever, assuming the correctness
of the theory outlined above,
what can we say as to the truth
or falsehood of the axiom?
The axiom, we may ob-
serve, is a generalised form
of Leibniz’s identity of indis-
cernibles. Leibniz assumed,
as a logical principle, that two
different subjects must differ
as to predicates. Now pred-
icates are only some among
what we called “predicative
functions,” which will in-
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clude also relations to given
terms, and various proper-
ties not to be reckoned as
predicates. Thus Leibniz’s as-
sumption is a much stricter
and narrower one than ours.
(Not, of course, according to
his logic, which regarded all
propositions as reducible to
the subject-predicate form.)
But there is no good rea-
son for believing his form,
so far as I can see. There
might quite well, as a mat-
ter of abstract logical possi-
bility, be two things which

839 (original page 192)



had exactly the same pred-
icates, in the narrow sense
in which we have been using
the word “predicate.” How
does our axiom look when we
pass beyond predicates in this
narrow sense? In the actual
world there seems no way of
doubting its empirical truth
as regards particulars, owing
to spatio-temporal differen-
tiation: no two particulars
have exactly the same spatial
and temporal relations to all
other particulars. But this
is, as it were, an accident, a
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fact about the world in which
we happen to find ourselves.
Pure logic, and pure math-
ematics (which is the same
thing), aims at being true, in
Leibnizian phraseology, in all
possible worlds, not only in
this higgledy-piggledy job-lot
of a world in which chance
has imprisoned us. There is
a certain lordliness which the
logician should preserve: he
must not condescend to derive
arguments from the things he
sees about him. |

Viewed from this strictly

841 (original pages 192-193)



logical point of view, I do
not see any reason to believe
that the axiom of reducibility
is logically necessary, which
is what would be meant by
saying that it is true in all pos-
sible worlds. The admission
of this axiom into a system
of logic is therefore a defect,
even if the axiom is empiri-
cally true. It is for this reason
that the theory of classes can-
not be regarded as being as
complete as the theory of de-
scriptions. There is need of
further work on the theory
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of types, in the hope of ar-
riving at a doctrine of classes
which does not require such
a dubious assumption. But
it is reasonable to regard the
theory outlined in the present
chapter as right in its main
lines, i.e. in its reduction of
propositions nominally about
classes to propositions about
their defining functions. The
avoidance of classes as en-
tities by this method must,
it would seem, be sound in
principle, however the detail
may still require adjustment.
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It is because this seems indu-
bitable that we have included
the theory of classes, in spite
of our desire to exclude, as far
as possible, whatever seemed
open to serious doubt.

The theory of classes, as
above outlined, reduces it-
self to one axiom and one
definition. For the sake of def-
initeness, we will here repeat
them. The axiom is:

There is a type T such that if
¢ is a function which can take a
given object a as argument, then
there is a function 1 of the type
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T which is formally equivalent
to ¢.

The definition is:

If ¢ is a function which can
take a given object a as argu-
ment, and T the type mentioned
in the above axiom, then to say
that the class determined by ¢
has the property f is to say that
there is a function of type T, for-
mally equivalent to ¢, and hav-

ing the property f.
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CHAPTER XVIII
MATHEMATICS AND
LOGIC

MatHEMATICS and logic, his-
torically speaking, have been
entirely distinct studies. Math-
ematics has been connected
with science, logic with Greek.
But both have developed
in modern times: logic has
become more mathematical
and mathematics has become
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more logical. The conse-
quence is that it has now
become wholly impossible
to draw a line between the
two; in fact, the two are one.
They differ as boy and man:
logic is the youth of mathe-
matics and mathematics is the
manhood of logic. This view
is resented by logicians who,
having spent their time in the
study of classical texts, are
incapable of following a piece
of symbolic reasoning, and
by mathematicians who have
learnt a technique without
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troubling to inquire into its
meaning or justification. Both
types are now fortunately
growing rarer. So much of
modern mathematical work is
obviously on the border-line
of logic, so much of modern
logic is symbolic and formal,
that the very close relation-
ship of logic and mathematics
has become obvious to every
instructed student. The proof
of their identity is, of course,
a matter of detail: starting
with premisses which would
be universally admitted to be-
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long to logic, and arriving by
deduction at results which as
obviously belong to mathe-
matics, we find that there is
no point at which a sharp line
can be drawn, with logic to the
left and mathematics to the
right. If there are still those
who do not admit the iden-
tity of logic and mathematics,
we may challenge them to in-
dicate at what point, in the
successive definitions and |
deductions of Principia Math-
ematica, they consider that
logic ends and mathematics
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begins. It will then be obvious
that any answer must be quite
arbitrary.

In the earlier chapters of
this book, starting from the
natural numbers, we have first
defined “cardinal number”
and shown how to generalise
the conception of number,
and have then analysed the
conceptions involved in the
definition, until we found
ourselves dealing with the
fundamentals of logic. In a
synthetic, deductive treat-
ment these fundamentals
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come first, and the natural
numbers are only reached
after a long journey. Such
treatment, though formally
more correct than that which
we have adopted, is more dif-
ficult for the reader, because
the ultimate logical concepts
and propositions with which
it starts are remote and unfa-
miliar as compared with the
natural numbers. Also they
represent the present frontier
of knowledge, beyond which
is the still unknown; and the
dominion of knowledge over
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them is not as yet very secure.
It used to be said that math-
ematics is the science of “quan-
tity.” “Quantity” is a vague
word, but for the sake of ar-
gument we may replace it
by the word “number.” The
statement that mathemat-
ics is the science of number
would be untrue in two dif-
ferent ways. On the one hand,
there are recognised branches
of mathematics which have
nothing to do with number—
all geometry that does not
use co-ordinates or measure-
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ment, for example: projec-
tive and descriptive geometry,
down to the point at which
co-ordinates are introduced,
does not have to do with num-
ber, or even with quantity in
the sense of greater and less.
On the other hand, through
the definition of cardinals,
through the theory of induc-
tion and ancestral relations,
through the general theory
of series, and through the
definitions of the arithmeti-
cal operations, it has become
possible to generalise much
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that used to be proved only
in connection with numbers.
The result is that what was
formerly the single study of
Arithmetic has now become
divided into a number of sep-
arate studies, no one of which
is specially concerned with
numbers. The most | elemen-
tary properties of numbers
are concerned with one-one
relations, and similarity be-
tween classes. Addition is
concerned with the construc-
tion of mutually exclusive
classes respectively similar to
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a set of classes which are not
known to be mutually exclu-
sive. Multiplication is merged
in the theory of “selections,”
i.e. of a certain kind of one-
many relations. Finitude is
merged in the general study
of ancestral relations, which
yields the whole theory of
mathematical induction. The
ordinal properties of the var-
ious kinds of number-series,
and the elements of the the-
ory of continuity of functions
and the limits of functions,
can be generalised so as no
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longer to involve any essential
reference to numbers. It is a
principle, in all formal rea-
soning, to generalise to the ut-
most, since we thereby secure
that a given process of deduc-
tion shall have more widely
applicable results; we are,
therefore, in thus generalising
the reasoning of arithmetic,
merely following a precept
which is universally admitted
in mathematics. And in thus
generalising we have, in effect,
created a set of new deductive
systems, in which traditional

856 (original page 196)



arithmetic is at once dissolved
and enlarged; but whether
any one of these new deduc-
tive systems—for example,
the theory of selections—is to
be said to belong to logic or
to arithmetic is entirely arbi-
trary, and incapable of being
decided rationally.

We are thus brought face to
face with the question: What
is this subject, which may
be called indifferently either
mathematics or logic? Is there
any way in which we can de-
fine it?

857 (original page 196)




Certain characteristics of
the subject are clear. To be-
gin with, we do not, in this
subject, deal with particular
things or particular proper-
ties: we deal formally with
what can be said about any
thing or any property. We
are prepared to say that one
and one are two, but not that
Socrates and Plato are two,
because, in our capacity of
logicians or pure mathemati-
cians, we have never heard of
Socrates and Plato. A world
in which there were no such
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individuals would still be a
world in which one and one
are two. It is not open to us,
as pure mathematicians or lo-
gicians, to mention anything
at all, because, if we do so,
| we introduce something ir-
relevant and not formal. We
may make this clear by ap-
plying it to the case of the
syllogism. Traditional logic
says: “All men are mortal,
Socrates is a man, therefore
Socrates is mortal.” Now it
is clear that what we mean to
assert, to begin with, is only
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that the premisses imply the
conclusion, not that premisses
and conclusion are actually
true; even the most traditional
logic points out that the ac-
tual truth of the premisses is
irrelevant to logic. Thus the
first change to be made in the
above traditional syllogism is
to state it in the form: “If all
men are mortal and Socrates
is a man, then Socrates is
mortal.” We may now ob-
serve that it is intended to
convey that this argument
is valid in virtue of its form,
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not in virtue of the particu-
lar terms occurring in it. If
we had omitted “Socrates is a
man” from our premisses, we
should have had a non-formal
argument, only admissible be-
cause Socrates is in fact a man;
in that case we could not have
generalised the argument. But
when, as above, the argument
is formal, nothing depends
upon the terms that occur in
it. Thus we may substitute «
for men, B for mortals, and x
for Socrates, where a and B
are any classes whatever, and
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x is any individual. We then
arrive at the statement: “No
matter what possible values x
and « and f may have, if all
a’s are f’s and x is an «a, then
xis a B”; in other words, “the
propositional function ‘if all
a’s are f’s and x is an «, then x
is a p’ is always true.” Here at
last we have a proposition of
logic—the one which is only
suggested by the traditional
statement about Socrates and
men and mortals.

It is clear that, if formal
reasoning is what we are aim-
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ing at, we shall always ar-
rive ultimately at statements
like the above, in which no
actual things or properties
are mentioned; this will hap-
pen through the mere de-
sire not to waste our time
proving in a particular case
what can be proved gener-
ally. It would be ridiculous to
go through a long argument
about Socrates, and then go
through precisely the same
argument again about Plato.
If our argument is one (say)
which holds of all men, we

863 (original page 197)



shall prove it concerning “x,”
with the hypothesis “if x is a
man.” With | this hypothe-
sis, the argument will retain
its hypothetical validity even
when x is not a man. But now
we shall find that our argu-
ment would still be valid if,
instead of supposing x to be
a man, we were to suppose
him to be a monkey or a goose
or a Prime Minister. We shall
therefore not waste our time
taking as our premiss “x is a
man” but shall take “x is an

”

a,” where a is any class of
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individuals, or “¢x” where ¢
is any propositional function
of some assigned type. Thus
the absence of all mention of
particular things or properties
in logic or pure mathematics
is a necessary result of the fact
that this study is, as we say,
“purely formal.”

At this point we find our-
selves faced with a problem
which is easier to state than
to solve. The problem is:
“What are the constituents of
a logical proposition?” I do
not know the answer, but I
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propose to explain how the
problem arises.

Take (say) the proposition
“Socrates was before Aristo-
tle.” Here it seems obvious
that we have a relation be-
tween two terms, and that
the constituents of the propo-
sition (as well as of the cor-
responding fact) are simply
the two terms and the rela-
tion, i.e. Socrates, Aristotle,
and before. (I ignore the fact
that Socrates and Aristotle
are not simple; also the fact
that what appear to be their
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names are really truncated
descriptions. Neither of these
facts is relevant to the present
issue.) We may represent the
general form of such propo-
sitions by “xRy,” which may
be read “x has the relation R
to p.” This general form may
occur in logical propositions,
but no particular instance of
it can occur. Are we to infer
that the general form itself is
a constituent of such logical
propositions?

Given a proposition, such as
“Socrates is before Aristotle,”
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we have certain constituents
and also a certain form. But
the form is not itself a new
constituent; if it were, we
should need a new form to
embrace both it and the other
constituents. We can, in fact,
turn all the constituents of
a proposition into variables,
while keeping the form un-
changed. This is what we do
when we use such a schema
as “xRy,” which stands for
any | one of a certain class of
propositions, namely, those
asserting relations between
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two terms. We can proceed
to general assertions, such as
“xRy is sometimes true”—i.e.
there are cases where dual
relations hold. This assertion
will belong to logic (or mathe-
matics) in the sense in which
we are using the word. But
in this assertion we do not
mention any particular things
or particular relations; no par-
ticular things or relations can
ever enter into a proposition
of pure logic. We are left with
pure forms as the only pos-
sible constituents of logical
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propositions.

I do not wish to assert pos-
itively that pure forms—e.g.
the form “xRy”—do actually
enter into propositions of the
kind we are considering. The
question of the analysis of
such propositions is a dif-
ficult one, with conflicting
considerations on the one side
and on the other. We cannot
embark upon this question
now, but we may accept, as a
first approximation, the view
that forms are what enter into
logical propositions as their
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constituents. And we may
explain (though not formally
define) what we mean by the
“form” of a proposition as
follows:—

The “form” of a proposi-
tion is that, in it, that remains
unchanged when every con-
stituent of the proposition is
replaced by another.

Thus “Socrates is earlier
than Aristotle” has the same
form as “Napoleon is greater
than Wellington,” though ev-
ery constituent of the two
propositions is different.
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We may thus lay down, as
a necessary (though not suffi-
cient) characteristic of logical
or mathematical propositions,
that they are to be such as can
be obtained from a proposi-
tion containing no variables
(i.e. no such words as all, some,
a, the, etc.) by turning every
constituent into a variable and
asserting that the result is al-
ways true or sometimes true,
or that it is always true in re-
spect of some of the variables
that the result is sometimes
true in respect of the oth-
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ers, or any variant of these
forms. And another way of
stating the same thing is to
say that logic (or mathemat-
ics) is concerned only with
forms, and is concerned with
them only in the way of stat-
ing that they are always or |
sometimes true—with all the
permutations of “always” and
“sometimes” that may occur.
There are in every language
some words whose sole func-
tion is to indicate form. These
words, broadly speaking, are
commonest in languages hav-
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ing fewest inflections. Take
“Socrates is human.” Here
“is” is not a constituent of the
proposition, but merely in-
dicates the subject-predicate
form. Similarly in “Socra-
tes is earlier than Aristotle,”
“is” and “than” merely in-
dicate form; the proposition
is the same as “Socrates pre-
cedes Aristotle,” in which
these words have disappeared
and the form is otherwise in-
dicated. Form, as a rule, can
be indicated otherwise than
by specific words: the order
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of the words can do most of
what is wanted. But this prin-
ciple must not be pressed. For
example, it is difficult to see
how we could conveniently
express molecular forms of
propositions (i.e. what we call
“truth-functions”) without
any word at all. We saw in
Chapter XIV. that one word
or symbol is enough for this
purpose, namely, a word or
symbol expressing incompat-
ibility. But without even one
we should find ourselves in
difficulties. This, however, is
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not the point that is important
for our present purpose. What
is important for us is to ob-
serve that form may be the one
concern of a general propo-
sition, even when no word
or symbol in that proposition
designates the form. If we
wish to speak about the form
itself, we must have a word
for it; but if, as in mathemat-
ics, we wish to speak about
all propositions that have the
form, a word for the form will
usually be found not indis-
pensable; probably in theory
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it is never indispensable.
Assuming—as I think we
may—that the forms of propo-
sitions can be represented by
the forms of the propositions
in which they are expressed
without any special words
for forms, we should arrive
at a language in which ev-
erything formal belonged to
syntax and not to vocabulary.
In such a language we could
express all the propositions of
mathematics even if we did
not know one single word of
the language. The language
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of | mathematical logic, if it
were perfected, would be such
a language. We should have
symbols for variables, such as
“x” and “R” and “y,” arranged
in various ways; and the way
of arrangement would indi-
cate that something was being
said to be true of all values
or some values of the vari-
ables. We should not need
to know any words, because
they would only be needed for
giving values to the variables,
which is the business of the
applied mathematician, not
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of the pure mathematician or
logician. It is one of the marks
of a proposition of logic that,
given a suitable language,
such a proposition can be as-
serted in such a language by
a person who knows the syn-
tax without knowing a single
word of the vocabulary.

But, after all, there are
words that express form, such
as “is” and “than.” And in
every symbolism hitherto in-
vented for mathematical logic
there are symbols having con-
stant formal meanings. We
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may take as an example the
symbol for incompatibility
which is employed in build-
ing up truth-functions. Such
words or symbols may occur
in logic. The question is: How
are we to define them?

Such words or symbols ex-
press what are called “logi-
cal constants.” Logical con-
stants may be defined ex-
actly as we defined forms; in
fact, they are in essence the
same thing. A fundamental
logical constant will be that
which is in common among a
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number of propositions, any
one of which can result from
any other by substitution of
terms one for another. For
example, “Napoleon is greater
than Wellington” results from
“Socrates is earlier than Aris-
totle” by the substitution of
“Napoleon” for “Socrates,”
“Wellington” for “Aristotle,”
and “greater” for “earlier.”
Some propositions can be ob-
tained in this way from the
prototype “Socrates is earlier
than Aristotle” and some can-
not; those that can are those
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that are of the form “xRyp,”
i.e. express dual relations. We
cannot obtain from the above
prototype by term-for-term
substitution such proposi-
tions as “Socrates is human”
or “the Athenians gave the
hemlock to Socrates,” because
the first is of the subject- |
predicate form and the sec-
ond expresses a three-term
relation. If we are to have
any words in our pure logical
language, they must be such
as express “logical constants,”
and “logical constants” will
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always either be, or be de-
rived from, what is in com-
mon among a group of propo-
sitions derivable from each
other, in the above manner,
by term-for-term substitution.
And this which is in common
is what we call “form.”

In this sense all the “con-
stants” that occur in pure
mathematics are logical con-
stants. The number 1, for
example, is derivative from
propositions of the form:
“There is a term c such that ¢x
is true when, and only when,
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x is ¢.” This is a function of ¢,
and various different propo-
sitions result from giving dif-
ferent values to ¢p. We may
(with a little omission of inter-
mediate steps not relevant to
our present purpose) take the
above function of ¢ as what
is meant by “the class deter-
mined by ¢ is a unit class”
or “the class determined by
¢ is a member of 1” (1 be-
ing a class of classes). In this
way, propositions in which
1 occurs acquire a meaning
which is derived from a cer-
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tain constant logical form.
And the same will be found to
be the case with all mathemat-
ical constants: all are logical
constants, or symbolic abbre-
viations whose full use in a
proper context is defined by
means of logical constants.
But although all logical (or
mathematical) propositions
can be expressed wholly in
terms of logical constants to-
gether with variables, it is
not the case that, conversely,
all propositions that can be
expressed in this way are log-
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ical. We have found so far
a necessary but not a suffi-
cient criterion of mathemat-
ical propositions. We have
sufficiently defined the char-
acter of the primitive ideas in
terms of which all the ideas
of mathematics can be de-
fined, but not of the primitive
propositions from which all the
propositions of mathematics
can be deduced. This is a more
difficult matter, as to which it
is not yet known what the full
answer is.

We may take the axiom of
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infinity as an example of a
proposition which, though
it can be enunciated in log-
ical terms, | cannot be as-
serted by logic to be true.
All the propositions of logic
have a characteristic which
used to be expressed by say-
ing that they were analytic,
or that their contradictories
were self-contradictory. This
mode of statement, however,
is not satisfactory. The law of
contradiction is merely one
among logical propositions; it
has no special pre-eminence;
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and the proof that the contra-
dictory of some proposition
is self-contradictory is likely
to require other principles of
deduction besides the law of
contradiction. Nevertheless,
the characteristic of logical
propositions that we are in
search of is the one which was
felt, and intended to be de-
fined, by those who said that
it consisted in deducibility
from the law of contradiction.
This characteristic, which,
for the moment, we may call
tautology, obviously does not
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belong to the assertion that
the number of individuals
in the universe is n, what-
ever number n may be. But
for the diversity of types, it
would be possible to prove
logically that there are classes
of n terms, where n is any fi-
nite integer; or even that there
are classes of N, terms. But,
owing to types, such proofs,
as we saw in Chapter XIII,,
are fallacious. We are left
to empirical observation to
determine whether there are
as many as # individuals in
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the world. Among “possi-
ble” worlds, in the Leibnizian
sense, there will be worlds
having one, two, three,
individuals. There does not
even seem any logical neces-
sity why there should be even
one individual'—why, in fact,
there should be any world at
all. The ontological proof of
the existence of God, if it were
1The primitive propositions in
Principia Mathematica are such as to
allow the inference that at least one

individual exists. But I now view this
as a defect in logical purity.
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valid, would establish the log-
ical necessity of at least one
individual. But it is generally
recognised as invalid, and in
fact rests upon a mistaken
view of existence—i.e. it fails
to realise that existence can
only be asserted of something
described, not of something
named, so that it is meaning-
less to argue from “this is the
so-and-so” and “the so-and-so
exists” to “this exists.” If we
reject the ontological | argu-
ment, we seem driven to con-
clude that the existence of a
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world is an accident—i.e. it is
not logically necessary. If that
be so, no principle of logic
can assert “existence” except
under a hypothesis, i.e. none
can be of the form “the propo-
sitional function so-and-so is
sometimes true.” Propositions
of this form, when they occur
in logic, will have to occur as
hypotheses or consequences
of hypotheses, not as com-
plete asserted propositions.
The complete asserted propo-
sitions of logic will all be such
as affirm that some proposi-
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tional function is always true.
For example, it is always true
that if p implies g and g im-
plies r then p implies r, or
that, if all a’s are ’s and x is
an a then xisa 8. Such propo-
sitions may occur in logic, and
their truth is independent of
the existence of the universe.
We may lay it down that, if
there were no universe, all
general propositions would
be true; for the contradictory
of a general proposition (as
we saw in Chapter XV.) is a
proposition asserting exis-
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tence, and would therefore
always be false if no universe
existed.

Logical propositions are
such as can be known a priori,
without study of the actual
world. We only know from
a study of empirical facts
that Socrates is a man, but
we know the correctness of
the syllogism in its abstract
form (i.e. when it is stated in
terms of variables) without
needing any appeal to experi-
ence. This is a characteristic,
not of logical propositions in
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themselves, but of the way in
which we know them. It has,
however, a bearing upon the
question what their nature
may be, since there are some
kinds of propositions which it
would be very difficult to sup-
pose we could know without
experience.

It is clear that the defini-
tion of “logic” or “mathemat-
ics” must be sought by trying
to give a new definition of
the old notion of “analytic”
propositions. Although we
can no longer be satisfied to
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define logical propositions
as those that follow from the
law of contradiction, we can
and must still admit that they
are a wholly different class of
propositions from those that
we come to know empirically.
They all have the character-
istic which, a moment ago,
we agreed to call “tautology.”
This, | combined with the fact
that they can be expressed
wholly in terms of variables
and logical constants (a logi-
cal constant being something
which remains constant in a

896 (original pages 204-205)



proposition even when all its
constituents are changed)—
will give the definition of logic
or pure mathematics. For the
moment, I do not know how to
define “tautology.”? It would
be easy to offer a definition
which might seem satisfac-
tory for a while; but I know

2The importance of “tautology”
for a definition of mathematics was
pointed out to me by my former pupil
Ludwig Wittgenstein, who was work-
ing on the problem. I do not know
whether he has solved it, or even
whether he is alive or dead.
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of none that I feel to be sat-
isfactory, in spite of feeling
thoroughly familiar with the
characteristic of which a defi-
nition is wanted. At this point,
therefore, for the moment, we
reach the frontier of knowl-
edge on our backward journey
into the logical foundations of
mathematics.

We have now come to an
end of our somewhat sum-
mary introduction to mathe-
matical philosophy. It is im-
possible to convey adequately
the ideas that are concerned
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in this subject so long as we
abstain from the use of logi-
cal symbols. Since ordinary
language has no words that
naturally express exactly what
we wish to express, it is nec-
essary, so long as we adhere to
ordinary language, to strain
words into unusual mean-
ings; and the reader is sure,
after a time if not at first, to
lapse into attaching the usual
meanings to words, thus ar-
riving at wrong notions as to
what is intended to be said.
Moreover, ordinary grammar
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and syntax is extraordinarily
misleading. This is the case,
e.g., as regards numbers; “ten
men” is grammatically the
same form as “white men,” so
that 10 might be thought to be
an adjective qualifying “men.”
It is the case, again, wherever
propositional functions are
involved, and in particular as
regards existence and descrip-
tions. Because language is
misleading, as well as because
it is diffuse and inexact when
applied to logic (for which
it was never intended), log-
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ical symbolism is absolutely
necessary to any exact or thor-
ough treatment of our subject.
Those readers, | therefore,
who wish to acquire a mastery
of the principles of mathe-
matics, will, it is to be hoped,
not shrink from the labour
of mastering the symbols—a
labour which is, in fact, much
less than might be thought. As
the above hasty survey must
have made evident, there are
innumerable unsolved prob-
lems in the subject, and much
work needs to be done. If any
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student is led into a serious
study of mathematical logic
by this little book, it will have
served the chief purpose for
which it has been written.
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INDEX

[Online edition note: This is a
hyperlinked recreation of the
original index. The page num-
bers listed are for the original
edition.]
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Instances, 156.

Integers, positive and
negative, 64.

Intervals, 115.
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Pythagoras, 4, 67.
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CHANGES TO
ONLINE EDITION

Tuis Online Corrected Edi-
tion was created by Kevin C.
Klement; this is version 1.0
(February 5, 2010). It is based
on the April 1920 so-called
“second edition” published
by Allen & Unwin, which,



by contemporary standards,
was simply a second printing
of the original 1919 edition
but incorporating various,
mostly minor, fixes. This edi-
tion incorporates fixes from
later printings as well, and
some new fixes, mentioned
below. The pagination of
the Allen & Unwin edition
is given in the footer, with
page breaks marked with the
sign “|”. These are in red, as
are other additions to the text
not penned by Russell.
Thanks to members of the



Russell-1 and HEAPS-1 mail-
ing lists for help in checking
and proofreading the ver-
sion, including Adam Killian,
Pierre Grenon, David Blitz,
Brandon Young, Rosalind
Carey, and, especially, John
Ongley. A tremendous debt of
thanks is owed to Kenneth
Blackwell of the Bertrand
Russell ~ Archives/Research
Centre, McMaster Univer-
sity, for proofreading the bulk
of the edition, checking it
against Russell’s handwritten
manuscript, and providing



other valuable advice and
assistance.  Another large
debt of gratitude is owed to
Christof Grdber who com-
pared this version to the print
versions and showed remark-
able aptitude in spotting dis-
crepancies. I take full re-
sponsibility for any remain-
ing errors. If you discover
any, please email me at kle-
ment@philos.umass.edu.
The online edition differs
from the 1920 Allen & Un-
win edition, and reprintings
thereof, in certain respects.



Some are mere stylistic differ-
ences. Others represent cor-
rections based on discrepan-
cies between Russell’s manu-
script and the print edition, or
fix small grammatical or typo-
graphical errors. The stylistic
differences are these:

* In the original, footnote
numbering begins anew
with each page. Since
this version uses differ-
ent pagination, it was
necessary to number
footnotes sequentially



through each chapter.
Thus, for example, the
footnote listed as note 2
on page 21 of this edi-
tion was listed as note 1
on page 5 of the original.

With some exceptions,
the Allen & Unwin edi-
tion uses linear fractions
of the style “x/y” mid-
paragraph, but vertical
fractions of the form “%”
in displays. Contrary
to this usual practice,
those in the display on



page 84 of the original
(page 369 of this edi-
tion) were linear, but
have been converted
to vertical fractions in
this edition. Similarly,
the mid-paragraph frac-
tions on pages 17, 26, 99
and 116 of the original
(pages 74, 113, 430 and
505 here) were printed
vertically in the original,
but here are horizontal.

The following more signifi-
cant changes and revisions are



marked in green in this edi-
tion. Most of these result from
Ken Blackwell’s comparison
with Russell’s manuscript. A
few were originally noted in
an early review of the book by
G. A. Pfeiffer (Bulletin of the
American Mathematical Society

27:2 (1920), pp- 81—90).

1. (page 8n. / original
page 2n.) Russell wrote
the wrong publication
date (1911) for the sec-
ond volume of Principia
Mathematica; this has



been fixed to 1912.

2. (page 91 / original page
21) “... or all that are
less than 1000 ...” is
changed to “... or all
that are not less than
1000 ...” to match Rus-
sell’s manuscript and
the obviously intended
meaning of the passage.
This error was noted
by Pfeiffer in 1920 but
unfixed in Russell’s life-
time.

3. (page 183 / original



page 43) “... either by
limiting the domain to
males or by limiting the
converse to females” is
changed to “... either
by limiting the domain
to males or by limiting
the converse domain
to females”, which is
how it read in Russell’s
manuscript, and seems
better to fit the context.

. (page 278 / original
page 64) “... provided
neither m or n is zero.”



is fixed to “... provided
neither m nor n is zero.”
Thanks to John Ongley
for spotting this error,
which exists even in
Russell’s manuscript.

5. (page 373n. / original
page 85n.) The word
“deutschen” in the orig-
inal’s (and the manu-
script’s)  “Jahresbericht
der deutschen Mathe-
matiker-Vereinigung” has
been capitalized.

6. (page 428 / original



page 98) “... of a class
a, i.e. its limits or max-
imum, and then ...”
is changed to “... of
a class «, i.e. its limit
or maximum, and then

” to match Russell’s
manuscript, and the ap-
parent meaning of the
passage.

. (page 478 / original
page 110) “... the limit
of its value for approach-

es either from ...” is
changed to “... the limit



of its values for ap-
proaches either from

.”,  which matches
Russell’s manuscript,
and is more appropriate
for the meaning of the

passage.

. (page 493 / original
page 113) The ungram-
matical “... advantages
of this form of defini-
tion is that it analyses

” is changed to “...
advantage of this form
of definition is that it



”

analyses ...” to match
Russell’s manuscript.

. (page 500 / original
page 115) “... all terms
z such that x has the
relation P to x and z
has the relation P to y
..” 1is fixed to “... all
terms z such that x has
the relation P to z and
z has the relation P to
y ...” Russell himself
hand-corrected this in
his manuscript, but not
in a clear way, and at his



10.

11.

request, it was changed
in the 1967 printing.

(page 543 / original
page 124) The words
“correlator of a with g,
and similarly for every
other pair. This requires
a”, which constitute ex-
actly one line of Rus-
sell’s manuscript, were
omitted, thereby amal-
gamating two sentences
into one. The missing
words are now restored.

(page 564 / original



page 129) The passage
“... if x, is the member
of y,, x, is a member of
Var X5 is a member of 129
and so on; then ...” is
changed to “... if x; is
the member of y,, x, is
a member of y,, X5 is a
member of Vs and so
on; then ...” to match
Russell’s manuscript,
and the obviously in-
tended meaning of the
passage.

12. (page 608 / original



13.

page 139) The words
“and then the idea of
the idea of Socrates” al-
though present in Rus-
sell’s manuscript, were
left out of previous print
editions. Note that Rus-
sell mentions “all these
ideas” in the next sen-
tence.

(pages 700-703 / orig-
inal page 160) The two
footnotes on this page
were misplaced. The
second, the reference



14.

to Principia Mathemat-
ica =9, was attached in
previous versions to the
sentence that now refers
to the first footnote in
the chapter. That foot-
note was placed three
sentences below. The
footnote references have
been returned to where
they had been placed in
Russell’s manuscript.

(page 702 / original
page 161) “... the nega-
tion of propositions of



15.

the type to which x be-
longs ...” is changed
to “... the negation of
propositions of the type
to which ¢x belongs

” to match Russell’s
manuscript. This is an-
other error noted by
Pfeiffer.

(page 711 / original
page 162) “Suppose we
are considering all “men
are mortal”: we will
...” is changed to “Sup-
pose we are considering



16.

“all men are mortal”:
we will ...” to match
the obviously intended
meaning of the passage,
and the placement of the
opening quotation mark
in Russell’s manuscript
(although he here used
single quotation marks,
as he did sporadically
throughout).  Thanks
to Christof Graber for
spotting this error.

(page 754 / original
page 173) “... as op-



17.

posed to specific man.”
is fixed to “... as op-
posed to specific men.”
Russell sent this change
to Unwin in 1937, and
it was made in the 1938
printing.

(page 764 / original
page 175) The “¢” in
“... the process of ap-
plying general state-
ments about ¢x to par-
ticular cases ...”, present
in Russell’s manuscript,
was excluded from the



18.

Allen & Unwin print-
ings, and has been re-
stored.

(page 770 / original
page 176) The “¢” in
“ resulting from a
propositional function
¢x by the substitution
of ...” was excluded
from previous pub-
lished versions, though
it does appear in Rus-
sell’s manuscript, and
seems necessary for the
passage to make sense.



19.

Thanks to John Ongley
for spotting this error,
which had also been
noted by Pfeiffer.

(page 813 / original
pages 186-87) The two
occurrences of “¢” in
“ extensional func-
tions of a function ¢x
may, for practical pur-
poses, be regarded as
functions of the class de-
termined by ¢x, while
intensional ~ functions
cannot ...” were omit-



20.

ted from previous pub-
lished versions, but
do appear in Russell’s
manuscript. Again
thanks to John Ongley.

(page 824 / original
page 189) The Allen
& Unwin printings have
the sentence as “How
shall we define a “typi-
cal” Frenchman?” Here,
the closing quotation
mark has been moved to
make it “How shall we
define a “typical French-



21.

man”?” Although Rus-
sell’s manuscript is not
entirely clear here, it
appears the latter was
intended, and it also
seems to make more
sense in context.

(page 833 / original
page 191) “There is a
type (r say) ...” has
been changed to “There
is a type (T say) ...” to
match Russell’s manu-
script, and conventions
followed elsewhere in



22.

the chapter.

(page 854 / original
page 195) “... divided
into numbers of sep-
arate studies ...” has
been changed to “

divided into a number
of separate studies ...”
Russell’s  manuscript
just had “number”, in
the singular, without
the indefinite article.
Some emendation was
necessary to make the
passage grammatical,



23.

but the fix adopted here
seems more likely what
was meant.

(page 862 / original
page 197) The passage
“the propositional func-
tion ‘if all a’s are § and
x is an «, then x is a
B’ is always true” has
been changed to “the
propositional function
‘if all a’s are B’s and x
is an a, then x is a f’ is
always true” to match
Russell’s manuscript, as



24.

well as to make it con-
sistent with the other
paraphrase given earlier
in the sentence. Thanks
to Christof Griaber for
noticing this error.

(page 877 / original
page 200) “... with-
out any special word
for forms ...” has been
changed to “... with-
out any special words
for forms ...”, which
matches Russell’s man-
uscript and seems to fit



better in the context.

25. (page 9o8 / original
page 207) The original
index listed a reference
to Frege on page 10, but
in fact, the discussion
of Frege occurs on page
11. Here, “10” is crossed
out, and “[11]” inserted.

Some very minor corrections to
punctuation have been made
to the Allen & Unwin 1920
printing, but not marked in
green.



a) Ellipses have been reg-
ularized to three closed
dots throughout.

b) (page 229 / original
page 53) “We may de-
fine two relations ...”
did not start a new para-
graph in previous edi-
tions, but does in Rus-
sell’s manuscript, and is
changed to do so.

c) (page 230 / original
page 53) What appears
in the 1920 and later
printings as “... is the
field of Q. and which is



...” is changed to “... is
the field of Q, and which
is...”

d) (page 241 / original
page 56) “ a rela-
tion number is a class of

” is changed to “...
a relation-number is a
class of ...” to match
the hyphenation in the
rest of the book (and in
Russell’s manuscript). A
similar change is made
in the index.

e) (page 258 / original
page 60) “... and “feath-



erless biped,”—so two
” is changed to “...

and “featherless biped”

—sotwo...”

f) (pages 358-363 / orig-
inal pages 82-83) One
misprint of “proges-
sion” for “progression”,
and one misprint of
“progessions” for “pro-
gressions”, have been
corrected. (Thanks to
Christof Graber for notic-
ing these errors in the
original.)

g) (page 501 / original



page 115) In the Allen
& Unwin printing, the
“s” in “y’s” in what ap-
pears here as “Form
all such sections for
all v’s ...” was itali-
cized along with the “p”.
Nothing in Russell’s
manuscript  suggests
it should be italicized,
however. (Again thanks
to Christof Griber.)

h) (page 525 / original
page 121) In the Allen
& Unwin printing, “Let
y be a member of §...”



begins a new paragraph,
but it does not in Rus-
sell’s manuscript, and
clearly should not.

i) (page 565 / original
pages 129-130) The
phrase “well ordered”
has twice been changed
to “well-ordered” to
match Russell’s man-
uscript (in the first case)
and the rest of the book
(in the second).

j) (page 573 / original
page 131) “The way
in which the need for



this axiom arises may be
explained as follows:—
One of Peano’s ...” is
changed to “The way
in which the need for
this axiom arises may
be explained as follows.
One of Peano’s ...” and
has been made to start a
new paragraph, as it did
in Russell’s manuscript.
k) (page 598 / original
page 137) The accent
on “Métaphysique”, in-
cluded in Russell’s man-
uscript but left off in



print, has been restored.

1) (page 694 / original
page 159) “... or what
not,—and clearly ...” is
changed to “... or what
not—and clearly ...”

m) (page 770 / original
page 176) Italics have
been added to one oc-
currence of “Waverley”
to make it consistent
with the others.

n) (page 8oy / original
page 185) “... most dif-
ficult of fulfilment,—it
must ...” is changed



to “... most difficult of
fulfilment—it must ...”
(page 861 / original
page 197) In the Allen &
Unwin printings, “Soc-
rates” was not itali-
cized in “... we may
substitute a for men, p
for mortals, and x for
Socrates, where ”
Russell had marked
it for italicizing in the
manuscript, and it seems
natural to do so for the
sake of consistency, so it
has been italicized.



p) (page 897 / original
page 205) The word
“seem” was not itali-
cized in “... a defini-
tion which might seem
satisfactory for a while
..” in the Allen & Un-
win editions, but was
marked to be in Rus-
sell’s manuscript; it is
italicized here.

q) (page 915 / original
page 208) Under “Re-
lations” in the index,
“similar, 52ff;” has been
changed to “similar,



52ff;;” to match the
punctuation elsewhere.

There are, however, a num-
ber of other places where the
previous print editions differ
from Russell’s manuscript in
minor ways that were left un-
changed in this edition. For
a detailed examination of the
differences between Russell’s
manuscript and the print edi-
tions, and between the various
printings themselves (includ-
ing the changes from the 1919
to the 1920 printings not doc-



umented here), see Kenneth
Blackwell, “Variants, Mis-
prints and a Bibliographical
Index for Introduction to Math-
ematical Philosophy”, Russell
n.s. 29 (2009): 57-62.
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