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Preface to the Sixth Edition

Graph theory is an area of mathematics whose origin dates back to 1736
with the solution of the famous Kénigsberg Bridge Problem by the eminent
Swiss mathematician Leonhard Euler. During the next several decades, top-
ics in graph theory arose primarily through recreational mathematics. The
development of graph theory received a substantial boost in 1852 when the
young British mathematician Francis Guthrie introduced one of the best
known problems in all of mathematics: the Four Color Problem. It wasn’t
until late in the 19th century, however, when graph theory became a theoret-
ical area of mathematics through the research of the Danish mathematician
Julius Petersen. Major progress in graph theory, however, didn’t occur until
World War II ended. Since then, though, the subject has developed into an
area with a fascinating history, numerous interesting problems and applica-
tions in many diverse fields. It is the beauty of the subject, however, that
has attracted so many to this field.

The goal of this sixth edition is, as with the previous editions, to de-
scribe much of the story that is graph theory — through its concepts, its
theorems, its applications and its history. The audience for the sixth edition
is beginning graduate students and advanced undergraduate students. The
primary prerequisite required of students using this book is a knowledge of
mathematical proofs. For some topics, an elementary knowledge of linear al-
gebra and group theory is useful. For Chapter 21, an elementary knowledge
of probability is needed. Proofs of some of the results that appear in this
book have not been supplied because the techniques are beyond the scope
of the book or are inordinately lengthy. Nevertheless, these results have
been included due to their interest and since they provide a more complete
description of what is known on a particular topic.

A one-semester course in graph theory using this textbook can be de-
signed by selecting topics of greatest interest to the instructor and students.
There is more than ample material available for a two-semester sequence
in graph theory. Our goal has been to prepare a book that is interesting,
carefully written, student-friendly and consisting of clear proofs. The sixth
edition has been divided into shorter chapters as well as more sections and
subsections to make reading and locating material easier for instructors and
students. The following major additions have been made to the sixth edition:

e more than 160 new exercises
e several conjectures and open problems
e many new theorems and examples

e new material on graph decompositions

a proof of the Perfect Graph Theorem

xi



xii Preface to the Sixth Edition

e material on Hamiltonian extension

e a new chapter on the probabilistic method in graph theory and random
graphs.

At the end of the book is an index of mathematicians, an index of math-
ematical terms and an index of symbols. The references list research papers
referred to in the book (indicating the page number(s) where the reference
occurs) and some useful supplemental references. There is also a section
giving hints and solutions to all odd-numbered exercises.

Over the years, there have been some changes in notation that a number
of mathematicians now use. When certain notation appears to have been
adopted by sufficiently many mathematicians working in graph theory so
that this has become the norm, we have adhered to these changes. As with
the fifth edition, the following notation is used in the sixth edition:

e a path is now expressed as P = (v, v2,...,v;) and a cycle as C' = (vy,
U2y« vy Uy U1);

e the Cartesian product of two graphs G and H is expressed as G [ H,
rather than the previous G x H;

e the union of G and H is expressed by G + H, rather than G U H;

e the join of two graphs G and H is expressed as G V H, rather than
G+ H.

We are most grateful to Bob Ross, senior editor of CRC Press, who
has been a constant source of support and assistance throughout the entire
writing process.

Gary Chartrand, Linda Lesniak and Ping Zhang



Chapter 1

Introduction

The theory of graphs is one of the few fields of mathematics with a
definite birth date.

It is the subject of graph theory of course that we are about to describe. The
statement above was made in 1963 by the mathematician Oystein Ore who will
be encountered in Chapter 6. While graph theory was probably Ore’s major
mathematical area of interest during the latter part of his career, he is also
known for his work and interest in number theory (the study of integers) and
the history of mathematics.

Although awareness of integers can be traced back for many centuries, ge-
ometry has an even longer history. Early geometry concerned distance, lengths,
angles, areas and volumes, which were used for surveying, construction and as-
tronomy. While geometry dealt with magnitudes, the German mathematician
Gottfried Leibniz introduced another branch of geometry called the geometry
of position. This branch of geometry did not deal with measurements and
calculations, but rather with the determination of position and its properties.
The famous mathematician Leonhard Euler said that it hadn’t been determined
what kinds of problems could be studied with the aid of the geometry of posi-
tion but in 1736 he believed that he had found one, which led to the origin of
graph theory. It is this event to which Oystein Ore was referring in his quote
above. We will visit Euler again, in Chapter 5 as well as in Chapters 10 and 11.

1.1 Graphs

Graphs arise in many different settings. Let’s look at three of these.

Example 1.1 Eight students s1, so, ..., sg have been invited to a dinner. Each
student knows only some of the other students. The students that each student
knows are listed below.
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51 ¢ 54,855,858 2 1 83,854,856, 58
831 52,55,56,57,58 S4t 81,82, 55,56, 57
S5 . S81,83,54,S88 S¢ - S2,S53,S54,S87
S7 . 83,854, S¢ S8 . S1,82,83,S5

In order to determine if these eight students can be seated at a round table
where each student sits next to two students he or she knows, it is useful to
represent this situation by the diagram shown in Figure 1.1. Each point or
small circle in the diagram represents a student and two points are joined by a
line segment if the two students know each other. This diagram is referred to
as a graph.

S1 S9

S8 S3

S7 S4

S6 S5
Figure 1.1: The diagram in Example 1.1

A related question is whether the students could be seated at a round table
so that each student sits next to two students he or she does not know. ¢

Example 1.2 There are six special locations in a neighborhood park. Twelve
trails are to be built between certain pairs of these locations, namely all pairs
of locations except {a1,as}, {b1,b2}, {c1,c2} (see Figure 1.2(a)). A trail can be
straight or curved. Can this be done without any trails crossing? This situation
can be represented by the diagram with six points (each point representing a
location), where two points are joined by a line segment or a curve if the two
points represent locations to be joined by a trail (see Figure 1.2(b)). Once
again, this diagram is a graph. ¢

Example 1.3 A chemical company is to ship eight chemicals (denoted by
€1,C2,...,Cs) to a chemistry department in a university. Because some pairs of
chemicals should not be shipped in the same container, more than one container
needs to be used for this shipment. Each chemical is listed below together with
the chemicals that should not be placed in the same container as this chemical.

C1: Cy Cy i C1,C8 C3 . C5,Cq,Ct Cq . Cs,C7
C5 1 C3,C4,C8 Ce : C3,C7 Cr: (C3,C4,Cq Cg : C2,C5

It would be useful to know the minimum number of containers needed to
ship these eight chemicals. This situation can be represented by the diagram
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ay ay
O
C2 O O bl C2 @ bl
by O Oa ba c1
O ™~
as a2

(a) (b)

Figure 1.2: Constructing a graph in Example 1.2

in Figure 1.3, whose eight points represent the eight chemicals and where two
points are joined by a line segment or curve if these chemicals cannot be shipped
in the same container. Here too, this diagram is a graph. ¢

C1 Co
O
08 03
’ /\% )
Cg Cs

g

Figure 1.3: The graph in Example 1.3

We now give a formal definition of the term graph. A graph G is a finite
nonempty set V of objects called vertices (the singular is vertex) together
with a possibly empty set E of 2-element subsets of V called edges. Vertices
are sometimes referred to as points or nodes, while edges are sometimes called
lines or links. In fact, historically, graphs were referred to as linkages by some.
Calling these structures graphs was evidently the idea of James Joseph Sylvester
(1814-1897), a well-known British mathematician who became the first math-
ematics professor at Johns Hopkins University in Baltimore and who founded
and became editor-in-chief of the first mathematics journal in the United States
(the American Journal of Mathematics).

To indicate that a graph G has vertex set V and edge set F, we write
G = (V,E). To emphasize that V and E are the vertex set and edge set of a
graph G, we often write V as V(G) and E as E(G). Each edge {u,v} of G is
usually denoted by uv or vu. If e = uv is an edge of G, then e is said to join u
and v.
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As the examples described above indicate, a graph G can be represented by
a diagram, where each vertex of G is represented by a point or small circle and
an edge joining two vertices is represented by a line segment or curve joining the
corresponding points in the diagram. It is customary to refer to such a diagram
as the graph G itself. In addition, the points in the diagram are referred to
as the vertices of G and the line segments are referred to as the edges of G.
For example, the graph G with vertex set V(G) = {u,v,w,z,y} and edge set
E(G) = {uv, uy, vz, vy, wy, xy} is shown in Figure 1.4. Even though the edges
vz and wy cross in Figure 1.4, their point of intersection is not a vertex of G.

u

x w
Figure 1.4: A graph

If uv is an edge of G, then v and v are adjacent vertices. Two adjacent
vertices are referred to as neighbors of each other. The set of neighbors of a
vertex v is called the open neighborhood of v (or simply the neighborhood
of v) and is denoted by Ng(v), or N(v) if the graph G is understood. The set
N[v] = N(v) U {v} is called the closed neighborhood of v. If uv and vw are
distinct edges in G, then uv and vw are adjacent edges. The vertex u and
the edge uv are said to be incident with each other. Similarly, v and uv are
incident.

For the graph G of Figure 1.4, the vertices u and v are therefore adjacent
in G, while the vertices v and x are not adjacent. The edges uv and vx are
adjacent in G, while the edges vz and wy are not adjacent. The vertex v is
incident with the edge uv but is not incident with the edge wy.

The number of vertices in a graph G is the order of G and the number of
edges is the size of G. The order of the graph G of Figure 1.4 is 5 and its size
is 6. We typically use n and m for the order and size, respectively, of a graph.
A graph of order 1 is called a trivial graph. A nontrivial graph therefore
has two or more vertices. A graph of size 0 is called an empty graph. A
nonempty graph then has one or more edges. In any empty graph, no two
vertices are adjacent. At the other extreme is a complete graph in which
every two distinct vertices are adjacent. The size of a complete graph of order
n is (’;) = n(n — 1)/2. Therefore, for every graph G of order n and size m, it
follows that 0 < m < (72’) The complete graph of order n is denoted by K,.
The complete graphs K, for 1 <n <5 are shown in Figure 1.5.
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R AN K@

Figure 1.5: Some complete graphs

Two other classes of graphs that are often encountered are the paths and
cycles. For an integer n > 1, the path P, is a graph of order n and size n — 1
whose vertices can be labeled by vy, ve,...,v, and whose edges are v;v;11 for
i=1,2,...,n—1. For an integer n > 3, the cycle C, is a graph of order n and
size n whose vertices can be labeled by vy, vs, ..., v, and whose edges are viv,
and v;v;41 for i =1,2,...,n—1. The cycle C,, is also referred to as an n-cycle
and the 3-cycle is also called a triangle. The paths and cycles of order 5 or
less are shown in Figure 1.6. Observe that P, = K7, P» = K5 and (5 = K

P:o Pb: 0—0 P3: 0—0—0 P,: 0—0—0—0 P5:

o A, e ] Q

Figure 1.6: Paths and cycles of order 5 or less

1.2 The Degree of a Vertex

The degree of a vertex v in a graph G is the number of vertices in G that are
adjacent to v. Thus, the degree of v is the number of vertices in its neighborhood
N (v). Equivalently, the degree of v is the number of edges incident with v. The
degree of a vertex v is denoted by degs v or, more simply, by degwv if the graph
G under discussion is clear. Hence, degv = |N(v)|. A vertex of degree 0 is
referred to as an isolated vertex and a vertex of degree 1 is an end-vertex
or a leaf. An edge incident with an end-vertex is called a pendant edge. The
largest degree among the vertices of G is called the maximum degree of G
and is denoted by A(G). The minimum degree of G is denoted by §(G).
(The symbols A and § are the upper case and lower case Greek letter delta,
respectively.) Thus, if v is a vertex of a graph G of order n, then

0<(G) <degv <A(G)<n-—1.
For the graph G of Figure 1.4,
degw =1, degu = degz = 2, degv = 3 and degy = 4.
Thus, §(G) =1 and A(G) =4
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The First Theorem of Graph Theory‘

A well-known theorem in graph theory dealing with the sum of the degrees
of the vertices of a graph was observed (indirectly) by Leonhard Euler in a
1736 paper [86] of his that is now considered the first paper ever written on
graph theory — even though graphs were never mentioned in the paper. This
observation is often referred to as the First Theorem of Graph Theory.
Some have called Theorem 1.4 the Handshaking Lemma, although Euler
never used this name.

Theorem 1.4 (The First Theorem of Graph Theory) If G is a graph

of size m, then
Z degv = 2m.
veV(G)

Proof. When summing the degrees of the vertices of G, each edge of G is
counted twice, once for each of its two incident vertices. [

The sum of the degrees of the vertices of the graph G of Figure 1.4 is 12,
which is twice the size 6 of G, as expected from Theorem 1.4. The average
degree of a graph G of order n and size m is

2vev(c) de8v  2m
n on
For example, the average degree of the graph G of Figure 1.4 (having order
n =5 and size m = 6) is 2m/n = 12/5. Since the average degree of this graph
is strictly between 2 and 3, it follows that G must have a vertex of degree 3
or more and a vertex of degree 2 or less. This graph actually has vertices of
degrees 3 and 4 as well as vertices of degrees 1 and 2.

Even and Odd Vertices]

A vertex in a graph G is even or odd, according to whether its degree in
G is even or odd. Thus, the graph G of Figure 1.4 has three even vertices and
two odd vertices. While a graph can have either an even or an odd number of
even vertices, this is not the case for odd vertices.

Corollary 1.5  FEvery graph has an even number of odd vertices.
Proof. Suppose that G is a graph of size m. By Theorem 1.4,
Z degv = 2m,
veV(G)

which, of course, is an even number. Since the sum of the degrees of the even
vertices of G is even, the sum of the degrees of the odd vertices of G must be
even as well, implying that G has an even number of odd vertices. L]



1.3. ISOMORPHIC GRAPHS 7

1.3 Isomorphic Graphs

There is only one graph of order 1, two graphs of order 2, four graphs of order
3 and eleven graphs of order 4. All 18 of these graphs are shown in Figure 1.7.
This brings up the question of why every two graphs in Figure 1.7 are considered
different. In fact, there is the related question of what it means for two graphs
to be considered the same. The technical term for this is isomorphic graphs
(graphs having the same structure).

T S AN
I

[1 IS
Figure 1.7: The (non-isomorphic) graphs of order 4 or less

Two graphs G and H are isomorphic if there exists a bijective function
¢ : V(G) = V(H) such that two vertices v and v are adjacent in G if and only
if ¢(u) and ¢(v) are adjacent in H. The function ¢ is called an isomorphism
from G to H. If ¢ : V(G) — V(H) is an isomorphism, then the inverse
function ¢~1 : V(H) — V(G) is an isomorphism from H to G. If G and H are
isomorphic, we write G = H. If there is no such function ¢ as described above,
then G and H are non-isomorphic graphs and we write G 2 H.

The graphs G and H of Figure 1.8 (both of order 7 and size 8) are isomorphic
and the function ¢ : V(G) — V(H) defined by

¢(’LL1) = V4, ¢(u2) = Us, ¢(u3) = V1,
Pd(ua) = ve, O(us) = va, d(ug) = v3, P(uy) = vy

is an isomorphism, although there are three other isomorphisms. The graphs F
and F» of Figure 1.8 (both of order 7 and size 10) are not isomorphic however.
An explanation of this will be given shortly.

The graphs G; and G5 in Figure 1.9 are isomorphic, while G; and G35 are
not isomorphic. For example, the function ¢ : V(G1) — V(G2) defined by

P(u1) = v1, p(uz) = v, ¢p(u3) = vs,
P(ug) = v, p(us) = v4, ¢(us) = v6

is an isomorphism. The graph G5 of Figure 1.9 contains three mutually adjacent
vertices wi, ws,wg. If G and G3 were isomorphic, then for an isomorphism
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U1
U Us O
Ou H: v v
Uus 4 | 3
Ug w7 O

v7

G: u3

Figure 1.8: Isomorphic and non-isomorphic graphs

a : V(G3) = V(Gy), the vertices a(wi), a(ws), a(ws) must also be mutually
adjacent in G;. Since G; does not contain three mutually adjacent vertices,

there is no isomorphism from G3 to G; and so G; 2% G3. Furthermore, Go % G3
as well.

U1 Wy
U1 u9 us
V6 V2 We %]
Vs V3 ws Q— w3
Uyg Us Ue V4 Wy
Gl G2 GS

Figure 1.9: Isomorphic and non-isomorphic graphs

Suppose that two graphs G and H are isomorphic. Then there exists an
isomorphism ¢ : V(G) — V(H). Since ¢ is a bijective function, |[V(G)| =
|V (H)|. Furthermore, since two vertices u and v are adjacent in G if and only
if p(u) and ¢(v) are adjacent in H, it follows that |E(G)| = |E(H)|. These
facts are summarized below, together with another necessary condition for two
graphs to be isomorphic.

Theorem 1.6 If two graphs G and H are isomorphic, then they have the same
order and the same size, and the degrees of the vertices of G are the same as
the degrees of the vertices of H.
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Proof. We have already observed that isomorphic graphs have the same order
and the same size. Let v be a vertex of G and suppose that degv = k. Then
v is adjacent to k vertices, say v1,vs,..., V5. Suppose that v is not adjacent to
Uy, Uz, ... ug. If ¢ V(G) — V(H) is an isomorphism, then ¢(v) is adjacent
to @(v1), d(va), ..., d(vg) while ¢(v) is not adjacent to ¢(uy), d(ua), ..., d(ur).
Hence, ¢(v) has degree k in H. n

The proof of Theorem 1.6 also shows that every isomorphism from a graph
G to a graph H maps every vertex of G to a vertex of the same degree in H.

It is therefore a consequence of Theorem 1.6 that if G and H are two graphs
such that (1) the orders of G and H are different, or (2) the sizes of G and H
are different or (3) the degrees of the vertices of G and those of the vertices
of H are different, then G and H are not isomorphic. Since the graph Fj in
Figure 1.8 contains a vertex of degree 5 and no vertex of F} has degree 5, it
follows by Theorem 1.6 that Fy 2 F5.

The conditions described in Theorem 1.6 are strictly necessary for two
graphs to be isomorphic — they are not sufficient. Indeed, the graphs G; and G3
of Figure 1.9 have the same order, the same size and the degrees of the vertices
of G; and G5 are the same; yet G; and GG3 are not isomorphic.

Next, consider the four graphs Hi, Hs, H3 and H4 shown in Figure 1.10.
The graphs H; and H; have order 7, size 7 and the degrees of the vertices
of these two graphs are the same. Furthermore, each graph contains a single
triangle. Nevertheless, Hy % Ho, for suppose that there is an isomorphism ¢
from H; to Hs. Since each graph has only one vertex of degree 3 and one vertex
of degree 4, ¢(u1) = ve and ¢(y1) = x2. Since v; is adjacent to u; and y, it
follows that ¢(v1) is adjacent to vy and xo. However, Hy contains no vertex
adjacent to ve and zo. Thus, H; % Hs.

t1 to ug
w1
ul v2
H; : 1 Hy: w0 —— Oy
U1 Y1 3:22

21
T4 0S4 t4 UL V4 w4 T4

r3 O O3 0 —0—0—0—0
é us3 v3 w3
Hs: o o O—O0 Y3 Hy: o
Z4

| 1
t3 O z3

Figure 1.10: Non-isomorphic graphs
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The graphs Hs and Hy of Figure 1.10 have order 9, size 8 and the degrees
of the vertices of these two graphs are the same; yet these two graphs as well
are not isomorphic. Suppose that there is an isomorphism ¢ from Hjs to Hy.
Consider the vertex vs. Since degy, vs = 2, it follows that ¢(v3) has degree 2
in Hy. Since v3 is adjacent to ug and ws, we must have ¢(vs) adjacent to ¢(ug)
and ¢(ws). Since degy, us = degy, w3 = 2, it follows that ¢(u3) and ¢(ws)
have degree 2 in H,. But no vertex of degree 2 in H, is adjacent to two vertices
of degree 2. Thus, H3 2 H,.

Subgraphs

A graph H is a subgraph of a graph G if V(H) C V(G) and E(H) C E(G),
in which case we write H C G. If H is a subgraph of GG, then G is a supergraph
of H. If V(H) = V(G), then H is a spanning subgraph of G. If H is a
subgraph of a graph G where H % G, then H is a proper subgraph of G.
Therefore, if H is a proper subgraph of G, then either V' (H) is a proper subset
of V(G) or E(H) is a proper subset of F(G).

Figure 1.11 shows six graphs, namely G and the graphs G; fori =1,2,...,5.
All six of these graphs are proper subgraphs of G, except G itself and Gj.
Although G is a subgraph of itself, it is not a proper subgraph of G. The graph
G contains the edge uz, which is not an edge of G and so G is not even a
subgraph of G. The graph G3 is a spanning subgraph of G since V(G3) = V(G).

U ov U v
G w T Gi: wQ T G T
yore—m"—02z y z Yy z

“\jv 7 e o
Gs: wO x G wo——0x  Gs:

Y z Yy z yOo——0z

Figure 1.11: Graphs and subgraphs

Induced Subgraphs ‘

For a nonempty subset S of V(G), the subgraph G[S] of G induced by S
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has S as its vertex set and two vertices u and v are adjacent in G[S] if and only
if w and v are adjacent in G. A subgraph H of a graph G is called an induced
subgraph if there is a nonempty subset S of V(G) such that H = G[S]. Thus
G[V(G)] = G. For a nonempty set X of edges of a graph G, the subgraph
G[X] induced by X has X as its edge set and a vertex v belongs to G[X]
if v is incident with at least one edge in X. A subgraph H of G is edge-
induced if there is a nonempty subset X of E(G) such that H = G[X]. Thus,
G[E(G)] = G if and only if G has no isolated vertices.

Once again, consider the graphs shown in Figure 1.11. Since xzy € E(G)
but zy ¢ FE(G4), the subgraph G4 is not an induced subgraph of G. On
the other hand, the subgraphs G2 and Gy are both induced subgraphs of G.
Indeed, for Sy = {v,z,y,2} and Sy = {u,v,y,z}, G2 = G[S;1] and G5 =
G[S2]. The subgraph G4 of G is edge-induced; in fact, G4 = G[X], where
X = {uw,wz,wy, rz,yz}.

For a vertex v and an edge e in a nonempty graph G = (V, E), the subgraph
G — v, obtained by deleting v from G, is the induced subgraph G[V — {v}] of
G and the subgraph G — e, obtained by deleting e from G, is the spanning
subgraph of G with edge set E — {e}. More generally, for a proper subset U of
V, the graph G — U is the induced subgraph G[V — U] of G. For a subset X
of E, the graph G — X is the spanning subgraph of G with edge set £ — X. If
u and v are distinct nonadjacent vertices of GG, then G + uv is the graph with
V(G 4+ w) = V(G) and E(G + uwv) = E(G) U {uv}. Thus, G is a spanning
subgraph of G 4+ wv. For the graph G of Figure 1.12, the set U = {t,x} of
vertices and the set X = {tw,ux, vz} of edges, the subgraphs G — u, G — wz,
G — U and G — X of G are also shown in that figure, as is the graph G + wwv.

Figure 1.12: Deleting vertices and edges from and adding edges to a graph
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If every two edges e; and ey of a graph G have the property that G — e; =2
G — es, then we write G — e for the deletion of any edge from G. Hence, for
n > 2, K, — e denotes the graph obtained by deleting any edge from K,,. If
G + uv 2 G + zy for any two pairs {u,v} and {z,y} of nonadjacent vertices
of G, then we write G + e for the addition of any edge to G. In particular,
Ci+te=Ky—e.

1.4 Regular Graphs

There are certain classes of graphs that occur so often that they deserve special
mention and, in some cases, special notation. We describe some of the most
prominent of these now.

A graph G is regular if the vertices of G have the same degree and is
regular of degree r if this degree is . Such graphs are also called r-regular.
The complete graph of order n is therefore a regular graph of degree n — 1 and
every cycle is 2-regular. In Figure 1.13 are shown all (non-isomorphic) regular
graphs of orders 4 and 5, including the cycles C4 and C5 and the complete
graphs K, and Kj5. Since no graph has an odd number of odd vertices, there is
no l-regular or 3-regular graph of order 5. Indeed, the pairs r,n of integers for
which there exist r-regular graphs of order n are predictable.

o o  o0—©0

O-regular I-regular 2-regular 3-regular
©)
O @)
O (@)
0-regular 2-regular 4-regular

Figure 1.13: The regular graphs of orders 4 and 5

Theorem 1.7 For integers r and n, there exists an r-regular graph of order
n if and only if 0 <r <n—1 and r and n are not both odd.

Proof. That the conditions are necessary is an immediate consequence of
Corollary 1.5 and the fact that 0 < degv < n — 1 for every vertex v in a
graph of order n. For the converse, suppose that r and n are integers where
0<r<n-1andr and n are not both odd. Assume first that r is even. If
r = 0, then the graph of order n consisting of n isolated vertices is r-regular.
So we may assume that r = 2k for some integer £ > 1 and n > 2k + 1. Let G
be the graph with V(G) = {v1,v2,...,v,} such that v; (1 <i < n) is adjacent
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t0 Vit1,Vita, ..., Uitk (Subscripts expressed modulo n). The resulting graph G
is then an r-regular graph of order n. If r is odd, then n = 2¢ is even. Hence
r = 2k + 1 for some integer k£ with 0 < k </ — 1. For the graph G in this case,
the vertex v; is adjacent to the 2k vertices described above and adjacent as well
to v;ye. Again, G is an r-regular graph of order n. [

The 4-regular and 5-regular graphs of order 10 constructed in the proof of
Theorem 1.7 are shown in Figure 1.14.

U1 U1
V10 U2 V10 U2

Vg U3 Vg U3

(%] V4 Vg V4

v7 Us U7 Vs

Vg Vg

Figure 1.14: 4-regular and 5-regular graphs of order 10

The Petersen Graph

A 3-regular graph is also called a cubic graph. The graphs of Figure 1.9
are cubic as is the complete graph K. One of the best known cubic graphs
is the Petersen graph, named for the Danish mathematician Julius Petersen
whose 1891 research on regular graphs [186] is often credited as the beginning
of the study of graphs as a theoretical subject. In fact, the Petersen graph is
one of the best known graphs. Three different drawings of the Petersen graph
are shown in Figure 1.15. We will have many occasions to encounter this graph.

Figure 1.15: Three drawings of the Petersen graph

1.5 Bipartite Graphs

Another class of graphs that we often encounter are the bipartite graphs. A
graph G is bipartite if V(G) can be partitioned into two sets U and W (called
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partite sets) so that every edge of G joins a vertex of U and a vertex of W.
The graph G in Figure 1.16(a) is bipartite with partite sets {v1,vs3,vs,v7} and
{v2,v4,v6}. This graph is redrawn in Figure 1.16(b) to see more clearly that it
is bipartite. If G is an r-regular bipartite graph, r > 1, with partite sets U and
W, then |U| = |W|. This follows since the size of G is r|U| = r|W|. For two
nonempty sets X and Y of vertices in a graph G, the set

X, Y]={ay:z e X,y Y}

consists of those edges joining a vertex of X and a vertex of Y. Thus, if G is a
bipartite graph with partite sets U and W, then [U, W] = E(G).

U1 V4 Us V7 U1 V3 Vs V7
oO——O
G: G:
Vg U3 Ve V2 V4 Vg

(a) (b)
Figure 1.16: A bipartite graph

A graph G is a complete bipartite graph if V(G) can be partitioned into
two sets U and W (called partite sets again) so that uw is an edge of G if
and only if w € U and w € W. If |[U| = s and |W| = ¢, then this complete
bipartite graph has order s+t and size st and is denoted by K ; (or K, ). The
complete bipartite graph K is called a star. The complete bipartite graphs
K173, Kgﬁg, K273 and K373 are shown in Figure 1.17. Observe that K272 = 04.
The star K 3 is sometimes referred to as a claw.

N XM

K3 Ky

Figure 1.17: Complete bipartite graphs

Since the size of the complete bipartite graph KL*J M2 is [n/2] - [n/2] =
2170 2
|n?/4|, there are bipartite graphs of order n and size [n?/4]. No bipartite
graph of order n can have a larger size however.

Theorem 1.8 The size of every bipartite graph of order n is at most [n?/4].

Proof. Let G be bipartite graph of order n with partite sets U and W. Then
|U| = z and |W| = n — z for some integer z with 1 < 2 < n — 1. Hence the size
of G is at most z(n — x).
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Since (n — 2z)? > 0, it follows that
n? > dnx — 42* = dx(n — x)
and so z(n — x) < n?/4. Since x(n — x) is an integer, z(n — z) < [n?/4]. =

No bipartite graph G can contain a triangle H, for otherwise, at least two
vertices v and v of H must belong to the same partite set and so v and v are
not adjacent. Hence if G is a graph of order n > 3 and size m < |n?/4], then G
need not contain a triangle. However, in 1907 the Dutch mathematician Willem
Mantel [161] showed that any graph of order n with a larger size must contain
a triangle.

Theorem 1.9 Every graph of order n > 3 and size m > |n?/4] contains a
triangle.

Proof. First, observe that the result is true for n = 3 and n = 4. Suppose,
however, that the statement is false. Then there is a smallest integer n > 5 and
a graph G of order n and size m > |n?/4] not containing a triangle. Let uv be
an edge of G. Since G contains no triangle, there is no vertex in G adjacent to
both w and v. Hence, (degu—1)+ (degv—1) < n—2 and so degu+degv < n.
Let G’ = G —u —v. Since G’ is a subgraph of G, it follows that G’ also does
not contain a triangle. Furthermore, G’ has order n — 2 and size

m' =m — (degu +degv) +1> [n?/4] —n + 1.

Thus,
,>n2 +1 n?—4dn+4  (n—2)?
m — — N = = .
4 4 4
From the defining property of the graph G, it follows that G’ contains a triangle,
producing a contradiction. [

Therefore, from Theorems 1.8 and 1.9, it follows that every graph of or-
der n > 3 and size m > |n?/4] not only fails to be bipartite, it must, in fact,
contain a triangle.

Complete Multipartite Graphs‘

Bipartite graphs belong to a more general class of graphs. For an integer
k > 1, a graph G is a k-partite graph if V(G) can be partitioned into k
subsets V1, Vs, ..., Vi (again called partite sets) such that every edge of G
joins vertices in two different partite sets. A 1-partite graph is then an empty
graph and a 2-partite graph is bipartite. A complete k-partite graph G is
a k-partite graph with the property that two vertices are adjacent in G if and
only if the vertices belong to different partite sets. If |V;| = n; for 1 <i < k,
then G is denoted by K, n,.....n, (the order in which the numbers ny, no, ..., ny
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are written is not important). If n;, = 1 for all ¢ (1 < i < k), then G is the
complete graph K. A complete multipartite graph is a complete k-partite
graph for some integer k > 2. Some complete multipartite graphs are shown in
Figure 1.18

AR s

Ki111=Ky Ks2

Figure 1.18: Some complete multipartite graphs

1.6 Operations on Graphs

There are many ways of producing a new graph from one or more given graphs.
The most common of these is the complement of a graph.

The Complement of a Graph

The complement G of a graph G is that graph with vertex set V(G) such
that two vertices are adjacent in G if and only if these vertices are not adjacent
in G. Any isomorphism from a graph G to a graph H is also an isomorphism
from G to H. Consequently, G = H if and only if G = H. If G is a graph of
order n and size m, then G is a graph of order n and size (g) m. A graph
G and its complement are shown in Figure 1.19. The complement K, of the
complete graph K, is the empty graph of order n.

u u

— x
G: w G v(t é \ 7)11)
Y z Y z

Figure 1.19: A graph and its complement

A graph G is self-complementary if G is isomorphic to G. Certainly, if G is
a self-complementary graph of order n, then its size is m = (})/2 = n(n—1)/4.
Since only one of n and n — 1 is even, either 4 | n or 4 | (n — 1); that is,
if G is a self-complementary graph of order n, then either n = 0 (mod 4) or
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n =1 (mod 4). (See Exercise 29.) The self-complementary graphs of order 5
or less are shown in Figure 1.20.

e Y

Figure 1.20: The self-complementary graphs of order 5 or less

The Union and Join of Graphs

We next describe some common binary operations defined on graphs. This
discussion introduces notation that will be especially useful in giving examples.
Over the years, different authors have used different notation for the operations
we are about to describe. In the following definitions, we assume that G; and
G are two graphs with disjoint vertex sets.

The union G = G1+ G5 of G1 and G5 has vertex set V(G) = V(G1)UV (G2)
and edge set E(G) = E(G1) U E(G2). The union G + G of two disjoint copies
of G is denoted by 2G. Indeed, if a graph G consists of k (> 2) disjoint
copies of a graph H, then we write G = kH. The graph 2K; + 3K, + K, 3 is
shown in Figure 1.21(a). The join G = G; V G2 of G and G5 has vertex set
V(G) =V(G1) UV(G2) and edge set

E(G)=E(G1)UE(G:)U{uw:ueV(Gy),v e V(Gs)}.

Using the join operation, we see that K,V K; = K;. Another illustration is
given in Figure 1.21(b).

O
2K1+3K2+K1)32 I
O

O O
RPN
(a)

Gy : G1VGsy: %
(b)

Figure 1.21: The union and join of graphs

G1:

o0——O
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The Cartesian Product of Graphs ‘

The Cartesian product G of two graphs G; and G2, commonly denoted
by G1 O G5 or G; x G, has vertex set

V(G) =V (G1) x V(Ga),
where two distinct vertices (u,v) and (z,y) of Gy O Gy are adjacent if either
(1) u =2 and vy € E(G3) or (2) v =y and ux € E(G1).

A convenient way of drawing G; [J G is to first place a copy of G2 at each vertex
of Gy (see Figure 1.22(b)) and then join corresponding vertices of Go in those
copies of G placed at adjacent vertices of G (see Figure 1.22(c)). Equivalently,
G1 O G5 can be constructed by placing a copy of G at each vertex of G5 and
adding the appropriate edges. As expected, G; 0 Gy = G5 O G for all graphs
G1 and GQ.

Gi: O0—O0—O0

<] < <=

C G1|:|G2

Figure 1.22: The Cartesian product of two graphs

Hypercubes

An important class of graphs is defined in terms of Cartesian products. The
n-cube Q, is Ky if n = 1, while for n > 2, @, is defined recursively as the
Cartesian product Q,,_1 O K5 of Q,,_1 and K5. The n-cube can also be defined
as that graph whose vertex set is the set of ordered n-tuples (a1, as,...,a,) or
aias -+ - a, where a; is 0 or 1 for 1 < i < n (commonly called n-bit strings),
such that two vertices are adjacent if and only if the corresponding ordered
n-tuples differ at precisely one coordinate. The graph @, is an n-regular graph
of order 2. The n-cubes for n = 1,2, 3 are shown in Figure 1.23, where their
vertices are labeled by m-bit strings. The graphs @Q,, are also called hyper-
cubes.

1.7 Degree Sequences

We saw in the First Theorem of Graph Theory (Theorem 1.4) that the sum of
the degrees of the vertices of a graph G is twice the size of G and in Corollary 1.5
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110 O 0111
10 11 'w

o

O o)
Ql : Q2 : Q3 : .
O Q
000 001

O 101

Figure 1.23: The n-cubes for n =1,2,3

—

00 01 100 O

that G must have an even number of odd vertices. We have also described
conditions under which a regular graph of order n can exist. We now consider
the degrees of the vertices of a graph in more detail.

A sequence di,ds,...,d, of nonnegative integers is called a degree se-
quence of a graph G of order n if the vertices of G can be labeled vy, vs, ..., vy,
so that degv; = d; for 1 < ¢ < n. For example, a degree sequence of the graph
G of Figure 1.24 is 4,3,2,2,1 (or 1,2,2,3,4 or 2,1,4,2, 3, etc.). We commonly
write the degree sequence of a graph as a nonincreasing sequence.

O—0
G: 4,3,2,2, 1

Figure 1.24: A degree sequence of a graph

A finite sequence s of nonnegative integers is a graphical sequence if
s is a degree sequence of some graph. Thus, 4,3,2,2,1 is graphical. There
are some obvious necessary conditions for a sequence s : di,ds,...,d, of n
nonnegative integers to be graphical. While the conditions that d; < n — 1 for
alli (1 <i<n)and ) ., deguv; is even are necessary for s to be graphical, they
are not sufficient. For example, the sequence 3,3, 3,1 satisfies both conditions
but it is not graphical, for if three vertices of a graph of order 4 have degree 3
then the remaining vertex must have degree 3 as well.

It is not all that unusual for a graphical sequence to be the degree sequence
of more than one graph. For example, the graphical sequence 3,2,2,2.1 is the
degree sequence of the two (non-isomorphic) graphs in Figure 1.25. On the
other hand, each of the 18 graphs in Figure 1.7 has a degree sequence possessed
by no other graph.

Dﬁ_o @

Figure 1.25: Two graphs with the same degree sequence
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2-Switches

While two graphs with the same degree sequence need not be isomorphic,
each can be obtained from the other by a sequence of edge shifts where at each
step, two nonadjacent edges in some graph I’ are deleted and two nonadjacent
edges in F are added to F such that the four edges involved are incident with
the same four vertices.

Let H be a graph containing four distinct vertices u, v, w and x such that
wo,wr € E(H) and vw,vz ¢ E(H). The process of deleting the edges uv and
wz from H and adding uw and va to H is referred to as a 2-switch in H (see
Figure 1.26, where a dashed line means no edge). This produces a new graph G
having the same degree sequence as H. Of course, if G can be produced from
H by a 2-switch, then H can be obtained from G by a 2-switch.

u (% u v

O_O ........ O
. —

o—-0 O

w T w T

Figure 1.26: A 2-switch in a graph

Theorem 1.10 Let s : dy,ds,...,d, be a graphical sequence with A = dy >
dy > -+ > d, and let G4 be the set of all graphs F with degree sequence s such
that V(F) = {v1,va,...,v,} where degv; = d; for 1 <i <mn. Then every graph
H € G5 can be transformed into a graph G € Gs by a sequence of 2-switches
such that Ng(vi) = {va,v3,...,0a41}-

Proof. Suppose that this statement is false. Let W = {wva,vs,...,va 41}
Among all graphs into which H can be transformed, let G be one for which the
sum of the subscripts of the vertices in N¢(v1) is minimum. Since Ng(vy) # W,
the vertex v, is adjacent to a vertex vy and is not adjacent to a vertex v; with
j < k and so d; > di. Consequently, there is a vertex vg such that v;v, € E(G)
and vive € E(G). Replacing the edges vivg, and vjve by viv; and vpve is a 2-
switch in G that produces a graph G; € G, for which the sum of the subscripts
of the vertices in N¢, (v1) is less than that of Ng(v1). Consequently, H can be
transformed into G; and so this is a contradiction. n

One consequence of Theorem 1.10 is that every two graphs with the same
degree sequence are related in terms of 2-switches. The following theorem
appeared in the book Graphs and Hypergraphs by Claude Berge [25].

Theorem 1.11 If G and H are two graphs with the same degree sequence,
then H can be transformed into G by a (possibly empty) sequence of 2-switches.
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Proof. We proceed by induction on the order n of G and H. If n < 4, then
the result is immediate. For a given integer n > 5, assume that every two
graphs of order n — 1 with the same degree sequence can be transformed into
each other by a sequence of 2-switches. Let s : dy,ds,...,d, be a graphical
sequence with A = dy; > dy > -+ > d,, and let G5 be the set of all graphs F'
with degree sequence s such that V(F) = {vy,vs,...,v,} where degv; = d;
for 1 < i <mn. Let W = {vy,v3,...,va11}. Let G and H be two graphs
in G;. By Theorem 1.10, G can be transformed into a graph G; € G such
that Ng, (v1) = W and H can be transformed into a graph H; € G, such that
Ny, (v1) = W. Since G; — vy and Hy — vy are two graphs of order n — 1 with
the same degree sequence, it follows by the induction hypothesis that G; — vy
can be transformed into H; — v; by a sequence of 2-switches. Hence G; can be
transformed into H; by a sequence of 2-switches and so G can be transformed
into H by a sequence of 2-switches. [

| The Havel-Hakimi Theorem

There are necessary and sufficient conditions for a finite sequence of non-
negative integers to be graphical. One of these is due to Véclav Havel [124]
and S. Louis Hakimi [117] and is a consequence of Theorem 1.10. This result
is often referred to as the Havel-Hakimi Theorem, despite the fact that Havel
and Hakimi gave independent proofs and wrote separate papers containing this
theorem.

Theorem 1.12 (Havel-Hakimi Theorem) A sequence s : dy,da,...,d,
of nonnegative integers with A =dy > do > --- > d,, and A > 1 is graphical if
and only if the sequence

s1:dy _17d3_ 17"'7dA+1 _]-adA+23"'7dn
s graphical.

Proof. First, assume that s; is graphical. Then there exists a graph G; of
order n — 1 such that s; is a degree sequence of G;. Thus, the vertices of G,
can be labeled as vo, v3,...,v, so that

degg, v;

di—1 if2<i<A+1
d; ifA+2<i<n.

A new graph G can now be constructed by adding a new vertex v; to G
together with the A edges viv; for 2 < ¢ < A + 1. Since deggv; = d; for
1 <i < mn, it follows that s : A = dy,ds,...,d, is a degree sequence of G and
so s is graphical.

Conversely, let s be a graphical sequence. By Theorem 1.10, there exists a
graph G of order n having degree sequence s with V(G) = {v1,va,...,v,} such
that degv; = d; for all ¢ (1 <4 <n) where Ng(v1) = {v2,v3,...,0a41}. Then
G — v1 has degree sequence s;. n
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Theorem 1.12 actually provides us with an algorithm for determining whether
a given finite sequence of nonnegative integers is graphical. If, upon repeated
application of Theorem 1.12, we arrive at a sequence every term of which is 0,
then the original sequence is graphical. On the other hand, if we arrive at a
sequence containing a negative integer, then the given sequence is not graphical.
We now illustrate Theorem 1.12 with the sequence

$:5,3,3,3,3,2,2,2,1,1, 1.

After one application of Theorem 1.12 (deleting 5 from s and subtracting 1
from the next five terms), we obtain

§1:2,2,2,2,1,2,2,1,1,1.
Reordering this sequence, we have

$1:2,2,2,2,2,2,1,1,1,1.
Continuing in this manner, we get

sh:1,1,2,2,2,1,1,1,1
59:2,2,2,1,1,1,1,1,1
sh=s3:1,1,1,1,1,1,1,1
s, :0,1,1,1,1,1,1
54:1,1,1,1,1,1,0
s5:0,1,1,1,1,0
s5:1,1,1,1,0,0
s6:0,1,1,0,0
s¢:1,1,0,0,0

s =s57:0,0,0,0.

Therefore, s is graphical. Of course, if we observe that some sequence prior to
s7 is graphical, then we can conclude by Theorem 1.12 that s is graphical. For
example, the sequence s3 is clearly graphical since it is the degree sequence of
the graph G3 = 4K5 in Figure 1.27. By Theorem 1.12, each of the sequences
s2,81 and s is also graphical. To construct a graph with degree sequence so, we
proceed in reverse from s§ = s3 to sq, observing that a vertex should be added
to Gz so that it is adjacent to two vertices of degree 1. We thus obtain a graph
G2 with degree sequence sy (or s). Proceeding from s to s1, we again add
a new vertex joining it to two vertices of degree 1 in G». This gives a graph
G1 with degree sequence s; (or s}). Finally, we obtain a graph G with degree
sequence s by considering s/; that is, we add a new vertex to G; joining it to
vertices of degrees 2,2,2,2,1. This procedure is illustrated in Figure 1.27.
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LI < T] ]

11D e ALLA

Figure 1.27: Construction of a graph G with a given degree sequence

It should be pointed out that the graph G in Figure 1.27 is not the only graph
with degree sequence s. However, there are graphs that cannot be produced
by the method used to construct the graph G in Figure 1.27. For example, the
graph H of Figure 1.28 is such a graph.

0—0——0
H:
0—0—0

Figure 1.28: A graph that cannot be constructed by
the method following Theorem 1.12

| The Erdés—Gallai Theorem |

Suppose that s :dy,ds,...,d, is a graphical sequence with d; > dy > --- >
dp. Then there exists a graph G of order n with V(G) = {v1,vs,...,v,} such
that degv; = d; for all i (1 < i < n). Of course, the sum ;" d; is even.
Let k be an integer with 1 < k < n — 1. Suppose that V; = {v1,vq,...,0x}
and Vo = {vg41,Vk+2,.-.,0n}. Now the sum Zle d; counts every edge in
G[V1] twice and counts each edge in [Vi, V5] once. The size of G[V4] is at most
(’;) = k(k —1)/2, while for each ¢ (k+ 1 <14 < n) the number of edges joining
v; and V; is at most min{k, d;}. Thus,

k n n
k . .
E d; < 2(2) + | E min{k,d;} = k(k—1) + ‘ E min{k, d;}. (1.1)
1=1 i=k+1 i=k+1

Hence, for every graphical sequence s, we must have both that >, d; is even
and (1.1) is satisfied for every integer k with 1 < k < n — 1. These conditions
are not only necessary for a sequence of nonnegative integers to be graphical,
they are sufficient as well. Since the proof of the sufficiency is technical, we
omit this. This result was established by Paul Erdds and Tibor Gallai [81], who
were introduced to graph theory as youngsters by Dénes Konig, author of the
first book on graph theory. In fact, Gallai was Konig’s only doctoral student.
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Theorem 1.13 (Erd8s—Gallai Theorem) A sequence s : di,ds,...,d,
(n > 2) of nonnegative integers with di > do > -+ > d,, is graphical if and
only if Y7, d; is even and for each integer k with 1 <k <n—1,

n

k
> di<k(k—1)+ Y min{k,d;}.
=1

i=k+1

Irregular Graphs ‘

According to Theorem 1.7, there is an r-regular graph of order n if and only
if 0 <r<n-—1and rniseven. At the other extreme are nontrivial graphs, no
two vertices of which have the same degree. A nontrivial graph G is irregular
if deg u # degw for every two vertices u and v of G. Actually, no graph has this

property.
Theorem 1.14 No graph is irregular.

Proof. Assume, to the contrary, that there exists an irregular graph G of
order n > 2. Since the degree of every vertex of G is one of the n integers
0,1,...,n —1, each of these integers is the degree of exactly one vertex. Thus,
we may assume that V(G) = {v1,va,...,v,} where degv; =i—1for 1 <i <n.
Since degwv; = 0, the vertex vy is isolated in G and since degv, = n — 1, it
follows that v, is adjacent to v;. This is a contradiction. [

By Theorem 1.14, for each integer n > 2, there is no graph of order n whose
n vertices have distinct degrees. Since the degrees of the vertices of the graph
G of Figure 1.24 are 4,3,2,2,1, it is possible for n — 1 vertices of a graph of
order n to have distinct degrees. A graph G of order n > 2 is nearly irregular
if exactly two vertices of G have the same degree.

Theorem 1.15 For every integer n > 2, there are exactly two nearly irreqular
graphs of order n.

Proof. First, observe that if GG is a nearly irregular graph of order n, then G
cannot contain a vertex of degree 0 and a vertex of degree n — 1. Thus, either

each vertex of G has one of the degrees 1,2,...,n — 1 or each vertex of G has
one of the degrees 0,1,...,n — 2. Furthermore, if G is nearly irregular, then so
is G.

We show by induction that for each integer n > 2 there are exactly two
nearly irregular graphs of order n. Since K, and K, are nearly irregular, the
result holds for n = 2. Assume for an integer n > 3 that there are exactly two
nearly irregular graphs of order n—1. Necessarily, one of these graphs is a graph
F with A(F) =n — 2 and §(F) = 1 while the other is F' where A(F) =n — 3
and §(F) = 0. Then H = F + K; and H are nearly irregular graphs of order
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n, where A(H) =n—2 and 6(H) = 0. We claim that these are the only nearly
irregular graphs of order n. Assume, to the contrary, that there is a third graph
G of order n that is nearly irregular. Then either A(G) = n—1 or §(G) = 0, say
the latter. Then G = G1 + Ki, where (G is the nearly irregular graph of order
n — 1 with A(G1) = n — 2. However then, G; = H, which is a contradiction. m

It follows by Theorem 1.15 then that for each integer n > 2, there exist
exactly two distinct graphical sequences of length n having exactly two equal
terms.

1.8 Multigraphs

There are occasions when a graph is not the appropriate structure to model
a particular situation. For example, suppose that we are considering various
locations in a certain community and there are roads between some pairs of
locations that do not pass through any other location. Although this situation
may be represented by a graph, there may be some characteristics in this net-
work of roads that are not captured by a graph. For example, suppose that
there are pairs of locations connected by two or more roads (not passing through
any other location) and this information is important to us.

In the definition of a graph G, every two distinct vertices are joined by either
one edge or no edge of G. There will be occasions when we will want to permit
more than one edge to join two vertices. A multigraph is a nonempty set
of vertices, every two of which are joined by a finite number of edges. Hence
a multigraph H may be expressed as H = (V, F), where F is a multiset of
2-element subsets of V. Two or more edges that join the same pair of distinct
vertices are called parallel edges. The underlying graph of a multigraph H
is that graph G for which V(G) = V(H) and uv € E(G) if u and v are joined
by at least one edge in H.

An edge joining a vertex to itself is called a loop. Structures that permit
both parallel edges and loops (including parallel loops) are sometimes called
pseudographs. For emphasis then, every two vertices of a graph are joined
by at most one edge and loops are not permitted. In a multigraph, every
two vertices are permitted to be joined by more than one edge but this is
not required. Also, no multigraph contains a loop. In a pseudograph, every
two vertices are permitted to be joined by more than one edge and loops are
permitted. However, parallel edges and loops are not required in pseudographs.
There are authors who refer to multigraphs or pseudographs as graphs and
those who refer to what we call graphs as simple graphs. Consequently,
when reading any material written on graph theory, it is essential that there is
a clear understanding of how the term graph is being used. According to the
terminology introduced here then, every multigraph is a pseudograph and every
graph is both a multigraph and a pseudograph.

In Figure 1.29, H; and H4 are multigraphs while Ho and Hj are pseudo-
graphs. Of course, H; and H,4 are also pseudographs while H, is the only graph
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in Figure 1.29. For a vertex v in a multigraph G, the degree degv of v in G
is the number of edges of GG incident with v. In a pseudograph, each loop at
a vertex contributes 2 to its degree. For the pseudograph Hj of Figure 1.29,
degu =5 and degv = 2.

Yiz-3-9

Figure 1.29: Multigraphs and pseudographs

The degree sequence of the multigraph G in Figure 1.30 is 5,4, 3 and that
of the multigraph G5 is 4, 3,2, 1. That is, G; and G5 are irregular multigraphs.

Gy Gy : o N O

Figure 1.30: Two irregular multigraphs

The multigraphs G; and G4 in Figure 1.30 illustrate the following result.

Theorem 1.16 For every connected graph G of order at least 3, there exists
an irregular multigraph whose underlying graph is G.

Proof. Let E(G) = {e1,e2,...,em}, where ¢; = u;v; for i = 1,2,...,m.
Replacing e; by 2°~! parallel edges joining u; and v; produces a multigraph H.
Since every two vertices of G have distinct sets of edges incident with them and
every positive integer has a unique base 2 representation, their degrees in H
are distinct and so H is irregular. ]

When describing walks in multigraphs or in pseudographs, it is often nec-
essary to list edges in the sequence as well as vertices in order to specify the
edges being used in the walk. For example,

W= (’U,, €1,Uu,€s3,v, €6, W, €q, 1),67,71))

is a u — w walk in the pseudograph G of Figure 1.31.
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Figure 1.31: Walks in a pseudograph

27
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Exercises for Chapter 1

Section 1.1. Graphs

1. An electronics company keeps on hand wire segments of a fixed length and
of different colors for various purposes. Each wire is either colored blue
(b), green (g), purple (p), red (r), silver (s), white (w) or yellow (y). The
company has many wire segments of each color. All of the wire segments
have been randomly stored in a large barrel. Eight handfuls of wires are
removed from the barrel and each collection of wires is placed in a box.
The boxes are denoted by B; (1 < ¢ < 8). The colors of the wire segments
in each box are:

By ={b,r} Bz={p,rs,w} Bs={pwvy} By ={g,7,y}
B5:{g} B6:{b7gay} B7:{gvp757w7y} Bgz{s,w,y}.

We are interested in those pairs of boxes containing at least one wire
segment of the same color. Model this situation by a graph.

2. A graph G = (V, E) of order 8 has the power set of the set S = {1,2,3}
as its vertex set, that is, V is the set of all subsets of S. Two vertices A
and B of V are adjacent if AN B = (). Draw the graph G, determine the
degree of each vertex of G and determine the size of G.

Section 1.2. The Degree of a Vertex

3. A graph G of order 26 and size 58 has 5 vertices of degree 4, 6 vertices of
degree 5 and 7 vertices of degree 6. The remaining vertices of G all have
the same degree. What is this degree?

4. A graph G has order n = 3k 4 3 for some positive integer k. Every vertex
of G has degree k + 1, k + 2 or k + 3. Prove that G has at least k + 3
vertices of degree k+ 1 or at least k+ 1 vertices of degree k 4 2 or at least
k + 2 vertices of degree k + 3.

5. The degree of every vertex of a graph G is one of three consecutive integers.
For each degree x, the graph G contains exactly x vertices of degree .
Prove that for every graph G with this property, two-thirds of the vertices
of G have odd degree.

6. Show for every positive integer k that there exists a graph G of order 2k
containing two vertices of degree i for each i = 1,2,...,k.

Section 1.3. Isomorphic Graphs

7. Consider the pairs G1, Gy and Hy, Hy of graphs in Figure 1.32.
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(a) Determine whether G; = Gs.
(b) Determine whether Hy 2 Ho.

G1 | @ G2 | @
H1 : O H2 :
Figure 1.32: The graphs G1, G2, Hy, Hs in Exercise 7

8. (a) Determine all non-isomorphic graphs of order 5.

(b) Determine the minimum size of a graph G of order 5 such that every
graph of order 5 and size 5 is isomorphic to some subgraph of G.

9. (a) Let G and H be two isomorphic graphs where one or more vertices
of G (and of H) have degree r. Let S be the set of vertices of degree
r in G and T be the set of vertices of degree r in H. Prove that
G[S]| = HI[T].
(b) Use the result in (a) to show that the graphs G and H in Figure 1.33
are not isomorphic.

Figure 1.33: The graphs G and H in Exercise 9

10. (a) Give an example of three graphs of size 3, no two of which are iso-
morphic, such that in each graph, every two edge-induced subgraphs
of the same size are isomorphic.

(b) Give an example of two graphs H and G of the same order and two
spanning subgraphs F; and F5 of G such that F; = H for ¢ = 1,2
and G — E(Fl) %\é G — E(FQ)
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11.

12.

13.

14.

15.

16.

17.

18.
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Section 1.4. Regular Graphs

Show that if G is a nonregular graph of order n and size rn/2 for some
integer r with 1 <r <n — 2, then A(G) — §(G) > 2.

For each integer k > 2, give an example of k non-isomorphic regular
graphs, all of the same order and same size.

Give an example of a nonregular graph G containing an edge e and a
vertex u such that G — e and G — u are both regular.

(a) Give an example of two non-isomorphic regular graphs G; and Gj
of the same order and same size such that (1) for every two vertices
vy € V(G1) and vy € V(G2), G1 —v1 ¥ G2 — vg and (2) there
exist 2-element subsets 57 C V(G;p) and Sy C V(G2) such that
G1— 512Gy — Ss.

(b) Give an example of two non-isomorphic regular graphs H; and Hs
of the same order and same size such that (1) for every 2-element
subsets Sl g V(H1> and SQ g V(HQ), H1 — Sl % HQ — 52 and
there exist 3-element subsets S; C V(H;) and S5 C V(H3) such
that H1 — Si = H2 — Sé

Prove for every graph G and every integer » > A(G) that there exists an
r-regular graph containing G as an induced subgraph.

Let G be a graph of order n all of whose vertices have degree r, where r
is a positive integer, except for exactly one vertex of each of the degrees
r—1,r—2,...,7r—j, where 1 < j < r. Show, in fact, that there exists
an r-regular graph of order 2n containing G as an induced subgraph.

Let S ={1,2,3,4,5}. The vertex set of a graph G is the set of 2-element
subsets of S. Two vertices of G are adjacent if the vertices are disjoint.
What familiar graph is G?7

For positive integers k and n with n > 2k, the graph G, is that
graph whose vertices are the k-element subsets of an n-element set S =
{1,2,...,n} and where two vertices (k-element subsets) A and B are ad-
jacent if A and B are disjoint. The graph G, ; is called the Kneser
graph.

(a) Determine the graphs Gg,1 and G5 ».

(b) Show that Gy, j is an r-regular graph for some integer r.



EXERCISES FOR CHAPTER 1 31

19.

20.

21.
22.

23.
24.

25.

26.
27.

28.

29.

30.

31.

Section 1.5 Bipartite Graphs

A bipartite graph G of order n has partite sets U and W where |U| = 10.
Every vertex of U has degree 6. In W, there are four vertices of degree 2
and three vertices of degree 4. All other vertices of GG have degree 8. What
isn?

Show for each integer n > 2 that there is exactly one bipartite graph of
order n having size |n?/4].

Prove for a 3-partite graph of order n = 3k and size m that m < 3k2.

Let G be a nonempty graph with the property that whenever uv ¢ E(G)
and vw ¢ E(G), then uw ¢ E(G). Prove that G is a complete multipartite
graph.

Section 1.6. Operation on Graphs
Determine all bipartite graphs G such that G is bipartite.

Let GG be a graph of odd order n = 2k + 1 > 3 for some positive integer
k. Prove that if the vertices of G have exactly the same degrees as the
vertices of GG, then G has an odd number of vertices of degree k.

(a) Show that there are exactly two 4-regular graphs G of order 7.

(b) How many 6-regular graphs of order 9 are there?
Prove that there is no regular self-complementary graph of even order.

We have seen that Cj is a self-complementary graph. Therefore, there is a
regular self-complementary graph of order 5. Show that there is a regular
self-complementary graph of order 5™ for every positive integer n.

Let G1 and G5 be self-complementary graphs, where G5 has even order
n. Let G be the graph obtained from G; and G2 by joining each vertex
of G4 whose degree is less than n/2 to every vertex of G;. Show that G
is self-complementary.

Prove that there exists a self-complementary graph of order n for every
positive integer n with n = 0 (mod 4) or n = 1 (mod 4).

(a) Give an example of a graph G of order 6 and size 7 such that G' is
isomorphic to a subgraph H of G.

(b) Give an example of a graph G' of order 7 and size 10 such that G is
isomorphic to a subgraph H of G.

Prove for every integer n > 3 that there exists a graph G of order n and
size | (3)/2] that is isomorphic to a graph H C G.
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32. Let P be the Petersen graph. Show that P contains a subgraph H such
that H & P.
33. For i =1,2, let u; be a vertex in a graph G; of order n; and size m;.

(a) Determine the degree of u; in G + Gs.
(b) Determine the degree of uy in Gy V Gs.
(c¢) Determine the degree of (u1,uz2) in G; O Ga.

34. Determine the order and size of each of the graphs P; VvV 2P;, P3 [J 2P;
and Ql + QQ + Qg.

Section 1.7. Degree Sequences

35. Find a sequence of 2-switches that transforms the graph G of Figure 1.34
into the graph H.

) A

Figure 1.34: The graphs G and H in Exercise 35
36. For two pairs G1, H; and G2, Hy of graphs shown in Figure 1.35, deter-

mine the minimum number of 2-switches required to transform
(a) G; into Hy and (b) G, into Hs.

IR O,
=

Figure 1.35: The graphs in Exercise 36

37. Let s:2,2,2,2,2,2,2,2,2 and let G5 be the set of all graphs with degree
sequence s. Let G be a graph with V(G) = G where two vertices F' and
H in G are adjacent if F' can be transformed into H by a single 2-switch.
To which familiar graph is G isomorphic?
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38.

39.

40.

Give an example of a graphical sequence s (where G, is the set of all
graphs with degree sequence s) such that (1) the graph G has V(G) = G,
(2) two vertices F and H of G are adjacent if F' can be transformed into
H by a single 2-switch and (3) G contains a triangle.

Let s :dy,ds,...,d, be a graphical sequence with A =d; > dy > -+ >
d,,. Show, for each integer k with 1 < k < n, that there exists a graph G
with V(G) = {v1,ve,...,v,} where degv; = d; for 1 < i < n having the
property that vy is adjacent to either (1) the vertices of {vy,va,...,v4, }
if k > dj, or (2) the vertices of {v1,va,...,v4,41} — {vi} if 1 <k < dj.

Let G and H be two graphs that are neither empty nor complete. The
graph H is said to be obtained from G by an edge rotation if G contains
three vertices u, v, and w where wv € E(G) and uw ¢ E(G) and H =
G — uv + uw.

(a) Show that the graph Gy of Figure 1.36 is obtained from G; by an
edge rotation.

(b) Show that G5 of Figure 1.36 cannot be obtained from G by an edge
rotation.

(¢) Show that for every two nonempty, noncomplete graphs G and H
of the same order and same size, there exists a sequence G = G,
G1, ..., Gy, = H of graphs such that G, is obtained from G; by an
edge rotation for 1 =0,1,... .k — 1.

G1: Ggl G32

41.

42.

Figure 1.36: The graphs in Exercise 40

Determine whether the following sequences are graphical. If so, construct
a graph with the appropriate degree sequence.

(a) 4,4,3,2,1

(b) 3,3,2,2,2,2,1,1
(c) 7,7,6,5,4,4,3,2
(d) 7,6,6,5,4,3,2,1
(e) 7,4,3,3,2,2,2,1,1,1.

Prove that a sequence dy,ds,...,d, is graphical if and only if n — d; —
1,n—dy—1,...,n—d, — 1 is graphical.
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. Prove that for every integer z with 0 < z < 5, the sequence x,1,2,3,5,5
is not graphical.

For which integers « (0 < x < 7), if any, is the sequence 7,6,5,4,3,2,1,
graphical?

Use Theorem 1.13 to determine whether the sequence s : 6,6,5,4,3,2,2
is graphical.

We have seen that there is only one graphical sequence dy,ds,ds, dy, ds
with 4 = d; > dy > d3 > d4 > ds = 1 such that at least one term is 3 and
at least one term is 2. How many graphical sequences d1, ds, ds, d4, ds are
there with 4 = dy > dy > ds > d4 > ds = 2 such that at least one term
is 37

Show that for every finite set S of positive integers, there exists a positive
integer k such that the sequence obtained by listing each element of S a
total of k times is graphical. Find the minimum such k for S = {2,6,7}.

According to Theorem 1.15, for each integer n > 2, there exist exactly two
distinct graphical sequences of length n having exactly two equal terms.
What terms are equal for these two sequences?

Two finite sequences s; and ss of nonnegative integers are called bigraph-
ical if there exists a bipartite graph G with partite sets V7 and V5 such
that s; lists the degrees of the vertices of G in V; for i = 1,2. Prove that

the sequences sy : a1,aq9,...,a, and S : by, bo, ..., b of nonnegative inte-
gers with r > 2, a1 > as >+ > a,, by > by >--->b,0<a; <t and
0 < by < r are bigraphical if and only if the sequences s} : ag,as, -, a,

and s5:by —1,ba —1,...,bs, — 1,ba;41,--.,b: are bigraphical.

The graphs G and H of order 10 have vertex sets V(G) = {uy,ug, ..., ui0}
and V(H) = {v1,v2,...,v10} and edge sets E(G) = {u;u; : ¢ +j > 11}
and E(H) = {vvj : i+ j > 12}. How are G and H related?

(a) Let n be a given positive integer and let r and s be nonnegative
integers such that r + s = n and s is even. Give an example of a
graph containing r even vertices and s odd vertices.

(b) Determine the minimum size of a graph G containing r even vertices
and s odd vertices and satisfying the properties in (a).

(¢) Determine the maximum size of a graph G containing r even vertices
and s odd vertices and satisfying the properties in (a).

(a) Let G be a graph of order n > 4. Prove that if degv > 2%t for every
vertex v of G, then every edge of G belongs to a complete subgraph
of order 4.
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53.

54.

55.

96.

57.

(b) Show that the result in (a) is best possible in general by showing
that 2"3—+1 cannot be replaced by 2?”

Section 1.8. Multigraphs

We saw that the irregular multigraph G2 in Figure 1.30 has degree se-
quence 4,3,2,1. Give an example of an irregular multigraph (if such a
multigraph exists) having degree sequence

(a) 5,4,3,2,1

(b) 6,5,4,3,2,1

(c) 7,6,5,4,3,2,1.

Prove for every connected graph G of order n = 3 or n = 4 and size m
that it is possible to label the edges of G by eq,ea, ..., e,, and replace e;
by 4 parallel edges for each ¢ (1 < ¢ < m) such that the degrees of the
vertices of the resulting multigraph H are distinct.

Determine which of the following sequences are the degree sequences of a
multigraph.

(a) s1:3,2,1 (b) s2:5,2,1

(c) s3:6,4,2 (d) s4:3,2,2
(e) s5:4,4,2,2 (f) s6:5,3,2,1
(g) s7:4,4,4,4 (h) ss:7,5,3,1.

Prove that a sequence s : dy,da,...,d, (n > 1) of nonnegative integers
with dy > dy > .-+ > d, is the degree sequence of a multigraph if and
only if Y7, d; iseven and dy < 137 | d;.

Let G be a connected graph of order n where the vertices of G are labeled
as vy, va,...,U, in some way. A multigraph H of size m with V(H) =
V(G) is obtained by replacing each edge v;v; of G by min{i, j} parallel
edges.

(a) Find m if G = K.

(b) Find sharp upper and lower bounds for m if G = Cs.

(¢) Find the minimum value of m if G is bipartite.






Chapter 2

Connected Graphs and
Distance

There are many problems in graph theory that deal with whether it is possible
to travel from one vertex in a graph to another vertex and the manner in which
this can be done. In order to study problems of this type, we now introduce
several new concepts.

2.1 Connected Graphs

’Walks, Trails and Paths‘

For two (not necessarily distinct) vertices v and v in a graph G, a u — v
walk W in G is a sequence of vertices in (G, beginning with v and ending at
v such that consecutive vertices in W are adjacent in G. Such a walk W in G
can be expressed as

W = (u=vg,v1,...,0, =0), (2.1)
where v;v;41 € E(G) for 0 < ¢ < k — 1. (The walk W is also commonly
denoted by W : u = vg,v1,...,vr = v.) Nonconsecutive vertices in W need

not be distinct. The walk W is said to contain each vertex v; (0 < i < k)
and each edge v;v;41 (0 <4 <k —1). The walk W can therefore be thought
of as beginning at the vertex u = vy, proceeding along the edge vyv; to the
vertex vy, then along the edge vivs to the vertex vo, and so forth, until finally
arriving at the vertex v = v. The number of edges encountered in W (including
multiplicities) is the length of . Hence, the length of the walk W in (2.1) is
k. In the graph G of Figure 2.1,

W1 = (xaw7y7wavau7w) (22)

37
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is an x — w walk of length 6. This walk encounters the vertex w three times
and the edge wy twice.

x Y
Figure 2.1: Walks in a graph

A walk whose initial and terminal vertices are distinct is an open walk;
otherwise, it is a closed walk. Thus, the walk W; in (2.2) is an open walk. It
is possible for a walk to consist of a single vertex, in which case it is a trivial
walk. A trivial walk is therefore a closed walk.

A walk in a graph G in which no edge is repeated is a trail in G. For
example, in the graph G of Figure 2.1, T = (u,v,y,w,v) is a u — v trail of
length 4. While no edge of T is repeated, the vertex v is repeated, which is
allowed. On the other hand, a walk in a graph G in which no vertex is repeated
is called a path. Every nontrivial path is necessarily an open walk. Thus,
P’ = (u,v,w,y) is u — y path of length 3 in the graph G of Figure 2.1. Many
proofs in graph theory make use of u — v walks or u — v paths of minimum
length (or of maximum length) for some pair u,v of vertices of a graph. The
proof of the following theorem illustrates this.

Theorem 2.1 Let u and v be two vertices of a graph G. For every u—v walk
W in G, there exists a uw — v path P such that every edge of P belongs to W.

Proof. Let W be a u — v walk. Among all u — v walks in G, every edge of
which belongs to W, let

P=(u=mwuo,ut,...,up =0)

be one of minimum length. Thus, the length of P is k. We claim that P is a
u—v path. Assume, to the contrary, that this is not the case. Then some vertex
of G must be repeated in P, say u; = u; for some ¢ and j with 0 <i < j <k.
If we then delete the vertices w;q1,u;it2,...,u; from P, we arrive at the u — v
walk

! __ _ J— —
W= (U=, U1, ..., Uim1, U = Uj, Ujt1,. .., Uk = V)

whose length is less than k and such that every edge of W’ belongs to W. This
is a contradiction. [
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’The Adjacency Matrix of a Graph‘

We have seen that a graph can be defined or described by means of sets
(the definition) or diagrams. There are also matrix representations of graphs.
Suppose that G is a graph of order n, where V(G) = {v1,vs,...,v,}. The
adjacency matrix of G is the n X n zero-one matrix A(G) = [a;;], or simply
A = [a;;], where

o 1 if vu; € E(G)
YT 0 ifew,; ¢ B(G).

Figure 2.2 shows the adjacency matrix of a graph G.

& 01 00 0

10 110

G: U2 Uy A= ]01 0 1 0
01 1 0 0

U1 O wvs 00 0 00

Figure 2.2: A graph and its adjacency matrix

There are several observations that can be made about the adjacency matrix
A of a graph G of order n. First, all entries along the main diagonal of A are 0
since no vertex of G is adjacent to itself. Second, A is a symmetric matrix, that
is, row i of A is identical to column ¢ of A for every integer ¢ with 1 < i < n.
Also, if we were to add the entries in row 4 (or in column %), then we obtain the
degree of v;.

Whenever a;; = 1, this means that G contains the edge v;v; and therefore
a v; —v; path of length 1 and, of course, a v; —v; walk of length 1 as well. Not
only can the adjacency matrix of G be used to identify whether G contains a
v; —v; walk of length 1, it can be used to determine whether G contains a v; —v;
walk of length k for an arbitrary positive integer k and, in fact, the number of
such walks. Before stating a theorem that provides us with this information,
we need to know when two u — v walks in a graph G are considered to be the
same.

Two u—v walks W = (u = ug, u1,...,ur =v) and W' = (u = vg,v1,...,00 =
v) in a graph are equal if k = ¢ and u; = v; for all ¢ with 0 <14 < k.

Theorem 2.2 Let G be a graph with vertex set V(G) = {v1,v2,...,v,} and
adjacency matriz A. For each positive integer k, the number of different v; — v,
walks of length k in G is the (i, j)-entry in the matriz A*.

Proof. Let ag-c) denote the (4, j)-entry in the matrix A* for a positive integer

k. Thus, A! = A and ag;) = a;j. We proceed by induction on k. For vertices
v; and v; of G, there can be only one v; — v; walk of length 1 or no v; — v;
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walks of length 1, and this occurs if a;; = 1 or a;; = 0, respectively. Therefore,
the (i, j)-entry of the matrix A is the number of v; — v; walks of length 1 in G.
Thus, the basis step of the induction is established.

We now verify the inductive step. Assume, for a positive integer k, that agf)
is the number of different v; — v; walks of length k£ in G. We show that the

(i,j)-entry al(.fﬂ) in A¥*! gives the number of different v; — v; walks of length
k+1in G. First, observe that every v; —v; walk of length k+1 in G is obtained
from a v; — v; walk of length k for some vertex v; in G that is adjacent to v;.

Since A¥*t1 = A¥ . A, it follows that the (i, j)-entry al(fﬂ) in A¥*1 can be

obtained by taking the inner product of row i of A* and column j of A. That
is,

(k+1) _ (k)

n
a;; = a; a+ al(»’;)a% +...+ az(:)anj = Z agf)atj. (2.3)
=1

By the induction hypothesis, for each integer ¢t with 1 <t < n, the integer agf)

is the number of different v; — v; walks of length k in G. If a;; = 1, then v,

is adjacent to v; and so there are al(f ) different v; — v; walks of length k + 1
in G whose next-to-last vertex is v;. On the other hand, if a;; = 0, then v, is
not adjacent to v; and there are no v; — v; walks of length £ + 1 in G whose

next-to-last vertex is v;. In any case, al(f ). ay; gives the number of different
v; —v; walks of length k£ +1 in G whose next-to-last vertex is v;. Consequently,
the total number of different v; — v; walks of length £ + 1 in G is the sum in
(2.3), which is a{™",

ij
By the Principle of Mathematical Induction, az(-;-c) is the number of different

v; — v; walks of length k in G for every positive integer k. ]

Before giving an example to illustrate Theorem 2.2, we make a few ob-
servations. Let G be a graph of order n with V(G) = {v1,v2,...,v,} and
(2)

i1

AF = [al(-;-c)}, where A is the adjacency matrix of G. By Theorem 2.2, a
gives the number of different v; — v; walks of length 2 in G. Since a v; — v;
walk of length 2 is (v;, v, v;) for some vertex v; adjacent to v;, it follows that
ag) = deg v; for every vertex v; of G. For i # j, a!? is the number of different

ij
v; — vj paths of length 2 in G. Again, by Theorem 2.2, az(-f ) gives the number

of different v; — v; walks of length 3 in G. Since a v; — v; walk of length 3 is
(v, vs, vg, v;) for adjacent vertices vs and vg, each of which is adjacent to v;, it
follows that v; must belong to a triangle. Not only is (v;, vs,ve, v;) a v; — v;
walk of length 3, so too is (v;,vs,vs,v;) a (different) v; — v; walk of length 3 in
G. Therefore, az(-;g’ ) is twice the number of triangles in G that contain v;.

As an illustration, consider the graph G of Figure 2.3 having the adjacency
matrix A. We can compute A% without matrix multiplication by observing that
the (i,4) entry of A2, 1 < i < 4, is degv;, and the (i, ) entry of A2, i # j, is
the number of different v; — v; paths of length 2. We now turn to A3. Since
the different v; — v3 walks of length 3 in G are
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Wl = (Ul,U3,’l}1,7}3)7 W2 = (’Ul,’l)g,vl,’l}g)7
W3 = (v1,v3,02,03), Wy = (v1,03,v4,03),

the (1,3) entry of A% is 4. The entire matrix A% can be computed in this
manner.

V1 V2
G: V3
V4
0 1 1 0 2 1 1 1 2 3 4 1
|1 010 s |1 2 11 3 |3 2 41
A= 1 1 0 1 A% = 1 1 3 0 A= 4 4 2 3
0 0 1 0 1 1 0 1 1 1 3 0

Figure 2.3: A graph G and powers of its adjacency matrix

Circuits and Cycles ‘

A nontrivial closed walk in a graph G in which no edge is repeated is a
circuit in G. For example,

C= (an7$7yawa%u)

is a circuit in the graph G of Figure 2.1. In addition to the necessary repetition
of w in this circuit, w is repeated as well. This is acceptable since no edge is
repeated in C. A circuit

C=(v=uwp,v1,...,0k =), (2.4)

k > 2, for which the vertices v;, 0 < ¢ < k — 1, are distinct is a cycle in G.
Therefore,

C' = (u,v,y,x,w,u)

is a cycle of length 5 in the graph G of Figure 2.1. As with the class of graphs
Cyk, k > 3, called cycles in Chapter 1, the cycle C in (2.4) is called a k-cycle.
Once again, a 3-cycle is referred to as a triangle. A cycle of even length is an
even cycle, while a cycle of odd length is an odd cycle.

The subgraph induced by the edges in a path (vq,va,---,vx) or a cycle
(v1,v9, -, vk, v1), k > 3, is itself called a path or cycle, respectively. Con-
sequently, paths and cycles have more than one interpretation — a means to
proceed between vertices in a graph, as subgraphs in a graph and as a class of
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graphs. This is also the case with trails and circuits. The path P’ and the cycle
C" described earlier in the graph G of Figure 2.1 correspond to the subgraphs
shown in Figure 2.4. We saw in Section 1.1 that a graph of order n that is a
path or a cycle is denoted by P, and C,, respectively.

u v u v u v
G:E o j CI:ZUJ I
x y y x y

Figure 2.4: A path and cycle in a graph

The length of a smallest cycle in a graph G (containing cycles) is the girth
of G, denoted by g(G), and the length of a longest cycle is the circumference
of G, denoted by ¢(G). Thus, g(K,) = 3 for n > 3 and ¢(K,,) = n; while
g(Ksy) =4 for 2 < s <t and ¢(K,;) = 2s. The girth of the Petersen graph
is 5 and its circumference is 9 (as we will see in Chapter 6).

’ Connected Graphs ‘

Two vertices v and v in a graph G are connected if G contains a u — v
path. The graph G itself is connected if every two vertices of G are connected.
By Theorem 2.1, a graph G is connected if G contains a u — v walk for every
two vertices u and v of G. A graph G that is not connected is a disconnected
graph. The graph F' of Figure 2.5 is connected since F' contains a © — v path
(and a u — v walk) for every two vertices u and v in F. On the other hand, the
graph H is disconnected since, for example, H contains no y4 — y5 path.

T n Y2
F: L2 H: Y3
xs3 —O T35 Ya
Ty
O——O0—0
Tg Ys Ys yr

Figure 2.5: A connected graph and disconnected graph

A connected subgraph H of a graph G is a component of G if H is not
a proper subgraph of any connected subgraph of G. Thus, every component
of G is an induced subgraph of G. The number of components in a graph G
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is denoted by k(G). Therefore, G is connected if and only if k(G) = 1. For
the sets S1 = {y1, y2,y3,ya} and Sa = {ys, ys, y7 } of vertices of the graph H of
Figure 2.5, the induced subgraphs H[S1] and H[Ss] are (the only) components
of H. Therefore, k(H) = 2.

All of the familiar classes of graphs we’ve introduced are connected. This
includes the paths P,, cycles C,,, complete bipartite graphs K, hypercubes
Q.. and complete graphs K,. Because the complete graphs K,, are connected,
every graph of order n where each vertex has degree n — 1 is connected. This
illustrates a fact that we will encounter often. Suppose that the complete graph
K, has a certain property (in this case, it is connected). Thus, if every vertex
of a graph G of order n has a sufficiently high degree, then G also has this
property. Since the disconnected graph H = 2K, of order n = 2k in Figure 2.6
is (k — 1)-regular, it is clear that k — 1 = (n — 2)/2 is not sufficiently large
for the degrees of the vertices of a graph G of order n to guarantee that it
is connected. The number (n — 2)/2 is close to having this property, however.
Prior to showing this (in Corollary 2.4), we present an even more general result.

"D G

Figure 2.6: A (k — 1)-regular disconnected graph of order n = 2k

Theorem 2.3 If G is a nontrivial graph of order n such that degu + degv >
n — 1 for every two nonadjacent vertices u and v of G, then G is connected.

Proof. Let x and y be distinct vertices of G. We show that G contains an
x —y path. This is obvious if x and y are adjacent, so suppose that = and y are
not adjacent. Since degx + degy > n — 1, there is a vertex z that is adjacent
to both z and y. Therefore, (x,z,y) is an x — y path and so G is connected. m

The graph H in Figure 2.6 shows that the lower bound n—1 in Theorem 2.3
cannot be replaced by n — 2. The following corollary is thus a consequence of
Theorem 2.3.

Corollary 2.4 If G is a graph of order n with 6(G) > (n —1)/2, then G is
connected.

Proof. For every two nonadjacent vertices u and v of G,

-1 -1
degu+dengnT+n2

It then follows by Theorem 2.3 that G is connected. [

=n-—1.

In addition, since the complete graphs are connected, every graph of order n
and size (g) is connected. Therefore, graphs of order n with sufficiently large
size are connected.
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Theorem 2.5 If G is a graph of order n > 2 and size m > ("gl) +1, then G
1is connected.

Proof. The result is clear for n = 2, 3,4, so we may assume that n > 5. Let
u and v be two vertices of G. We show that G contains a u — v path. Since this
is clear if uv € F(G), we may assume that uv ¢ E(G). If G contains a vertex
w that is adjacent to both u and v, then (u,w,v) is a w — v path in G. Hence,
we may assume that there is no such vertex and so degu + degv < n — 2. Let
G' = G —u —v. Thus, G’ has order n’ = n — 2 and size

m' =m — degu — degv > (";1) +1-(n-2)= (HEZ) +1

Since m’ < (";2), this is impossible. n

The number (";') 4+ 1, n > 2, cannot be lowered in the statement of Theo-

rem 2.5 since the size of the disconnected graph G = K1 + K,,_1 is (";1)

2.2 Distance in Graphs

If w and v are distinct vertices in a connected graph G, then there is a u — v
path in G. In fact, there may very well be several u — v paths in G, possibly
of varying lengths. This information can be used to provide a measure of how
close u and v are to each other or how far from each other they are. The most
common definition of distance between two vertices in a connected graph is the
following.

The distance dg(u,v) from a vertex u to a vertex v in a connected graph
G is the smallest length of a w — v path in G. If the graph G being considered
is understood, then this distance is written more simply as d(u,v). A u —v
path of length d(u,v) is called a u — v geodesic. In the graph G of Figure 2.7,
the path P = (v1,vs, v, v10) is a shortest v1 — v1p path; thus, P is a v; — vy
geodesic and so d(v1,v19) = 3. In addition,

d(vy,v1) =0, d(vi,v2) =1, d(v1,v6) = 2, d(v1,v7) = 3 and d(vy,vs) = 4.

U1 U2 U3 Uy

Us b U8
Vg U7

Vg V10

Figure 2.7: Distances in a graph
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The distance d defined above satisfies the following properties in a connected
graph G:

(1) d(u,v) > 0 for every two vertices v and v of G;

(2) d(u,v) =0 if and only if u = v;

(3) d(u,v) =d(v,u) for all u,v € V(G) (the symmetric property);

(4) d(u), w) < d(u,v) + d(v,w) for all u,v,w € V(G) (the triangle inequal-
ity).

Since d satisfies the four properties (1)—(4), d is a metric on V(G) and (V(G), d)
is a metric space. Because d satisfies the symmetric property, we can speak
of the distance between two vertices u and v rather than the distance from u to
.

With the aid of this distance we can present a useful characterization of
bipartite graphs.

Theorem 2.6 A nontrivial graph G is a bipartite graph if and only if G con-
tains no odd cycles.

Proof. Suppose first that G is bipartite. Then V(G) can be partitioned into
partite sets U and W (and so every edge of G joins a vertex of U and a vertex
of W). Let C = (v1,va,...,v,v1) be a k-cycle of G. We may assume that
v1 € U. Thus, v € W, v € U and so forth. In particular, v; € U for every odd
integer ¢ with 1 <7 < k and v; € W for every even integer j with 2 < j < k.
Since v1 € U, it follows that vy, € W and so k is even.

For the converse, let G be a nontrivial graph containing no odd cycles. If
G is empty, then G is clearly bipartite. Hence it suffices to show that every
nontrivial component of G is bipartite and so we may assume that G itself is
connected. Let u be a vertex of G and let

U={zeV(G): d(u,z)iseven} and W ={x € V(G): d(u,x) is odd}.

Thus, v € U. We show that G is a bipartite graph having partite sets U and W.
It suffices to show that no two vertices of U are adjacent and no two vertices
of W are adjacent. Suppose that W contains two adjacent vertices w; and ws.
Let P; be a u — w; geodesic and P> a u — wy geodesic. Let z be the last vertex
that P; and P, have in common (possibly z = ). Then the length of the z —w;
subpath P] of P; and the length of the z — w9 subpath Pj of P, are of the same
parity. Thus, the paths P| and Pj together with the edge wjwy produce an
odd cycle. This is a contradiction. The argument that no two vertices of U are
adjacent is similar. L]
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The Eccentricity of a Vertex‘

It is often of value to know how far any vertex of a connected graph G is from
a given vertex of G. The eccentricity e(v) of a vertex v in a connected graph G
is the distance between v and a vertex farthest from v in G. The eccentricities
of the vertices of the graph G in Figure 2.7 are shown in Figure 2.8.

4 3 3 3

U1

Figure 2.8: Eccentricities of vertices

The eccentricities of the vertices in the graph G of Figure 2.8 illustrate the
following theorem.

Theorem 2.7 Ifu and v are adjacent vertices in a connected graph G, then
le(u) —e(v)] < 1.

Proof. Assume, without loss of generality, that e(u) > e(v). Moreover, let w
be a vertex of G such that e(u) = d(u,w). By the triangle inequality, d(u,w) <
d(u,v) + d(v,w). Since d(u,v) =1 and d(v,w) < e(v), it follows that

le(u) —e(v)| = e(u) — e(v) < d(u,w) —d(v,w) < d(u,v) =1.m

The diameter diam(G) of a connected graph G is the largest eccentricity
among the vertices of G, while the radius rad(G) is the smallest eccentricity
among the vertices of G. The diameter of G is, therefore, the greatest distance
between any two vertices of G. A vertex v with e(v) = rad(G) is called a
central vertex of G and a vertex v with e(v) = diam(G) is called a peripheral
vertex of G. Two vertices u and v of G with d(u,v) = diam(G) are antipodal
vertices of G. Necessarily, if u and v are antipodal vertices in G, then both u
and v are peripheral vertices. For the graph G of Figure 2.8, diam(G) = 4 and
rad(G) = 2. In particular, vg is the only central vertex of G and v; and vs are
the only peripheral vertices of G. Since d(vy,vs) = 4 = diam(G), it follows that
v1 and vg are antipodal vertices of G. It is certainly not always the case that
diam(G) = 2rad(G) as, for example, diam(P;) = 3 and rad(P;) = 2. Indeed,
the following can be said about the radius and diameter of a connected graph.

Theorem 2.8 For every nontrivial connected graph G,

rad(G@) < diam(G) < 2rad(G).
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Proof. The inequality rad(G) < diam(G) is immediate from the definitions.
Let u and w be two antipodal vertices of G and let v be a central vertex of G.
Therefore, d(u, w) = diam(G) and e(v) = rad(G). By the triangle inequality,

diam(G) = d(u, w) < d(u,v) + d(v,w) < 2e(v) = 2rad(G),
as desired. (]

For a connected graph G of order n > 2, the eccentricity sequence of G
is the nondecreasing sequence ej,eo, ..., e, of positive integers for which the
vertices of G can be labeled as v, va, ..., v, such that e(v;) = ¢; for 1 <i < n.
Thus, e; = rad(G) and e, = diam(G). In fact, since G has at least two
peripheral vertices, e,,—1 = diam(G) as well. The eccentricity sequence of the
graph G of Figure 2.8 is

2,3,3,3,3,3,3,3,4, 4.

In fact, for every connected graph G of order n > 2, its eccentricity sequence
€1,€a,...,ey, satisfies (1) e, < 2e; by Theorem 2.8 and (2) e;41 —e; < 1 for
1 <i<n-—1. Tosee why (2) is true, suppose that e(v;) = ¢; for 1 < i < n.
Let P = (v1 = u1,ua,...,ur = v,) be a v1 — v, path in G. By Theorem 2.7,
le(uit1) —e(u;)] <1for 1 <i<k—1and so the eccentricities of consecutive
vertices on P differ by at most 1. Therefore, every integer between e; and e,
is the eccentricity of some vertex of G.

Theorem 2.8 gives the lower bound rad(G) for the diameter of a connected
graph G as well as the upper bound 2rad(G). This is one of many results for
which a question of “sharpness” is involved. These involve the question: Just
how good is this result? Ordinarily, there are many interpretations of such a
question. We shall consider some possible interpretations in the case of the
upper bound.

Certainly, the upper bound in Theorem 2.8 would not be considered sharp if
diam(G) < 2rad(G) for every graph G; however, it would be considered sharp
indeed if diam(G) = 2rad(G) for every graph G. In the latter case, we would
actually have a formula or an identity, not just a bound. Of course, we have seen
that there are graphs G for which diam(G) < 2rad(G) and there are graphs
H for which diam(H) = 2rad(H). This alone may be satisfactory to say that
this bound is sharp. However, a preferred reason for calling this bound sharp
is if there is an infinite class H of graphs such that diam(H) = 2rad(H) for
each graph H belonging to H. Such a class exists; for example, let H consist of
the graphs of the type K; V K. One disadvantage of this class is that for each
H € H, diam(H) = 2 and rad(H) = 1. Perhaps a more satisfactory infinite
class would be the class of paths Pogi1, & > 1. In this case, diam(Pax41) = 2k
and rad(Psy11) = k; that is, for each positive integer k, there exists a connected
graph G such that diam(G) = 2rad(G) = 2k.
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Center and Periphery ‘

The subgraph induced by the central vertices of a connected graph G is
the center of G and is denoted by Cen(G). If every vertex of G is a central
vertex, then Cen(G) = G and G is self-centered. The subgraph induced by
the peripheral vertices of a connected graph G is the periphery of G and is
denoted by Per(G).

For the graph G of Figure 2.7, the center of G consists of the isolated vertex
vg and the periphery consists of the two isolated vertices v1 and vg. The graph
H of Figure 2.9 has radius 2 and diameter 3. Therefore, every vertex of H is
either a central vertex or a peripheral vertex. Indeed, the center of H is the
triangle induced by the three “exterior” vertices of H, while the periphery of
H is the 6-cycle induced by the six “interior” vertices of H.

us Ug

Cen(H) :

U2 U3
Uy Us

Figure 2.9: The center and periphery of a graph

It is not difficult to see that Cen(Por4+1) = K; and Cen(Py) = K for all
k > 1. Also, Cen(C,,) = Per(C,,) = C, for all n > 3. In an observation first
made by Stephen Hedetniemi (see [40]), there is no restriction on which graphs
can be the center of some graph.

Theorem 2.9 Fuvery graph is the center of some graph.

Proof. Let G be a graph. We construct a graph H from G by first adding
two new vertices u and v to G and joining them to every vertex of G but not to
each other. The construction of H is completed by adding two other vertices
uy and vy, where u; is joined to w and vy is joined to v. (This construction
is illustrated in Figure 2.10.) Since e(u1) = e(vy) = 4, e(u) = e(v) = 3 and
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em(x) = 2 for every vertex x in G, it follows that V(G) is the set of central
vertices of H and so Cen(H) = H[V(GQ)] = G. n

Figure 2.10: A graph with a given center

Example 2.10 Figure 2.11 shows a graph G that represents the street system
of a community, where the edges are streets and vertices are street intersections
s; (1 <4< 20). The community wants to build an emergency facility at one of
the intersections so that the number of blocks needed to drive from the facility
to the intersection farthest from it will be as small as possible. What are the
possible locations for the emergency facility?

S1 S92 S3 S4
7 0O 5 5 l 4
6 5
ss00— 94 g0 s
S7 6
5 4
G Sg O S10 5 O————— 0 S19
511
4 5 6
513 > G 516
514 515
56 54 6 &7
S17 518 S19 520

Figure 2.11: A graph representing a street system in Example 2.10

To answer this question, we need to place an emergency facility at a central
vertex of the graph G. Consequently, the eccentricity of each vertex must be
computed. These are shown in Figure 2.11. Since the minimum eccentricity
(radius) of G is 4, the emergency facility should be placed at s4, s7, $19 Or S14. ¢

While every graph is the center of some graph, this is not true for the
periphery, as Halina Bielak and Maciej Systo [26] showed.

Theorem 2.11 A nontrivial graph G is the periphery of some graph if and
only if every vertex of G has eccentricity 1 or no vertex of G has eccentricity 1.

Proof. Ifevery vertex of G has eccentricity 1, then G is complete and Per(G) =
G; while if no vertex of G has eccentricity 1, then let F' be the graph obtained
from G by adding a new vertex w and joining w to each vertex of G. Since
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erp(w) =1 and ep(z) = 2 for every vertex z of G, it follows that every vertex
of G is a peripheral vertex of F' and so Per(F) = F[V(G)] = G.

For the converse, let G be a graph that contains some vertices of eccentricity
1 and some vertices whose eccentricity is not 1 and suppose that there exists a
graph H such that Per(H) = G. Necessarily, G is a proper induced connected
subgraph of H. Thus diam(H) = k > 2. Furthermore, ey (v) = k > 2 for each
v € V(G) and eg(v) < k for v € V(H) — V(G). Let u be a vertex of G such
that eq(u) = 1 and let w be a vertex of H such that d(u,w) = ep(u) =k > 2.
Since w is not adjacent to wu, it follows that w ¢ V(G). On the other hand,
d(u,w) = k and so ey (w) = k. This implies that w is a peripheral vertex of H
and so w € V(G), which is impossible. "
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Exercises for Chapter 2

Section 2.1. Connected Graphs

1. Give an example of a graph G and two vertices u and v of G such that
there is a u—wv trail containing all vertices of G but no u—v path containing
all vertices of G.

2. Give an example of a graph G with three vertices u, v and w such that
(1) every u— v path avoids w, (2) every u — w path avoids v and no v —w
path avoids w.

3. Let G1, G5 and G3 be three graphs of order n and size m having adjacency
matrices A1, As and As, respectively.
(a) Prove or disprove: If A} = A,, then G; & Gs.
(b) Prove or disprove: If Ay # As, then G2 2 Gs.

0 1

4. (a) Use Theorem 2.2 to compute A% if A = [ 1 0

} without multiply-
ing matrices.

(b) Show that A* could be computed more easily by using Theorem 2.2
to first compute A2.

5. Determine the adjacency matrix of the graph G of Figure 2.12. Then
determine A2 and A3 without multiplying matrices.

U1

Gi1: usg uz Go: © e o)
U1 U2 U3 V4 Us

Ug

Figure 2.12: Graphs GG; and G4 in Exercises 5 and 6

6. Determine the adjacency matrix of the graph Go of Figure 2.12. Then
determine A2, A% and A?* without multiplying matrices.

7. Determine the graph G with adjacency matrix A for which

2 11 1 0 2 2 3 1 1
1 2 1 10 2 3 1 1
A2=1]1 1 3 0 1 |andA®=|3 3 2 4 0
110 2 0 1 1 4 0 2
00 1 0 1 110 2 0

8. For an n x n matrix A, it is common to define A® as I,, (the n x n identity
matrix). If this is done, how is this related to Theorem 2.27?
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
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For each positive integer k, show that there exists a graph G of order 2k+1
such that every vertex of G lies on one or more triangles but on no larger
cycles.

(a) Give an example of a cubic graph of order 10 containing a k-cycle
for each integer k with 3 < k < 10.
(b) Give an example of a cubic graph G containing no k-cycle for some
integer k with g(G) < k < ¢(G).
Let G be a graph with §(G) > 2.

(a) Prove that the circumference ¢(G) of G satisfies ¢(G) > 6(G) + 1.
(b) Show that G has a path of length §(G).

Determine g(G) and ¢(G) for G = K}, o5 4 for a positive integer k.

Prove that “is connected to” is an equivalence relation on the vertex set
of a graph.

Prove that a graph G is connected if and only if for every partition {V7, V2}
of V(G), there exists an edge of G joining a vertex of V7 and a vertex of V5.

Let G be a connected graph of order n and let k be an integer such that
2 <k <n—1. Show that if degu + degv > k for every pair u,v of
nonadjacent vertices of G, then G contains a path of length k.

Let G be a disconnected graph of order n > 6 having three components.
Prove that A(G) > 2.

Show, for every two vertices u and v in a connected graph G, that there
exists a u — v walk containing all vertices of G.

Characterize those graphs G having the property that every induced sub-
graph of GG is a connected subgraph of G.

(a) Show that if G is a connected graph such that the degree of every
vertex is one of three distinct numbers and each of these three num-
bers is the degree of at least one vertex of G, then there is a path in
G containing three vertices whose degrees are distinct.

(b) Is the statement in (a) true if “three” is replaced by “four”?

Let G be a nontrivial connected graph that is not bipartite. Show that G
contains two adjacent vertices v and v such that degu + degwv is even.

Let k and n be integers with 2 < k < n and let G be a graph of order n.
Prove that if every vertex of G has degree exceeding (n — k)/k, then G
has fewer than & components.
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22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Let k£ > 2 be an integer. Prove that if G is a graph of order n > k+1 and
sizem > (k—1)(n—k—-1)+ (kgl), then G contains a subgraph having
minimum degree k.

Prove that if G is a connected graph of order n > 2, then the vertices of
G can be listed as vy,vs,...,v, such that each vertex v; (2 < i < n) is
adjacent to some vertex in the set {vi,ve,...,v;—1}.

Suppose that the vertices of a graph G of order n > 2 can be listed as
v1, V2, ..., U, such that each vertex v; (2 < i < n) is adjacent to some
vertex in the set {v1,va,...,v;—1}. Prove that G is connected.

Section 2.2. Distance in Graphs

Let u,v and w be three vertices in a connected graph G. Prove that
d(u,v) + d(u, w) + d(v,w) > 2d(u,w).

Prove that a nontrivial graph G is bipartite if and only if G contains no
induced odd cycle.

Let G be a graph of order n > 6 and size m = % containing

no odd cycle. If G has three vertices u,v and w such that degu < n/2,
degv < n/2 and degw < n/2, then what is G?

Let G be a connected graph such that the length of a longest path in G
is 4.

(a) Prove that no two paths of length ¢ in G are vertex-disjoint.

(b) By (a), two paths of length ¢ cannot be vertex-disjoint. Prove that
if P and @ are two paths of length ¢ that meet in a single vertex,
then ¢ is even.

Let G be a connected graph of order n. For a vertex v of G and an integer
k with 1 <k <n —1, let di(v) be the number of vertices at distance k
from wv.

(a) What is dy(v)?

(b) Show that 3, cy () di(v) is even for every integer k with 1 < k <
n— 1.

(c) What is the value of 35,y () ( i dk(v))?

Prove that if G is a disconnected graph, then G is connected and, in fact,

diam(G) < 2.

Let a and b be positive integers with a < b < 2a. Show that there exists
a connected graph G with rad(G) = a and diam(G) = b.
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32.

33.

34.

35.

36.

37.

38.

39.

40.
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(a) Show that 2,3, 3,3 is not the eccentricity sequence of any graph.

(b) Determine all pairs a,b of positive integers with a < b such that
a,b,b,b is the eccentricity sequence of some graph.

For each integer n > 4, give an example of two nonisomorphic graphs of
order n having the same eccentricity sequence.

(a) Give an example of a nontrivial connected graph G whose degree
sequence is identical to its eccentricity sequence.

(b) Give an example of a nontrivial connected graph G of order n with
degree sequence di,ds, . ..,d, and eccentricity sequence n — dy,n —
dQ,...,Tl*dn.

Show, for every integer k > 4, that there exists a connected graph G
containing exactly k vertices vy, vo, ..., v, with the property that degv; =
e(v;) for all ¢ with (1 <i < k).

Let G be a nontrivial connected graph. Show that if k is an integer with
rad(G) < k < diam(G), then there are at least two vertices of G with
eccentricity k. (Hint: Let w be a vertex with e(w) = k and let u be a
vertex with d(w,u) = e(w) = k. For a central vertex v of G, let P be a
u — v path of length d(u,v). Show that e(v) < k < e(u). Then show that
there is a vertex x (distinct from w) on P such that e(z) = k.)

Show that for every pair 7, s of positive integers, there exists a positive
integer n such that for every connected graph G of order n, either A(G) >
r or diam(G) > s.

Every complete graph is the periphery of itself. Can a complete graph be
the periphery of a connected graph G with diam(G) > 2?

A vertex w of a connected graph G is called an eccentric vertex of
a vertex v of G if d(v,w) = e(v). Show that there exists a connected
graph containing four distinct vertices vy, va, vs,v4 such that v;41 is an
eccentric vertex of v; for ¢ = 1,2, 3 and the integers e(v1), e(v2) and e(vs)
are distinct.

The total distance td(u) of a vertex u in a connected graph G is defined
by
td(uw) = Z d(u,v).

veV(G)

A vertex v in G is called a median vertex if v has the minimum total
distance among the vertices of G. Equivalently, v is a median vertex if
v has the minimum average distance to all vertices of G. The median
Med(G) of G is the subgraph of G induced by its median vertices. De-
termine (i) the total distance td(u) for each vertex u of the graph G of
Figure 2.13 and (ii) the median Med(G) of G.
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41.

42.

43.

44.

%%@H

Figure 2.13: The graph in Exercise 40

Let F and H be two subgraphs in a connected graph G. Define the
distance d(F, H) between F' and H as

d(F,H) = min{d(u,v) :u € V(F),v € V(H)}.

Show that for every positive integer k, there exists a connected graph G
such that d(Cen(G),Med(G)) = k (see Exercise 40 for the definition of
Med(G)).

Let G and its complement G both be connected graphs of order n > 5.

(a) Prove that if the diameter of G is at least 3, then the diameter of its
complement is at most 3.

(b) What diameters are possible for self-complementary graphs with at
least 4 vertices?

(c) If the diameter of G is 2, what are the possible diameters of its
complement G?

For a graphical sequence s, let G5 be the set of all graphs with degree
sequence s. For G, H € G, define the distance d(G, H) from G to H
as the minimum number of 2-switches required to transform G into H.
Show that (Gs,d) is a metric space.

For two vertices v and v in a connected graph G, a u — v detour is a
longest u — v path in G and the length of a w — v detour is the detour
distance D(u,v) between uw and v. Show that (V(G), D) is a metric
space.






Chapter 3

Trees

In nearly every concept, problem and theorem that we encounter, we are pri-
marily concerned with connected graphs. In this chapter, we study graphs that
are minimally connected in various senses.

3.1 Nonseparable Graphs

Some graphs are connected to such a small extent that the removal of a single
vertex results in a disconnected graph. We now consider vertices having this

property.

’ Cut-Vertices

A vertex v in a connected graph G is a cut-vertex if G — v is disconnected.
Therefore, if v is a cut-vertex of a connected graph G, then G — v consists of
components Gy, Ga, . .., Gy for some integer k > 2. That is, G —v = Gy + G2 +
-+ + Gj. Necessarily, for every component G; of G — v, at least one vertex of
G; is adjacent to v in G.

More generally, a vertex v is a cut-vertex of a graph G (connected or
disconnected) if k(G — v) > k(G). In the graph H; of Figure 3.1, the vertices
u,v,w and x are cut-vertices; in Hy every vertex of degree 4 is a cut-vertex;
and in H3 no vertex is a cut-vertex. For n > 3, no vertex of C,, is a cut-vertex,
while at the other extreme, only two vertices of P, are not cut-vertices, namely
the two end-vertices of P,,. That this is the other extreme is verified in the
following theorem.

Theorem 3.1 FEvery nontrivial connected graph contains at least two vertices
that are not cut-vertices.

Proof. Let G be a nontrivial connected graph and let P be a longest path in
G. Suppose that P is a u — v path. We show that u and v are not cut-vertices.

o7
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H : ——0—0—O Hs : Hs:

Figure 3.1: Cut-vertices in graphs

Assume, to the contrary, that u is a cut-vertex of G. Then G —u is disconnected
and so contains two or more components. Let w be the vertex on P that is
adjacent to u and let P’ be the w — v subpath of P. Necessarily, P’ belongs
to a component, say G1, of G — u. Let G5 be another component of G — u.
Then G4 contains some vertex z that is adjacent to w. This produces an = — v
path P’ that contains P. However, P’ is longer than P, which is impossible.
Similarly, v is not a cut-vertex of G. ]

If v is a cut-vertex of a graph G, then there exist paths in G that cannot
avoid v.

Theorem 3.2 A vertex v in a graph G is a cut-vertex of G if and only if there
are two vertices u and w distinct from v such that v lies on every u — w path
in G.

Proof. We may assume that G is connected, for otherwise we can consider a
component of G containing v. If v is a cut-vertex in a connected graph G, then,
of course, G — v contains two or more components. If v and w are vertices in
distinct components of G — v, then u and w are not connected in G —v. On
the other hand, v and w are necessarily connected in G. Thus, v lies on every
u — w path in G.

For the converse, suppose that there are two vertices v and w distinct from
v such that v lies on every u — w path in G. Then there is no u — w path in
G —v. Thus, u and w are not connected in G — v, and so G — v is disconnected.
Therefore, v is a cut-vertex of G. ]

An Introduction to Nonseparable Graphs

We have seen then that some connected graphs may contain a vertex, the
removal of which separates the graph into two or more connected graphs. These
vertices are, of courses, cut-vertices. As we saw, a connected graph need not
contain any cut-vertices.

A nontrivial connected graph containing no cut-vertices is a nonseparable
graph. In particular, the cycles C},, n > 3, and the complete graphs K,,, n > 2,
are nonseparable graphs. In fact, K5 and K3 are the only nonseparable graphs
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of order 3 or less. Furthermore, if G is a nonseparable graph of order 3 or more,
then §(G) > 2. Not only do nonseparable graphs of order 3 or more contain
cycles, they contain cycles possessing a rather interesting property.

Theorem 3.3 Let G be a graph of order 3 or more. Then G is nonseparable
if and only if every two vertices of G lie on a common cycle of G.

Proof. Suppose, first, that G is a nonseparable graph of order 3 or more and
assume, to the contrary, that there are pairs of vertices of G that do not lie
on a common cycle. Among all such pairs, let u,v be a pair for which d(u,v)
is minimum. Suppose first that d(u,v) = 1, that is, uv € E(G). Since G is a
nonseparable graph of order 3 or more, degu > 2. Let w be a vertex different
from v that is adjacent to u. Since G — u is connected, G — u contains a w — v
path P. Then the path P together with the path (w,u,v) produce a cycle
containing v and v. Hence, we may assume that d(u,v) =k > 2.

Let P = (u = vo,v1,...,0k—1,0x = v) be a u — v geodesic in G. Since
d(u,vip—1) = k—1 < k, there is a cycle C containing u and vx_;. By assumption,
v is not on C. Since vi_1 is not a cut-vertex of G and u and v are distinct from
Vg_1, it follows from Theorem 3.2 that there is a v — u path @ that does not
contain vi_1. Since u is on C, there is a first vertex x of @) that is on C' (where
possibly x = u). Let Q" be the v — x subpath of @ and let P’ be a vy_1 — x
path on C that contains u. (If  # wu, then the path P’ is unique.) However,
the cycle C’ produced by proceeding from v to its neighbor vg_1, along P’ to
z, and then along @’ to v contains both u and v, a contradiction.

Conversely, suppose that every two vertices of G lie on a common cycle of
G. Then G is connected. Assume, to the contrary, that G has a cut-vertex v.
By Theorem 3.2, G contains two vertices u and w distinct from v such that v
lies on every u — w path in G. Since there is a cycle C' containing u and w,
there is a u — w path on C not containing v. This is a contradiction. L]

This theorem has several consequences (see Exercises 3-5). For two distinct
vertices u and v in a graph G, two u — v paths are internally disjoint if they
have only v and v in common.

Corollary 3.4 A connected graph G of order 3 or more is nonseparable if and
only if for every two distinct vertices u and v in G, there are two internally
disjoint u — v paths.

Corollary 3.5 Let u and w be two distinct vertices in a nonseparable graph
G. If H is obtained from G by adding a new vertex v and joining v to u and
w, then H is nonseparable.

Corollary 3.6 IfU and W are disjoint sets of vertices in a nonseparable graph
G of order 4 or more with |U| = |W| = 2, then G contains two disjoint paths
connecting the vertices of U and the vertices of W.
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Let G be a nontrivial connected graph. A block of G is a maximal nonsepa-
rable subgraph of G; that is, a block of G is a nonseparable subgraph of G that
is not a proper subgraph of any nonseparable subgraph of G. Every two distinct
blocks of G have at most one vertex in common; and if they have a vertex in
common, then this vertex is a cut-vertex of G. A block of G containing exactly
one cut-vertex of G is called an end-block of G. If B and B’ are two blocks
containing the cut-vertex v, while u € V(B) and w € V(B’) for u,w # v, then
every u— w path in G must contain the vertex v. This is basically Theorem 3.2.
A graph G and its five blocks B;, 1 < i < 5, are shown in Figure 3.2. The
end-blocks of G are By, By and Bs. A connected graph with cut-vertices must
contain two or more end-blocks.

w
B42 I
)

Bs;: yo——oz

Figure 3.2: The blocks of a graph

Theorem 3.7 Fuvery connected graph containing cut-vertices has at least two

end-blocks.

Proof. If G contains only one cut-vertex, then every block of G is an end-
block. Hence, we may assume that G contains two or more cut-vertices. Among
all pairs of cut-vertices of G, let u,v be a pair for which d(u,v) is maximum
and let P be a u — v geodesic, say

P =(u=wup,u1,...,ur =v), where k > 1.

Then u; belongs to a block B and u;_; belongs to a block B’, where possibly
B = B’. In fact, possibly u; = v. Since u is a cut-vertex of G, it follows
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that u belongs to one or more blocks different from B. Let By be one of these.
Similarly, let B} be a block different from B’ that contains v. We claim that By
is an end-block of G. If By is not an end-block, then Bj contains a cut-vertex
z different from u. Since every x —wuy path must pass through u, it follows that

d(z,v) = d(z,u) + d(u,v) > d(u,v),
which is impossible. Similarly, B} is an end-block different from Bj. [

The following result, which can be proved in a similar manner, is often useful
as well.

Theorem 3.8 Let G be a connected graph with at least one cut-vertex. Then
G contains a cut-vertex v with the property that, with at most one exception,
all blocks of G containing v are end-blocks.

Proof. If G has only one cut-vertex, then every block of G is an end-block and
contains the cut-vertex. Hence, we may assume that G contains two or more
cut-vertices. Among the cut-vertices of G, let u and v be two for which d(u,v)
is maximum and let P = (u = ug,uq,...,ux = v), k > 1, be a u — v geodesic.
Then uy_1 belongs to a block B containing v. Let B’ be a block containing v
that is different from B. If B’ is not an end-block, then B’ contains a cut-vertex
w different from v. Let P’ be a v — w geodesic in G. Then the path P followed
by P’ produces a u — w geodesic whose length exceeds that of P. This is a
contradiction. Thus, every block containing v that is different from B is an
end-block. [

Another interesting property of blocks of graphs was observed by Frank
Harary and Robert Z. Norman [123].

Theorem 3.9 The center of every connected graph G lies in a single block

of G.

Proof. Suppose that G is a connected graph whose center Cen(G) does not
lie within a single block of G. Then G has a cut-vertex v such that G — v
contains components G and G3, each of which contains vertices of Cen(G).
Let u be a vertex such that d(u,v) = e(v), and let P; be a v — u geodesic. At
least one of G; and Gs, say G2, contains no vertices of P;. Let w be a vertex
of Cen(@G) belonging to Ga, and let P; be a w — v geodesic. The paths P; and
P; together form a u — w path Ps, which is necessarily a u — w path of length
d(u,w). However, then e(w) > e(v), which contradicts the fact that w is a

central vertex. Thus, Cen(G) lies in a single block of G. (]
If a graph G has components G1,Ga,...,G; and a nonempty connected
graph H has blocks Bi, Ba, ..., By, then {V(G1), V(G2), ..., V(Gi)} is a

partition of V(G) and {E(By), E(Bs), ..., E(Bg)} is a partition of E(H).
Suppose, for a cut-vertex v of a connected graph G, that the disconnected
graph G — v has k components Gy, Gs, ...,Gy (k > 2). The induced subgraphs
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Bi = GV(Gi) U{v}]

are connected and referred to as the branches of GG at v. If a branch B; contains
no cut-vertices of G, then B; is a block of G — in fact, an end-block of G.

A connected graph G containing three cut-vertices u, v and w and six blocks
is shown in Figure 3.3. Four of these blocks are end-blocks. The graph G has
four branches at v, all of which are shown in Figure 3.3. Two of the four
branches at v are end-blocks of G.

<

Figure 3.3: The four branches of a graph G at a cut-vertex v

S
< OoO—ec

v X

3.2 Introduction to Trees

We have seen that a connected graph may contain a vertex whose removal
results in a disconnected graph and that such a vertex is a cut-vertex. There
are also edges possessing this property.

An edge e = uv in a connected graph G whose removal results in a discon-
nected graph is a bridge. Necessarily, G — e consists of two components, one
containing v and the other containing v. More generally, an edge e is a bridge
in a graph G (connected or not) if k(G —e) > k(G). Then k(G —e) = k(G) + 1.
In the graph G of Figure 3.4, vs, vg,v7,vs and vg are cut-vertices, while v4vs,
vsVg, V7v11 and vgvg are bridges.

While there are connected graphs no vertex of which is a cut-vertex (the
nonseparable graphs), there is no connected graph in which every vertex is a
cut-vertex (see Theorem 3.1). There are, however, connected graphs in which
every edge is a bridge. It is this class of graphs that we study in the current
section. First, we discuss an important property of bridges.
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V1 (%) U3

/O\U7 Vg Vg
G: o ° °

V10§ V12 V13

V11

Figure 3.4: Bridges and cut-vertices in a graph

Theorem 3.10 An edge e in a graph G is a bridge of G if and only if e lies
on no cycle in G.

Proof. We may assume that G is connected, for otherwise we can consider a
component of G containing e. First, suppose that e = uv is an edge of G that
is not a bridge. Since G — e is connected, there is a u—wv path P in G —e. Then
P together with e produce a cycle in G containing e.

For the converse, assume that e = uv is an edge of G belonging to a cycle of
G. Since e lies on a cycle of G, there is a v — v path P’ in G not containing e.
We show that G — e is connected and, consequently, that e is not a bridge. Let
z and y be two vertices of GG. Since G is connected, G contains an  — y path
Q. If e does not lie on @, then @ is an x — y path in G — e as well. If, on the
other hand, e lies on @, then replacing e in Q by the u — v path P’ produces
an x —y walk in G — e. By Theorem 2.1, G — e contains an x — y path. Thus
G — e is connected. n

We are now prepared to discuss one of the best known and most useful
classes of graphs. An acyclic graph has no cycles. A tree is a connected

acyclic graph. By Theorem 3.10, a tree is a connected graph, every edge of
which is a bridge. Each graph in Figure 3.5 is a tree.

—

Figure 3.5: Three trees
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’ Origin of Trees ‘

Trees appeared implicitly in the 1847 work [142] of the German physicist
Gustav Kirchhoff in his study of currents in electrical networks, while Arthur
Cayley [43] used trees in 1857 to count certain types of chemical compounds.
Trees are important to the understanding of the structure of graphs and are
used to systematically visit the vertices of a graph. Trees are also widely used
in computer science as a means to organize and utilize data.

The simplest organic chemical molecules are the alkanes. Alkanes are hy-
drocarbons and so their molecules consist only of carbon and hydrogen atoms,
denoted by the symbols C' and H, respectively. The valency of each carbon
atom is 4 and of each hydrogen atom is 1, so if an alkane molecule has n car-
bon atoms, then there must be 2n + 2 hydrogen atoms, producing the formula
Cy, Hap o for each alkane molecule. The five simplest alkanes along with their
chemical formulas are shown in Figure 3.6. In earlier days, the degree of a
vertex v in a graph was sometimes referred to as the valency of v.

H H H H H H
@) T @)
c lc C TC gc Tc
H —OH HO O T OH HO T | T OH
O é O O @) ©)
H H H H H H
methane (CHy) ethane (CyHg) propane (C3Hs)
H
O

butane (CyH1p) isobutane (C4Hjo)

Figure 3.6: The five simplest alkanes

All of the structures in Figure 3.6 are trees. Observe that both butane
and isobutane have the same chemical formula CyHyy but they have a differ-
ent structure. (They are not isomorphic.) So it is possible for two different
alkanes to have the same chemical formula. In fact, there are three different
alkanes having the formula C5H15 and 1, 117, 743, 651, 746, 953, 270 (over one
quintillion) different alkanes having the formula Cs0H1o2.
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Special Trees

There are several well-known classes of trees. For example, the paths P,
and stars K ,_1 are trees of order n > 2. For ¢ > 2, only one vertex of the star
K+ is not a leaf; the vertex of degree t in K is the central vertex of K ;.
A tree containing exactly two vertices that are not leaves (which are necessarily
adjacent) is called a double star. Thus, a double star is a tree of diameter
3. A caterpillar is a tree T of order 3 or more, the removal of whose leaves
produces a path (which is called the spine of T'). Thus, every path, every star
(of order at least 3) and every double star is a caterpillar. Figure 3.7 shows
four trees 11,15, T3 and Ty. The tree T} is a star, T5 is a double star and T3 is
a caterpillar that is not a double star, while T} is not a caterpillar.

Lo

T h T3 4

Figure 3.7: Four trees

Properties of Trees

Since every tree is connected, every two vertices are connected by a path.
In fact, even more can be said.

Theorem 3.11 A graph G is a tree if and only if every two vertices of G are
connected by a unique path.

Proof. First, suppose that G is a tree and that v and v are two vertices of G.
Since G is connected, G contains at least one u — v path. On the other hand,
if G were to contain two u — v paths, then G would contain a cycle, which is
impossible. Therefore, G’ contains exactly one u — v path.

Conversely, let G be a graph in which every two vertices are connected by
a single path. Certainly then, G is connected. If G were to contain a cycle
C, then every two vertices on C' would be connected by two paths. Thus, G
contains no cycle and so G is a tree. [

While every vertex of degree 2 or more in a tree is a cut-vertex, the vertices
of degree 1 (the leaves) are not. These observations provide a corollary of
Theorem 3.1.
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Corollary 3.12 FEvery nontrivial tree contains at least two leaves.

For a cut-vertex v of T', there are deg v branches of T" at v, where, necessarily,
each branch is a subtree of T'. In the tree T" of Figure 3.8, the four branches of

T at v are shown in that figure.
s
w
\ ’j“/@ t
v v

v v
o/ y
X

z

z

Figure 3.8: The branches of a tree at a vertex

There are several ways of constructing a new tree from a given tree. For
example, if v is a leaf in a tree T', then T' — v is also a tree. If a new vertex is
added to T and joined to any vertex of T', then another tree results.

In the tree T of Figure 3.8 and in each of the trees T1, To, T3 and Ty of
Figure 3.7, the size of the tree is one less than its order. This is not only true
of these trees, it is true of all trees.

Theorem 3.13 IfT is a tree of order n and size m, then m =n — 1.

Proof. We proceed by induction on the order of a tree. There is only one
tree of order 1, namely K3, and it has no edges. Thus, the basis step of the
induction is established. Assume that the size of every tree of order n —1 > 1
ism — 2 and let T be a tree of order n and size m. By Corollary 3.12, T has at
least two leaves. Let v be one of them. As we observed, T'— v is a tree of order
n — 1. By the induction hypothesis, the size of T'— v is n — 2. Thus, the size of
Tism=n-2)+1=n-1. "

Suppose that a tree T of order n > 3, size m and maximum degree A(T) = A
has n; vertices of degree ¢ (1 <i < A). Then

A N
Z degv:Zini:2m:2n—2:22ni—2. (3.1)
i=1 i=1

veV(T)
Solving (3.1) for ny, we have the following.
Theorem 3.14 Let T be a tree of order n > 3 having maximum degree A and
containing n; vertices of degree i (1 <i < A). Then the number ny of leaves of
T is given by
ny=2+n3+2ns+--+ (A —2)na.
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If s:dy,ds,...,d, is the degree sequence of a tree of order n > 2, then,
necessarily, 2?21 d; = 2n — 2. Here too, more can be said.

Theorem 3.15 A sequence s : dy,ds,...,d, of n > 2 positive integers is the
degree sequence of a tree of order n if and only if

n
Zdi =2n — 2.
i=1

Proof. First, let T be a tree of order n and size m with degree sequence
s:dy,ds,...,d,. Then, as observed,

> di=2m=2n-1)=2n-2.

i=1

We verify the converse by induction on n. When n = 2, the only sequence
of two positive integers whose sum is 2n — 2 = 2 is 1,1, which is the degree
sequence of the tree Ks.

Assume for a given integer n > 3 that any sequence of n—1 positive integers
whose sum is 2(n — 2) = 2n — 4 is the degree sequence of a tree of order n — 1.
Now let dy,ds,...,d, be a sequence of n positive integers whose sum is 2n — 2.
We show that this is the degree sequence of a tree of order n. Suppose that
dy > dy > -+ > dy,. Since each term is positive and 2?21 d; = 2n —2, it follows
that at least two terms in the sequence must be 1, and so d,_1 = d, = 1.
Furthermore, 2 < d; < n — 1. Hence, dy — 1,ds,...,d,—1 is a sequence of
n — 1 positive integers whose sum is 2(n — 1) — 2 = 2n — 4. By the induction
hypothesis, there is a tree T' of order n — 1 with V(T") = {v1,v2,...,vp_1}
such that degp vy = d; — 1 and degp v; = d; for 2 < i <n — 1. Let T be the
tree of order n obtained from 7" by adding a new vertex v, and joining it to
v1. The tree T then has the degree sequence dy,do, ..., d,. [

A graph without cycles is a forest. That is, a forest is an acyclic graph.
Thus, each tree is a forest and every component of a forest is a tree. All of the
graphs Fi, Fp and F3 in Figure 3.9 are forests but none are trees.

1Ry LI

Figure 3.9: Forests

The following is an immediate corollary of Theorem 3.13.

Corollary 3.16 The size of a forest of order n having k components is n —k.
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By Theorem 3.13, if G is a graph of order n and size m such that G is
connected and has no cycles (that is, G is a tree), then m = n — 1. It is easy to
see that the converse of this statement is not true. However, if we were to add
to the hypothesis of the converse either of the two defining properties of a tree,
then the converse would be true.

Theorem 3.17 Let G be a graph of order n and size m. If G has no cycles
and m =n — 1, then G is a tree.

Proof. It remains only to show that G is connected. Suppose that the com-
ponents of G are G1,Ga,...,Gy, where k > 1. Let n; be the order of G;
(1 <i < k) and m; the size of G;. Since each graph G; is a tree, it follows by
Theorem 3.13 that m; = n; — 1 and by Corollary 3.16 that m = n — k. Hence,

k k
n—lzmzZmi:Z(ni—l):n—k‘.
i=1 i=1
Thus, £ = 1 and so G is connected. Therefore, GG is a tree. [

Theorem 3.18 Let G be a graph of order n and size m. If G is connected
and m =n — 1, then G is a tree.

Proof. Assume, to the contrary, that there exists some connected graph of
order n and size m = n — 1 that is not a tree. Necessarily then, G contains one
or more cycles. By successively deleting an edge from a cycle in each resulting
subgraph, a tree of order n and size less than n—1 is obtained. This contradicts
Theorem 3.13. n

Combining Theorems 3.13, 3.17 and 3.18, we have the following.

Theorem 3.19 Let G be a graph of order n and size m. If G satisfies any
two of the following three properties, then G is a tree:

(1) G is connected, (2) G has no cycles, (3) m=n—1.

As one would anticipate, graphs often contain many subgraphs that are
trees. In fact, for each tree of a fixed order, every graph whose vertices have
sufficiently large degree contains a subgraph that is isomorphic to the tree.

Theorem 3.20 Let T be a tree of order k. If G is a graph for which §(G) >
k —1, then G contains a subgraph that is isomorphic to T.

Proof. We proceed by induction on k. The result is obvious for k = 1 since
K is a subgraph of every graph and for k = 2 since K5 is a subgraph of every
nonempty graph.

Assume for every tree T’ of order k — 1 with k¥ > 3 and for every graph G’
with 6(G') > k —2, that G’ contains a subgraph that is isomorphic to 77. Now,
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let T be a tree of order k and let G be a graph with §(G) > k — 1. We show
that G contains a subgraph that is isomorphic to T.

Let v be an end-vertex of T" and let u be the vertex of T' that is adjacent to
v. Then T — v is a tree of order k — 1. Since §(G) > k —1 > k — 2, it follows
by the induction hypothesis that G contains a subgraph T" that is isomorphic
to T —wv. Let u' denote the vertex of T corresponding to u in T — v. Since
degs v’ > k—1 and the order of 7" is k — 1, the vertex u’ is adjacent to a vertex
v" that does not belong to T”. The tree obtained by adding v" to T’ and joining
it to u’ is isomorphic to T, completing the proof. [

3.3 Spanning Trees

Although there is no closed formula for the number of non-isomorphic trees of
a fixed order, a formula does exist for the number of distinct labeled trees of
order n (whose vertices are labeled from a fixed set of cardinality n).

Two labelings of the same graph from the same set of labels are considered
distinct labelings if they produce different edge sets. Figure 3.10 shows three
labelings of a graph of order 9 from the set {1,2,...,9}. Since the first two
labelings produce the same edge set, these two labelings are considered the
same. The third labeling is different from the first two, however, since 26 is an
edge there while 26 is not an edge in either of the first two labelings.

4

Figure 3.10: Labelings of a graph

There are three labeled trees of order 3 (whose vertices are labeled from
the same set of three labels) and there are 16 labeled trees of order 4 (whose
vertices are labeled from the set of four labels). These 19 trees are shown in
Figure 3.11, where the vertex sets are {1,2,3} and {1, 2, 3,4}.

As we will see, the number of distinct labeled trees of order n whose vertices
are labeled from the same set of n labels is n»~2. Thus, the number of labeled
trees of order 3 is 3! = 3 and the number of labeled trees of order 4 is 4% = 16,
as mentioned above. This formula for the number of labeled trees of order
n is due to the famous British mathematician Arthur Cayley, whom we have
encountered earlier and will encounter again. While Cayley discovered this
result in 1889, the proof we present was given in 1918 by Heinz Priifer [191], a
German mathematician known for his work on abelian groups.
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Figure 3.11: Labeled trees of orders 3 and 4

| Priifer Codes]

Priifer’s proof of Cayley’s result (often called Cayley’s Tree Formula) con-
sists of establishing a one-to-one correspondence between the trees of order n
with the same vertex set, say {1,2,...,n}, and the sequences (called Priifer
codes) of length n — 2 whose entries come from the set {1,2,...,n}. Since the
number of such sequences is n”~2, the proof is complete once the one-to-one
correspondence has been verified.

Before giving a proof of Cayley’s Tree Formula, we present an example
to illustrate the technique employed. Consider the tree T of order n = 8 in
Figure 3.12 whose vertices are labeled with elements of the set {1,2,...,8}.
The first term of the Priifer code of T} = T is the neighbor of the end-vertex
of T7 having the smallest label. This end-vertex is then deleted, producing a
new tree T5. The second term of the Priifer code for T is the neighbor of the
end-vertex of T having the smallest label in 75. We continue in this manner
until we arrive at T,,_o = Ks. The resulting sequence of length n — 2 is the
Priifer code for T, which in this case is (1,8,1,5,2,5).
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6 3 6 6
=T 1 T : 1 T3 1

o—0—0O0—_0—=oO0

7 2 5 8 4 7 2 5 8 4

Ty : !
4 - T : Tp : T7 .
o— 0—0—0—0 0—0—0 0—o0
7 2 5 8 7 2 5 8 2 5 8 5 8

Priifer code for T': (1,8,1,5,2,5)

Figure 3.12: Determining the Priifer codes for a tree

In this example, every vertex v of T appears in its Priifer code degv — 1
times. This is true in general. Therefore, no end-vertex of T appears in the
Priifer code for T'. So if T is a tree of order n and size m, then the number of
terms in its Priifer code is

Z (degv—1)=2m—-n=2n—-1)—n=n—2.
veV(T)

We now consider the converse question. Suppose that s = (a1, az,...,a,—2)
is a sequence of length n — 2 where a; € {1,2,...,n} for each i (1 <i <n—2).
We construct a labeled tree T of order n with vertex set {1,2,...,n} such that
the given sequence s is the Priifer code of T. For example, suppose that the
given sequence is s = (1,8,1,5,2,5). This sequence has length n —2 = 6 and so
n = 8. The smallest element of {1,2,...,8} not appearing in this sequence is
3. We join vertex 3 to the first term (vertex) of the sequence, that is, vertex 3
is joined to vertex 1. The first term of the sequence is then deleted, producing
the reduced sequence (8,1,5,2,5). Also, the element 3 is removed from the
set {1,2,...,8}. The smallest element of the reduced set {1,2,4,5,6,7,8} not
appearing in (8,1,5,2,5) is 4, which is joined to vertex 8, the first term of the
sequence (8,1,5,2,5). This procedure is continued until only two elements of
the final reduced set remain. These two vertices (5 and 8 in this case) are joined
and a tree T has been constructed whose Priifer code is s. This is illustrated
in Figure 3.13.

In general then, to construct the Priifer code (a1, a9, ...,a,—2) of atree T =
T, of order n whose vertices are labeled with elements of the set {1,2,...,n},
we apply the following algorithm.
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6 3 6 3
o o)
(1,8,1,5,2,5) (8,1, 5,2,5)
1 1
1,2,3,4,5,6,7,8 1,2,4,5,6,7,8
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Figure 3.13: Constructing a tree with a given Priifer code

Algorithm 3.21 Construct the Prifer code of a labeled tree with vertexr set
{1,2,...,n}.

Input: An integer n > 3 and a tree T = T} with vertex set {1,2,...,n}.
Output: The Priifer code (a1, as,...,an—2) of T.
1. Fori=1ton—2

1.1. Locate the smallest leaf v; of T; and let a; be the neighbor of v; in
T;.

1.2. Let Ti-i—l = T‘z — V5.

2. Output ((11, az, ..., an_g).

For a fixed set S = S7 of n positive integers and for a sequence s = s; of
length n — 2 whose terms belong to S1, a graph G of order n with V(G) = Sy
is constructed by following the algorithm below. We may assume that S; =
{1,2,...,n} and s; = (a1, as,...,a,—2), where a; € Sy for 1 <i<n —2.
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Algorithm 3.22 Given a sequence sy of length n — 2 whose terms belong to

the set S1 ={1,2,...,n}, construct a tree with vertex set S1 whose Priifer code
18 S1.
Input: An integer n > 3, S; = {1,2,...,n} and a sequence s; = (a1, ag, ...,

an—2), where a; € {1,2,... n}for 1 <i<n-—2.
Output: A graph G with vertex set {1,2,...,n}.
1. Fori=1ton—2,

1.1. Let k; be the smallest element of S; not appearing in s; and let

€; = klaz
1.2. Let S;41 = 85; — {kl}
1.3. Fori <n—3, let s;11 = (@j4+1,qi1+2,- -, An-2).

2. For the two elements z,y € S,_1, let e,_1 = xy.

3. Output E(G) = {e1,e2,...,en_2}.

’ Cayley’s Tree Formula ‘

Algorithm 3.21 shows that the Priifer code of a tree with vertex set {1, 2,
..., n} is a sequence of length n — 2 whose terms belong to {1,2,...,n}, while
Algorithm 3.22 constructs a graph of order n (which will be shown to be a
tree) whose Priifer code is a given sequence. We now use Priifer codes to verify
Cayley’s Tree Formula [44].

Theorem 3.23 (Cayley’s Tree Formula) For each positive integer n, there
are n" "2 distinct labeled trees of order n having the same vertex set.

Proof. The result is obvious for n = 1 and n = 2. For n > 3, we show by
induction that there is a one-to-one correspondence between the set of distinct
labeled trees of order n having a fixed vertex set .S of n positive integers and the
set of sequences of length n — 2 whose terms belong to S. By Algorithm 3.21,
the Priifer code of every tree of order n with vertex set S is a sequence of
length n— 2 whose terms belong to S. The proof will be complete once we show
that for each such sequence only one tree of order n with vertex set S has this
sequence as its Priifer code.

For n = 3, let S be a set of three positive integers, say S = {1,2,3}. There
are three trees with vertex set .S, which are shown in Figure 3.11. These trees
have Priifer codes (1), (2) and (3), respectively. Thus, the result is true for
n = 3.

Assume for n > 4, that for each sequence sy of length n — 3 whose terms
belong to a fixed (n — 1)-element set Sy of positive integers that Algorithm 3.22
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constructs a unique tree of order n — 1 with vertex set Sy whose Priifer code
is S0-

Now let S = {1,2,...,n} and let s be a sequence of length n — 2 whose
terms belong to S. Let G be the graph constructed by Algorithm 3.22. The
goal then is to show that G is the unique tree with Priifer code s.

Let k& be the smallest element of S that does not belong to s. By Al-
gorithm 3.22, ka; is an edge of the graph G constructed. By the induction
hypothesis, there is a unique tree 77 with vertex set S” = S — {k} having Priifer
code s’ = (ag,as,...,an—2). Since G is obtained from 7" by adding a new vertex
k to T’ and joining k to a1, the graph G is a tree that is uniquely determined.
Furthermore, the vertex set of G is S and its Priifer code is s. [

A spanning tree of a graph G is a spanning subgraph of G that is a tree.
A graph G can only contain a spanning tree if G is connected. Since the size of
every tree of order n is n — 1, it follows that if G is a connected graph of order
n and size m, then m > n — 1.

Spanning trees of a connected graph G can be obtained in a variety of ways.
One possibility is to begin with V(G). To construct the edge set E(T) of a
spanning tree T' of G, we begin by selecting an edge e; of G. Next select an
edge e of G that is distinct from e;. This is followed by selecting an edge e
distinct from those previously selected and that does not produce a cycle with
those previously selected. We continue in this manner until an edge e, —; is
selected. Then E(T) = {e1,ea,...,€n_1}.

Another way to produce a spanning tree T of a connected graph G is to
begin with G. If G is a tree, then G itself is a spanning tree. Otherwise, let f;
be an edge on a cycle of G and remove it. Let G; = G — f1. If G; is a tree,
then G is a spanning tree of G. Otherwise, let fy be an edge on a cycle of G
and remove it. Let Go = G; — f> and continue in this manner until no cycle
remains. The spanning subgraph 7T resulting in this manner is a spanning tree
of G. Hence, m — (n — 1) = m —n + 1 edges must be deleted from G to obtain
T. The number m — n + 1 is referred to as the cycle rank of G. Thus, a tree
has cycle rank 0.

If G is a connected graph of order n and size m having cycle rank 1, then
m—n+1=1and so n = m. Such a graph is therefore a connected graph
with exactly one cycle. These graphs are called unicyclic graphs. All of the
graphs in Figure 3.14 are unicyclic.

X A

Figure 3.14: Unicyclic graphs
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Still another way to construct a spanning tree 7' of G is to begin with a
vertex v of G. Suppose that the eccentricity e(v) of v is k. For ¢ = 0,1,...,k,
let

A ={ueV(G) : d(v,u) =i}.

Each vertex w € A;, where 1 < i < k, is adjacent to one or more vertices in
A;_1. Select exactly one such vertex x € A;,_1 and let wax € E(T). Then T is
a spanning tree with the property that dr(v,u) = dg(v,u) for each u € V(G).
Such a spanning tree T is then distance-preserving from v.

For the graph G of Figure 3.15, the trees 77 and T, are spanning trees of
G. The tree T; is distance-preserving from u. The proof of the next result of
Lesniak [155] uses the concept of a distance-preserving tree to obtain an upper
bound for the radius of a connected graph.

Theorem 3.24 If G is a connected graph of order n, then rad(G) < n/2.

Proof. Let u be a central vertex of G and let T be a spanning tree of T' that
is distance-preserving from u. Then ep(u) = eg(u). Furthermore, for every
vertex z of G, we have eg(z) < er(z). Thus, rad(T") = rad(G) and so it suffices
to show that rad(T) = er(u) < n/2.

Suppose, to the contrary, that ep(u) > (n + 1)/2. Necessarily, n > 3.
Moreover, u is a cut-vertex of T'. Since er(u) > (n+1)/2, the forest T — u has
a component T of order at least (n+1)/2. Let v be the unique vertex of 7’ that
is adjacent to w in T'. For each vertex w in T”, we have dr (v, w) = dp(u, w) —1,
which implies that dr (v, w) < er(u). For each vertex w of T not in 7", we have
dp(v,w) = dp(u,w)+ 1. Because there are at most (n —1)/2 vertices of T' that
are not in 77, it follows that dp(u,w) < (n — 3)/2. Therefore, for every vertex
v of T, we have

dr(v,w) < (n—1)/2 < ep(u).

However then, er(v) < er(u), contradicting the fact that u is a central vertex
of T. [

Edge Exchanges ‘

Returning to the graph G in Figure 3.15, we note that the spanning tree T}
of G has three leaves and the spanning tree T3 has five leaves. Furthermore, no
spanning tree of G has fewer than three or more than five leaves. According
to a result due to Seymour Schuster [217], there must be a spanning tree of G
with exactly four leaves.
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Figure 3.15: Two spanning trees 77 and 75 in a graph

If u and v are two nonadjacent vertices of a tree Ty, then Ty + uv contains
exactly one cycle C and the cycle C contains the edge uv. For any edge xy
belonging to C, the graph T1 = Ty + uv — zy is again a tree. The tree T} is said
to be transformed into 77 by an edge exchange. This transformation from 7§
to T is illustrated in Figure 3.16.

T()Z

1\

y v x Yy v
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83 0—oO0=¢e
D)
O l
X
(@]
o] ;

Figure 3.16: Transforming a tree Ty into a tree 17 by an edge exchange

Theorem 3.25 Let G be a connected graph. If G contains a spanning tree
with exactly r leaves and a spanning tree with exactly t leaves where r < t, then
for every integer s with r < s < t, there is a spanning tree of G with exactly s
leaves.

Proof. Let Tj be a spanning tree of G with r leaves and let T be a spanning
tree of G with ¢ leaves. Clearly, E(Ty) # E(T). Let e be an edge of T not
belonging to Ty. Then T + e is a unicyclic graph whose cycle C' contains an
edge f not belonging to 1. Thus Ty is transformed into the spanning tree
Ty =Ty + e — f by an edge exchange where T has one more edge in common
with T than Ty does. If Ty = T, then the transformation is complete; otherwise,
Ty can be transformed into a spanning tree T» having one more edge in common
with 7" than T; does. We continue this until we arrive at T, that is, we have a

sequence
To, T, To,..., Ty =T

of spanning trees of G where for each i (1 < ¢ < k), T;_1 is transformed into 7T;
by an edge exchange and T; has one more edge in common with 7" than T;_4
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does. Suppose that the tree T; (0 < ¢ < k) has a; leaves. Thus ag = r and
ap =t.

In the process of transforming a tree T;_; into T (1 < j < k) by an edge
exchange, some edge uv is added to 7;_; and some edge zy is removed from
T;_1 + uv, that is, T; = Tj_1 + uv — zy. (It is possible that one of v and v is
the same as one of  and y.) Depending on the degrees of u and v in Tj_; and
the degrees of z and y in Tj_; + uv, the number a; — a;_; can be any of the
integers —2,—1,0,1 or 2.

If the number s does not appear in the sequence r = ag,a1,...,ar = t,
then it must occur that a;_1 = s — 1 and a; = s 4 1 for some integer j with
1 < j < k. Suppose that T; = Tj_; + uv — zy. Since a; = a;_1 + 2, it follows
that the vertices u, v,z and y are distinct and that

degp, , u=>2,degp, v =2, degy  x=2anddegy  y=2.

Observe that the unicyclic graph 75_1 4+ uv has a;_; leaves. Now both u and z
lie on the cycle C'in H = T;_; +uv and degy u > 3 and degy; x = 2. Hence, on
au—z path on C' in H, there are adjacent vertices w and z with deg w > 3 and
degy z = 2. Deleting wz from H produces a spanning tree 7" with a;_1+1 = s
leaves. ]

’The Matrix-Tree Theorem‘

Cayley’s Tree Formula, which gives the number of labeled trees of a given
order, has another interpretation. As a consequence of this formula, there are
n"~2 distinct spanning trees of the labeled graph K,. This brings up the
question of determining the number of distinct spanning trees of labeled graphs
in general. An answer to this question has been given as a determinant of a
matrix. This result, implicit in the work [142] of Gustav Kirchhoff, is known as
the Matriz-Tree Theorem.

Kirchhoff is well known for his research on electrical currents, which he
announced in 1845. This led to Kirchhoff’s laws, the first of which states that
the sum of the currents into a vertex equals the sum of the currents out of
the vertex. Two years later, in 1847, he graduated from the University of
Konigsberg. It was during that year that he published the paper that led to his
theorem on counting spanning trees. Kirchhoff spent much of his life working
on experimental physics.

The proof we give of the Matrix-Tree Theorem will employ several results
from matrix theory. Let M be an r x s matrix and M’ an s X r matrix with
r < s. The product M - M’ is therefore an r x r matrix. Since M - M’ is a
square matrix, its determinant det(M - M') exists. An r x r submatrix My of
M is said to correspond to the r x r submatrix M{ of M’ if the column numbers
of M determining My are the same as the row numbers of M’ determining M.
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For example, suppose that r =2 and s = 3 and

2 -1
M= L =23 and M'=1]3 1 |. (3.2)
2 0 4 0 9

Then the following 2 x 2 matrices My and M{ of M and M’, respectively,
correspond to each other:

MOZH _(2)] and Mé:{g _H

A result from matrix theory states that
det(M - M') =) "(det Mo)(det Mp), (3.3)

where the sum is taken over all 7 x r submatrices My of M and where M{ is
the r x r submatrix corresponding to My. The numbers det(Mp) and det(MY)
are referred to as major determinants of M and M’, respectively.

For the matrices M and M’ in (3.2),

2 -1
o [1 -2 3 [-4 3
MM_{204]:8;_[46.

Thus det(M - M') = (—4) - 6 — 4 - 3 = —36. From the result in matrix theory
mentioned above, we also have

1 -2 2 -1
2 0

o
[\

Suppose that A is an n X n matrix for some n > 3. Let A’ be the (n — 1) x
(n — 1) submatrix of A obtained by deleting row i and column j from A, where
1 <4,5 <n. Then (—1)"7 det(A’) is a cofactor of A. For the 3 x 3 matrix A in
Figure 3.17, A’ is the 2 x 2 submatrix obtained by deleting row 3 and column 3
of A, while A” is the 2 x 2 submatrix obtained by deleting row 1 and column 2
of A. Then these two cofactors of A are (—1)3T3det(A’) and (—1)'*2 det(A").

Observe that both cofactors of A in Figure 3.17 have the value 7. Also,
observe that every row sum and column sum of A is 0. It is a theorem of
matrix theory that whenever each row sum and column sum of a square matrix
M is 0, then all cofactors of M have the same value. If M is a square matrix
whose rows (or columns) are linearly dependent, then det(M) = 0.

Let G be a graph with V(G) = {v1,ve,...,v,}. The degree matrix
D(G) = [d;;] is the n x n matrix with

d = degv; ifi=j
. 0 ifi # 4.
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3 -1 =2
A= 1 2 -3
-4 -1 5

-3

[ S } (—1)*3 det(A') = 3(2) — (~1)1 = 7
1
—4 5

| e = -6 - (90 =7

A//_|:

Figure 3.17: Computing cofactors

Theorem 3.26 (The Matrix-Tree Theorem) If G is a nontrivial labeled
graph with adjacency matriz A and degree matriz D, then the number of distinct
spanning trees of G is the value of any cofactor of the matriz D — A.

Proof. Let V(G) = {v1,va,...,v,}. First, observe that the row sum of row i
(or column sum of column ¢) in A is degv;, so every row sum or column sum
of D — A is 0. Consequently, the cofactors of D — A have the same value.

Assume first that G is a disconnected graph. Of course in this case, G has
no spanning trees. Let G; be a component of G and suppose that V(G1) =
{v1,v2,...,0,}, where 1 <r < n. Let M be the (n — 1) X (n — 1) submatrix of
D — A obtained by deleting row n and column n from D — A. Since the sum
of the first r rows of M is the zero vector of length n — 1, the rows of M are
linearly dependent and so det(M) = 0, as desired.

Henceforth, we assume that G is a connected graph of order n and size
m where E(G) = {e1,ea,...,en}. Thus m > n —1. Let C = [¢;;] be an
n X m matrix where ¢;; =1 or ¢;; = —1 if v; is incident with e; and such that
each column has one entry that is 1 and one entry that is —1, while all other
entries in the column are 0. We show that for the transpose C? of C, we have
C-C*=D— A. The (i,j)-entry of C' - C* is

m
E CikCijk,
k=1

which has the value degv; if i = j, the value —1 if i # j and v;v; € E(G) and
the value 0 if i # j and v;v; ¢ E(G). Hence, as claimed, C' - C* = D — A.

Consider a spanning subgraph H of G containing n — 1 edges of G. Let C’
be the (n — 1) x (n — 1) submatrix of C determined by the columns associated
with the edges of H and by all rows of C with one exception, say row k.

We now determine the absolute value |det(C”)| of the determinant of C’. If
H is disconnected, then H has a component H; not containing v;. The sum
of the row vectors of C’ corresponding to the vertices of H; is the zero vector
of length n — 1. Hence the row vectors in C” are linearly dependent and so
| det(C")| = 0.
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Next, assume that H is connected. Thus, H is a spanning tree of G. Let u;
be an end-vertex of H that is distinct from vy, and let f; be the edge of H that
is incident with uq. In the tree H — uq, let us be an end-vertex distinct from
v and let fy be the edge of H — uy that is incident with uy. This procedure is
continued until only the vertex v; remains.

A matrix C" = [¢};] can now be obtained by a permutation of the rows and
columns of C” such that [¢j;| = 1 if and only if u; and f; are incident. From
the manner in which C” is defined, any vertex u; is incident only with edges
f; with j < 4. This, however, implies that C” is a lower triangular matrix
and since |c;] = 1 for all ¢, we conclude that |det(C”)| = 1. Consequently,
| det(C")| = | det(C")| = 1.

Since every cofactor of D — A has the same value, it suffices to evaluate
the determinant of the matrix obtained by deleting both row i and column ¢
from D — A for some i (1 < i < n). Let C; denote the matrix obtained from
C by removing row i. Then the cofactor mentioned above equals det(C; - CY),
which implies by (3.3) that this number is the sum of the products of the
corresponding major determinants of C; and C!. However, these corresponding
major determinants have the same value and so their product is 1 if the defining
columns correspond to a spanning tree and 0 otherwise. [

Cayley’s Tree Formula (Theorem 3.23) is then a corollary of the Matrix-
Tree Theorem (see Exercise 58). We illustrate the Matrix-Tree Theorem for
the graph G of Figure 3.18 where the matrices D and D — A are also shown.

U1 V2

U3 V4

2 -1 -1 0
-1 3 -1 -1
-1 -1 3 -1

0 -1 -1 2

D—-A=

O O O N
OO WO
O Ww o O
N O OO

Figure 3.18: Illustrating the Matrix-Tree Theorem

To calculate a cofactor of D — A, we delete the entries in row ¢ and column j
for some i and j with 1 < i,5 < 4 and compute the product of (—1)**/ and
the determinant of the resulting submatrix. For example, the cofactor of the
(2,3)-entry in the matrix D — A in Figure 3.18 is

2 -1 0
(—=1)*3 ] -1 -1 —1
0 -1 2
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Expanding this determinant along the first row, we obtain
-1 -1 -1 -1 -1 -1
(13 o] el S)
= —[2(-3)+1(-2)+0]=8.

Consequently, there are eight distinct spanning trees of the labeled graph G of
Figure 3.18, all of which are shown in Figure 3.19.

V1 U2 v U2 U1 V2 vy V2
O
V3 V4 V3 (7 V3 (7 V3 V4

G:
U1 Vo U1 Vo U1 V2 U1 V2
o0——-o0 o— O O
VU3 ()
V3 Vg U3 V4 U3 V4 U3 U4

Figure 3.19: The distinct spanning trees of a graph

3.4 The Minimum Spanning Tree Problem

Let G be a connected graph each of whose edges is assigned a real number
(called the cost or weight of the edge). We denote the weight of an edge e of
G by w(e). Such a graph is called a weighted graph. For each subgraph H
of G, the weight w(H) of H is defined as the sum of the weights of its edges,
that is,

e€E(H)

We seek a spanning tree of G whose weight is minimum among all spanning
trees of GG. Such a spanning tree is called a minimum spanning tree. The
problem of finding a minimum spanning tree in a connected weighted graph is
called the Minimum Spanning Tree Problem.

The importance of the Minimum Spanning Tree Problem is due to its ap-
plications in the design of computer, communications and transportation net-
works. The history of this problem was researched by Ronald L. Graham and
Pavol Hell [107] in 1985. They concluded that the Minimum Spanning Tree
Problem was initially formulated by Otakar Boruvka [35] in 1926 because of his
interest in the most economical layout of a power-line network. He also gave
the first solution of the problem. Prior to Boruvka, however, the anthropolo-
gist Jan Czekanowski’s work on classification schemes led him to consider ideas
closely related to the Minimum Spanning Tree Problem.
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’ Kruskal’s Algorithm

Over the years, this problem has been solved in a variety of ways using a
number of algorithms. One of the best known was discovered by Joseph Bernard
Kruskal [150] in 1956. It was only two years after completing his doctoral degree
that the paper containing the algorithm that bears his name was published.

Kruskal’s Algorithm is an example of what is often called a greedy al-
gorithm. Such an algorithm is, informally, a procedure that selects the best
current option at each step without regard to future consequences.

Algorithm 3.27 (Kruskal’s Algorithm) For a connected weighted graph G
of order n, a spanning tree T of G is constructed as follows: For the first edge
e1 of T, we select any edge of G of minimum weight. For subsequent edges
€2,€3,...,en_1, we select an edge of minimum weight among the remaining
edges of G that does not produce a cycle with the previously selected edges.

Figure 3.20 shows how a spanning tree T of a connected weighted graph G is
constructed using Kruskal’s algorithm. We now show that Kruskal’s algorithm
produces a minimum spanning tree in every connected weighted graph.

Figure 3.20: Constructing a spanning tree by Kruskal’s algorithm
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Theorem 3.28 Kruskal’s algorithm produces a minimum spanning tree in a
connected weighted graph.

Proof. Let G be a connected weighted graph of order n and let T' be a span-
ning tree obtained by Kruskal’s algorithm, where the edges of T" are selected in
the order ey, ea, ..., e,—1. Necessarily then, w(e;) < w(ez) < ... < w(e,—1)
and the weight of T is

We show that T is a minimum spanning tree of G. Assume, to the contrary,
that 7' is not a minimum spanning tree. Among all minimum spanning trees
of G, let H be one that has a maximum number of edges in common with 7T'.
Since H # T, there is at least one edge of T that is not in H. Let e; be the
first edge of T that is not in H. Therefore, if 4 > 1, then the edges eq, es, ...,
e;—1 belong to both H and T. Now define Gg = H + ¢;. Then G has a cycle
C. Since T has no cycle, there is an edge ey on C that is not in 7. The graph
Ty = Go — eg is therefore a spanning tree of G and

w(Tp) = w(H) + w(e;) — w(ep).

Since H is a minimum spanning tree of G, it follows that w(H) < w(Tp). Thus,
w(H) <w(H) +w(e;) —w(ep) and so w(eg) < w(e;). By Kruskal’s algorithm,
certainly w(eg) = w(e;) if @ = 1. Suppose then that i > 1. By Kruskal’s
algorithm, e; is an edge of minimum weight that can be added to the edges
e1,€9,...,6;_1 without producing a cycle. However, ey can also be added to
€1,€2,...,e;_1 without producing a cycle. Thus w(e;) < w(eg), which implies
that w(e;) = w(eg) when ¢ > 1 as well. Therefore, w(Tp) = w(H) and so Tj is
also a minimum spanning tree of G. However, T has more edges in common
with T than H does, which is a contradiction. [

In fact, every minimum spanning tree in a connected weighted graph can be
obtained by Kruskal’s algorithm (see Exercise 70).

Prim’s Algorithm ‘

Another well-known algorithm for finding a minimum spanning tree in a
connected weighted graph was developed by Robert Clay Prim [190] in 1957,
although it had essentially been discovered by Vojtéch Jarnik [136] in 1930.

Algorithm 3.29 (Prim’s Algorithm) For a connected weighted graph G of
order n, a spanning tree T of G is constructed as follows: For an arbitrary
vertex u for G, an edge of minimum weight incident with u is selected as the
first edge e1 of T. For subsequent edges es,es,...,en_1, we select an edge of
minimum weight among those edges having exactly one of its vertices incident
with an edge already selected.
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Figure 3.21 illustrates how to construct a spanning tree T' of a connected
weighted graph G by Prim’s algorithm. Again, a tree obtained by Prim’s algo-
rithm is also a minimum spanning tree, as we show next.

Oo=r

Figure 3.21: Constructing a spanning tree by Prim’s algorithm

Theorem 3.30 Prim’s algorithm produces a minimum spanning tree in a con-
nected weighted graph.

Proof. Let G be a nontrivial connected weighted graph of order n and let
T be a spanning tree obtained by Prim’s Algorithm, where the edges of T" are
selected in the order eq, es, ..., e,_1, and where ey is incident with a given
vertex u. Thus the weight of T is

Assume, to the contrary, that T" is not a minimum spanning tree. Let H be the
set of all minimum spanning trees of G having a maximum number of edges in
common with 7. By assumption, T' ¢ H. If no tree in H contains ey, let H
be any tree in H; otherwise, let H be a tree in H that contains the edges eq,
€2, ..., € for some integer k with 1 < k < n — 1 but for which no tree in H
contains all of the edges e, ea, ..., ex+1. Hence no tree in H contains all of
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the edges ej, ea, ..., exy1, where 0 < k <n—1. If Kk =0, let U = {u}; while
if K > 1, let U be the set of k + 1 vertices that are incident with one or more
of the edges ey, e, ...,ex. By Prim’s Algorithm, ex41 joins a vertex of U and
a vertex of V(T') — U.

The subgraph H + ey41 therefore contains a cycle C' and eg4q is on C.
Necessarily, C' contains an edge eg distinct from eg; such that ey also joins a
vertex of U and a vertex of V(T') — U. By the construction of T from Prim’s
Algorithm, w(eg4+1) < w(eg). Now T = H + ep41 — €g is a spanning tree of G
whose weight is

w(T') = w(H) + w(ept1) — wleo).

Since H is a minimum spanning tree, w(H) < w(T”") and so w(H) < w(H) +
w(eg+1) — w(ep), which implies that w(ep) < w(ek4+1). Consequently, w(ey) =
w(egt1) and w(H) = w(T’). Therefore, T' is also a minimum spanning tree
of G. If ey does not belong to T', then 7" is a minimum spanning tree having
more edges in common with T than H does, which is impossible since H € H.
Hence ey belongs to T, which implies that 7’ has the same number of edges
in common with 7" as H does and so T” € H. Necessarily, ey = e; for some
j >k + 1. Since T contains all of the edges e1, e, ..., ext1, this contradicts
the defining property of H. [

Complexity of an Algorithm

While it is essential that an algorithm solve the problem under considera-
tion, another important characteristic of an algorithm concerns its efficiency.
The complexity of an algorithm refers to the number of basic computational
steps (ordinarily arithmetic operations and comparisons) required to execute
the algorithm. This number depends on the nature of its input as well as the
size of the input. For a graph of order n and size m, the complexity typically
depends on n and/or m. If the complexity is bounded above by a polynomial
in its input size, then it is called a polynomial-time algorithm. For exam-
ple, if the input is a graph of order n and the complexity of an algorithm is at
most some constant times nP for some positive integer p, then the algorithm
is a polynomial-time algorithm and we denote the complexity by O(nP). An
algorithm of complexity O(n) is a linear-time algorithm, while an algorithm
of complexity O(n?) is a quadratic-time algorithm.

Polynomial-time algorithms are considered efficient as these algorithms are
typically computationally feasible even when applied to graphs of large order.
The complexity of Kruskal’s algorithm is O(m?) and that of Prim’s algorithm
is O(n?).
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Exercises for Chapter 3

Section 3.1. Nonseparable Graphs

1.

9

Let G be a nontrivial connected graph and let v € V(G). If v is a vertex
that is farthest from u in G, then v is not a cut-vertex of G.

Let G be a nonseparable graph of order n > 4. Prove that if u,v € V(G)
such that u is a cut-vertex of G — v, then v is a cut-vertex of G — u.

Prove Corollary 3.4: A connected graph G of order 3 or more is nonsepa-
rable if and only if for every two distinct vertices u and v in G, there are
two internally disjoint u — v paths.

Prove Corollary 3.5: Let u and w be two distinct vertices in a nonseparable
graph G. If H is obtained from G by adding a new vertex v and joining
v to u and w, then H is nonseparable.

Prove Corollary 3.6: If U and W are disjoint sets of vertices in a nonsep-
arable graph G of order 4 or more with |U| = |W| = 2, then G contains
two disjoint paths connecting the vertices of U and the vertices of W.

(a) Let k be the maximum length of a cycle in a nonseparable graph G.
Prove that if C' and C’ are any two k-cycles in G, then C' and C’
have at least two vertices in common.

(b) Show that the result in (a) cannot be improved by giving an example
of an infinite class of nonseparable graphs for which there exist two
cycles of maximum length having exactly two vertices in common.

(a) Show that no graph has a cut-vertex of degree 1.

(b) Show that if G is a graph with 6(G) > 2 containing a cut-vertex of
degree 2, then G has at least three cut-vertices.

(c) Show, for every integer k > 2, that there is a graph containing a
cut-vertex of degree k.

. Prove or disprove each of the following.

(a) If v is a cut-vertex of a connected graph G and H is a proper con-

nected subgraph of order at least 3 containing v, then v is a cut-vertex
of H.

(b) Let G be a connected graph of order at least 4. If every proper
connected induced subgraph of G having order at least 3 contains a
cut-vertex, then GG also contains a cut-vertex.

. Prove that if v is a cut-vertex of a connected graph G, then v is not a
cut-vertex of G.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

Let uw and v be distinct vertices of a nonseparable graph G of order n > 3.
If Pis a u — v path of G, does there always exist a u — v path Q in G
such that P and @ are internally disjoint u — v paths?

(a) An element of a graph G is a vertex or an edge of G. Prove that a
connected graph G of order at least 3 is nonseparable if and only if
every pair of elements of G lie on a common cycle of G.

(b) Let G and H be graphs with V(G) = {v1,v2,...,v,} and V(H) =
{ui,ua,...,u,}, n > 3. Two vertices u; and u; are adjacent in H if
and only if v; and v; belong to a common cycle in G. Characterize
those graphs G for which H is complete.

Prove that if G is a graph of order n > 3 with the property that degu +
degv > n for every pair w,v of nonadjacent vertices of G, then G is
nonseparable.

Prove or disprove: If B is a block of order 3 or more in a connected graph
G, then there is a cycle in B that contains all the vertices of B.

A connected graph G contains k blocks and ¢ cut-vertices. What is the
relationship between k and £7

Prove or disprove: If G is a connected graph with cut-vertices and w and
v are antipodal vertices of G, then no block of G contains both u and v.

By Theorem 3.9, the center of every connected graph G lies in a single
block of G. Prove or disprove: If GG is a connected graph with two or
more cut-vertices, then the center of G lies in a block of G that is not an
end-block.

Let G be a nontrivial connected graph.

(a) Prove that no cut-vertex of G is a peripheral vertex of G.

(b) Prove or disprove: Every peripheral vertex of G belongs to an end-
block of G.

(a) Show that for every positive integer k, there exists a connected graph
G and a non-cut-vertex u of G such that rad(G — u) = rad(G) + k.

(b) Prove for every nontrivial connected graph G and every non-cut-
vertex v of G that rad(G — v) > rad(G) — 1.

(¢) Let G be a nontrivial connected graph with rad(G) = r. Among all
connected induced subgraphs of G having radius r, let H be one of
minimum order. Prove that rad(H — v) = r — 1 for every non-cut-
vertex v of H.
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19.

20.

21.

22.
23.
24.

25.

26.

27.

28.

29.

30.

31.

CHAPTER 3. TREES

Section 3.2. Introduction to Trees

Let G be a connected graph of order 3 or more. Prove that if e = uv is a
bridge of G, then at least one of w and v is a cut-vertex of G.

Prove that every connected graph all of whose vertices have even degrees
contains no bridges.

(a) Give an example of a tree of order 8 containing six vertices of degree
1 and two vertices of degree 4.
(b) Find all trees T where 75% of the vertices of T have degree 1 and the
remaining 25% of the vertices have another degree (a fixed degree).
Determine the average degree of a tree T' of order n in terms of n.

Draw all forests of order 6.

Prove that a graph G is a forest if and only if every induced subgraph of
G contains a vertex of degree at most 1.

Characterize those graphs with the property that every connected sub-
graph is an induced subgraph.

A graph G of order 8 has the degree sequence s : 3,3,3,1,1,1,1,1. Prove
or disprove: G is a tree.

Let G be a connected graph, and let e; and es be two edges of G. Prove
that G — e; — e2 has three components if and only if both e; and ey are
bridges in G.

Prove that a 3-regular graph G has a cut-vertex if and only if G has a
bridge.

A tree is called central if its center is K7 and bicentral if its center is
K5. Show that every tree is either central or bicentral.

Let T be a tree order 3 or more, and let 77 be the tree obtained from T
by deleting its end-vertices.
(a) Show that diam(7T) = diam(7") + 2, rad(T) = rad(T’) + 1 and
Cen(T') = Cen(T").
(b) Show that a tree T is central or bicentral (see Exercise 29) according

to whether diam(7) = 2rad(T) or diam(7T") = 2rad(7T") — 1.

Let G be a connected graph of order n and size m such that V(G)={vy,
V2, ..., Un}, where v; belongs to b(v;) blocks (1 <1i < n).

(a) Show that >_1  b(v;) < 2m.
(b) Show that Y., b(v;) = 2m if and only if G is a tree.
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32.
33.

34.

35.

36.

37.

38.

39.

40.
41.

42.

43.
44.

45.

Determine all trees T such that T is also a tree.

Prove that if T is a tree of order at least 3, then T contains a cut-vertex
v such that every vertex adjacent to v, with at most one exception, is an
end-vertex.

Let T be a tree of order n with degree sequence dy,ds,...,d, such that
di > dy > -+ > d,. Prove that d; < [2=!] for each integer i with
1<i<n.

Let G be a connected graph that is not a tree containing two distinct
vertices u and v such that G — u and G — v are both trees. Show that
degu = degv.

Show that there exists no tree T containing two distinct edges e; and
e such that the two components of T' — e; are isomorphic and the two
components of T'— e; are isomorphic.

Let T be a tree of order n. Prove that T is isomorphic to a subgraph of
Chia.

Prove that if T is a tree of Erder n > 2 that is not a star, then T is
isomorphic to a subgraph of T.

Find all those graphs G of order n > 4 such that the subgraph induced
by every three vertices of G is a tree, or show that no such graph exists.

Show that every tree with maximum degree k has at least k leaves.

Let P = (ug,u1,...,us) be a longest path in a tree T. Show, for every
vertex u in T, that e(u) = max{d(u,ug), d(u, us)}.

Let T be a tree with diam(T") > 3. Use Exercise 41 to prove the following.

(a) Every central vertex in T lies on a longest path in 7.

(b) For every integer k with rad(T") < k < diam(T'), the tree T contains
at least two vertices with eccentricity k.

Section 3.3. Spanning Trees
Determine the Priifer codes of the trees in Figure 3.11.

(a) Which trees have constant Priifer codes?

(b) Which trees have Priifer codes each term of which is one of two
numbers?

(¢) Which trees have Priifer codes with distinct terms?

Determine the labeled tree having Priifer code (4,5,7,2,1,1,6,6,7).
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47.

48.

49.

50.
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92.
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o4.

95.
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. In the Priifer code of a certain tree T', seven numbers appear twice each,
one number appears three times and no other number appears in the code.
How many leaves does T contain?

The Prifer code of a tree T of order n with vertex set {1,2,...,n} is
(8,6,8,8,1,6,2,2,9). What is the degree sequence di,ds,...,d, of T
where dy > dy > -+ > d,?

(a) Show that if G is a connected graph of order n > 4 having cycle
rank 1, then for every two distinct vertices v and v of GG, the graph
G contains at most two u — v paths.

(b) Is the statement in (a) true if G has cycle rank 27

Show that Theorem 3.24 is sharp by giving an example of a graph G of
order n with rad(G) = n/2 for every even integer n > 2.

Show for every even integer n > 2 and every positive integer r with
r < n/2 that there exists a tree of order n having radius r.

Prove that a sequence s, : dy,ds,...,d, (n > 3) of integers with 1 < d; <
n—1for 1 <1i < nis a degree sequence of a unicyclic graph of order n if
and only if at most n — 3 terms of s, are 1 and Y., d; = 2n.

(a) Show that for every connected graph G there is a spanning tree T" of
G such that diam(7T") < 2diam(G).

(b) Prove or disprove: For every positive integer k, there exists a con-
nected graph G and a spanning tree T' of G such that diam(7") >
kdiam(G).

Give an example of a connected graph G and a vertex v of G for which
there exist two distinct spanning trees that are distance-preserving from
.

(a) Let G be a connected graph. Show that if T is a spanning tree of G
that is distance-preserving from some vertex of GG, then

diam(G) < diam(7T") < 2diam(G).

(b) Show that for every positive integer a, there exists a connected graph
G of diameter a and a vertex v of G such that for every integer b with
a < b < 2a, there is a spanning tree T that is distance-preserving
from v and diam(7T) = b.

Give an example of a connected graph G that is not a tree and two vertices
u and v of G such that a distance-preserving spanning tree from v is the
same as a distance-preserving spanning tree from wu.

. Let G be the labeled graph in Figure 3.22.
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59.

60.

61.

62.

63.

64.

U1

U3 V4

Figure 3.22: The graph G in Exercise 56

(a) Use the Matrix Tree Theorem to compute the number of distinct
labeled spanning trees of G.

(b) Draw all the distinct labeled spanning trees of G.
(a) Let G = K4 with V(G) = {v1, v2,v3,v4}. Draw all labeled spanning

trees of G in which v4 is an end-vertex.

(b) Let v be a fixed vertex of G = K,,. Determine the number of labeled
spanning trees of G in which v is an end-vertex.

Prove Theorem 3.23 as a corollary of Theorem 3.26.

Prove that an edge e of a connected graph is a bridge if and only if e
belongs to every spanning tree of G.

Let F be a subgraph of a connected graph G. Prove that F is a subgraph
of every spanning tree of G if and only if F' contains no cycles.

What is the maximum number of spanning trees, no two of which have
an edge in common, that a complete graph of order n > 4 can have?

(a) Let G be a nontrivial connected graph. Prove that if v is an end-
vertex of some spanning tree of G, then v is not a cut-vertex of G.

(b) Use (a) to give an alternate proof of the fact that every nontrivial con-
nected graph contains at least two vertices that are not cut-vertices.

(c) Let v be a vertex in a nontrivial connected graph G. Show that
there exists a spanning tree of G that contains all edges of G that
are incident with v.

(d) Prove that if a connected graph G has exactly two vertices that are
not cut-vertices, then G is a path.

Show that there is only one positive integer k such that no graph contains
exactly k spanning trees.

Let T and T' be two distinct spanning trees of a connected graph G of
order n. Show that there exists a sequence T = Ty, T1,..., T, = T" of
spanning trees of G such that T; and T;11 have n — 2 edges in common
for each i with 0 <i <k —1.
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65.

66.

67.

CHAPTER 3. TREES

Show for every two integers r and t with 2 < r < ¢ that there exists a
connected graph G such that 7 is the minimum number of end-vertices in
a spanning tree of G and ¢ is the maximum number of end-vertices in a
spanning tree of G.

For the graph G in Figure 3.23, determine

(a) the adjacency matrix A of G and the degree matrix D of G,

(b) a cofactor of the matrix D — A,

(¢) the matrix C described in the proof of Theorem 3.26,

(d) the matrix Cs described in the proof of Theorem 3.26,

(e) the matrix C5 - C,

(f) the major determinants of C5 and C¥%.

lustrate (3.3) in the case where M = C3 and M’ = C%, and where
det(Mp) and det(M]) are the corresponding major determinants of Cj

and C%. Then show that the value of det(C3-C%) obtained is the expected
value.

(%4 €
U3
G . e V4
€4
€
(%) 3

Figure 3.23: The graph G in Exercise 66

Section 3.4. The Minimum Spanning Tree Problem

Apply both Kruskal’s and Prim’s algorithms to find a minimum spanning
tree in the weighted graph in Figure 3.24. In each case, show how this
tree is constructed, as in Figures 3.20 and 3.21.

Figure 3.24: The weighted graph in Exercise 67
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69.

70.

71.

72.

Apply both Kruskal’s and Prim’s algorithms to find a minimum spanning
tree in the weighted graph in Figure 3.25. In each case, show how this
tree is constructed, as in Figures 3.20 and 3.21.

(7 v
T w 2 5
5 11
6
3 11
z
Y 9

Figure 3.25: The weighted graph in Exercise 68

Let G be a connected weighted graph and 7" a minimum spanning tree
of G. Show that T is a unique minimum spanning tree of G if and only
if the weight of each edge e of G that is not in T exceeds the weight of
every other edge on the cycle in T + e.

Let G be a connected weighted graph. Prove that every minimum span-
ning tree of G can be obtained by Kruskal’s algorithm.

Let G be a connected weighted graph whose edges have distinct weights.
Show that G has exactly one minimum spanning tree.

Modify Kruskal’s algorithm to find a spanning tree of maximum weight
(a maximum spanning tree) in a connected, weighted graph.






Chapter 4

Connectivity

We saw in Chapter 3 that each tree of order 3 or more contains at least one
vertex whose removal results in a disconnected graph. In fact, every vertex in a
tree that is not a leaf has this property. Furthermore, the removal of every edge
in a tree results in a disconnected graph (with exactly two components). On the
other hand, no vertex or edge in a nonseparable graph of order 3 or more has
this property. Hence, in this sense, nonseparable graphs possess a greater degree
of connectedness than trees. We now look at the two most common measures of
connectedness of graphs. In the process of doing this, we will encounter some of
the best known and most useful theorems dealing with the structure of graphs.

4.1 Connectivity and Edge-Connectivity

The first measure of graph connectedness that we discuss is expressed in terms
of the removal of vertices from a graph.

The Connectivity of a Graph‘

A vertex-cut of a noncomplete graph G is a set S of vertices of G such that
G—S is disconnected. A vertex-cut of minimum cardinality in G is called a min-
imum vertex-cut of G and this cardinality is called the vertex-connectivity
(or, more simply, the connectivity) of G and is denoted by x(G). (The symbol
k is the Greek letter kappa.)

Complete graphs do not contain vertex-cuts since the removal of any proper
subset of vertices from a complete graph results in a smaller complete graph.
The connectivity of the complete graph of order n is defined as n — 1, that
is, K(K,) = n — 1. In general then, the connectivity «(G) of a graph G
is the smallest number of vertices whose removal from G results in either a
disconnected graph or a trivial graph. Therefore, for every graph G of order n,

0< k(@) <n-—1.

95
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A graph G therefore has connectivity 0 if and only if either G = K; or G is
disconnected; a graph G has connectivity 1 if and only if G = K or G is a
connected graph with cut-vertices; and a graph G has connectivity 2 or more if
and only if GG is a nonseparable graph of order 3 or more.

For a minimum vertex-cut S of a noncomplete connected graph G, let Gy,
Ga, ..., Gk (k > 2) be the components of G — S. Then the subgraphs B; =
G[V(G;)U S] are sometimes called the branches of G at S or the S-branches
of G. For the minimum vertex-cut S = {u, v} of the graph G of Figure 4.1, the
three S-branches of G are also shown in that figure.

Figure 4.1: The branches of a graph at S = {u, v}

Often it is more useful to know that a given graph G cannot be disconnected
by the removal of a certain number of vertices rather than to know the actual
connectivity of G. A graph G is k-connected, k > 1, if x(G) > k. That is, G
is k-connected if the removal of fewer than k vertices from G results in neither a
disconnected nor a trivial graph. In particular, to show that a graph G of order
n >k + 1 is k-connected, it suffices to show that G — S is connected for every
set S C V(G) with |S| = k—1. The 1-connected graphs are then the nontrivial
connected graphs, while the 2-connected graphs are the nonseparable graphs of
order 3 or more.

As would be expected, the higher the degrees of the vertices of a graph,
the more likely it is that the graph has large connectivity. There are several
sufficient conditions of this type. The simplest result of this type, due to Gary
Chartrand and Frank Harary [46], is stated next.

Theorem 4.1 Let G be a graph of order n and let k be an integer with 1 <
k<n-—1.1If
k—2
degv > [%—‘

for every vertex v of G, then G is k-connected.

Proof. Suppose that this theorem is false. Then there is a graph G satisfying
the hypothesis of the theorem such that G is not k-connected. Certainly then,
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G is not a complete graph. Hence, there exists a vertex-cut U of G such that
|U| = ¢ < k—1. The graph G —U is therefore disconnected and has order n —¢.

Let G; be a component of G — U of smallest order, say n;. Thus n; <
[(n—£)/2]. Let v be a vertex of G;. Necessarily, v is adjacent in G only to
vertices of U and to other vertices of G;. Hence,

degv < L+ (ni—1)<Ll+|(n—20)/2]-1
= ln+e=2)/2] < [(n+k-3)/2],

contrary to the hypothesis. ]

The Edge-Connectivity of a Graph‘

How connected a graph G is can be measured not only in terms of the
number of vertices that need to be deleted from G to arrive at a disconnected
or trivial graph but in terms of the number of edges that must be deleted from
G to arrive at such a graph.

An edge-cut of a graph G is a subset X of E(G) such that G — X is
disconnected. An edge-cut of minimum cardinality in G is a minimum edge-
cut and this cardinality is the edge-connectivity of GG, which is denoted by
A(G). (The symbol X is the Greek letter lambda.) The trivial graph K; does
not contain an edge-cut but we define A(K;) = 0. Therefore, \(G) is the
minimum number of edges whose removal from G results in a disconnected or
trivial graph. Since the set of edges incident with any vertex of a graph G of
order n is an edge-cut of G, it follows that

0<ANG)<6(G)<n—1. (4.1)

A graph G is k-edge-connected, k > 1, if A(G) > k. That is, G is k-edge-
connected if the removal of fewer than k edges from G results in neither a
disconnected graph nor a trivial graph. Thus, a 1-edge-connected graph is a
nontrivial connected graph and a 2-edge-connected graph is a nontrivial con-
nected bridgeless graph.

For the graph G of Figure 4.2, x(G) = 2 and A\(G) = 3. Both {u,v;} and
{u,v2} are minimum vertex-cuts, while {e1, €2, €3} is a minimum edge-cut.

The class of k-edge-connected graphs is characterized in the following simple
but useful theorem.

Theorem 4.2 A nontrivial graph G is k-edge-connected if and only if there
exists mo nonempty proper subset W of V(G) such that the number of edges
joining W and V(G) — W is less than k.

Proof. First assume that there exists no nonempty proper subset W of V(G)
such that the number of edges joining W and V(G) — W is less than k but that
G is not k-edge-connected. Since G is nontrivial, there exist ¢ edges, where
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Figure 4.2: Connectivity and edge-connectivity

0 < ¢ < k, such that their deletion from G results in a disconnected graph H.
Let H; be a component of H. Since the number of edges joining V(H;) and
V(GQ) — V(Hy) is at most ¢, where ¢ < k, this is a contradiction.

Conversely, suppose that G is k-edge-connected. If there exists a nonempty
proper subset W of V(@) such that j edges (j < k) join W and V(G) — W,
then the deletion of these j edges produces a disconnected graph, which is
impossible. [

That A(K,) = §(K,,) for all complete graphs K, is probably not surprising.
This fact is verified in the next result.

Theorem 4.3 For every positive integer n,
AMK,)=n-—1.

Proof. Since the edge-connectivity of K; is defined to be 0, we may assume
that n > 2. We observed in (4.1) that A(K,,) < n — 1. Let X be a minimum
edge-cut of K. Then |X| = A(K,) and K,, — X consists of two components,
say GG1 and G3. Suppose that G; has order k. Then G5 has order n — k. Thus
|X| =k(n—k). Since k > 1 and n—k > 1, it follows that (k—1)(n—k—1) >0
and so

(k—1)(n—k—-1)=k(n—k)—(n—1) >0,

which implies that

Therefore, A(K,,) =n — 1. "

’ Whitney’s Inequalities ‘

That the edge-connectivity of a graph is bounded above by its minimum
degree and bounded below by its connectivity was first observed by Hassler
Whitney [255].

Theorem 4.4 For every graph G,
k(G) < AG) <46(GQ).
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Proof. We already observed in (4.1) that \(G) < §(G) and so it remains to
show that k(G) < A(G). Let G be a graph of order n. If G is disconnected, then
k(G) = M(G) = 0; while if G is complete, then x(G) = A(G) = §(G) = n — 1.
Hence, we may assume that G is a connected graph that is not complete and so
0(G) <n —2. Let X be a minimum edge-cut of G. Then |X| = AG) <n — 2.
Necessarily, G — X consists of two components, say G; and G3. Suppose that
the order of Gy is k. Then the order of G5 is n —k, where k > 1 and n—k > 1.
Also, every edge in X joins a vertex of Gy and a vertex of Go. We consider two
cases.

Case 1. FEvery vertex of Gy is adjacent to every vertex of Go. Then |X| =
k(n — k). Hence, we can apply the argument used in the proof of Theorem 4.3.
Since k —1>0and n — k —1 > 0, it follows that

(k—1)(n—k—-1)=kin—k)—(n—-1)>0
and so
MG)=|X|=k(n—Fk)>n—-1.
This, however, contradicts A(G) < n — 2 and so Case 1 cannot occur.

Case 2. There exist a vertex u in G1 and a vertex v in Go such that uv ¢
E(G). We now define a set U of vertices of G. Let e € X. If e is incident with
u, say e = uv’, then the vertex v’ is placed in the set U. If e is not incident
with u, say e = u/v’ where v’ is in G, then the vertex v’ is placed in U. Hence,
for every edge e € X, one of its two incident vertices belongs to U but w,v ¢ U.
Thus |U| < |X| and U is a vertex-cut. Therefore,

K(G) < U< [X] = MG),
as desired. [
The connectivity of a graph G of a given order n and size m can only be so
large. For example, if m < n — 1, then G is disconnected and so x(G) = 0. On

the other hand, if m > n — 1, then there is a sharp upper bound for £(G) in
terms of the average degree of G, which we present next.

Theorem 4.5 If G is a graph of order n and size m > n — 1, then

K(G) < {MJ .

n

Proof. Since the sum of the degrees of the vertices of G is 2m, the average
degree of the vertices of G is 2m/n and so 6(G) < 2m/n. Since §(G) is an
integer, §(G) < |2m/n]. By Theorem 4.4, k(G) < |2m/n]. L]

The observation stated in Theorem 4.5 is due to Frank Harary. In the second
book ever written on graph theory, Théorie des Graphes et Ses Applications,
the author Claude Berge [22] wrote (translated into English):
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What is the mazimum connectivity of a graph with n vertices and
m edges?

In 1962 Harary [119] answered Berge’s question by showing that for every
pair n, m of integers with 2 <n—1<m < (g), there exists a graph G of order
n and size m with £(G) = |22 | . Of course, if m =n — 1 > 2, every tree T of
order n has the desired property since

- [2]-[27] -

We observed that x(G) = 2 and A(G) = 3 for the graph G of Figure 4.2.
Since §(G) = 4, this graph shows that the two inequalities stated in Theorem 4.4
can be strict. The first of these inequalities cannot be strict for cubic graphs,
however.

Theorem 4.6 For every cubic graph G,

Proof. For a cubic graph G, it follows that x(G) = A(G) = 0 if and only if
G is disconnected. If k(G) = 3, then A\(G) = 3 by Theorem 4.4. So two cases
remain, namely x(G) = 1 and x(G) = 2. Let U be a minimum vertex-cut of G.
Then |[U| =1 or |U|] =2 and so G — U is disconnected. Let G; and G be two
components of G — U. Since G is cubic, for each u € U, at least one of G; and
G contains exactly one neighbor of u.

Case 1. k(G) = |U| = 1. Thus, U consists of a cut-vertex u of G. Since
some component of G — U contains exactly one neighbor w of u, the edge uw
is a bridge of G and so A(G) = k(G) = 1.

Case 2. k(G) = |U| = 2. Let U = {u,v}. Assume that each of v and v
has exactly one neighbor, say u’ and v’, respectively, in the same component of
G — U. (This is the case that holds if wv € E(G).) Then X = {uv/,vv'} is an
edge-cut of G and A(G) = k(G) = 2. (See Figure 4.3(a) for the situation when
u and v are not adjacent.)

(a)

Figure 4.3: A step in the proof of Case 2
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Hence, we may assume that u has one neighbor v’ in G; and two neighbors
in G5, while v has two neighbors in G; and one neighbor v’ in Gy (see Fig-
ure 4.3(b)). Therefore, uv ¢ E(G) and X = {uv’,vv'} is an edge-cut of G; so
AMG) =k(G) =2. L]

According to Theorem 4.4, A\(G) < §(@) for every graph G. The following
theorem of Jan Plesnik [188] gives a sufficient condition for equality to hold in
this case.

Theorem 4.7 If G is a connected graph of diameter at most 2, then \(G) =
0(G).

Proof. Since A\(K,,) = 6(K,,) for each positive integer n by Theorem 4.3, we
may assume that diam(G) = 2. Let X be an edge-cut with | X| = A(G), and let
Hy and Hs be the two components of G — X . Now it cannot occur that both
H, and H; have vertices v and vy, respectively, that are not incident with any
edge of X, for then d(vy,vs) > 3.
We may assume then that every vertex of Hy, say, is incident with an edge
of X. Thus
n1 = [V(H)| < |X] = AG) < 8(G), (4.2)

Since each vertex u in H; is incident with at most n; — 1 edges in H;, it follows
that u is incident with at least §(G) — ny + 1 edges in X. Consequently,

AG) = |X| > n1(8(G) —n1 +1). (4.3)

Since ny > 1, it follows that multiplying the inequality 6(G) > ny in (4.2) by
np—1 gives §(G)(n1—1) > ny(n1—1) and so A(G) > n1(6(G)—n1+1) > 6(G).m

For each integer k > 3, let G be the graph obtained from two copies F; and
F» of K by joining one vertex of F} to a vertex of F». Then diam(Gy) = 3,
0(Gk) = k—1 > 2 and A\(Gy) = 1. Since {Gj }r>3 is an infinite class of connected
graphs of diameter 3 with A(Gy) # 0(G), Theorem 4.7 is best possible in that
it cannot be extended to graphs whose diameter exceeds 2.

If G is a graph of diameter 2 and X is a set of A\(G) = §(G) edges such that
G — X is disconnected, then either G contains a vertex incident with every edge
in X or some component of G — X is a particular complete subgraph of G.

Theorem 4.8 Let G be a graph of diameter 2. If X is a set of \(G) edges
whose removal disconnects G, then at least one of the components of G — X is
isomorphic to Ky or to Ksg)-

Proof. Let X be a minimum edge-cut of G. Since diam(G) = 2, it follows
by Theorem 4.7 that |X| = A(G) = §(G) = 6. Furthermore, G — X has
exactly two components G; and Ga, where V(G1) = V; and V(G2) = V4. Since
diam(G) = 2, at most one of V; and V; contains a vertex that is not incident
with any edges in X; for otherwise, there are vertices x € V4 and y € V5 such
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that z and y are not incident with any edges in X, implying that d(z,y) > 3,
which is impossible. Assume, without loss of generality, that every vertex in V
is incident with some edge in X; that is, every vertex in V; is adjacent to some
vertex of V5 in G.

Let v € V4 such that v is incident with a maximum number k of edges in
X, say v is incident with the edges e, ez, -, ex in X. Since there are 6 — k
edges in X — {e1, e, -+, e} and every vertex in V; is incident with some edge
in X, there are at most § — k vertices in V; — {v} and so |[V3| <d —k+ 1. On
the other hand, v must also be adjacent to degv — k > § — k vertices in V; and
so there are at least § — k vertices in V5 — {v}. Therefore, |[V4| > 6 —k + 1 and
so |[Vi| =6 — k+ 1. Let u be any other vertex of V;, where w is incident, say,
with ¢ edges, where then ¢ < k. Thus w is incident with degu — ¢ vertices in
Vi — {u} and so

§—k+1=|Vi|>degu—L+1>6—k+1,
which implies that degu = 0 and ¢ = k. Hence
(1) Gy = Ks_py1 and (2) | X|=k(6—k+1) =06.

Rewriting the equation in (2), we obtain (k — §)(k —1) = 0 and so § = k or
6 = 1. Thus, G; = K; or G1 = K. [

If G is a graph of order n > 3 such that degu + degv > n — 1 for every
two nonadjacent vertices u and v, then diam(G) = 2. Therefore, the following
result of Linda Lesniak [154] is a consequence of Theorem 4.7.

Corollary 4.9 If G is a graph of order n such that degu + degv > n — 1 for
each pair u,v of nonadjacent vertices of G, then A\(G) = §(G).

4.2 Theorems of Menger and Whitney

A nontrivial graph G is connected (or, equivalently, 1-connected) if every two
distinct vertices of G are connected by at least one path. This fact has been
generalized in several ways, many of which involve, either directly or indirectly,
a theorem [169] due to Karl Menger (1902-1985), who was born in Vienna, Aus-
tria. Menger developed a talent for mathematics and physics at an early age
and entered the University of Vienna in 1920 to study physics. The following
year he attended a lecture by Hans Hahn on Neueres tuber den Kurvenbegriff
(What’s new concerning the concept of a curve) and Menger’s interests turned
toward mathematics. In the lecture it was mentioned that (at that time) there
was no satisfactory definition of a curve, despite attempts to do so by a number
of distinguished mathematicians, including Georg Cantor, Camille Jordan and
Giuseppe Peano. Some mathematicians, including Felix Hausdorff and Ludwig
Bieberbach, felt that it was unlikely that this problem would ever be solved. De-
spite being an undergraduate with limited mathematical background, Menger
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solved the problem and presented his solution to Hahn. This led Menger to
work on curve and dimension theory. After completing his studies at Vienna,
Menger left to broaden his mathematics in Amsterdam.

In 1927 Menger returned to the University of Vienna to accept the po-
sition of Chair of Geometry. It was during that year that he published the
paper “Zur allgemeinen Kurventheorie” (which contained Menger’s Theorem).
Menger himself referred to this result as the “n-arc theorem” and proved it as
a lemma for a theorem in curve theory.

In the spring of 1930, Karl Menger traveled to Budapest and met many
Hungarian mathematicians, including Dénes Konig. Menger had read some
of Konig’s papers. During his visit, Menger learned that Konig was working
on a book that would contain what was known about graph theory at that
time. Menger was pleased to hear this and mentioned his theorem to Konig.
However, Konig was not aware of Menger’s work and, in fact, didn’t believe that
the theorem was true. Indeed, the very evening of their meeting, Konig set out
to construct a counterexample. When the two met again the next day, Konig
greeted Menger with “A sleepless night!”. Ko6nig then asked Menger to describe
his proof, which he did. After that, Konig said that he would add a final section
to his book on the theorem. As a result, Konig added a chapter to his 1936 book
Theorie der endlichen und unendliehen Graphen, which would become the first
book written on graph theory [148]. This was a major reason why Menger’s
theorem became so widely known among those interested in graph theory.

While Menger had visiting positions in the United States during 1930-31 (at
Harvard University and the Rice Institute), he held professorships at the Uni-
versity of Notre Dame during 1937—46 and the newly founded Illinois Institute
of Technology during 1946-71.

Menger’s Theorem

Before stating and presenting a proof of Menger’s theorem, some additional
terminology is needed. For two nonadjacent vertices v and v in a graph G,
a u — v separating set is a set S C V(G) — {u,v} such that v and v lie in
different components of G — S. A u — v separating set of minimum cardinality
is called a minimum v — v separating set.

For two distinct vertices u and v in a graph G, a collection of u — v paths is
internally disjoint if every two paths in the collection have only u and v in
common. Menger’s theorem states that the concepts of internally disjoint u — v
paths and u — v separating sets are linked. In the graph G of Figure 4.4, there
is a set S = {wy,ws, w3} of vertices of G that separate the vertices u and v.
No set with fewer than three vertices separates u and v. According to Menger’s
theorem, there are three internally disjoint v — v paths in G.
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w3

Figure 4.4: A graph illustrating Menger’s theorem

Theorem 4.10 (Menger’s Theorem) Let u and v be nonadjacent vertices
in a graph G. The minimum number of vertices in a u —v separating set equals
the maximum number of internally disjoint u — v paths in G.

Proof. We proceed by induction on the size of graphs. The theorem is cer-
tainly true for every empty graph. Assume that the theorem holds for all graphs
of size less than m, where m > 1, and let G be a graph of size m. Moreover, let
u and v be two nonadjacent vertices of G. If u and v belong to different com-
ponents of G, then the result follows. So we may assume that v and v belong
to the same component of G. Suppose that a minimum u — v separating set
consists of k > 1 vertices. Then G contains at most k internally disjoint v — v
paths. We show, in fact, that G contains k internally disjoint u — v paths. Since
this is obviously true if £k = 1, we may assume that k£ > 2. We now consider
three cases.

Case 1. Some minimum u — v separating set X in G contains a vertex x
that is adjacent to both u and v. Then X — {z} is a minimum u — v separating
set in G — z consisting of k — 1 vertices. Since the size of G — x is less than
m, it follows by the induction hypothesis that G — x contains k — 1 internally
disjoint u — v paths. These paths together with the path P = (u,z,v) produce
k internally disjoint w — v paths in G.

Case 2. For every minimum u— v separating set S in G, either every vertex
in S is adjacent to u and not to v or every vertex in S is adjacent to v and not
to u. Necessarily then, d(u,v) > 3. Let P = (u,z,y,...,v) be a u — v geodesic
in G, where e = xy. Every minimum u — v separating set in G — e contains at
least k — 1 vertices. We show, in fact, that every minimum u — v separating set
in G — e contains k vertices.

Assume, to the contrary, that there is some minimum v — v separating set
in G —e with k — 1 vertices, say Z = {z1,22,...,2k—1}. Then ZU{z}isau—v
separating set in G and therefore a minimum u — v separating set in G. Since
x is adjacent to u (and not to v), it follows that every vertex z; (1 <i <k —1)
is also adjacent to u and not adjacent to v.
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Since ZU{y} is also a minimum u — v separating set in G and each vertex z;
(1 <i<k-—1)is adjacent to u but not to v, it follows that y is adjacent to w.
This, however, contradicts the assumption that P is a u — v geodesic. Thus, k
is the minimum number of vertices in a u — v separating set in G —e. Since the
size of G — e is less than m, it follows by the induction hypothesis that there
are k internally disjoint u — v paths in G — e and in G as well.

Case 3. There exists a minimum u — v separating set W in G such that
(1) no vertex of W is adjacent to both u and v and (2) W contains at least
one vertex not adjacent to u and at least one vertex not adjacent to v. Let
W = {wy,ws,...,wy}. Let G, be the subgraph of G consisting of, for each ¢
with 1 <4 <k, all u —w; paths in G in which w; € W is the only vertex of the
path belonging to W. Let G’, be the graph constructed from G, by adding a
new vertex v’ and joining v’ to each vertex w; for 1 < ¢ < k. The graphs G,
and G are defined similarly.

Since W contains a vertex that is not adjacent to u and a vertex that is not
adjacent to v, the sizes of both G/, and G/, are less than m. So G!, contains k
internally disjoint u — v" paths A; (1 <i < k), where A; contains w;. Also, G/,
contains k internally disjoint u’ — v paths B; (1 < i < k), where B; contains
w;. Let A} be the u — w; subpath of A; and let B be the w; — v subpath of B;
for 1 < ¢ < k. The k paths constructed from A} and B; for each i (1 < i < k)
are internally disjoint © — v paths in G. [

Whitney’s Theorem

We mentioned that Karl Menger visited Dénes Konig in Budapest, Hungary
early in 1930, which led to his theorem being included in Konig’s book. Later in
1930, Menger went to the United States and spent the period from September
of 1930 to February of 1931 as a visiting lecturer at Harvard University. It was
at one of his seminar talks that he presented his theorem. During that period,
Hassler Whitney (1907-1989) was doing research for his doctoral thesis in graph
theory at Harvard. For a short period after receiving his Ph.D. in 1932 from
Harvard, Whitney worked on graph theory, making important contributions,
but thereafter turned to topology when the area was just being called topology.
Whitney was a faculty member at Harvard until 1952, when he went to the
Institute for Advanced Study in Princeton. Whitney was at Harvard during
the period that the United States was involved in World War II. He had great
interest and ability in applied mathematics. Because of this, he was brought
in as a consultant to the Applied Mathematics Group at Columbia University.
That part of the Applied Mathematics Panel was primarily the responsibility of
Whitney. He developed mathematical principles to discover best techniques for
aerial gunnery and was involved in making improvements to weapons systems.

Although research was a large part of Whitney’s professional life, he con-
tributed to mathematics in many ways. During 1944-1949 he was editor of
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the American Journal of Mathematics and during 1949-1954 he was editor
of Mathematical Reviews. During 1953-1956, he chaired the National Science
Foundation mathematical panel. On the personal side, Whitney was an avid
mountain climber. In fact, the Whitney-Gilman Ridge on Cannon Cliff in Fran-
conia, New Hampshire, was named for his cousin and him, who were the first
to climb it (on August 3, 1939).

If G is a k-connected graph (k > 1) and v is a vertex of G, then G — v
is (k — 1)-connected. In fact, if e = wv is an edge of G, then G — e is also
(k —1)-connected (see Exercise 13). With the aid of Menger’s theorem, a useful
characterization of k-connected graphs, due to Whitney [255], was established.
Since nonseparable graphs of order 3 or more are 2-connected, this theorem by
Whitney is a generalization of Corollary 3.4.

Theorem 4.11 (Whitney’s Theorem) A nontrivial graph G is k-connected
for some integer k > 2 if and only if for each pair u,v of distinct vertices of G,
there are at least k internally disjoint w — v paths in G.

Proof. First, suppose that G is a k-connected graph, where k > 2, and let u
and v be two distinct vertices of G. Assume first that  and v are not adjacent.
Let U be a minimum u — v separating set. Then

k< k(G) <|U|.

By Menger’s theorem, G contains at least k internally disjoint u — v paths.

Next, assume that v and v are adjacent, where e = uv. As observed earlier,
G —e is (k — 1)-connected. Let W be a minimum u — v separating set in G — e
and so

k—1<K(G—e) < |W]

By Menger’s theorem, G — e contains at least k — 1 internally disjoint u — v
paths, implying that G contains at least k internally disjoint u — v paths.

For the converse, assume that G contains at least k internally disjoint v —v
paths for every pair u, v of distinct vertices of G. If G is complete, then G = K,
where n > k+ 1, and so k(G) =n—1 > k. Hence, G is k-connected. Thus, we
may assume that G is not complete.

Let U be a minimum vertex-cut of G. Then |U| = (G). Let z and y be
vertices in distinct components of G — U. Thus, U is an « — y separating set of
G. Since there are at least k internally disjoint x — y paths in G, it follows by
Menger’s theorem that

kE<|U| =k(G)
and so G is k-connected. n

The following three results are consequences of Theorem 4.11 (see Exer-
cises 17-19).
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Corollary 4.12 Let G be a k-connected graph, k > 1, and let S be any set of
k vertices of G. If a graph H is obtained from G by adding a new vertex w and
joining w to the vertices of S, then H is also k-connected.

Corollary 4.13 If G is a k-connected graph, k > 2, and u,v1,vs,...,0; are
t + 1 distinct vertices of G, where 2 <t < k, then G contains a u — v; path for
each i (1 <14 <t), every two paths of which have only u in common.

Corollary 4.14 A graph G of order n > 2k is k-connected if and only if for ev-
ery two disjoint sets V1 and Vo of k distinct vertices each, there exist k pairwise
disjoint paths connecting V1 and V5.

By Theorem 3.3, every two vertices in a 2-connected graph lie on a common
cycle of the graph. Gabriel Dirac [72] generalized this to k-connected graphs.

Theorem 4.15 If G is a k-connected graph, k > 2, then every k wvertices of
G lie on a common cycle of G.

Proof. Let S = {v1,vs,...,v;} be a set of k vertices of G. Among all cycles
in G, let C be one containing a maximum number ¢ of vertices of S. Then
{ < k. If £ = k, then the result follows, so we may assume that ¢ < k. Since
G is k-connected, G is 2-connected and so by Theorem 3.3, ¢ > 2. We may
further assume that vy, vs,...,vy lie on C. Let u be a vertex of S that does not
lie on C'. We consider two cases.

Case 1. The cycle C contains exactly £ vertices, say C = (v, va, ..., Vg, v1).
By Corollary 4.13, G contains a u — v; path P; for each ¢ with 1 < i < £ such
that every two of the paths P;, P»,..., P, have only u in common. Replacing

the edge viv2 on C' by P; and P, produces a cycle containing at least ¢ + 1
vertices of S. This is a contradiction.

Case 2. The cycle C' contains at least ¢ + 1 vertices. Let vy be a vertex on
C that does not belong to S. Since 2 < ¢+ 1 < k, it follows by Corollary 4.13
that G contains a u — v; path P; for each i with 0 < i < £ such that every
two of the paths Py, P1,. .., P; have only u in common. For each i (0 <4 < {),
let u; be the first vertex of P; that belongs to C' and let P/ be the u — u;
subpath of P;. Suppose that the vertices u; (0 < ¢ < {) are encountered in the
order ug, uy,...,us as we proceed about C' in some direction. For some ¢ with
0 < i < /¢ and upp1 = ug, there is a u; — u;41 path P on C, none of whose
internal vertices belong to S. Replacing P on C' by P/ and P/, produces a
cycle containing at least £ 4 1 vertices of S. Again, this is a contradiction. m

The converse of Theorem 4.15 is not true, however. For example, for n >
k > 3, every k vertices of G = C), lie on a common cycle of G but G is not
k-connected. There is, however, a theorem related to both Theorem 3.3 and
Theorem 4.15. The following is due to Don Lick [157].
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Theorem 4.16 Let k and n be integers with n > k+1 > 3. A graph G of
order n is k-connected if and only if for each set S of k vertices of G and for
each 2-element subset T of S, there is a cycle of G that contains both vertices
of T' but no vertices of S —T.

Proof. First, suppose that "= {u,v}. By Theorem 4.11, there exist k inter-
nally disjoint w — v paths in G. Since the k — 2 vertices of S — T belong to at
most k — 2 of these paths, there are two of these paths that contain no vertices
of S —T'. These two paths produce a cycle containing the two vertices of T' and
no vertices of S — 7.

For the converse, let G be a graph having the property that for each set S
of k distinct vertices of G and each 2-element subset T' of S, there is a cycle
containing both vertices of T" but containing no vertices of S — T. Assume,
to the contrary, that G is not k-connected. Then G contains a vertex-cut
W = {wy,wa, -+, wk_1}. Since n > k + 1, the graph G — W contains at least
two vertices. Let u and v be two vertices belonging to different components of
G —W. Now, let S = {wy,ws, -, wk—2,u,v} and T = {u,v}. By assumption,
there is a cycle C' containing the vertices of T and no vertices of S — T'. Since
every cycle containing v and v must contain at least two vertices of S — T, this
is a contradiction. n

There are analogues to Menger’s theorem (Theorem 4.10) and to Whitney’s
theorem (Theorem 4.11) in terms of edge-cuts. For two distinct vertices u and
v in a graph G, an edge-cut X of G is a u — v separating set if v and v
lie in different components of G — X. We begin with the edge analogue of
Theorem 4.10.

Theorem 4.17 For distinct vertices u and v in a graph G, the minimum
cardinality of a uw— v separating set X C E(G) equals the mazimum number of
pairwise edge-disjoint u — v paths in G.

Proof. It is convenient to actually prove a stronger result here by allowing G
to be a multigraph.

If w and v are vertices in different components of a multigraph G, then
the theorem is immediate. Hence we may assume that the multigraphs under
consideration are connected. If the minimum number of edges that separate u
and v is 1, then G contains a bridge e so that v and v lie in different components
of G — e. Thus, every u — v path in G contains e, so the maximum number of
pairwise edge-disjoint u — v paths in G is also 1.

Suppose that the statement is false. Then there is a smallest integer k£ > 2
such that there exist multigraphs containing two vertices u and v for which the
minimum number of edges that separate u and v is k but there do not exist k
pairwise edge-disjoint © — v paths. Among all such multigraphs, let G be one
of minimum size.

If every u—uv path of G has length 1 or 2, then since the minimum number of
edges of G that separate v and v is k, it follows that there are k pairwise edge-
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disjoint w — v paths in G, which produces a contradiction. Thus, G contains a
u — v path P of length 3 or more.

Let e; be an edge of P that is incident with neither uw nor v. Consider the
multigraph G — e;. Since the size of G — ey is less than the size of G, it is
impossible for G — e; to contain k edges that separate v and v. Thus, e; must
belong to every set of k edges that separate u and v. Let S = {ej,ea,...,ex}
be one such set.

We now subdivide each edge of .S, that is, each edge e; = u;v; of S is replaced
by a new vertex w; and the two new edges w;w; and w;v; for 1 < ¢ < k. The
k vertices w; (1 <4 < k) are now identified, producing a new vertex w and a
new multigraph H. (See Figure 4.5 for a possible situation.) Observe that w is
a cut-vertex in H and every u — v path of H contains w.

Ui U = U3 Uy Uy U2 = U3 Ug Uy U2 = U3 Uy
€9 E— e
e w
€1 3 ey wq w3 4 w
w2
V1 = V2 U3 Vg U1 = V2 U3 Vg U1 = V2 v3 U4
in G in H

Figure 4.5: A step in the proof of Theorem 4.17

Denote by H, the submultigraph of H consisting of all v — w paths of H
and denote by H, the submultigraph consisting of all v — w paths of H. The
minimum number of edges separating v and w in H, is k¥ and the minimum
number of edges separating v and w in H, is k. Since each of H, and H, has
smaller size than G, it follows that H, contains k pairwise edge-disjoint v — w
paths and that H, contains k pairwise edge-disjoint w — v paths.

Fori=1,2,...,k, we can pair off a u — w path in H,, and a w — v path in
H, to produce a u — v path in H containing the two edges u;w and wv;. This
produces k pairwise edge-disjoint u — v paths in H. The process of subdividing
the edges u;v; of G and identifying the vertices w; to obtain w can now be
reversed to produce k pairwise edge-disjoint v — v paths in G. This, however,
produces a contradiction.

Since the theorem has been proved for multigraphs, it is valid for graphs. m

With the aid of Theorem 4.17, it is now possible to present an edge analogue
of Theorem 4.11 (see Exercise 23).

Theorem 4.18 A nontrivial graph G is k-edge-connected if and only if G
contains k pairwise edge-disjoint u—uv paths for each pair w,v of distinct vertices

of G.
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Exercises for Chapter 4

Section 4.1. Connectivity and Edge-Connectivity

1.

Determine the connectivity and edge-connectivity of each complete k-
partite graph.

Let v1,vs,...,v; be k distinct vertices of a k-connected graph G. Let H
be the graph formed from G by adding a new vertex w of degree k that
is adjacent to each of vy, vs, ..., vgx. Show that k(H) = k.

(a) Prove that if G is a k-connected graph, then G V K; is (k + 1)-
connected.

(b) Prove that if G is a k-edge-connected graph, then GV Kj is (k + 1)-
edge-connected.

Let G be a graph with degree sequence dy,ds,...,d, where di > dy >
-+ >d,. Determine A\(G V K3).

Show for every k-connected graph G and every tree T' of order k + 1 that
there exists a subgraph of G isomorphic to T'.

(a) Let G be a noncomplete graph of order n and connectivity k such
that degv > (n+2k—2)/3 for every vertex v of G. Show that if S is
a minimum vertex-cut of G, then G — S has exactly two components.

(b) Let G be a noncomplete graph of order n and connectivity k such
that degv > (n + kt —t)/(t + 1) for some integer ¢ > 2. Show that
if S is a vertex-cut of cardinality x(G), then G — S has at most ¢
components.

For a graph G of order n > 2, define the k-connectivity x;(G) of G
(2 < k < n) as the minimum number of vertices whose removal from G
results in a graph with at least k£ components or a graph of order less
than k. (Therefore, k2(G) = k(G).) A graph G is defined to be (¢, k)-
connected if kx(G) > ¢. Let G be a graph of order n containing a set of
at least k pairwise nonadjacent vertices. Show that if

n+(k—1)¢—2)
o

degnv > [

for every v € V(G), then G is (¢, k)-connected.

Verify that Theorem 4.1 is best possible by showing that for each positive
integer k, there exists a graph G of order n > k + 1 such that §(G) =
[2E=3] and k(G) < k.

Let a,b and ¢ be positive integers with a < b < ¢. Prove that there exists
a graph G with k(G) = a, A(G) =b and §(G) = c.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

The connection number con(G) of a connected graph G of order n > 2
is the smallest integer k with 2 < k£ < n such that every induced subgraph
of order k£ in G is connected. State and prove a theorem that gives a
relationship between x(G) and con(G) for a graph G of order n.

For an even integer £ > 2, show that the minimum size of a k-connected
graph of order n is kn/2.

Prove or disprove: Let G be a nontrivial graph. For every vertex v of G,
k(G —v) =k(G) or k(G —v) =k(G) — 1.

(a) Prove that if G is a k-connected graph and e is an edge of G, then

G — e is (k — 1)-connected.

(b) Prove that if G is a k-edge-connected graph and e is an edge of G,
then G — e is (k — 1)-edge-connected.

Show that if G is a O-regular graph, then x(G) = A(G).

Show that if G is a 1-regular graph, then x(G) = A(G).

Show that if G is a 2-regular graph, then k(G) = A(G).

By (a) — (c¢) and Theorem 4.6, if G is r-regular, where 0 < r < 3,
then k(G) = A(G). Find the minimum positive integer  for which
there exists an r-regular graph G such that x(G) # \(G).

— N~
o o
L D

—
o

(e) Find the minimum positive integer r for which there exists an -
regular graph G such that \(G) > k(G) + 2.

For a graph G, define 5(G) = max{x(H)} and \(G) = max{\(H)}, where
each maximum is taken over all subgraphs H of G. How are %(G) and
AG) related to k(G) and A(G), respectively, and to each other?

Let G; and G5 be two k-connected graphs, where k > 2, and let G be
the set of all graphs obtained by adding k edges between G; and Gs.
Determine max{x(G) : G € G}.

Section 4.2. Theorems of Menger and Whitney

Prove Corollary 4.12: Let G be a k-connected graph, k > 1, and let S be
any set of k vertices of G. If a graph H is obtained from G by adding a new
vertez w and joining w to the vertices of S, then H is also k-connected.

Prove Corollary 4.13: If G is a k-connected graph, k > 2, and u, vy, vs,

.., vy are t + 1 distinct vertices of G, where 2 <t < k, then G contains
a u—v; path for each i (1 <1i <t), every two paths of which have only u
m common.

Prove Corollary 4.14: A graph G of order n > 2k is k-connected if and
only if for every two disjoint sets Vi and Va of k distinct vertices each,
there exist k pairwise disjoint paths connecting Vi and Vs.
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20

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

CHAPTER 4. CONNECTIVITY

. Let G be a k-connected graph and let v be a vertex of G. For a positive
integer t, define G to be the graph obtained from G by adding ¢ new
vertices w1, us, ..., u; and all edges of the form w;w, where 1 <4 <t and
for which vw € E(G). Show that G is k-connected.

Show that if G is a k-connected graph with nonempty disjoint subsets S;
and Sy of V(G), then there exist k internally disjoint paths Py, P, ..., Py
such that each path P; is a u — v path for some v € S; and some v € Sy
for i = 1,2,...,]€ and |Sl ﬂV(P,)| = |SQQV(PZ)| =1.

Let G be a k-connected graph, k > 3, and let v,vy,v2,...,v5_1 be k
vertices of G. Show that G has a cycle containing all of vy, va,...,vp_1
but not v and k — 1 internally disjoint v — u; paths P; (1 <i <k —1)
such that for each i, the vertex w; is the only vertex of P; on C.

Prove Theorem 4.18: A nontrivial graph G is k-edge-connected if and
only if G contains k pairwise edge-disjoint u — v paths for each pair w,v
of distinct vertices of G.

Prove or disprove: If G is a k-edge-connected graph and v, vy, vs,. .., vk
are k + 1 vertices of G, then for ¢ = 1,2,...,k, there exist v — v; paths
P, such that each path P; contains exactly one vertex of {vy,va,..., v},

namely v;, and for ¢ # j, P; and P; are edge-disjoint.

Prove or disprove: If G is a k-edge-connected graph with nonempty dis-
joint subsets S and Sy of V(G), then there exist k edge-disjoint paths
Py, P, ..., P, such that for each i, P; is a u — v path for some v € S; and
some v € Sp for i =1,2,...,k and |S1NV(R)| =|S2NV(F)| = 1.

Show that k(@) = AM(@n) = n for all positive integer n.

Assume that G is a graph in the proof of Theorem 4.17. Does the proof
go through? If not, where does it fail?

Let G be a graph of order n with x(G) > 1. Prove that

n > k(G)[diam(G) — 1] + 2.

A chorded cycle is a cycle C (of length at least 4) together with an edge
that joins two nonconsecutive vertices of C'. Prove that every 3-connected
graph contains a chorded cycle but that this need not be the case for a
2-connected graph.

(a) Show that for every two vertices u and v of a 3-connected graph G,
there exist two internally disjoint u — v paths of different lengths
in G.

(b) Show that the result in (a) is not true in general if G is 2-connected.
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31. (a) Prove that if G is a connected graph of order n and k is an integer
with 1 < k& < n — 3 such that the maximum number of internally
disjoint u—wv paths in G is k for every pair u, v of nonadjacent vertices
of G, then G contains a vertex-cut with exactly k£ + 1 vertices.

(b) Let G be a k-connected graph of diameter k, where k > 2. Prove
that G contains k+1 distinct vertices v, v1,va, . .., v, and k internally
disjoint v — v; paths P; (1 < ¢ < k) such that P; has length 3.

32. By Theorem 2.3, if G is a nontrivial graph of order n such that degu +
degv > n — 1 for every two nonadjacent vertices u and v of GG, then G is
connected, that is, G is 1-connected. Also, by Exercise 12 in Chapter 3,
if G is a graph of order n > 3 such that degu 4+ degwv > n for every two
nonadjacent vertices v and v of GG, then G is nonseparable, that is, G is
2-connected. Consequently, for £k = 1,2 and k& < n, if G is a graph of
order n such that degu 4+ degv > n + k — 2 for every two nonadjacent
vertices v and v of GG, then G is k-connected. Prove that this is true for
every positive integer k.






Chapter 5

Eulerian Graphs

Many of the early concepts and theorems of graph theory came about quite
indirectly, often from recreational mathematics, through puzzles, or games or
problems that, as were seen later, could be phrased in terms of graphs. The
very first of these was a problem called the Kénigsberg Bridge Problem, which
was not only solved by one of the most famous mathematicians of all time but
whose solution is considered the origin of graph theory and would lead to an
important class of graphs.

5.1 The Konigsberg Bridge Problem

Early in the 18th century, the East Prussian city of Konigsberg (now called
Kaliningrad and located in Russia) occupied both banks of the River Pregel and
the island of Kneiphof, lying in the river at a point where the river branches
into two parts. There were seven bridges that spanned various sections of the
river. (See Figure 5.1.)

A popular problem, called the Kénigsberg Bridge Problem, asks whether
there is a route that crosses each of these bridges exactly once. Although such
a route was long thought to be impossible, the first mathematical verification of
this was presented by the famed mathematician Leonhard Euler (1707-1783) at
the Petersburg Academy on 26 August 1735. Euler’s proof was contained in a
paper [86] that would turn out to be the beginning of graph theory. This paper
appeared in the 1736 volume of the proceedings of the Petersburg Academy.
Euler’s paper, written in Latin, started as follows (translated into English):

In addition to that branch of geometry which is concerned with mag-
nitudes, and which has always received the greatest attention, there
is another branch, previously almost unknown, which Leibniz first
mentioned, calling it the geometry of position. This branch is con-
cerned only with the determination of position and its properties; it
does not involve measurements, nor calculations made with them.

115
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It has not yet been satisfactorily determined what kind of problems
are relevant to this geometry of position, or what methods should
be used in solving them. Hence, when a problem was recently men-
tioned, which seemed geometrical but was so constructed that it did
not require the measurement of distances, nor did calculation help
at all, I had no doubt that it was concerned with the geometry of
position — especially as its solution involved only position, and no
calculation was of any use. I have therefore decided to give here the
method which I have found for solving this kind of problem, as an
example of the geometry of position.

Euler denoted the island Kneiphof in Konigsberg by the letter A and the
other three land regions by B, C and D. The seven bridges that crossed the
River Pregel were denoted by a, b, ¢, d, e, f and g (see Figure 5.1).

QOn

Figure 5.1: The bridges of Konigsberg

In his paper, Euler describes what must occur if there was a route that
crossed each of the seven bridges exactly once. Such a route could be represented
as a sequence of letters, each term of which is one of the letters A, B, C and D.
A particular term in this sequence would indicate that the route had reached
that land region and the term immediately following it would indicate the land
region to which the route had progressed after crossing a bridge. Since there
are seven bridges, the sequence must consist of eight terms.

Because there are five bridges leading into (or out of) land region A (the
island Kneiphof), each occurrence of A must indicate that either the route
began at A, ended at A or had progressed to and then exited from A. Thus,
A must appear three times in the sequence. In a similar manner, each of B, C
and D must appear twice in the sequence. However, this implies that such a
sequence must contain nine terms, which is impossible. Therefore, there is no
route in Konigsberg that crosses each bridge exactly once.

As Euler mentioned in his paper, he also formulated a more general problem.
In order to describe and present a solution to this general problem, we turn to
the modern-day approach in which both the Konigsberg Bridge Problem and
its generalization are described in terms of graphs.
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5.2 FEulerian Circuits and Trails

A circuit C in a nontrivial connected graph G that contains every edge of G
(necessarily exactly once) is an Eulerian circuit, while an open trail that
contains every edge of G is an Eulerian trail. (Some refer to an Eulerian
circuit as an Euler tour.) The graph G; of Figure 5.2 contains an Eulerian
trail while (G5 contains an Eulerian circuit.

B .

Figure 5.2: Graphs with Eulerian trails and Eulerian circuits

These terms are defined in exactly the same way if G is a nontrivial con-
nected multigraph. In fact, the map of Konigsberg in Figure 5.1 can be rep-
resented by the multigraph shown in Figure 5.3. Then the Konigsberg Bridge
Problem can be reformulated as follows:

Does the multigraph shown in Figure 5.3 contain either an Eulerian
circuit or an Eulerian trail?

As Euler showed (although not using this terminology, of course), the answer
to this question is no. In fact, the term graph did not appear in Euler’s article
as this term, with this meaning, had yet to appear in the literature.

Figure 5.3: The multigraph of Konigsberg
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’ Euler’s Theorem ‘

A connected graph containing an Eulerian circuit is an Eulerian graph.
Thus, the graph G5 of Figure 5.2 is Eulerian. Simple but useful characteriza-
tions of both Eulerian graphs and graphs with Eulerian trails exist; in fact, in
each case the characterization is attributed to Euler [86].

Theorem 5.1 A nontrivial connected graph G is Eulerian if and only if every
vertex of G has even degree.

Proof. Assume first that G is an Eulerian graph. Then G contains an Eulerian
circuit C. Let v be a vertex of G. Suppose first that v is not the initial vertex of
C' (and thus not the terminal vertex of C either). Since each occurrence of v in
C indicates that v is both entered and exited on C and produces a contribution
of 2 to its degree, the degree of v is even. Next, suppose that v is the initial and
terminal vertex of C. As the initial vertex of C, this represents a contribution
of 1 to the degree of v. There is also a contribution of 1 to the degree of v
because v is the terminal vertex of C' as well. Any other occurrence of v on C
again represents a contribution of 2 to the degree of v. Here too, v is even.

We now turn to the converse. Let G be a nontrivial connected graph in
which every vertex is even. Let u be a vertex of G. First, we show that G
contains a u — u circuit. Construct a trail 7" beginning at u that contains a
maximum number of edges of G. We claim that T is, in fact, a circuit; for
suppose that T' is a u — v trail, where v # u. Then there is an odd number of
edges incident with v and belonging to T'. Since the degree of v in G is even,
there is at least one edge incident with v that does not belong to T'. Suppose
that vw is such an edge. However then, T followed by w produces a trail 7"
with initial vertex u containing more edges than 7', which is impossible. Thus,
T is a circuit with initial and terminal vertex u. We now denote T by C.

If C is an Eulerian circuit of G, then the proof is complete. Hence, we may
assume that C' does not contain all edges of G. Since G is connected, there is
a vertex x on C that is incident with an edge that does not belong to C. Let
H = G — E(C). Since every vertex on C is incident with an even number of
edges on C, it follows that every vertex of H is even. Let H' be the component
of H containing x. Consequently, every vertex of H' has positive even degree.
By the same argument as before, H’ contains a circuit C’ with initial and
terminal vertex z. By inserting C’ at some occurrence of z in C, a u —u circuit
C" in G is produced having more edges than C. This is a contradiction. ]
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Trails in Graphs

A characterization of connected graphs containing an Eulerian trail is also
due to Euler.

Theorem 5.2 A connected graph G contains an Eulerian trail if and only if
exactly two vertices of G have odd degree. Furthermore, each Eulerian trail of
G begins at one of these odd vertices and ends at the other.

Proof. If G contains an Eulerian trail v — v trail 7', then we construct a new
connected graph H from G by adding a new vertex w of degree 2 and joining it
to v and v. Then T together with the two edges uw and wv form an Eulerian
circuit in H. By Theorem 5.1, every vertex of H is even and so only u and v
have odd degrees in G = H — w.

For the converse, let G be a connected graph containing exactly two vertices
u and v of odd degree. We show that G contains an Eulerian trail T', where T
is either a u — v trail or a v — u trail. Add a new vertex w of degree 2 to G and
join it to u and v, calling the resulting graph H. Therefore, H is a connected
graph all of whose vertices are even. By Theorem 5.1, H is an Eulerian graph
containing an Eulerian circuit C'. The circuit C' necessarily contains ww and
wv as consecutive edges. Deleting w from C' results in an Eulerian trail of G
that begins at u or v and terminates at the other. ]

In the next-to-last paragraph of Euler’s paper, Euler wrote (again an English
translation):

So whatever arrangement may be proposed, one can easily determine
whether or not a journey can be made, crossing each bridge once,
by the following rules:

If there are more than two areas to which an odd number of bridges
lead, then such a journey is impossible.

If, however, the number of bridges is odd for exvactly two areas,
then the journey is possible if it starts in either of these areas.

If, finally, there are no areas to which an odd number of bridges
lead, then the required journey can be accomplished from any starting
point.

With these rules, the given problem can also be solved.
Euler ended his paper by writing:

When it has been determined that such a journey can be made, one
still has to find how it should be arranged. For this I use the following
rule: let those pairs of bridges which lead from one area to another
be mentally removed, thereby considerably reducing the number of
bridges; it is then an easy task to construct the required route across
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the remaining bridges, and the bridges which have been removed will
not significantly alter the route found, as will become clear after a
little thought. I do not therefore think it worthwhile to give any
further details concerning the finding of the routes.

Consequently, in Euler’s paper, he actually only verified that every vertex
being even is a necessary condition for a connected graph to be Eulerian and
that exactly two vertices being odd is a necessary condition for a connected
graph to contain an Eulerian trail. Euler did not show that these are sufficient
conditions. The first proof that these are also sufficient conditions would not be
published for another 137 years, in an 1873 paper authored by Carl Hierholzer
[128]. Hierholzer received his Ph.D. in 1870 and died in 1871. Thus, his paper
was published two years after his death. He had told colleagues of what he had
done but died before he could write a paper containing this work. His colleagues
wrote the paper on his behalf and had it published for him.

Theorems 5.1 and 5.2 hold for multigraphs as well as graphs. By these
theorems then, the multigraph of Figure 5.3 contains neither an Eulerian trail
nor an Eulerian circuit.

As we have now seen, if G is a nontrivial connected graph with no odd
vertices, then G contains an Eulerian circuit. If G contains exactly two odd
vertices, then G contains an Eulerian trail. If G contains more than two odd
vertices, then G contains neither an Eulerian circuit nor an Eulerian trail. How-
ever, the following result by Gary Chartrand, Albert D. Polimeni and M. James
Stewart [50] shows that every connected graph with odd vertices must contain
a certain number of trails of a certain type and of certain lengths.

The distance between two subgraphs F' and H in a connected graph
G is min{d(u,v) : u € V(F),v € V(H)}.

Theorem 5.3  If G is a connected graph containing 2k odd vertices (k > 1),
then G contains k pairwise edge-disjoint open trails connecting odd vertices and
such that every edge of G lies on one of these trails and at most one of these
trails has odd length.

Proof. Let y1,¥y2,...,yr and 21, 22, . .., zx be the odd vertices of G. We con-
struct a new graph H from G by adding k new vertices x1, s, ...,z to G and
joining xz; to y; and z; for ¢ = 1,2,...,k. Thus, H is Eulerian and therefore
contains an Eulerian circuit C. Since y;x; and xz;z; are consecutive on C for
i=1,2,...,k, deleting the k vertices z; (1 < i < k) from H results in k pair-
wise edge-disjoint trails in G' connecting odd vertices such that every edge of G
lies on one of these trails.

It remains to show that there are k such trails, at most one of which has
odd length. Assume, to the contrary, that in any collection of k pairwise edge-
disjoint trails of G connecting odd vertices and such that every edge of G lies on
one of these trails, there are at least two trails of odd length. Among all such
collections of k trails, consider those collections containing a minimum number
of trails of odd length; and, among those, consider one, say {T1,T5,..., Tk},
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where the distance between some pair of trails of odd length is minimum. If
two trails T, and T}, of odd length have a vertex in common, then they may be
replaced by two trails 7); and 7T} of even length connecting odd vertices such
that

E(T.) U B(Ty) = B(T;) U E(Ty).

Otherwise, let T, and T be two trails of odd length where the distance between
T, and T attains this minimum distance. Suppose that P is a path of minimum
length connecting a vertex w, in T}, and a vertex w; in Ty, and let w,x be the
edge of P incident with w,. Then w,x belongs to a trail 7, among 11, T5, ..., T}.
Necessarily, T}, has even length. However, T, and T, have the vertex w, in
common. So, T;. and T}, may be replaced by trails 7, and 7}, connecting odd
vertices such that 7} has even length, T} has odd length,

E(T,) U B(T,) = E(T}) U E(T)

and w,x belongs to T, I/). Since the distance between Tz/> and T is less than the
distance between T, and T, this is a contradiction. [ ]

’ Veblen’s Theorem \

Among other characterizations of Eulerian graphs are two dealing with cy-
cles in graphs. One of these is expressed in terms of the edge-disjoint cycles a
graph may possess and is due to Oswald Veblen [244], known primarily for his
work in topology. This theorem will be encountered again in Chapter 13.

Theorem 5.4 (Veblen’s Theorem) A nontrivial connected graph G is Eu-
lerian if and only if G contains pairwise edge-disjoint cycles such that every
edge of G lies on one of these cycles.

Proof. First, suppose that GG is Eulerian. We proceed by induction on the
size m of G. If m = 3, then G = K3 has the desired property. Assume then,
that every Eulerian graph of size less than m, where m > 4, contains pairwise
edge-disjoint cycles such that every edge of the graph lies on one of these cycles.
Let G be an Eulerian graph of size m. Since G is Eulerian, every vertex of G
has even degree. Thus, G is not a tree and so GG contains at least one cycle C'. If
G = C}y, then the proof is complete. Otherwise, there are edges of G not in C.
Removing the edges of C' from G produces a graph G’ in which every vertex is
even. Thus each nontrivial component of G’ is Eulerian and has fewer than m
edges. By the induction hypothesis, each nontrivial component of G’ contains
pairwise edge-disjoint cycles such that every edge of this component lies on one
of these cycles. Now, all of these cycles of the components of G’, together with
C, give the desired result.

For the converse, suppose that G contains pairwise edge-disjoint cycles such
that every edge of G lies on one of these cycles. Then every vertex G is even
and so G is Eulerian by Theorem 5.1. [
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For another characterization of Eulerian graphs involving cycles, the neces-
sity is due to Shunichi Toida [236] and the sufficiency to Terry A. McKee [168].

Theorem 5.5 A nontrivial connected graph G is Eulerian if and only if every
edge of G lies on an odd number of cycles in G.

Proof. First, let G be an Eulerian graph and let e = uv be an edge of G.
Then G — e is connected. Consider the set of all u — v trails in G — e in which v
appears exactly once, namely as the terminal vertex. There is an odd number
of edges possible for the initial edge of such a trail. Once the initial edge has
been chosen and the trail has then proceeded to the next vertex, say w, then
again there is an odd number of choices for the edges that are incident with w
but different from ww. We continue this process until we arrive at vertex v. At
each vertex different from v in such a trail, there is an odd number of edges
available for a continuation of the trail. Hence, there is an odd number of these
trails.

Suppose that 77 is a w — v trail that is not a w — v path and 77 contains
v only once. Then some vertex vy (# v) occurs at least twice on T3, implying

that 77 contains a vq — vy circuit, say C' = (v1,va,...,vk,v1). Hence, there
exists a u — v trail T3 identical to T7 except that C' is replaced by the “reverse”
circuit ¢' = (v1, Vg, Vg—1,...,v2,v1). This implies that the v — v trails that

are not u — v paths occur in pairs. Therefore, there is an even number of such
u — v trails that are not u — v paths and, consequently, there is an odd number
of u — v paths in G — e. This, in turn, implies that there is an odd number of
cycles containing e.

For the converse, suppose that GG is a nontrivial connected graph that is
not Eulerian. We show that some edge of G lies on an even number of cycles
in G. Since G is not Eulerian, G contains a vertex v of odd degree. For each
edge e incident with v, denote by c¢(e) the number of cycles of G containing e.
Since any such cycle contains two edges incident with v, it follows that the sum
> c(e), taken over all edges e incident with v, equals twice the number of cycles
containing v. Because there is an odd number of terms in this sum, some term
c(e) is even. "
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Exercises for Chapter 5

Section 5.1. The Ko6nigsberg Bridge Problem

1. In present-day Konigsberg (Kaliningrad), there are two additional bridges,
one between regions B and C and one between regions B and D. Is it now
possible to devise a route over all bridges of Konigsberg without recrossing
any of them?

2. Euler’s approach to solve the Konigsberg Bridge Problem was to observe
that if there was a route that crossed each of the seven bridges exactly
once, then this route could be represented by a sequence of eight letters,
where each term represents a land region to which the route had pro-
gressed and each of the seven pairs of consecutive letters in the sequence
represents a bridge that the route had crossed. Another observation that
Euler could have made was that there are at least two land regions that
were neither the beginning nor the end of such a route. Show that this
observation could be used to solve the Konigsberg Bridge Problem.

3. Suppose that the Konigsberg Bridge Problem had asked instead whether
it was possible to take a route about Konigsberg that crossed each bridge
exactly twice. What would have been the answer in this case?

4. Suppose that there is a boat in Konigsberg that moves along the River
Pregel and travels under its bridges. In such a boat ride, a boat travels
under each bridge at most once. What is the maximum number of bridges
under which a boat can travel?

Section 5.2. Eulerian Circuits and Trails

5. Let F and H be two disjoint connected non-Eulerian regular graphs and
let G = (F+ H)V Kj; that is, G is obtained from F' and H by adding a
new vertex v and joining v to each vertex in F' and H. Prove that G is
Eulerian.

6. Let G be a connected graph of order n > 4 that has neither an Eulerian
circuit nor an Eulerian trail. A graph H is constructed by adding a new
vertex v to G and joining v to every odd vertex of G. Prove or disprove:
H is Eulerian.

7. Find a necessary and sufficient condition for the Cartesian product G O H
of two nontrivial connected graphs G and H to be Eulerian.

8. Prove that if a graph of order n > 6 has an Eulerian u — v trail such that
degu — degv > n — 2, then n must be even.
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10.

11.

12.
13.

14.

15.

16.

17.

CHAPTER 5. EULERIAN GRAPHS

Suppose that G is an r-regular graph of order n such that both G and
its complement GG are connected. Is it possible that neither G nor G is
Eulerian?

Show that if 7" is a tree containing at least one vertex of degree 2, then
T is not Eulerian.

Prove that an Eulerian graph G has even size if and only if G has an even
number of vertices v for which degv =2 (mod 4).

Prove or disprove: Every Eulerian bipartite graph has even size.

Let G be a connected graph with exactly two odd vertices u and v, where
degu > 3 and degv > 3. Prove or disprove:

(a) There exist two edge-disjoint u — v trails in G.

(b) If G is 2-edge-connected, then there exist two edge-disjoint u — v
trails in G such that every edge of G lies on one of these trails.

Let G be a connected graph of order n and size m > n containing exactly
two odd vertices u and v such that d(u,v) < m—n. Show that G contains
a u — v path P and two or more cycles such that every edge of G belongs
either to P or exactly one of the cycles.

Let G be a connected graph of order n and size m with §(G) > 3 such
that every vertex of G has odd degree.

(a) Find a sharp upper bound (in terms of m and n) for the size of an
Eulerian subgraph of G.

(b) Give an example of such a graph G where the maximum size of an
Eulerian subgraph of G is less than the upper bound in (a).

(a) Prove that every Eulerian graph of odd order has three vertices of
the same degree.

(b) Prove that for each odd integer n > 3, there exists exactly one
Eulerian graph of order n containing exactly three vertices of the
same degree and at most two vertices of any other degree.

(a) To how many cycles does each edge of G = K, and H = K5 belong?

(b) According to Theorem 5.5, what does (a) say about the graphs G
and H?



Chapter 6

Hamiltonian Graphs

In the previous chapter, we were introduced to Eulerian graphs, which are those
graphs G possessing a circuit containing every edge of G. In this chapter, we
turn our attention to those graphs G possessing a cycle containing every vertex
of G.

6.1 Hamilton’s Icosian Game

William Rowan Hamilton (1805-1865) was gifted even as a child and his numer-
ous interests and talents ranged from languages (having mastered many by age
10) to mathematics and physics. In 1832 he predicted that a ray of light passing
through a biaxial crystal would be refracted into the shape of a cone. When
this was experimentally confirmed, it was considered a major discovery and led
to his being knighted in 1835, thereby becoming Sir William Rowan Hamilton.
Even today, Hamilton is regarded as one of the leading mathematicians and
physicists of the 19th century.

Although Hamilton’s accomplishments were many, one of his best known in
mathematics was his creation of a new algebraic system called quaternions, an
extension of the complex numbers. On 16 October 1843, while walking with his
wife along the Royal Canal in Dublin, Hamilton suddenly discovered a collection
of 4-dimensional numbers a + bi 4 ¢j + dk, where a, b, c and d are real numbers,
that formed a structure known as a division algebra. Furthermore,

2 ==k =ijk=—1.

Hamilton carved these equations into the stone of the Brougham Bridge. In
the quaternions, ij = k and ji = —k; so the quaternions are not commutative.

In 1856 Hamilton developed another example of a non-commutative alge-
braic system in a game he called the Icosian Game, initially exhibited by Hamil-
ton at a meeting of the British Association in Dublin. The Icosian Game (the
prefix icos is from the Greek for twenty) consisted of a board on which were

125
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placed twenty holes and some lines between certain pairs of holes. The diagram
for this game is shown in Figure 6.1, where the holes are designated by the
twenty consonants of the English alphabet.

R

\% T

Figure 6.1: Hamilton’s Icosian Game

Hamilton later sold the rights of his game for 25 pounds to John Jaques
& Son, a game manufacturer especially well known as a dealer in chess sets.
The preface to the instruction pamphlet for the Icosian Game, prepared by
Hamilton for marketing the game in 1859, read as follows:

In this new Game (invented by Sir WILLIAM ROWAN HAMIL-
TON, LL.D., & c., of Dublin, and by him named Icosian from a
Greek word signifying ‘twenty’) a player is to place the whole or
part of a set of twenty numbered pieces or men upon the points or
in the holes of a board, represented by the diagram above drawn, in
such a manner as always to proceed along the lines of the figure, and
also to fulfill certain other conditions, which may in various ways
be assigned by another player. Ingenuity and skill may thus be exer-
cised in proposing as well as in resolving problems of the game. For
example, the first of the two players may place the first five pieces
in any five consecutive holes, and then require the second player to
place the remaining fifteen men consecutively in such a manner that
the succession may be cyclical, that is, so that No. 20 may be adja-
cent to No. 1; and it is always possible to answer any question of
this kind. Thus, if B C D F G be the five given initial points,
it is allowed to complete the succession by following the alphabetical
order of the twenty consonants, as suggested by the diagram itself;
but after placing the piece No. 6 in hole H, as above, it is also al-
lowed (by the supposed conditions) to put No. T in X instead of J,
and then to conclude with the succession, W R S T V J K L
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M N P @ Z. Other Examples of Icosian Problems, with solutions
of some of them, will be found in the following page.

Another (traveler) version of Hamilton’s Icosian Game was labeled as

NEW PUZZLE
TRAVELLER’S DODECAHEDRON
or
A VOYAGE ROUND THE WORLD

In this game, the twenty vertices of the dodecahedron, labeled with the twenty
consonants, stood for twenty cities of the world:

B. Brussels  H. Hanover N. Naples T. Toholsk

C. Canton J. Jeddo P. Paris V. Vienna

D. Delhi K. Kashmere Q. Quebec W. Washington
F. Frankfort L. London R. Rome X. Xenia

G. Geneva M. Moscow S. Stockholm Z. Zanzibar

The idea was thus to construct a round trip around the world where each of
the 20 cities would be visited on the trip exactly once.

Of course, the diagram of Hamilton’s Icosian game shown in Figure 6.1
can be immediately interpreted as a graph (see Figure 6.2), where the lines in
the diagram are the edges of the graph and the holes are its vertices. Indeed,
the graph of Figure 6.2 can be considered as the graph of the geometric solid
called the dodecahedron (where the prefix dodec is from the Greek for twelve,
pertaining to the twelve faces of the solid). This subject will be discussed in
more detail in Chapter 10.

Figure 6.2: The graph of the dodecahedron
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6.2 Sufficient Conditions for Hamiltonicity

The problems proposed by Hamilton in his Icosian Game gave rise to concepts
in graph theory, which eventually became a popular subject of study by math-
ematicians. Let G be a graph. A path in G that contains every vertex of G is
called a Hamiltonian path of G, while a cycle in G that contains every vertex
of G is called a Hamiltonian cycle of G. A graph that contains a Hamiltonian
cycle is itself called Hamiltonian. Certainly, the order of every Hamiltonian
graph is at least 3 and every Hamiltonian graph contains a Hamiltonian path.
On the other hand, a graph with a Hamiltonian path need not be Hamiltonian.
The graph G of Figure 6.3 is Hamiltonian and therefore contains both a Hamil-
tonian cycle and a Hamiltonian path. The graph G, contains a Hamiltonian
path but is not Hamiltonian; while GG3 contains neither a Hamiltonian cycle nor
a Hamiltonian path.

G1 G2 Gs
Figure 6.3: Hamiltonian paths and cycles in graphs

In 1855 (the year before Hamilton developed his Icosian Game) the Reverend
Thomas Penyngton Kirkman (1806-1895) studied such questions as whether it
is possible to visit all corners (vertices) of a polyhedron exactly once by moving
along edges of the polyhedron and returning to the starting vertex. He observed
that this could be done for some polyhedra but not all. While Kirkman had
studied Hamiltonian cycles on general polyhedra and had preceded Hamilton’s
work on the dodecahedron by several months, it is Hamilton’s name that became
associated with spanning cycles in graphs, not Kirkman’s.

|Ore’s Theorem |

Since the concepts of a circuit that contains every edge of a graph and a
cycle that contains every vertex seem so very similar and since there is a simple
and useful characterization of graphs that are Eulerian, one might very well
anticipate the existence of such a characterization of graphs that are Hamilto-
nian. However, no such theorem has ever been discovered. On the other hand,
it is much more likely that a graph is Hamiltonian if the degrees of its vertices
are large. It wasn’t until 1952 that a general theorem by Gabriel Andrew Dirac
appeared, giving a sufficient condition for a graph to be Hamiltonian. However,
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in 1960 an even more general theorem [179], due to Oystein Ore (1899-1968),
would be discovered and lead to a host of other sufficient conditions. For a
graph G, we write o2(G) to denote the minimum degree sum of two nonadja-
cent vertices of G.

Theorem 6.1 (Ore’s Theorem) Let G be a graph of order n > 3. If
02(G) > n, then G is Hamiltonian.

Proof. Suppose that the statement is false. Then for some integer n > 3,
there exists a graph H of order n such that o9(H) > n but yet H is not
Hamiltonian. Add as many edges as possible between pairs of nonadjacent
vertices of H so that the resulting graph G is still not Hamiltonian. Hence, G
is a maximal non-Hamiltonian graph (that is, G is not Hamiltonian but G + uv
is Hamiltonian for every two nonadjacent vertices u and v of G). Certainly, G
is not a complete graph. Furthermore, o3(G) > n.

If the edge xy were to be added between two nonadjacent vertices x and y of
G, then necessarily G+ zy is Hamiltonian and so GG 4+ zy contains a Hamiltonian
cycle C. Since C must contain the edge xy, the graph G contains a Hamiltonian
x —y path (z = vy,v9,...,v, = y). If zv; € E(G), where 2 < i <n — 1, then
yvi—1 ¢ E(G); for otherwise,

!
' = (fL' =V1,02,...,Vi-1,Y = vn7v’n717vn727"'7vi>x)

is a Hamiltonian cycle of G, which is impossible. Hence, for each vertex of G
adjacent to z, there is a vertex of V(G) — {y} not adjacent to y. However then,

deggy < (n—1) — degg 2,

that is, dege  + degn y < m — 1, contradicting the fact that o2(G) > n. m

Dirac’s Theorem

The aforementioned 1952 paper of Dirac [70] contained the following suffi-
cient condition for a graph to be Hamiltonian, which is then a consequence of
Theorem 6.1.

Corollary 6.2 (Dirac’s Theorem) If G is a graph of order n > 3 such
that
degv >n/2

for each vertex v of G, then G is Hamiltonian.

We have now seen fundamental results by Dirac on both connectivity (The-
orem 4.15) and on Hamiltonian graphs. We will encounter him often again
later in the book. Gabriel Andrew Dirac (1925-1984) was born in Budapest,
Hungary. He was a stepson of Paul Adrien Maurice Dirac and a nephew of Eu-
gene Paul Wigner, both recipients of the Nobel Prize in physics. Dirac became
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interested in graph theory early in his mathematical career, at a time when the
respectability of graph theory occurred primarily within Hungary. However,
Dirac was attracted to graph theory and became one of those mathematicians
whose contributions to graph theory brought it to a place of prominence. In
fact, the mathematician Carsten Thomassen wrote:

He (Dirac) was more interested in the intrinsic beauty of graph the-
ory than its applications.

With the aid of Theorem 6.1, a sufficient condition for a graph to have a
Hamiltonian path can also be given.

Corollary 6.3 Let G be a graph of order n > 2. If 09(G) > n — 1, then G
contains a Hamiltonian path.

Proof. Let H = GV K; be the join of G and K7, where w is the vertex of H
that does not belong to G. Then o9(H) > n+ 1. Since the order of H is n+1,
it follows by Theorem 6.1 that H is Hamiltonian. Let C' be a Hamiltonian cycle
of H. Deleting w from C produces a Hamiltonian path in G. [

’The Closure of a Graph‘

J. Adrian Bondy and Vasek Chvétal [34] observed that the proof of Ore’s
theorem (Theorem 6.1) neither uses nor needs the full strength of the require-
ment that the degree sum of each pair of nonadjacent vertices is at least the
order of the graph being considered. Initially, Bondy and Chvatal made the
following observation.

Theorem 6.4 Let u and v be nonadjacent vertices in a graph G of order n
such that degu + degv > n. Then G + wv is Hamiltonian if and only if G is
Hamiltonian.

Proof. Certainly, if G is Hamiltonian, then G + uv is Hamiltonian. For the
converse, suppose that G + uv is Hamiltonian but G is not. Then every Hamil-
tonian cycle in G 4+ uwv contains the edge wv, implying that G contains a Hamil-
tonian v — v path. We can now proceed exactly as in the proof of Theorem 6.1
to produce a contradiction. [

The preceding result inspired a definition. Let G be a graph of order n. The
closure CL(G) of G is the graph obtained from G by recursively joining pairs
of nonadjacent vertices whose degree sum is at least n (in the resulting graph
at each stage) until no such pair remains. A graph G and its closure are shown
in Figure 6.4.

First, we show that the closure is a well-defined operation on graphs, that
is, the same graph is obtained regardless of the order in which edges are added.
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SRt

CL(G)

Figure 6.4: Constructing the closure of a graph

Theorem 6.5 Let G be a graph of order n. If G1 and G2 are graphs obtained
by recursively joining pairs of nonadjacent vertices whose degree sum is at least
n until no such pair remains, then G1 = Gs.

Proof. Suppose that G is obtained by adding the edges e1,ea,..., e, to G
in the given order and G is obtained from G by adding the edges f1, fa,..., fs
in the given order. Assume, to the contrary, that Gy # Go. Then E(Gi) #
E(G3). Thus, we may assume that there is a first edge e; = xy in the sequence
e1,€s,..., e, that does not belong to G,. If i = 1, then let G = H; otherwise,
let H = G+ {e1,ea,...,e;_1}. Then H is a subgraph of G2 and z and y
are nonadjacent vertices of H. Since degy x + degpyy > n, it follows that
degg,  + degg, y > n, which produces a contradiction. ]

Repeated application of Theorem 6.4 gives us the following result.
Theorem 6.6 A graph is Hamiltonian if and only if its closure is Hamiltonian.

Since each complete graph with at least three vertices is Hamiltonian, we
obtain the following sufficient condition for a graph to be Hamiltonian due to
Bondy and Chvétal [34].

Theorem 6.7 Let G be a graph with at least three vertices. If CL(G) is
complete, then G is Hamiltonian.

If a graph G satisfies the conditions of Theorem 6.1, then CL(G) is complete
and so, by Theorem 6.7, G is Hamiltonian. Thus, Ore’s theorem is an immediate
corollary of Theorem 6.7 (although chronologically it preceded the theorem of
Bondy and Chvétal by several years). In fact, many sufficient conditions for a
graph to be Hamiltonian based on the degrees of the vertices of a graph can be
deduced from Theorem 6.7. The following result of Chvdtal [54] is an example
of one of the strongest of these.

Theorem 6.8 Let G be a graph of order n > 3, the degrees d; of whose vertices
satisfy di < dg < -+ < dy,. If there is no integer k < n/2 for which dy, <k and
dn_i, <n—k—1, then G is Hamiltonian.
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Proof. Let H = CL(G). We show that H is complete which, by Theorem 6.7,
implies that GG is Hamiltonian. Assume, to the contrary, that H is not complete.
Let w and w be nonadjacent vertices of H for which degy u+degy w is as large
as possible. Since u and w are nonadjacent vertices of H, it follows that deg; u+
degyw < n — 1. Assume, without loss of generality, that degy u < degy w.
Thus, if k¥ = degy u, we have that £ < (n—1)/2 <n/2 and deggyw <n—1—k.
Let W denote the vertices other than w that are not adjacent to w in H. Then
|[W| =n—-1—degyw > k. Also, by the choice of v and w, every vertex v € W
satisfies

degnv < deggv < degyu=k.

Thus, G has at least k vertices of degree at most k and so dj < k. Similarly,
let U denote the vertices other than u that are not adjacent to w in H. Then
U =n—1—degyu=n—k—1. Every vertex v € U satisfies

degrv <degygv <deggw<n-—-1-k,
implying that d,,_x—1 <n — k — 1. However,
degru < degyu <deggw<n-—1-k,

80 dp—r < n—k—1. This, however, contradicts the hypothesis of the theorem.
Thus, H = CL(QG) is complete. "

All of the sufficient conditions presented thus far for a graph G to be Hamil-
tonian involve the degrees of the vertices of G. In fact, if G has order n, then
each of these conditions requires some of the vertices of G' to have degree at
least n/2. In the case of regular graphs, however, this situation can be im-
proved. Bill Jackson [134] showed that every 2-connected r-regular graph of
order at most 3r is Hamiltonian. As we are about to see, the Petersen graph
shows that 3r cannot be replaced by 3r+1. We mentioned earlier that the girth
(the length of a smallest cycle) of the Petersen graph P is 5 and its circumfer-
ence (the length of a longest cycle) is 9. In fact, P — v contains a 9-cycle for
every vertex v of P. We now verify that the Petersen graph has circumference 9
by showing that it is not Hamiltonian.

Theorem 6.9 The Petersen graph is not Hamiltonian.

Proof. Assume, to the contrary, that the Petersen graph P is Hamiltonian.
Then P has a Hamiltonian cycle

C = (U1,7}2, .. .,Ulo,vl).

Since P is cubic, v; is adjacent to exactly one of the vertices vs,vy,...,vq.
However, since P contains neither a 3-cycle nor a 4-cycle, v; is adjacent to
exactly one of vs,vg and v;. Because of the symmetry of vs and vy, we may
assume that vy is adjacent either to vs or to vg.
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Case 1. vy is adjacent to vs in P. Then v1q is adjacent to exactly one of
vg, v5 and vg, which results in a 4-cycle, a 3-cycle or a 4-cycle, respectively, each
of which is impossible.

Case 2. wv1 is adjacent to vg in P. Again, vy is adjacent to exactly one
of vy, vs and vg. Since P does not contain a 3-cycle or a 4-cycle, v1gp must be
adjacent to vs. However, then this returns us to Case 1, where v; and vs are
replaced by v19 and vy, respectively. L]

The next sufficient condition for a graph G to be Hamiltonian does not
involve the degrees of the vertices of G but, rather, involves the cardinality of
sets of pairwise nonadjacent vertices of a graph and its connectivity. A set U
of vertices in a graph G is independent if no two vertices in U are adjacent.
(Some refer to an independent set of vertices as a stable set.) The maximum
number of vertices in an independent set of vertices of G is called the vertex
independence number or, more simply, the independence number of G
and is denoted by o(G). For example, a(K, ;) = max{r, s}, a(C,) = | 2| and
a(K,) = 1. Vasek Chvdtal and Paul Erdés [58] showed that if G is a graph
of order at least 3 whose connectivity is at least as large as its independence
number, then G must be Hamiltonian.

Theorem 6.10 Let G be a graph of order at least 3. If k(G) > a(G), then G
ts Hamiltonian.

Proof. If o(G) = 1, then G is complete and therefore Hamiltonian. Hence,
we may assume that «(G) = k > 2. Since k(G) > 2, it follows that G is
2-connected and so G contains a cycle by Theorem 4.15. Let C' be a longest
cycle in G. By Theorem 4.15, C' contains at least k vertices. We show that C'
is a Hamiltonian cycle. Assume, to the contrary, that C is not a Hamiltonian
cycle. Then there is some vertex w of G that does not lie on C. Since G is
k-connected, it follows with the aid of Corollary 4.13 that G contains k paths
Py, Py, -+, Py such that P; is a w — v; path where v; is the only vertex of P; on
C' and such that the paths are pairwise-disjoint except for w.

In some cyclic ordering of the vertices of C, let u; be the vertex that follows
v; on C for each i (1 < i < k). No vertex u; is adjacent to w, for otherwise,
replacing the edge v;u; by P; and wu; produces a cycle whose length exceeds
that of C. Let S = {w,uy,us,...,ux}. Since |S| =k +1 > a(G) and wu; ¢
E(G) for each ¢ (1 < 4 < k), there are distinct integers r and s such that
1 <r's <kand u.us € E(G). Replacing the edges u,v, and usvs by the edge
u,ug and the paths P, and Py produces a cycle that is longer than C. This is
a contradiction. [

For the non-Hamiltonian Petersen graph P, x(P) = 3 and «(P) = 4; so,
as anticipated by Theorem 6.10, x(P) < «(P). On the other hand, k(P) >
a(P) — 1 and, consequently, P has a Hamiltonian path (see Exercise 13).
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6.3 Toughness of Graphs

While we have described several sufficient conditions for a graph to be Hamil-
tonian, there are also useful necessary conditions. Certainly, every Hamiltonian
graph is connected. Since every pair u,v of distinct vertices of a Hamiltonian
graph G lies on a Hamiltonian cycle of G, it follows that G contains at least
two internally disjoint © — v paths. By Theorem 4.11, every Hamiltonian graph
is 2-connected. Consequently, if S is a subset of V(G) with |S| = 1, then
G — S consists of a single component, that is k(G —S) < |S|, where, recall, that
k(G — S) is the number of components in G — S. The next result generalizes
this observation.

’A Necessary Condition for Hamiltonian Graphs‘

Theorem 6.11 If G is a Hamiltonian graph, then
k(G —85) <|S]
for every nonempty proper subset S of V(G).

Proof. Let S be a nonempty proper subset of V(G). If G — S is connected,
then certainly, k(G—S) < |S|. Hence, we may assume that k(G—S) = k > 2 and
that G1,Gs, ..., Gy are the components of G — S. Let C = (v1,v2,...,0,,01)
be a Hamiltonian cycle of G. Without loss of generality, we may assume that
vy € V(Gy). For 1 <j <k, let v;, be the last vertex of C that belongs to G.
Necessarily then, v;; 11 € S for 1 <j<kandso|S|>k=kG-S). L]

Because Theorem 6.11 presents a necessary condition for a graph to be
Hamiltonian, it is most useful in its contrapositive formulation:

If there exists a nonempty proper subset S of the vertex set V(G) of
a graph G such that k(G — S) > |S|, then G is not Hamiltonian.

For example, the graph G of Figure 6.5 is not Hamiltonian, for if we let
S = {w,z}, then k(G — S) =3 and so k(G — S) > |9].

z

Figure 6.5: A non-Hamiltonian graph
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t-Tough Graphs ‘

We saw from Theorem 6.11 that for every Hamiltonian graph G,
k(G- 85) <9

for every nonempty proper set S of vertices of G. So, if G is a Hamiltonian
graph, then
i >1
k(G-S)~
for every nonempty proper set S of vertices of G.
For a nonnegative real number ¢, a noncomplete graph G is called t-tough
if
_8 .,
kE(G-S) ~
for every vertex-cut S of G. If G is a t-tough graph and s is a nonnegative real
number such that s < ¢, then G is also s-tough.
Consequently, every Hamiltonian graph is 1-tough. The converse is not true,
however. As the next theorem states, the non-Hamiltonian Petersen graph is
1-tough.

Theorem 6.12 The Petersen graph is 1-tough.

Proof. The Petersen graph P shown in Figure 6.6 is 3-connected; in fact,
k(P) = 3. We show that |S|/k(P —S) > 1 for every vertex-cut S of P.
Indeed, we show for every nonempty set S of vertices of P with |S| > 3 that
|S|/k(P — S) > 1. This is obvious if |S| > 5, so it remains only to show that
this is the case for |S| = 3 and |S| = 4.

Figure 6.6: The Petersen graph

Let C = (uy,us,...,us,u1) be the exterior cycle of P and C'=(vy, vs, vs,
v9, V4, v1) the interior cycle. Assume, without loss of generality, that at least
as many vertices of S lie on C' as on C’. We consider three cases.

Case 1. No vertex of S lies on C'. Then P — S is connected and |S|/k(P —
S) > 1.
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Case 2. One vertex of S lies on C'. Then P — S contains a component of
order at least 5 and so |S|/k(P — S) > 1.

Case 3. Two vertices of S lie on C'. Then |S| =4 and P — S contains at
most four components. Thus, |S|/k(P —S) > 1. "

The maximum real number ¢ for which a noncomplete graph G is t-tough
is called the toughness of G and is denoted by t(G). Certainly, the toughness
of a noncomplete graph is a rational number. Also, t(G) = 0 if and only if G is
disconnected. Indeed, it follows that if G is a noncomplete graph, then

tH(G) = min{k:(CLS—IS)}’ (6.1)

where the minimum is taken over all vertex-cuts S of G.
For the graph G of Figure 6.7, S; = {u,v,w}, So = {w} and S5 = {u,v}
are three (of many) vertex-cuts. Observe that
|51 3 |5 1 |55 2

HG-5) 8 #G-s) 3 "™ RG-8) 7

Since there is no vertex-cut S of G with |S|/k(G — S) < 2, it follows that
t@) = 2.

. . . 2
Figure 6.7: A graph with toughness =

The toughness of a graph G can be considered as a measure of how tightly
the subgraphs of G are held together. Thus, the smaller the toughness, the more
vulnerable the graph is. A 1-tough graph, for example, has the property that
breaking the graph into k& components (if this is possible) requires the removal
of at least k vertices; while breaking a 2-tough graph into & components requires
the removal of at least 2k vertices.

A parameter that plays an important role in the study of toughness is the
independence number. The independence number is related to toughness in the
sense that among all the vertex-cuts S of a noncomplete graph G, the maximum
value of k(G —S) is the independence number a(G) of G} so for every vertex-cut
S of G, we have that k(G) < |S| and k(G — S) < a(G). This leads to bounds
for the toughness of a graph obtained by Chvatal [55].
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Theorem 6.13 For every noncomplete graph G,

k(G) k(G)
(G 2

<HG) <

=

~—

Proof. According to (6.1),

IR IR W)
) =min{ 555} > ey

Let S’ be a vertex-cut with |S’| = k(G). Thus, k(G — S’) > 2; so

— i 5] 5] K(G)
t(G)_mm{k(GS)}Sk(GS’)S 5

as desired. n

For a given graph F, a graph G is F-free if G contains no induced subgraph
isomorphic to F. A Ks-free graph is called a triangle-free graph. In this
context, a graph of particular interest is K 3, which, as mentioned earlier,
is referred to as a claw. A Kj 3-free graph is then referred to as a claw-
free graph. The following result by Manton Matthews and David Sumner
[163] provides a class of graphs for which the upper bound in Theorem 6.13 is
attained.

Theorem 6.14 If G is a noncomplete claw-free graph, then t(G) = %R(G).

Proof. If G is disconnected, then ¢(G) = «(G) = 0 and the result follows.
So we assume that x(G) = r > 1. Let S be a vertex-cut such that ¢(G) =
|S|/k(G — S). Suppose that k(G — S) = k and that G1,Ga,...,G} are the
components of G — S.

Let u; € V(G;) and u; € V(Gj), where ¢ # j. Since G is r-connected, it
follows by Theorem 4.11 that G contains at least r internally disjoint u; — u;
paths. Each of these paths contains a vertex of S. Consequently, there are at
least r edges joining the vertices of S and the vertices of G; for each i (1 <14 < k)
such that no two of these edges are incident with the same vertex of S.

Hence, there is a set X containing at least kr edges between S and G — S
such that any two edges incident with a vertex of S are incident with vertices
in distinct components of G — S. However, since G is claw-free, no vertex of S
is joined to vertices in three components of G — S. Therefore,

kr < |X| < 2|9] = 2kt(G);

so kr < 2kt(G). Thus, t(G) > 5 = 1x(G). By Theorem 6.13, ¢(G) = 3x(G). =

r
2

In defining the toughness of a graph we were in some sense fine-tuning the
idea of connectivity. For example, if a graph G is 2-connected, then the removal
of one vertex from G does not result in a disconnected graph. The removal of
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two vertices, however, may not only result in a disconnected graph but in fact
may result in a graph with many components. If, however, we know that G is
1-tough, then not only is G a 2-connected graph but the removal of any two
vertices of G can result in a graph with at most two components.

The ty-Tough Conjecture

Chvétal [55] introduced the concept of toughness because he believed that
it was strongly related to the existence of Hamiltonian cycles in graphs. In fact,
he proposed the following conjecture.

The tp-Tough Conjecture There exists a constant ty such that every ty-tough
graph is Hamiltonian.

In other words, the tg-Tough Conjecture speculates the existence of a con-
stant to such that if G is a graph with ¢(G) > t¢, then G is Hamiltonian.

For many years, it was believed, in fact, that every 2-tough graph is Hamilto-
nian. In 2000, however, Douglas Bauer, Hajo Broersma and Henk Jan Veldman
[14] showed that the graph G of Figure 6.8 (the Bauer-Broersma-Veldman
graph), which is the join of F' and K>, is 2-tough but not Hamiltonian. Hence,
if the tg-Tough Conjecture is true, then ty > 2. However, Bauer, Broersma
and Veldman [14] showed even more. They described a sequence {G}} of non-
Hamiltonian graphs for which limy_, . t¢(Gx) = 9/4. Thus, to > 9/4 if the
to-Tough Conjecture is true.

NP-Completeness ‘

As we have now seen, while the problem of determining whether a graph is
Eulerian is quite easy to solve, the problem of determining whether a graph is
Hamiltonian is, in general, difficult to solve. In fact, this Hamiltonian problem
belongs to a much studied class of mathematical problems, both within and
outside of graph theory.

Most problems in graph theory apply to all members of some family of
graphs (such as all connected graphs or all graphs of order n the degrees of
whose vertices are at least n/2). When referring to an instance of a problem we
mean that the problem is being applied to a particular member of the family.
For example, an instance of the Minimum Spanning Tree Problem is the problem
of finding a minimum spanning tree in a specific weighted connected graph.

The class of all problems solvable by polynomial-time algorithms is denoted
by P. For example, the Minimum Spanning Tree Problem belongs to P. De-
termining the problems belonging to P is a question of great interest to many.
There is a related class of problems denoted by NP, which stands for nonde-
terministic polynomial-time.
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Ky

Figure 6.8: The Bauer-Broersma-Veldman graph:
A 2-tough graph that is not Hamiltonian

A decision problem is a question that can be answered yes or no. A
decision problem belongs to the class P if there is a polynomial-time algorithm
that solves every instance of the problem in polynomial time. There are decision
problems that are difficult to solve but once a solution is revealed, it is easy to
verify that this is in fact a solution. For example, it is difficult in general to
determine whether a given graph G is Hamiltonian but it is easy to verify that
a cyclic sequence of vertices of G constitutes a Hamiltonian cycle of G. The
class of such difficult-to-solve easy-to-verify problems is denoted by NP.

The problems in NP and the problems in P have one property in common,
namely: Given a solution to a problem in either class, the solution can be
verified in polynomial-time. Thus, P C NP. One of the best known problems
in mathematics asks whether every problem in NP is also in P. This is called
the P = NP Problem and is considered by many as the most important
problem in theoretical computer science. Its importance and fame have only
been magnified because of a million dollar prize offered by the Clay Mathematics
Institute for its solution.

A problem in the set NP is called NP-complete if a polynomial-time al-
gorithm for a solution to the problem would result in polynomial-time solutions
for all problems in NP. The NP-complete problems are among the most dif-
ficult in the set NP and can be reduced from and to all other NP-complete
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problems in polynomial time. The concept of NP-completeness was initiated
in 1971 by Stephen Cook [61] who gave an example of the first NP-complete
problem. The following year Richard M. Karp [139] described some twenty
diverse NP-complete problems. There are now known to be thousands of NP-
complete problems. For example, the problem of determining whether a graph
is Hamiltonian is NP-complete.

6.4 Highly Hamiltonian Graphs

As we have already remarked, obtaining an applicable characterization of Hamil-
tonian graphs remains an unsolved problem in graph theory. In view of the lack
of success in developing such a characterization, it is not surprising that special
classes of Hamiltonian graphs have been singled out for investigation. We now
discuss several types of such highly Hamiltonian graphs.

Hamiltonian-Connected Graphs

A graph G is Hamiltonian-connected if for every pair u, v of vertices of
G, there is a Hamiltonian u — v path in G. Necessarily, every Hamiltonian-
connected graph of order 3 or more is Hamiltonian but the converse is not true.
The cubic graph G; = C3 [0 K> of Figure 6.9 is Hamiltonian-connected, while
the 3-cube Go = Cy O K5 = @3 is not Hamiltonian-connected. The graph G,
contains no Hamiltonian u — v path, for example. (See Exercise 36.)

u

Gl : G2 :
v
Figure 6.9: Hamiltonian-connected and non-Hamiltonian-connected graphs

There is a sufficient condition for a graph to be Hamiltonian-connected
that is similar in statement to the sufficient condition for a graph to contain
a Hamiltonian cycle presented in Theorem 6.1. The following theorem is also
due to Oystein Ore [181] and provides a sufficient condition for a graph to be
Hamiltonian-connected.

Theorem 6.15 Let G be a graph of order n. If 02(G) > n+ 1, then G is
Hamiltonian-connected.

Proof. Let u and v be two vertices of G and let H be the graph of order n+1
obtained from G by adding a new vertex w that is joined to u and v. We now
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construct the closure F' = CL(H) of H. Since degy = + degyy > n+ 1 for
every two nonadjacent vertices = and y of H that belong to G, it follows that
F[V(GQ)] = K,. Furthermore, if z € V(G) — {u, v}, then degp x + degpw >
(n—1)+2=n+1 and so zw € E(F). Therefore, F = CL(H) = Kp41,
which implies by Theorem 6.7 that H is Hamiltonian. Since deg; w = 2, every
Hamiltonian cycle C' of H must contain the edges uw and vw. Removing w
from C produces a Hamiltonian v — v path in G. [

There is now an immediate corollary, similar in statement to the sufficient
condition given in Corollary 6.2 for a graph to be Hamiltonian.

Corollary 6.16 Let G be a graph of order n such that
degv > (n+1)/2

for every vertex v of G, then G is Hamiltonian-connected.

’Hamiltonian Extension Numbers\

As indicated by Hamilton’s remarks, the graph of the dodecahedron in Fig-
ure 6.2 is Hamiltonian. Indeed, Hamilton’s statement implies that this graph
has a much stronger property. As was mentioned in the instruction pamphlet
to his Icosian Game, Hamilton also observed that every path of order 5 in the
graph G of the dodecahedron lies on a Hamiltonian cycle of G. (He didn’t
use that terminology of course.) Although Hamilton didn’t mention that this
is also true of paths of smaller order but not true of all paths of order 6 (see
Exercise 1), this is nevertheless the case. This leads to another class of highly
Hamiltonian graphs.

The Hamiltonian extension number of a Hamiltonian graph G, denoted
by he(G), is the maximum positive integer k for which every path in G having
order k or less lies on a Hamiltonian cycle of G. Hence, he(G) = 5 for the graph
G of the dodecahedron.

By Dirac’s theorem (Corollary 6.2), if G is a graph of even order n > 4 with
0(G) > n/2, then G contains a Hamiltonian cycle. Obviously, every vertex of
G lies on a Hamiltonian cycle of G and so he(G) > 1. For each even integer
n > 4, the graph H = Ky V (2K(n_2)/2) has order n and 6(H) = n/2 such
that not every edge of H lies on a Hamiltonian cycle of H. For example, the
Hamiltonian graph H of order n = 6 in Figure 6.10 has §(H) = n/2 = 3 but no
Hamiltonian cycle of H contains the edge wv (that is, no Hamiltonian cycle of
H contains the path (u,v) of order 2). Thus, he(H) = 1. Because every edge of
a Hamiltonian-connected graph G lies on a Hamiltonian cycle of G, it follows
by Corollary 6.16 that if G is a graph of order n such that 6(G) > (n+1)/2,
then he(G) > 2. This is a special case of a more general result.

Corollary 6.17 Let k and n be integers such thatn >3 and 1 <k <n. IfG
is a graph of order n > 3 and 6(G) > (n+ k — 1)/2, then he(G) > k.
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u
oO———O0——0
H : i f
v

Figure 6.10: A Hamiltonian graph in which
no Hamiltonian cycle contains uv

Proof. Since the result is true for ¥ = 1 and k£ = 2, we may assume that
k > 3 and so n > 4. Let P be a path of order ¢ in G, where 3 < ¢ < k, say
P=(u=uj,ug,...,us =v). Let S = {ug,us,...,up—1} and let H = G — S.
Then H has order n’ =n — £+ 2 and

n+f—1
2

n—¢+3 n+1
{4+ 2= = .
+ 2 2

By Corollary 6.16, H is Hamiltonian-connected and so H contains a Hamil-
tonian w — v path P’. Thus, P’ and P produce a Hamiltonian cycle in G
containing P. Therefore, he(G) > k. "

S(H) > 6(G)—(+2 >

With the aid of Corollary 6.16, a lower bound for he(G) in terms of 6(G)
can be obtained in [45].

Theorem 6.18 If G is a graph of order n > 3 and §(G) > n/2, then
he(G) > 26(G) —n+ 1.

Proof. If §(G) = n/2, then 26(G) —n + 1 = 1 and the theorem follows
trivially. Thus, we may assume that §(G) > n/2. Hence, §(G) > (n+1)/2. By
Corollary 6.16, G is Hamiltonian-connected, which implies that every edge of
G lies on a Hamiltonian cycle of G. Furthermore, since 6(G) < n — 1, it follows
that 26(G) —n+1 <n—1. Since G is Hamiltonian, G contains paths of order
25(G) —n+1 or less. Because the result is immediate if §(G) = n — 1, we may
assume that n/2 < 6(G) < n — 2. Consequently, n > 5 and 26(G) —n+1> 2.

Let P be a u— v path of order ¢, where 3 < ¢ < 2§(G) —n+ 1 and let H be
the subgraph of G induced by (V(G) — V(P)) U {u,v}. Thus, the order of H is

n=n—l+2>n—(20(G)—n+1)+2=2(n—-46(G))+1>5.
Moreover,

0(H) > 6G)—L+2>6G)—(200G)—n+1)+2
n +1

= n-6G)+1= 5

By Corollary 6.16, H is Hamiltonian-connected. Therefore, H contains a Hamil-
tonian u — v path P’, which, together with P, produce a Hamiltonian cycle of
G containing P. n
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As we have observed, it is a consequence of Dirac’s theorem that if G is a
graph of order n > 3 with 6(G) > $n, then every vertex (path of order 1) lies
on a Hamiltonian cycle of G. By replacing % by a larger rational number, an
even stronger result can be obtained.

Corollary 6.19 If G is a graph of order n > 3 such that 6(G) > rn for some
rational number v € [%,1), then he(G) > (2r — 1)n + 1.

Proof. By Theorem 6.18, he(G) > 26(G)—n+1 > 2rn—n+1= (2r—1)n+1.m

We now show that the lower bound presented in Corollary 6.19 is sharp.
We know that this is true for r = %, so assume that % <r <1 Thenr=a/b
for some positive integers a and b, where % < ¢ <landsoa<b<2a Let
G = Ka,a,....a,a(b—a) be the complete (a 4 1)-partite graph with partite sets V;
(1<i<a+1)where |V;|]=afor1<i<aand|Vs1] = a(b—a). This graph
G has order n = ab and 0(G) = a? = ¢(ab) = rn. By Corollary 6.19, every
path of order (2r — 1)n + 1 = 2a® — ab + 1 lies on a Hamiltonian cycle of G.

Let P be a path of order a(2a —b) +2 = (2r — 1)n+ 2 such that V(P) C U Vi.
i=1

Since

a
UVi —|V(P)| = a* —[a(2a — b) + 2] = a(b—a) — 2
i=1
and |V,41| = a(b — a), there is no Hamiltonian path on the remaining vertices
of G and so there is no Hamiltonian cycle of G containing this path P. Con-
sequently, he(G) = (2r — 1)n + 1 and the bound for he(G) in Corollary 6.19 is
sharp.
Corollaries 6.17 and 6.19 are equivalent (see Exercise 33).

Panconnected and Pancyclic Graphs‘

We now consider a property that a graph may possess that is even stronger
than being Hamiltonian-connected. A connected graph G of order n is said to
be panconnected if for each pair u,v of distinct vertices of G, there exists a
u — v path of length ¢ for each integer ¢ satisfying d(u,v) < £ <n—1. If a
graph is panconnected, then it is Hamiltonian-connected. The next example
indicates that these concepts are not equivalent.

For k > 3, let Gj, be that graph such that V(Gy) = {v1,v2,...,v2} and

E(Gk) = {Uivi+1: 7;:1,2,...72]€}U{1}i1}i+31 22274,,2k—4}u
{vivs, vor—2var},

where all subscripts are expressed modulo 2k. Although for each pair u,v of
distinct vertices and for each integer ¢ satisfying k < ¢ < 2k — 1, the graph
G, contains a u — v path of length ¢, there is no v; — vy path of length ¢ if
1 < ¢ < k. Since d(v1,v9) = 1, it follows that Gy is not panconnected.
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James Williamson [257] obtained a sufficient condition for a graph G to be
panconnected in terms of the minimum degree of G.

Theorem 6.20 If G is a graph of order n > 4 such that
degv > (n+2)/2
for every vertex v of G, then G is panconnected.

Proof. If n =4, then G = K, and the statement is true.

Suppose that the theorem is not true. Thus, there exists a graph G of order
n > 5 with §(G) > (n + 2)/2 such that G is not panconnected; that is, there
are vertices u and v of G and an integer ¢ with d(u,v) < £ < n — 1 such that
there is no u — v path of length ¢. Let G* = G — {u,v}. Then G* has order
n*=n—22>3and §(G*) > (n+2)/2 —2 = n*/2. Therefore, by Corollary 6.2,
the graph G* contains a Hamiltonian cycle C' = (v1,va, ..., Upx, v1).

If uwv; € E(G), 1 < i< n*, then vv;1p_o ¢ E(G), where the subscripts are
expressed modulo n*; for otherwise,

(U, Vi, Vig 1y -5 Vigp—2,)

is a u—wv path of length £ in G. Thus, for each vertex of C' that is adjacent to u in
G, there is a vertex of C' that is not adjacent to v in G. Since degg u > (n+2)/2,
we conclude that u is adjacent to at least n/2 vertices of C; so,

n

n
d <l4n'—-=--1
egav<1+n 5 5

This, however, produces a contradiction. [

The result presented in Theorem 6.20 cannot be improved in general. Let
n = 2k+1 > 7, and consider the graph K}, ;41 with partite sets V; and V,, where
|[V1| = k and |V3| = k+1. The graph G is obtained from K}, ;41 by constructing
a path P,_; on k — 1 vertices of V. Join the remaining two vertices x and y
of V4 by an edge (see Figure 6.11 for k = 4). Then degv > (n + 1)/2 for every
vertex v but G is not panconnected since G contains no x — y path of length 3.

Figure 6.11: A graph that is not panconnected

Perhaps surprisingly, not only does o2(G) > n + 2 fail to imply that G is
panconnected but there is no constant ¢ for which o2(G) > n+ ¢ implies that G
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is panconnected. For example, for an integer ¢ > 2, let G be the graph of order
n = 2¢ + 4, where V(G) = {u,w} UU UW with |U| = |[W| = ¢+ 1 such that
GUUW] = Ka.42 and where u is adjacent to every vertex of U, w is adjacent
to every vertex of W and uw € E(G). (See Figure 6.12 for this graph G when
¢ =2.) Then 03(G) = 3¢+ 4 = n + c¢. However, since d(u,w) = 1 and there is
no u — w path of length 2 in G, it follows that G is not panconnected.

u w

SEV] Y | —x

Figure 6.12: A graph that is not panconnected

We have, however, seen a number of results concerning a graph G of order n
and size m such that if degu + degv is at least some expression f(n) involving
n for all pairs u, v of nonadjacent vertices of GG, then G has a certain property.
In particular, by Theorem 6.1, if degu + degv > n, then G is Hamiltonian.
Bondy [33] showed that graphs satisfying this condition have yet another highly
Hamiltonian property.

A graph G of order n > 3 is called pancyclic if G contains a cycle of every
possible length, that is, G contains a cycle of length ¢ for each ¢ with 3 < ¢ < n.
The following theorem of Bondy [33] states that every graph G of order n > 3
for which o9(G) > n is not only Hamiltonian but is pancyclic with one exception
when n is even.

Theorem 6.21 If G is a graph of order n > 3 such that o2(G) > n, then
either G is pancyclic or n is even and G = Kn ».

6.5 Powers of Graphs and Line Graphs

A number of graph operations have been defined and studied that have led to
results dealing with Hamiltonian and Eulerian properties. One of the simplest
operations is that of the subdivision graph of a graph. The subdivision graph
S(G) of a graph G is that graph obtained from G by replacing each edge e = uv
of G by a new vertex w, and the two new edges uw. and vw,. The subdivision
graph of K} is shown in Figure 6.13.

If G is a graph of order n and size m, then the order of S(G) is n +m and
its size is 2m. Furthermore, S(G) is a bipartite graph with partite sets V(G)
and V(S(GQ)) — V(G).
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Ky i I i S(K4) - v

Figure 6.13: The subdivision graph of a graph

The Square and Cube of a Graph‘

Associated with each connected graph of order n and diameter d is a class
of graphs defined in terms of distance. For each positive integer k, the kth
power G* of a graph G is that graph with V(G*) = V(G) and wv € E(G*) if
and only if 1 < dg(u,v) < k. Thus, G' = G and G* = K, if k > d. The graph
G? is also called the square of G, while G2 is called the cube of G. A graph
G with its square and cube are shown in Figure 6.14. While the graph G* of
Figure 6.14 is Hamiltonian, G is not.

YY"

Figure 6.14: A graph and its square and cube

Since the kth power G* (k > 2) of a connected graph G contains G as a
subgraph (as a proper subgraph if G is not complete), it follows that G* is
Hamiltonian if G is Hamiltonian. Even if G is not Hamiltonian, G* is Hamil-
tonian for a sufficiently large integer k. It is therefore natural to ask for the
minimum positive integer k for which G* is Hamiltonian. Certainly, for con-
nected graphs in general, k = 2 will not suffice since the graph G? of Figure 6.14
is not Hamiltonian. We noted that G® is Hamiltonian, however. In fact, the
cube of every connected graph of order at least 3 is Hamiltonian. Indeed, a
stronger result exists, discovered by Milan Sekanina [218] and later, but inde-
pendently, by Jerome Karaganis [138].

Theorem 6.22 If G is a connected graph, then G3 is Hamiltonian-connected.

Proof. If H is a spanning tree of G and H? is Hamiltonian-connected, then
G? is Hamiltonian-connected. Hence, it suffices to prove that the cube of every
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tree is Hamiltonian-connected. To show this, we proceed by induction on n,
the order of the tree. For small values of n, the result is obvious.

Assume for all trees H of order less than n that H? is Hamiltonian-connected
and let 7" be a tree of order n. Let u and v be any two vertices of T'. We consider
two cases.

Case 1. u and v are adjacent in T. Let e = uv and consider the forest T'—e.
This forest has two components, one tree T, containing u and the other tree
T, containing v. By hypothesis, T and T? are Hamiltonian-connected. Let u;
be any vertex of T;, adjacent to u, and let v; be any vertex of T, adjacent to
v. If T, or Ty, is trivial, we define u; = u or v; = v, respectively. Note that u;
and v; are adjacent in T since d7(uy,v1) < 3. Let P, be a Hamiltonian u —uy
path (which may be trivial) of T2 and let P, be a Hamiltonian v; — v path of

T3. The path formed by beginning with P, followed by the edge u;v; and then
the path P, is a Hamiltonian v — v path of T°.

Case 2. u and v are not adjacent in T. Since T is a tree, there exists a
unique path between every two of its vertices. Let P be the unique v — v path
of T and let f = uw be the edge of P incident with u. The graph T'— f consists
of two trees, one tree T,, containing w and the other tree T,, containing w. By
hypothesis, there exists a Hamiltonian w — v path P, in T5. Let u; be a vertex
of T,, adjacent to u, or let u; = w if T}, is trivial, and let P, be a Hamiltonian
u — uy path in T3. Because dr(uj,w) < 2, the edge ujw is present in T°3.
Hence, the path formed by starting with P, followed by ujw and then P, is a
Hamiltonian v — v path of T3. ]

It is, of course, an immediate consequence of Theorem 6.22 that for every
connected graph G of order at least 3, its cube G2 is Hamiltonian. Although
it is not true that the square of every connected graph of order at least 3 is
Hamiltonian, it was conjectured independently by Crispin Nash-Williams and
Michael D. Plummer that for 2-connected graphs, this is the case. In 1974, Her-
bert Fleischner [92] verified this conjecture. More recent proofs of this theorem
have been given by Stanislav Riha [199] in 1991 and Agelos Georgakopoulos
[103] in 2009.

Theorem 6.23 If G is a 2-connected graph, then G is Hamiltonian.

A variety of results strengthening (but employing) Fleischner’s work have
been obtained. For example, Chartrand, Hobbs, Jung, Kapoor and Nash-
Williams [47] showed that the square of a 2-connected graph is Hamiltonian-
connected.

Theorem 6.24 If G is a 2-connected graph, then G? is Hamiltonian-connected.

Proof. Since G is 2-connected, G has order at least 3. Let u and v be any
two vertices of G. Let G1,Gs, ..., G5 be five distinct copies of G and let u; and
v; (i=1,2,...,5) be the vertices in G; corresponding to u and v in G. Form a
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new graph F' by adding to the union G1 +Ga+- - -+ G5 two new vertices wy and
wsy and ten new edges wyu; and wov; (i =1,2,...,5). The graph F is shown in
Figure 6.15. Clearly, neither w; nor ws is a cut-vertex of F'. Furthermore, since
each graph G; is 2-connected and contains two vertices adjacent to vertices in
V(F) — V(G;), no vertex of G; is a cut-vertex of F. Hence, F' is 2-connected.

w1

U7 us

U1 Vs

w2
Figure 6.15: The graph F' in the proof of Theorem 6.24

By Theorem 6.23, F? has a Hamiltonian cycle C, which, of course, contains
wi and wy. At least one of the graphs G, say G, contains no vertex adjacent
to either wy or wy on C. Since u; and vy are the only vertices of G; adjacent
on C to vertices not in Gy, it follows that C' has a u; — v; path containing all
vertices of G7. Thus, G? has a Hamiltonian u; — v path, which implies that
G? contains a Hamiltonian v — v path. ]

The Line Graph of a Graph

The most familiar graph operation of a graph is that of the line graph. The
line graph L(G) of a graph G is that graph whose vertices can be put in one-to-
one correspondence with the edges of G in such a way that two vertices of L(G)
are adjacent if and only if the corresponding edges of G are adjacent. A graph
and its line graph are shown in Figure 6.16, where the vertex u; (1 <i <6) of
L(G) corresponds to the edge e; of G.

It is relatively easy to determine the number of vertices and the number
of edges in the line graph L(G) of a graph G in terms of easily computed
quantities in G. Indeed, if G is a graph of order n and size m with degree
sequence di,ds,...,d, and its line graph L(G) has order n’ and size m’, then

n' =m and
m’:zn: di
2

i=1
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U1 u2

/

Ue

Uy Us

Figure 6.16: A graph and its line graph

since each edge of L(G) corresponds to a pair of adjacent edges of G. For
each nontrivial connected graph G, its line graph L(G) is also connected (see
Exercise 50). For the set G of all connected graphs and the set G of all nonempty
connected graphs, we may think of L as a function, namely L : G’ — G. Hassler
Whitney [255] showed that this function is very nearly injective.

Theorem 6.25 Let G; and G2 be nontrivial connected graphs. If L(G1) =
L(Gs), then G1 = G4 unless one of G1 and G is K3 and the other is K 3.

The function L : ¢’ — G is not close to being surjective, however. The
graph K 3 is one of many graphs that is not isomorphic to the line graph of
any graph. To see this, suppose that there is a graph H such that L(H) = K; 3.
Then H is a graph of size 4 containing an edge that is adjacent to the other
three edges, no two of which are adjacent to each other. Such a graph H does
not exist and so K 3 is not the line graph of any graph. Indeed, Lowell W.
Beineke [17] obtained the following result.

Theorem 6.26 A graph G is isomorphic to the line graph of some graph if
and only if none of the nine graphs of Figure 6.17 is isomorphic to an induced
subgraph of G.

We turn to the problem of determining characteristics possessed by a graph
that yield certain Hamiltonian properties of its line graph. Frank Harary and
Crispin Nash-Williams [122] characterized those graphs having a Hamiltonian
line graph. A circuit C in a graph G is called a dominating circuit if every
edge of G either belongs to C or is adjacent to an edge of C. Equivalently, a
circuit C' in a graph G is a dominating circuit if every edge of G is incident with
a vertex of C. Although we did not present proofs of Theorems 6.25 and 6.26,
we do give a proof of the following result, which characterizes those graphs G
for which L(G) is Hamiltonian.

Theorem 6.27 Let G be a graph without isolated vertices. Then L(G) is
Hamiltonian if and only if G = K, ¢ for some £ > 3 or G contains a dominating
circutt.
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Y >
VAR
g

o< P

Figure 6.17: The induced subgraphs not contained in any line graph

Proof. If G = K for some ¢ > 3, then L(G) is Hamiltonian since L(G) =
K. Suppose, then, that G contains a dominating circuit

C= (’Ul,’U27...,’Ut7’U1).

It suffices to show that there exists an ordering s : eq, es, ..., €., of the m edges
of G such that e; and e;;1 are adjacent edges of G, for 1 <i < m—1, as are e;
and e, since such an ordering s corresponds to a Hamiltonian cycle of L(G).
Begin the ordering s by selecting, in any order, all edges of G incident with vy
that are not edges of C, followed by the edge vivs. At each successive vertex
vi, 2 <1 <t—1, select, in any order, all edges of G incident with v; that are
neither edges of C nor previously selected edges, followed by the edge v;v;41.
This process terminates with the edge v;_1v;. The ordering s is completed by
adding the edge v;v;. Since C is a dominating circuit of G, every edge of G
appears exactly once in s. Furthermore, consecutive edges of s as well as the
first and last edges of s are adjacent in G.

Conversely, suppose that G is not a star but L(G) is Hamiltonian. We show
that G contains a dominating circuit. Since L(G) is Hamiltonian, there is an
ordering s : e, eq, ..., e, of the m edges of G such that e; and e;; are adjacent
edges of G for 1 <i<m—1, as are e; and e,,. For 1 <i < m—1, let v; be the
vertex of G incident with both e; and e;11. (Note that 1 <k # ¢ < m — 1 does
not necessarily imply that vy # v,.) Since G is not a star, there is a smallest
integer j; exceeding 1 such that v;, # v1. The vertex v;, _; is incident with e;,,
the vertex v;, is incident with e;, and v;, 1 = v;. Thus, e;, = v1v;,. Next,
let jo (if it exists) be the smallest integer exceeding ji such that v, # vj,.
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The vertex v;,—1 is incident with e;,, the vertex v;, is incident with e;, and
Vj,—1 = vj,. Thus, ej, = v;,v;,. Continuing in this fashion, we finally arrive
at a vertex v;, such that e;, = v;,_1v;,, where v;, = v,,—1. Since every edge
of G appears exactly once in s and since 1 < j; < jo < -+ < jy = m — 1, this
construction yields a trail

T= (Ulvejwvjlﬂejwvjw sy Ugyq5 €45 Vg = Umfl)

in G with the properties that (i) every edge of G is incident with a vertex of T
and (ii) neither e; nor e, is an edge of T.

Let w be the vertex of G incident with both e; and e,,. We consider four
possible cases.

Case 1. w =v; = vy, 1. Then T itself is a dominating circuit of G.

Case 2. w = v; and w # vy, _1. Since e, is incident with both w and v,,_1,
it follows that e,, = vy—1w = vy—1v1. Thus, C = (T, e, v1) is a dominating
circuit of G.

Case 3. w = vy,—1 and w # vy. Since e; is incident with both w and vy,
we have that e; = wvy = v,—1v1. Thus, C = (T, e1,v1) is a dominating circuit
of G.

Case 4. w # vy,—1 and w # vy. Since e, is incident with both w and v,,_1,
it follows that e,, = v,,_1w. Because e; is incident with both w and vy, we have
that e; = wvy. Thus, v1 # vy,—1 and C = (T, e, w,e1,v1) is a dominating
circuit of G. =

As a consequence of Theorem 6.27, if GG is either Eulerian or Hamiltonian,
then L(G) is Hamiltonian. In fact, successively taking the line graph of a
connected graph has some interesting consequences.

For a nonempty graph G, we write L°(G) to denote G and L'(G) to denote
L(G). For an integer k > 2, the iterated line graph L*(G) is defined as
L(LFY(@)), where L*~1(G) is assumed to be nonempty. The following result
is due to Gary Chartrand and Curtiss E. Wall [51].

Theorem 6.28 If G is a connected graph such that degv > 3 for every vertex
v of G, then L?(G) is Hamiltonian.

Proof. Let v be a vertex of G, where degv = r > 3. Then in L(G), the
edges incident with v give rise to a subgraph H,, where H, = K,.. Let C, be a
Hamiltonian cycle in H,. Let H be the spanning subgraph of L(G) defined by

V(H) = V(L(G)) and E(H) = U,ev (@) E(Cy).

Then H is connected and every vertex of H is even. Consequently, H is Eu-
lerian and so H is a dominating circuit of L(G). By Theorem 6.27, L?(G) is
Hamiltonian. [
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If G = P,, where n > 2, then L(G) = P,_;. Thus, L""1(G) = P, and
Lk(@) is not defined for k > n. If G = K; 3, then L(G) = Cs. If G = C,, for
some n > 3, then L(G) = C,, and L*¥(C,) = C, for every nonnegative integer
k. Suppose then that G is a connected graph that is not a path, K; 3 or a
cycle. Then A(G) > 3. Suppose that G contains a vertex u of degree 1. Then
G contains a u — v path P = (u = ug,u1,...,us = v) of minimum length ¢ > 1
where degv > 3. This gives rise to an g — x path P’ of length ¢ in L(G),
where x( corresponds to ugui, x corresponds to us_jug, degxg = 1 if £ > 2
and degz > 3. By successively taking the line graph of G, L(G), L?(G) and
so on, we eventually arrive at a graph L*(G) for some k where there are no
end-vertices. If a connected graph H contains no end-vertices but does contain
vertices of degree 2, then G contains a y — z path (or y — z cycle if y = 2)
Q=W=yo,y1,---,Y+ = 2) where t > 2, degy; =2for 1 <i<t—1,degy >3
and deg z > 3. This gives rise to a w — z path Q' = (w = wy, we, ..., w; = x) of
length t—1 in L(G) where w; corresponds to the edge yoy; in G, w; corresponds
to the edge y;_1y;, degw; =2 for 2 <i <t—1, degw; > 3 and degw; > 3. By
successively taking the line graph of H, L(H), L?(H) and so on, we arrive at
a graph L"(H) in which all vertices have degree at least 3. This is illustrated
for the graph G of Figure 6.18. It then follows that there is a sufficiently large
integer s such that the degree of every vertex of L*(G) is at least 3. By the
discussion above and Theorem 6.28, we then have the following.

(@)
B U SN NI

Figure 6.18: A graph and iterated line graphs

Theorem 6.29 If G is a connected graph that is not a path, then there exists
an integer ko such that L*(G) is Hamiltonian for every integer k > kq.

’The Total Graph of a Graph‘

A graph operation related to the line graph is the total graph. The total
graph T(G) of a graph G is that graph whose vertices can be put in one-
to-one correspondence with the elements of the set V(G) U E(G) such that
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two vertices of T'(G) are adjacent if the corresponding elements in G are two
adjacent vertices, two adjacent edges or an incident vertex and edge. A graph
H and its total graph T(H) are shown in Figure 6.19.

Figure 6.19: A graph and its total graph

One might observe that T'(H) = G? for the graph H of Figure 6.19 and the
graph G of Figure 6.14. We saw that G2 is not Hamiltonian. Thus, for the graph
H of Figure 6.19, T'(H) is not Hamiltonian. This, in fact, is not surprising for if
F is any graph, then T'(F) = [S(F)]?, that is, the total graph of F is the square
of the subdivision graph of F'. Since the graph G of Figure 6.14 is isomorphic
to S(K,3) and the graph H of Figure 6.19 is isomorphic to K 3, it follows that
T(H) = G?, where G is the graph of Figure 6.14.

While the total graph of a nontrivial connected graph G need not be Hamil-
tonian, the same cannot be said for T(T'(Q)).

Theorem 6.30 If G is a nontrivial connected graph, then T(T(QG)) is Hamil-
tonian.

Proof. First, we consider T(G). Since S(G) is a nontrivial connected graph,
[S(G)]? is 2-connected and T'(G) = [S(G)]?, it follows that H = T(G) is 2-
connected. Hence, S(H) is 2-connected. By Theorem 6.23, [S(H)]? is Hamil-
tonian. Thus, T(H) = [S(H)])? and so T(T(G)) is Hamiltonian. L]
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Exercises for Chapter 6

Section 6.2. Sufficient Conditions for Hamiltonian Graphs

1. (a) Show that the graph of the dodecahedron is Hamiltonian.

(b) Hamilton observed that every path of order 5 lies on a Hamiltonian
cycle of the graph of the dodecahedron. Show that there is a path
of order 6 in this graph that does not have this property.

2. Show that if G is a graph containing a vertex that is adjacent to at least
three vertices of degree 2, then G is not Hamiltonian.

3. (a) Show that if G is a bipartite graph of odd order, then G is not
Hamiltonian.

(b) Show that the Herschel graph of Figure 6.20 is not Hamiltonian.

Figure 6.20: The Herschel graph

4. (a) Prove that if G and H are Hamiltonian graphs, then G O H is
Hamiltonian.

(b) Prove that the n-cube @, n > 2, is Hamiltonian.

5. Show that the bound presented in Theorem 6.1 is sharp, that is, show
that for infinitely many integers n > 3 there are non-Hamiltonian graphs
G of order n such that o02(G) =n — 1.

6. A Hamiltonian graph G of order n is k-ordered Hamiltonian for an
integer k with 1 < k < n if for every ordered set S = {vy,va,..., v} of
k vertices of GG, there is a Hamiltonian cycle of G encountering these k
vertices of S in the order listed.

(a) Let G be a graph of order n > 3 such that degv > n/2 for every
vertex v of G. Show that G is 3-ordered Hamiltonian.

(b) Let G be a graph of order n > 4 such that degv > n/2 for every
vertex v of G. Show that G need not be 4-ordered Hamiltonian.

(¢) Show that if G is a 4-ordered Hamiltonian graph, then G is 3-
connected.
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7.

10.

11.

12.

13.

14.

15.

16.
17.

Let G be a graph of order n > 3 having the property that for each vertex
v of G, there is a Hamiltonian path with initial vertex v. Show that G is
2-connected but not necessarily Hamiltonian.

(a) Let G be a graph of order n > 2, the degrees d; of whose vertices
satisfy d; < ds < --- < d,,. Show that if there is no integer k <
(n+1)/2 for which dy, <k —1 and d,,y1-r <n—k — 1, then G has
a Hamiltonian path.

(b) Show that every self-complementary graph has a Hamiltonian path.
Let G be a bipartite graph with partite sets U and W such that |U| =

|W| =k > 2. Prove that if degv > k/2 for every vertex v of G, then G is
Hamiltonian.

(a) Prove that if G is a graph of order n > 3 and size m > (";1) +2,
then G is Hamiltonian.

(b) Prove that if G is a graph of order n > 3 and size m > (";1) + 1,
then G has a Hamiltonian path.

Show that the bound presented in Theorem 6.10 is sharp, that is, show
that for infinitely many integers n > 3 there are non-Hamiltonian graphs
G of order n such that k(G) > a(G) — 1.

(a) Show that a connected graph G of order n = 2k + 1 having indepen-
dence number k + 1 is not Hamiltonian.

(b) Give an example of a Hamiltonian graph H of order n = 2k for some
k > 2, where k vertices have degree 2, no two vertices of which are
adjacent, while the remaining vertices have degree 3 or more.

Show that if G is a graph of order at least 2 for which x(G) > a(G) — 1,
then G has a Hamiltonian path.

Prove that if T is a tree of order at least 4 that is not a star, then T
contains a Hamiltonian path.

Section 6.3. Toughness of Graphs

(a) Prove that K, o, 3, is Hamiltonian for every positive integer r.
(b) Prove that K, o, 3,41 is Hamiltonian for no positive integer .

(c) Let G = Ky, ny,....n, be the complete k-partite graph of order at
least 3, where n; < ny < --- < ng. Find a necessary and sufficient
condition for the graph G to be Hamiltonian.

Show that every 1-tough graph is 2-connected.

(a) Give an example of a graph G containing a Hamiltonian path for
which k(G — S) > |S| for some nonempty proper subset S of V(G).
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18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
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(b) State and prove a result analogous to Theorem 6.11 that gives a
necessary condition for a graph to contain a Hamiltonian path.

Show that the graph G of Figure 6.21 is 1-tough but not Hamiltonian.

Figure 6.21: A 1-tough non-Hamiltonian graph

(a) Prove that if G is a graph of order 101 and 6(G) = 51, then every
vertex of G lies on a cycle of length 27.

(b) State and prove a generalization of (a).

Determine the toughness of the regular complete 3-partite graph K, , ,
(r>2).

Show that if H is a spanning subgraph of a noncomplete graph G, then
t(H) < t(G).

(a) Show that if G is a noncomplete graph of order n, then t(G) <
(n —a(G))/a(G).

(b) Show that the order of every noncomplete connected graph G is at
least a(G)(1 + t(Q)).

Show for positive integers r and s with r + s > 3 that

t(K,,s) = min{r, s}/ max{r, s}.

Prove or disprove: There is a constant ky such that every kg-connected
graph is Hamiltonian.

(a) Determine the toughness of the complete k-partite graph K, n,, . ny
where n1 < ng <--- < ny.

(b) Show that for every nonnegative rational number r, there exists a
graph G with ¢(G) =r.

Determine a formula for the toughness of a tree.

Show that the Bauer-Broersma-Veldman graph of Figure 6.8 is not Hamil-
tonian.
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28. A well-known conjecture of Matthews and Sumner [163] states that every
4-connected claw-free graph is Hamiltonian. Restate this conjecture in
terms of toughness for noncomplete graphs.

Section 6.4. Highly Hamiltonian Graphs

29. Show that if G is a graph of order n > 4 and size m > (”gl) + 3, then G
is Hamiltonian-connected.

30. Prove that every Hamiltonian-connected graph of order 4 or more is 3-
connected.

31. Give a proof by contradiction of Theorem 6.15:

Let G be a graph of order n > 4. If 02(G) > n+ 1, then G is
Hamiltonian-connected.

by first observing that G — v is Hamiltonian for every vertex v of G.

32. Let n and k be positive integers such that n > k + 2. Prove that if G is
a graph of order n such that if 09(G) > n+ k — 1, then he(G) > k.

33. Show that Corollary 6.17:

Let k and n be integers such that n > 3 and 1 < k < n. If
G is a graph of order n > 3 and §(G) > (n+ k — 1)/2, then
he(G) > k.

and Corollary 6.19:

If G is a graph of order n > 3 such that 6(G) > rn for some
rational number v € [%,1), then he(G) > (2r — 1)n + 1.

are equivalent by showing that

(a) Corollary 6.17 implies Corollary 6.19 and
(b) Corollary 6.19 implies Corollary 6.17.
34. (a) Give an example of Hamiltonian graph G of order n > 4 for which
he(G) =n — 3.
(b) Prove that if G is a graph of order n > 3 such that he(G) > n — 2,
then he(G) = n.

35. Give an example of a graph G that is pancyclic but not panconnected.

36. Prove that no bipartite graph of order 3 or more is Hamiltonian-connected,
panconnected or pancyclic.
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37

38.

39.
40.
41.

42.

43.

44.

45.
46.

47.

48.

49.

50.
ol.

52.

CHAPTER 6. HAMILTONIAN GRAPHS

. Let f(n) denote the function of n. Determine a sharp lower bound f(n)
such that if G is a graph of order n > 3 such that o2(G) > f(n), then G
is pancyclic.

A graph G is called hypo-Hamiltonian if G is non-Hamiltonian but
G — v is Hamiltonian for every vertex v of G. Show that the Petersen
graph is hypo-Hamiltonian.

Section 6.5. Powers of Graphs and Line Graphs

Determine all those connected graphs G for which S(G) is Eulerian.
Determine all those connected graphs G for which S(G) is Hamiltonian.

Show that if G is a connected graph of order n and size m, then a(S(G)) =
m unless G belongs to a familiar class of graphs.

Show that if G is a connected graph of order n > 2 and k is an integer
with 1 < k <n — 1, then G* is k-connected.

Show that if G is a connected graph of diameter £ and 1 < k < ¢, then
diam(G*) = [¢/k].

A graph H is called a square root of a connected graph G if H? = G.

(a) Give an example of a connected graph with two non-isomorphic
square roots.

(b) Give an example of a connected graph with a unique square root.

Show that the graph G? of Figure 6.14 is not Hamiltonian.

Prove that if v is any vertex of a connected graph G of order at least 4,
then G® — v is Hamiltonian.

Prove that if G is a self-complementary graph of order at least 5, then G2
is Hamiltonian-connected.

Let G be a connected graph G. Prove that if &k = 27 for some positive
integer j, then t(G*) > £ k(G).

According to Theorem 6.26, every line graph is claw-free. Is the converse
true?

Prove that the line graph of every nontrivial connected graph is connected.

Determine a formula for the number of triangles in the line graph L(G)
in terms of quantities in G.

Prove that L(G) is Eulerian if G is Eulerian.
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53.

54.

55.

56.

o7.

o8.

59.

(a) Find a necessary and sufficient condition for a graph G to have the
property that G = L(G).

(b) Find a necessary and sufficient condition for a graph G to have the
property that L(G) = L*(G).

For each of the following, prove or disprove.

(a) If G is Hamiltonian, then G? is Hamiltonian-connected.

(b) If G is connected and L(G) is Eulerian, then G is Eulerian.

(¢) If G is Hamiltonian, then L(G) is Hamiltonian-connected.

(d) If G has a dominating circuit, then L(G) has a dominating circuit.

Prove that if G is a connected graph and L3(G) is Eulerian, then L?(G)
is Eulerian.

Give an example of a connected graph G such that degv > 3 for every
vertex v of G but L(G) is not Hamiltonian.

(a) Show that if G is a k-edge-connected graph, k > 2, then L(G) is
k-connected.

(b) Show that if G is a k-edge-connected graph, k£ > 2, then L(G) is
(2k — 2)-edge-connected.

Show that there exists a graph G that is not isomorphic to the total graph
of any graph.

(a) Prove that if G is a nontrivial connected graph, then T'(G?) is Hamil-
tonian.

(b) Prove that if G is a nontrivial connected graph, then (T(G))? is
Hamiltonian.






Chapter 7
Digraphs

There are occasions when the symmetric nature of graphs does not provide a
desirable structure to represent a situation we may encounter. This leads us to
the concept of directed graphs (digraphs).

7.1 Introduction to Digraphs

A directed graph or digraph D is a finite nonempty set of objects called ver-
tices together with a (possibly empty) set of ordered pairs of distinct vertices
of D called arcs or directed edges. For vertices u and v in D, an arc (u,v) is
sometimes denoted by writing u — v (or v + u). As with graphs, the vertex set
of D is denoted by V(D) or simply V and the arc set (or directed edge set) of
D is denoted by E(D) or E. A digraph D with vertex set V = {u,v,w,z} and
arc set £ = {(u,v), (v,u), (u,w), (w,v), (w,z)} is shown in Figure 7.1. When
a digraph is described by means of a diagram, the “direction” of each arc is
indicated by an arrowhead. Observe that in a digraph, it is possible for two
arcs to join the same pair of vertices if the arcs are directed oppositely.

D : iw
T

Figure 7.1: A digraph
Much of the terminology used for digraphs is quite similar to that used for
graphs. The cardinality of the vertex set of a digraph D is called the order of

D and is ordinarily denoted by n, while the cardinality of its arc set is the size

161
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of D and is ordinarily denoted by m. If a = (u,v) is an arc of a digraph D,
then w is said to be adjacent to v and v is adjacent from u. For a vertex v in
a digraph D, the outdegree od v of v is the number of vertices of D to which
v is adjacent, while the indegree id v of v is the number of vertices of D from
which v is adjacent. The out-neighborhood N (v) of a vertex v in a digraph
D is the set of vertices adjacent from v, while the in-neighborhood N~ (v) of
v is the set of vertices adjacent to v. Thus, odv = |[NT(v)| and idv = [N~ (v)].
The degree degv of a vertex v is defined by

degv =odwv +idw.

For the vertex v in the digraph of Figure 7.2, odv = 3, idv = 2 and degv = 5.

Figure 7.2: The outdegree, indegree and degree of a vertex

The First Theorem of Digraph Theory

The directed graph version of Theorem 1.4 is stated next.

Theorem 7.1 (The First Theorem of Digraph Theory) If D is a digraph

of size m, then
Z odv = Z idv=m.

veV(G) veV(G)

Proof. When the outdegrees of the vertices are summed, each arc is counted
once. Similarly, when the indegrees of the vertices are summed, each arc is
counted just once. [

A digraph D; is isomorphic to a digraph Dy, written D; = Ds, if there
exists a bijective function ¢ : V(D1) — V(Ds) such that (u,v) € E(D,) if and
only if (¢(u), p(v)) € E(D2). The function ¢ is called an isomorphism from
Dl to DQ.

There is only one digraph of order 1, namely the trivial digraph. Also,
there is only one digraph of order 2 and size m for each m with 0 < m < 2. There
are four digraphs of order 3 and size 3, all of which are shown in Figure 7.3.
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SRV ANA

Figure 7.3: The digraphs of order 3 and size 3

A digraph D; is a subdigraph of a digraph D if V(D;) C V(D) and
E(Dy) C E(D). We use D; C D to indicate that D; is a subdigraph of D.
A subdigraph D; of D is a spanning subdigraph of D if V(D,) = V(D).
Vertex-deleted, arc-deleted, induced and arc-induced subdigraphs are defined
in the expected manner. These last two concepts are illustrated for the digraph
D of Figure 7.4, where

V(D) = {Ul7v27v37v4}7 U = {vlvv27v3} and X = {(UI7U2)7 (’UQ,’U4)}.

U1 U1 U1
Vg / %)
U3 U2 U3
V4 V4
D D[U] DIX]

Figure 7.4: Induced and arc-induced subdigraphs

We now consider certain types of digraphs that occur periodically. A digraph
is symmetric if whenever (u,v) is an arc of D, then (v,u) is an arc of D as
well. There is a natural one-to-one correspondence between symmetric digraphs
and graphs. The complete symmetric digraph K of order n has both arcs
(u,v) and (v, u) for every two distinct vertices u and v. A digraph is called an
oriented graph if whenever (u,v) is an arc of D, then (v,u) is not an arc of
D. Thus, an oriented graph D can be obtained from a graph G by assigning a
direction to (or by “orienting”) each edge of G, thereby transforming each edge
of a graph G into an arc and transforming G itself into an oriented graph. The
digraph D is also called an orientation of G. Figure 7.5 shows three digraphs
Dy, Dy and D3. While D, is a symmetric digraph and D5 is an oriented graph,
the digraph Ds is neither. The underlying graph of a digraph D is that
graph obtained by replacing each arc (u,v) or symmetric pair (u,v), (v,u) of
arcs by the edge uv. The underlying graph of each digraph in Figure 7.5 is the
graph G.
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P2

Figure 7.5: Digraphs with the same underlying graph

An orientation of a complete graph is called a tournament and will be
studied in some detail in Sections 7.4-7.6. A digraph D is regular of degree
r or r-regular if odv = idv = r for every vertex v of D. A 1l-regular digraph
Dy and a 2-regular digraph Dy are shown in Figure 7.6. The digraph D, is a
tournament.

Figure 7.6: Regular digraphs

The terms walk, open and closed walk, trail, path, circuit and cycle for
graphs have natural counterparts in digraph theory as well, the important dif-
ference being that the directions of the arcs must be followed in each of these
walks. In particular, when referring to digraphs, the terms directed path,
directed cycle and directed circuit are synonymous with the terms path,
cycle and circuit. More formally, for vertices v and v in a digraph D, a
directed u — v walk W (or simply a u — v walk) in D is a finite sequence

W = (u = ug, uy, uz,...,ux = 0)

of vertices, beginning with u and ending with v such that (u;, u;41) is an arc for
0 < i < k—1. The number & of occurrences of arcs (including repetition) in the
walk W is its length. Digraphs in which every vertex has positive outdegree
must contain cycles (see Exercise 10).

Theorem 7.2 If D is a digraph such that odv > k > 1 for every vertex v of
D, then D contains a cycle of length at least k + 1.
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Connected Digraphs ‘

A digraph D is connected (or weakly connected) if the underlying graph
of D is connected. A digraph D is strong (or strongly connected) if for every
pair u,v of vertices, D contains both a u — v path and a v — u path. While all
digraphs of Figure 7.7 are connected, only D; is strong.

Ds: © O O O—<—0 Dy : 0 O O O

Figure 7.7: Connectedness properties of digraphs

Distance can be defined in digraphs as well. For vertices u and v in a digraph

-

D containing a v — v path, the directed distance d(u,v) from u to v is the
length of a shortest u — v path in D. The distances cf(u,v) and cf(v,u) are
defined for all pairs u,v of vertices in a digraph D if and only if D is strong.
This distance is not a metric, in general. Although directed distance satisfies
the triangle inequality, it is not symmetric unless D is symmetric, in which case
D can be considered a graph. Eccentricity can be defined as before, as well
as radius and diameter in a strong digraph D. The eccentricity e(u) of a
vertex v in D is the distance from u to a vertex farthest from u. The minimum
eccentricity of the vertices of D is the radius rad(D) of D, while the diameter

diam(D) is the greatest eccentricity.

Each vertex of the strong digraph D of Figure 7.8 is labeled with its eccen-
tricity. Observe that rad(D) = 2 and diam(D) = 5, so it is not true, in general,
that diam(D) < 2rad(D), as is the case with graphs.

3 2

Figure 7.8: Eccentricities in a strong digraph
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7.2 Strong Digraphs

We saw that there are two types of connectedness for digraphs, namely weakly
connected (or, more simply, connected) digraphs and strongly connected (or
simply strong) digraphs. In this section, we explore strong digraphs in more
detail.

The following theorem is the digraph analogue of Theorem 2.1 and its proof
is analogous as well (see Exercise 15).

Theorem 7.3 Let u and v be two vertices in a digraph D. For every u — v
walk W in D, there exists a u—v path P such that every arc of P belongs to W.

Strong digraphs are characterized in the following theorem.

Theorem 7.4 A digraph D is strong if and only if D contains a closed span-
ning walk.

Proof. Assume that W = (uy,us,...,ug,u1) is a closed spanning walk in D.
Let u,v € V(D). Then u = u; and v = u, for some 4, j with 1 <¢,j < k and i #
j. Without loss of generality, assume that ¢ < j. Then Wi = (u;, wit1,...,u;)
is a u; —u; walk in D and Wa = (w;, Wjq1,. .., Uk, U1, ..., U;) IS & uj — u; walk
in D. By Theorem 7.3, D contains both a u; — u; path and a u; — u; path in
D and so D is strong.

Conversely, assume that D is a nontrivial strong digraph with V(D) =

{v1,v2,...,v,} and consider the cyclic sequence v1,va, ..., Upn, Upr1 = v1. Since
D is strong, D contains a v; —v;41 path P; fori = 1,2,... n. Then the sequence
Py, P, ..., P, of paths produces a closed spanning walk in D. [

The converse D of a digraph D is obtained from D by reversing the direc-
tion of every arc of D. Thus, D is strong if and only if its converse D is strong
(see Exercise 16).

’ Robbins’ Theorem ‘

We saw that an orientation of a graph G is a digraph obtained by assigning a
direction to each edge of G. Herbert Robbins (1922-2001) studied those graphs
having a strong orientation. Certainly, if G has a strong orientation, then G
must be connected. Also, if G has a bridge, then it is impossible to produce a
strong orientation of G. Robbins [205] showed that this is all that’s required
for G to have a strong orientation.

Theorem 7.5 (Robbins’ Theorem) A nontrivial graph G has a strong
orientation if and only if G is connected and bridgeless.

Proof. We have already observed that if a graph G has a strong orientation,
then G is connected and bridgeless. Suppose that the converse is false. Then
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there exists a connected and bridgeless graph G that has no strong orientation.
Among the subgraphs of G, let H be one of maximum order that has a strong
orientation. Such a subgraph exists since for each v € V(G), the subgraph
G[{v}] trivially has a strong orientation. Thus, |V (H)| < |V (G)|, since, by
assumption, G has no strong orientation.

Assign directions to the edges of H so that the resulting digraph D is strong,
but assign no directions to the edges of G — E(H). Let u € V(H) and let v €
V(G) —V(H). Since G is connected and bridgeless, it follows by Theorem 4.18
that G contains two edge-disjoint u — v paths. Let P be one of these u—v paths
and let ) be the v — u path that results from the other v — v path. Further,
let u; be the last vertex of P that belongs to H, and let v; be the first vertex
of @ belonging to H. Next, let P, be the u; — v subpath of P and let @; be
the v — v; subpath of ). Direct the edges of P; from u; toward v, producing
the directed path P; and direct the edges of @ from v toward vy, producing
the directed path Q.

Define the digraph D’ by

V(D) =V(D)UV(P))uV(Q}) and E(D") = E(D)U E(P]) UE(Q}).
Since D is strong, so too is D', contradicting the choice of H. ]

As we mentioned, Theorem 7.5 is due to Robbins. The paper in which this
theorem appears is titled “A theorem on graphs, with an application to a prob-
lem of traffic control” and was published in 1939 in the American Mathematical
Monthly, only a year after Robbins received his Ph.D. from Harvard University
in topology, under the direction of Hassler Whitney. This was only Robbins’
second publication of what would become a long and impressive list. Also in
1939, at age 24, Robbins began work on the classic book What is Mathematics?
with Richard Courant. Robbins classified this book as a literary work rather
than a scientific work. This book discussed mathematics as it existed at that
time. A few years later, Robbins became interested in and devoted his research
to mathematical statistics, to which he made major contributions.

7.3 Eulerian and Hamiltonian Digraphs

Eulerian and Hamiltonian graphs have natural analogues for digraphs. In both
instances, these are strong digraphs.

Eulerian Digraphs ‘

An Eulerian circuit in a connected digraph D is a circuit that contains
every arc of D (necessarily exactly once); while an Eulerian trail in D is an
open trail that contains every arc of D. A connected digraph that contains an
Eulerian circuit is an Eulerian digraph. The next theorem gives a character-
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ization of Eulerian digraphs whose statement and proof are similar to that of
Theorem 5.1 (see Exercise 21).

Theorem 7.6 Let D be a nontrivial connected digraph. Then D is Eulerian
if and only if odv = idv for every vertex v of D.

With the aid of Theorem 7.6, a characterization of digraphs containing an
Eulerian trail can be given (see Exercise 23).

Theorem 7.7 Let D be a nontrivial connected digraph. Then D contains an
Eulerian trail if and only if D contains two vertices u and v such that

odu=idu+1 and idv=odv+1,

while odw = idw for all other vertices w of D. Furthermore, each Eulerian
trail of D begins at u and ends at v.

Thus, the digraph D; of Figure 7.9 contains an Eulerian circuit, D, contains
an Eulerian u — v trail and D3 contains neither an Eulerian circuit nor an
Eulerian trail.

D1 D2 DS

Figure 7.9: Eulerian circuits and trails in digraphs

Hamiltonian Digraphs

A digraph D is Hamiltonian if D contains a spanning cycle. Such a cycle
is called a Hamiltonian cycle of D. As with Hamiltonian graphs, no charac-
terization of Hamiltonian digraphs exists. Indeed, if anything, the situation for
Hamiltonian digraphs is even more complex than it is for Hamiltonian graphs.
There are sufficient conditions for a digraph to be Hamiltonian, however, that
are analogues of the simpler sufficient conditions for graphs to be Hamilto-
nian. The proofs of these results, unlike their graphical counterparts, are quite
lengthy and, for this reason, are not given here.

The following result of Henri Meyniel [170] gives a sufficient condition (much
like that in Theorem 6.4 for graphs) for a digraph to be Hamiltonian.
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Theorem 7.8 (Meyniel’s Theorem) If D is a nontrivial strong digraph
of order n such that
degu +degv > 2n —1

for every pair u,v of nonadjacent vertices, then D is Hamiltonian.

Among the consequences of Theorem 7.8 is a result obtained by Douglas
Woodall [259].

Corollary 7.9 If D is a nontrivial digraph of order n such that
odu+idv >n

whenever u and v are distinct vertices with (u,v) ¢ E(D), then D is Hamilto-
nian.

The proof of the following theorem (due to Alain Ghouila-Houri [104]) is an
immediate consequence of Theorem 7.8.

Corollary 7.10 If D is a strong digraph of order n such that degv > n for
every vertex v of D, then D is Hamiltonian.

Corollary 7.10 also has a corollary. We provide a proof of this result.

Corollary 7.11 If D is a digraph of order n such that
odv>n/2 and idv >n/2
for every vertex v of D, then D is Hamiltonian.

Proof. Suppose that the theorem is false. Since the theorem is clearly true
for n = 2 and n = 3, there exists some integer n > 4 and a digraph D of order
n that satisfies the hypothesis but which is not Hamiltonian. Let C be a cycle
in D of maximum length k. It follows from Theorem 7.2 and the assumption
that D is not Hamiltonian that 1 +n/2 < k < n. Also, let P be a path of
maximum length such that no vertex of P lies on C. Suppose that P isa u—v
path of length ¢ > 0. Therefore, k + ¢+ 1 < n. (See Figure 7.10.)

Since n n

Egnfkflgnf(lJrf)—l:fo,
2 2

it follows that £ < n/2 — 2 and that there are at least two vertices adjacent to
u which do not lie on P. Since P is a longest path all of whose vertices do not
lie on C, it follows that there are at least two vertices that lie on C' that are
adjacent to u and at least two vertices adjacent from v which lie on C.

Let a denote the number of vertices on C' that are adjacent to w. Thus, a > 2.
For every vertex z on C that is adjacent to u, the £ + 1 vertices immediately
following = on C' are not adjacent from v, for otherwise, D has a cycle of length
exceeding k. Since C contains vertices adjacent from v, there must be a vertex
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Figure 7.10: A step in the proof of Corollary 7.11

y on C that is adjacent to u such that none of the ¢ 4+ 1 vertices immediately
following y on C' are adjacent to u or adjacent from wv.

For each of the a — 1 vertices on C' that are distinct from y and adjacent
to u, the vertex immediately following it cannot be adjacent from v. Hence,
at least (a — 1) + (£ + 1) = a + £ vertices on C are not adjacent from v, for
otherwise again, D has a cycle of length exceeding k. Since P is a longest path
in D containing no vertices of C, every vertex adjacent to w is either on C or
on P.

Because idu > n/2 and the only vertices of D that can be adjacent to u
belong to C or P, it follows that a+¢ > n/2. Therefore, v is adjacent to at most
(n—1)—(a+¢) < (n—1)—n/2 =n/2—1 vertices, producing a contradiction. m

7.4 Tournaments

There are sporting events involving teams (or individuals) that require every
two teams to compete against each other exactly once. This is referred to as a
round robin tournament. Men’s soccer has been part of the Summer Olympic
Games since 1900. Teams from 16 countries participate, divided into four pools
of four teams each. In each pool, a round robin tournament takes place, in
which the top two teams in each pool advance to play for Olympic medals.
This also occurs during the World Cup for soccer supremacy when 32 countries
participate, divided into eight pools of four teams each.

Round robin tournaments give rise quite naturally to a class of digraphs
that we mentioned earlier. Recall that a tournament is an orientation of a
complete graph. Therefore, a tournament can be defined as a digraph such that
for every pair u, v of distinct vertices, exactly one of (u,v) and (v, u) is an arc.
A tournament 7' then models a round robin tournament in which no ties are
permitted. The vertices of T are the teams in the round robin tournament and
(u,v) is an arc in T if team u defeats team v.
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Figure 7.11 shows two tournaments of order 3. In fact, these are the only two
tournaments of order 3. The number of non-isomorphic tournaments increases
sharply with their orders. For example, there is only one tournament of order
1 and one of order 2. As we just observed, the tournaments 77 and T3 in
Figure 7.11 are the only two tournaments of order 3. There are four tournaments
of order 4, 12 of order 5, 56 of order 6 and over 154 billion of order 12.

Figure 7.11: The tournaments of order 3

Since the size of a tournament of order n is (721)7 it follows from Theorem 7.1

that
Z odv = Z idv(Z).

veV(T) veV(T)

| Transitive Tournaments |

A tournament 7T is transitive if whenever (u,v) and (v, w) are arcs of T,
then (u,w) is also an arc of T. The tournament T5 of Figure 7.11 is transitive
while T7 is not. The following result gives an elementary property of transitive
tournaments. An acyclic digraph is a digraph having no cycles.

Theorem 7.12 A tournament is transitive if and only if it is acyclic.

Proof. Let T be an acyclic tournament and suppose that (u,v) and (v, w) are
arcs of T'. Since T is acyclic, (w,u) ¢ E(T). Therefore, (u,w) € E(T) and T is
transitive.

Conversely, suppose that T is a transitive tournament and assume that 7'
contains a cycle, say C = (v1,va,...,Vk,v1), where k > 3. Since (v1,v2) and
(ve,v3) are arcs of the transitive tournament T, it follows that (vq,vs) is also
an arc of T'. Since (v1,v3) and (vs,vy) are arcs, if k > 4, then (v1,v4) is an arc.
Similarly, (vy,vs), (v1,v6), ..., (v1,vx) are arcs of T. However, this contradicts
the fact that (vg,v1) is an arc of T. Thus, T is acyclic. L]

Suppose that a tournament T of order n with vertex set V(T)={v1, va,. ..,
vp, } represents a round robin tournament involving competition among n teams
V1,V2,...,Un. If team v; defeats team wv;, then (v;,v;) is an arc of T. The
number of victories by team wv; is the outdegree of v;. For this reason, the
outdegree of the vertex v; in a tournament is also referred to as the score of v;.
A sequence s1, S2, - . ., S, of nonnegative integers is called a score sequence of
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a tournament if there exists a tournament 7" of order n whose vertices can be
labeled vq,vs,...,v, such that odv; = s; fori =1,2,...,n.

Figure 7.12 shows transitive tournaments of order n for n = 3,4,5. The
score sequence of every transitive tournament has an interesting property. The
following result describes precisely which sequences are score sequences of tran-
sitive tournaments.

Figure 7.12: Transitive tournaments of orders 3, 4, 5

Theorem 7.13 A nondecreasing sequence m of n monnegative integers is a
score sequence of a tramsitive tournament of order n if and only if © is the
sequence 0,1,...,n — 1.

Proof. First we show that 7 :0,1,...,n—1 is a score sequence of a transitive
tournament of order n. Let T be the tournament with vertex set V(T) =
{v1,v9,...,v,} and arc set E(T) = {(v;,v;) : 1 <i<j<n}. We claim that
T is transitive. Let (v;,v;) and (vj,vg) be arcs of T. Then i < j < k. Since
i < k, (vi,vr) is an arc of T" and so T is transitive. For 1 <14 <n, odv; = n—i.
Therefore, a score sequence of T is w:0,1,...,n— 1.

Next, we show that if 7" is a transitive tournament of order n, then 0,1, ..., n—
1 is a score sequence of T'. This is equivalent to showing that every two vertices
of T have distinct scores. Let u and w be two vertices of T'. Assume, without
loss of generality, that (u,w) is an arc of T. Let W be the set of vertices of
T to which w is adjacent. Therefore, odw = |W|. For each x € W, (w,z) is
an arc of T. Since T is transitive, (u,z) is also an arc of T. However then,
odu > |W|+1 and so odu # od w. "

The proof of Theorem 7.13 shows that the structure of a transitive tourna-
ment is uniquely determined.

Corollary 7.14 For every positive integer n, there is exactly one transitive
tournament of order n.

Combining this corollary with Theorem 7.12, we arrive at yet another corol-
lary.

Corollary 7.15 For every positive integer n, there is exactly one acyclic tour-
nament of order n.
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Although there is only one transitive tournament of each order n, in a certain
sense, which we now describe, every tournament has the structure of a transitive
tournament. Let T be a tournament. We define a relation on V(T) by u is
related to v if there is both a u—v path and a v—wu path in T'. This relation is an
equivalence relation and, as such, this relation partitions V(7') into equivalence
classes V1, Va,..., Vi (kK > 1). Let S; = T[V;] for ¢ = 1,2,...,k. Then each
subdigraph S; is a strong tournament and, indeed, is maximal with respect
to the property of being strong. The subdigraphs S1,.55,...,S; are called the
strong components of 7. So the vertex sets of the strong components of T’
produce a partition of V(7).

Let T be a tournament with strong components 51,55, ..., Sk, and let T de-
note that digraph whose vertices u1, us, . . ., ux are in one-to-one correspondence
with these strong components (where u; corresponds to S;, i = 1,2,...,k) such

that (u;,u;) is an arc of i 1 # 7, if and only if some vertex of S; is adjacent
to some vertex of S;. If (u;,u;) is an arc of T, then because S; and S; are
distinct strong components of T, it follows that every vertex of S; is adjacent
to every vertex of S;. Hence, T is obtained by identifying the vertices of \S;
for i =1,2,...,k. A tournament T and its associated digraph T are shown in
Figure 7.13.

S (7

U2

: 93 U3

Figure 7.13: A tournament 7" and its associated transitive tournament T

Observe that for the tournament 7' of Figure 7.13, T is itself a tourna-
ment, indeed a transitive tournament. That this always occurs follows from
Theorem 7.16. (See Exercise 37.)

Theorem 7.16 If T is a tournament with exactly k strong components, then
T is the transitive tournament of order k.

Since for every tournament 7', the tournament T is transitive, it follows
that if 7' is a tournament that is not strong, then V(T') can be partitioned as
{V1,Va, ..., Vi} (k> 2) such that T[V;] is a strong tournament for each i, and
if v; € V; and v; € Vj, where i < j, then (v;,v;) € E(T). This decomposition is
often useful when studying the properties of tournaments that are not strong.

We already noted that there are four tournaments of order 4. Of course,
one of these is transitive, which consists of four trivial strong components
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51,52, 53, 54, where the vertex of S; is adjacent to the vertex of S; if and only if
1 < j. There are two tournaments of order 4 containing two strong components
S1 and S5, depending on whether S; or S5 is the strong component of order
3. (No strong component has order 2.) Since there are four tournaments of
order 4, there is exactly one strong tournament of order 4. These tournaments
are depicted in Figure 7.14. The arcs not drawn in the tournaments 77, T> and
T3 that are not strong are all directed downward, as indicated by the double
arrow.

o S g
g ; (@)
o SQ 51 !

© 5 s ! C<\7
O 2
O Sy S
T T T3 T,
Figure 7.14: The four tournaments of order 4
We also stated that there are 12 tournaments of order 5. There are six
tournaments of order 5 that are not strong, shown in Figure 7.15. Again all

arcs that are not drawn are directed downward. Thus, there are six strong
tournaments of order 5.

@) v o o
(@]
(X o )\_ ;
O
(@] o g! 5 o
O O
Ty 15 13 Ty T5 Ts

Figure 7.15: The six tournaments of order 5 that are not strong

Score Sequences of Tournaments

Theorem 7.13 characterizes score sequences of transitive tournaments. We
next investigate score sequences of tournaments in general. We begin with a
theorem similar to Theorem 1.12.

Theorem 7.17 A nondecreasing sequence m : 81,82,...,8, (n > 2) of non-
negative integers is a score sequence of a tournament if and only if the sequence
1 851,82, .-58s,,5s,41 — Ly--.,Sn—1 — 1 5 a score sequence of a tournament.
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Proof. Assume that 7y is a score sequence of a tournament. Then there exists
a tournament T of order n—1 having 7; as a score sequence. Hence the vertices

of T1 can be labeled as vy, vg,...,v,_1 such that
S; for1 <i<s,
odv; = .
s;—1 fori>s,.

We construct a tournament T by adding a vertex v,, to T} where v,, is adjacent
towv; if 1 <4 < s, and v, is adjacent from v; otherwise. The tournament T
then has 7 as a score sequence.

For the converse, we assume that 7 is a score sequence. Hence there exist
tournaments of order n whose score sequence is 7. Among all such tournaments,
let T be one such that V(T) = {v1,ve,...,v,}, odv; = s; for i = 1,2,...,n
and the sum of the scores of the vertices adjacent from v, is minimum. We
claim that v,, is adjacent to vertices having scores si,ss,...,Ss,. Assume, to
the contrary, that v, is not adjacent to vertices having scores si,2,..., s, .
Necessarily, then, there exist vertices v; and vy with j < k and s; < sj such
that v, is adjacent to v; and v, is adjacent from v;. Since the score of v
exceeds the score of v;, there exists a vertex v; such that v is adjacent to vy,
and v; is adjacent to v; (Figure 7.16(a)). Thus, a 4-cycle C' = (vn, Vg, V¢, V5, Un)
is produced. If we reverse the directions of the arcs of C, a tournament 7" is
obtained also having 7 as a score sequence (Figure 7.16(b)). However, in T,
the vertex v, is adjacent to v; rather than v,. Hence the sum of the scores of
the vertices adjacent from wv,, is smaller in 7" than in 7', which is impossible.

Thus, as claimed, v,, is adjacent to vertices having scores s1, s2,...,5s,. Then
T — v, is a tournament having score sequence 7. [
VUt Ut
(% Vi Uy Vi

O
Un Un,

(a) (b)

Figure 7.16: A step in the proof of Theorem 7.17
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As an illustration of Theorem 7.17, we consider the sequence
m:1,2,2,3,3,4.

In this case, s, (actually sg) has the value 4; thus, we delete the last term, repeat
the first s, = 4 terms, and subtract 1 from the remaining terms, obtaining

7 1,2,2,3,2.
Rearranging, we have

m o 1,2,2,2,3.
Repeating this process twice more, we have

7r/2 : 1,2,2,1

my o 1,1,2,2

w3 ¢ 1,1,1.

The sequence 3 is clearly a score sequence of a tournament. By Theorem 7.17,
o is as well, as are m; and w. We can use this information to construct a
tournament with score sequence w. The sequence 73 is the score sequence of
the tournament 73 of Figure 7.17. Proceeding from 73 to 7o, we add a new
vertex to T3 and join it to two vertices of T5 and from the other, producing
a tournament Ty with score sequence mo. To proceed from my to mp, we add
a new vertex to T and join it fo vertices having scores 1, 2 and 2 and from
the remaining vertex of T, producing a tournament 77 with score sequence
m1. Continuing in the same fashion, we finally produce a desired tournament 7'
with score sequence 7 by adding a new vertex to 7 and joining it to vertices
having scores 1, 2, 2 and 3, and joining it from the other vertex.

The sociologist Hyman Garshin Landau [152] characterized those sequences
of nonnegative integers that are score sequences of tournaments. The proof we
present of his theorem is due to Carsten Thomassen [233].

Theorem 7.18 A nondecreasing sequence ™ : 81,83,...,8, 0of monnegative
integers is a score sequence of a tournament if and only if for each integer k

with 1 < k <n,
k k
;&(2), (7.1)

with equality holding when k = n.

Proof. Suppose first that 7 : s1, s2, ..., s, is a score sequence of a tournament
of order n. Then there exists a tournament T with V(T') = {v1,v2,..., 05}
such that odv; = s; for i = 1,2,...,n. For an integer k with 1 < k < n and
S = {v1,v9,...,v;}, the subdigraph Ty = T[S] induced by S is a tournament

of order k and size (’2“) Since odr v; > odp, v; for 1 < i < k, it follows that

k k k &
;si = ZodTvi > ZodTlvi = <2>

i=1 i=1
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1 1
Ty : A@ Ty: 1 2
1 1
2
2 2
1 2 1 2
T : T:
3 3
9 3
4

Figure 7.17: Construction of a tournament with a given score sequence

We now verify the converse. Suppose that the converse is false. Then
among all counterexamples for which n is minimum, let 7 : s1,82,...,8, be
one for which s; is minimum. Suppose first that there exists an integer k£ with

1 <k <n—1 such that
k

k
S; = . 7.2
> (2) (7.2)
Since k < n, it follows that 7 : s1, o, . .., Si is a score sequence of a tournament
T of order k.
Let 7 : t1,t9,...,tn—r be the sequence, where t; = sy, — k for i =

1,2,...,n— k. Since
LAk <k+1>
252 :

it follows from (7.2) that

=Sy () (5

Since 7 is a nondecreasing sequence,
ti=Spri —k>s,41— k>0

for : = 1,2,...,n — k and so 7 is a nondecreasing sequence of nonnegative
integers. We now show that 7 satisfies (7.1).
For each integer r with 1 < r < n — k, we have

r+k

Zt —Z (sk4i — k) = Zskﬂ—rk—z:sl Zsl—rk
=1
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Since
and

it follows that

= () () )

with equality holding for » = n — k. Thus, 7 satisfies (7.1). Since n — k < n,
there is a tournament 75 of order n — k having score sequence 7.
Let T be the tournament with V(T') = V(T1) U V(T3) and

E(T) = E(Ty) U E(T) U {(u,v) : u € V(Ty),v € V(T1)}.

Then 7 is a score sequence for T, contrary to our assumption. Consequently,

30> ;)

for k=1,2,...,n — 1. In particular, s; > 0.

We now consider the sequence 7’ : s1 — 1,59,53,...,5,-1,5, + 1. Then 7’
is a nondecreasing sequence of nonnegative integers satisfying (7.1). By the
minimality of s1, there is a tournament T” of order n having score sequence 7’.
Let z and y be vertices of T’ such that ody» z = s, + 1 and odp y = s7 — 1.
Since odps > odpr y + 2, there is a vertex w # x,y such that (z,w) € E(T")
and (w,y) € E(T"). Thus, P = (z,w,y) is a path in 7".

Let T be a tournament obtained from T” by reversing the directions of the
arcs in P. Then 7 is a score sequence for T', producing a contradiction. [

Frank Harary and Leo Moser [121] obtained a related characterization of se-
quences of nonnegative integers that are score sequences of strong tournaments
(see Exercise 42).

Theorem 7.19 A nondecreasing sequence w : S1,832,...,Sn, 0f monnegative
integers is a score sequence of a strong tournament if and only if

30> ;)

Furthermore, every tournament whose score sequence satisfies these conditions
18 strong.

for1<k<n-—1and
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7.5 Kings in Tournaments

While tournaments can be used to represent the results of round robin tour-
naments (especially among teams participating in a sports event), they can be
used to model any collection of objects where in each pair of objects, one is
preferred over the other in some manner. An example of this occurs in a flock
of chickens. In a pair of chickens, one chicken will dominate the other. The
dominant chicken in the pair asserts this dominance by pecking the other on
its head and neck. (This is what led to the term pecking order.) It is rare when
this dominance is transitive; that is, if the first chicken pecks a second chicken
and the second pecks a third, it does not mean that the first necessarily pecks
the third. The question then arises: Which chicken (or chickens) should be
considered most dominant in the flock? Any such chicken is referred to as a
king chicken. Landau [152] defined a chicken K in a flock F of chickens to be
king if for every chicken C in F, either K pecks C' or K pecks a chicken that
pecks C.

This situation can be modeled by a tournament and leads to a concept
involving tournaments. A vertex u in a tournament 7" is a king in T if for
every vertex w different from w, either u — w or there is a vertex v such that
u — v — w. Landau then proved the following.

Theorem 7.20 Fvery tournament contains a king.

Proof. Let T be a tournament and let u be a vertex having maximum out-
degree in T. We show that u is a king. If this is not the case, then there is a
vertex w in T for which wu is neither adjacent to w nor adjacent to any vertex
that is adjacent to w. Then w is adjacent to every vertex to which u is adjacent
and adjacent to u as well. Thus, odw > od u, a contradiction. ]

A vertex u in a tournament of order n is called an emperor if odu = n — 1.
Since no vertex is adjacent to u, we have the following observation.

Theorem 7.21 If a tournament T has an emperor u, then u is the unique
king in T.

While it’s possible for a tournament to have exactly one king, it is not
possible for a tournament to contain exactly two kings.

Theorem 7.22 Fvery tournament containing no emperor contains at least three
kings.

Proof. Let T be a tournament containing no emperor and let u be a vertex
of maximum outdegree in T'. By the proof of Theorem 7.20, it follows that u is
a king of T

Among all vertices adjacent to u, let v be one of maximum outdegree. We
claim that v is a king of 7. Assume, to the contrary, that v is not a king
in T. Then there is a vertex = of T" such that v is neither adjacent to x nor
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adjacent to a vertex that is adjacent to x. Thus, x is adjacent to both v and
v. Furthermore, x is adjacent to every vertex to which v is adjacent. However
then, od z > od v, a contradiction. Thus, v is a king of T.

Next, among the vertices adjacent to v, let w be one of maximum outdegree.
We claim that w is also a king of T'. Assume, to the contrary, that w is not a
king. Then there is a vertex y of T such that w is neither adjacent to y nor
adjacent to a vertex that is adjacent to y. Thus, y is adjacent to v and w. In
addition, y is adjacent to every vertex to which w is adjacent. However then,
ody > od w, a contradiction. Hence w is a king of 7. [

7.6 Hamiltonian Tournaments

The large number of arcs in a tournament often produce paths and cycles of
varying lengths. Perhaps the most basic result of this type was a property of
tournaments first observed by Lész16 Rédei [197] in 1934, resulting in the first
theoretical result on tournaments. A path in a digraph D containing every
vertex of D is a Hamiltonian path.

Theorem 7.23 Fvery tournament contains a Hamiltonian path.

Proof. Let T be a tournament of order n and let P = (vy,va,...,0;) be a
longest path in T'. If P is not a Hamiltonian path of T, then 1 < k£ < n and there
is a vertex v of T not on P. Since P is a longest path, (v,v1), (vg,v) ¢ E(T),
and so (v1,v),(v,v;) € E(T). This implies that there is a largest integer 4
(1 <i < k) such that (v;,v) € E(T). So (v,v41) € E(T) (see Figure 7.18).
But then

(V1,V2, .+, Vi, U, Vg1, - -+, Vk)
is a path whose length exceeds that of P, producing a contradiction. [
U1 V2 U3 Vi Vit1 V-1 Vg

v

Figure 7.18: A step in the proof of Theorem 7.23

A simple but useful consequence of Theorem 7.23 concerns transitive tour-
naments.

Corollary 7.24 FEwvery transitive tournament contains exactly one Hamilto-
nian path.
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The preceding corollary is a special case of a result found independently by
Rédei [197] and Tibor Szele [231], who showed that every tournament contains
an odd number of Hamiltonian paths.

Figure 7.19 shows a tournament of order 5 consisting of three strong com-
ponents S1, Sz and S3, where S; and S3 consists of a single vertex and S
is a 3-cycle. This tournament has three Hamiltonian paths, namely P, =
(u,v,w,2,y), Po = (u,w,z,v,y) and Py = (u,z,v,w,y).

U
S1
Sy w O—=Vu
w
S3
Y

Figure 7.19: A tournament with three Hamiltonian paths

While each transitive tournament contains exactly one Hamiltonian path,
there are, not surprisingly, tournaments with many Hamiltonian paths. The
next result, also due to Szele [231], establishes the existence of such tournaments
and provides a lower bound on the number of Hamiltonian paths in them. The
proof of this result, considered the first application of the probabilistic method
in combinatorics, will be presented in Chapter 21 (see Theorem 21.3).

Theorem 7.25 For each integer n > 2, there exists a tournament of order n
containing at least n!/2"~1 Hamiltonian paths.

While every tournament contains a Hamiltonian path, certainly not every
tournament contains a Hamiltonian cycle. Indeed, by Theorem 7.12, every
transitive tournament is acyclic. If a tournament T contains a Hamiltonian
cycle, then T is strong by Theorem 7.4. Paul Camion [41] showed that the
converse is true as well.

Theorem 7.26 A nontrivial tournament T is Hamiltonian if and only if T is
strong.

Proof. We have already seen that every Hamiltonian tournament is strong.
For the converse, assume that 7' is a nontrivial strong tournament. Thus, T'
contains cycles. Let C be a cycle of maximum length in 7. If C' contains all
of the vertices of T', then C' is a Hamiltonian cycle. So, assume that C' is not
Hamiltonian, say

C = (v1,v2,...,0k01),



182 CHAPTER 7. DIGRAPHS

where 3 < k < n. If T contains a vertex v that is adjacent to some vertex of C
and adjacent from some vertex of C, then there must be a vertex v; of C' that
is adjacent to v such that v;4; is adjacent from v. In this case,

[
C'= (’Ul,UQ,-..,Ui,'U,'Ui+17.-~,Uk;,U1)

is a cycle whose length is greater than that of C, producing a contradiction.
Hence, every vertex of T' that is not on C' is either adjacent to every vertex of
C or adjacent from every vertex of C. Since T is strong, there must be vertices
of each type.

Let U be the set of all vertices of T' that are not on C' and such that each
vertex of U is adjacent from every vertex of C, and let W be the set of those
vertices of T" that are not on C' such that every vertex of W is adjacent to each
vertex of C' (see Figure 7.20). Then U # () and W # ().

¢ oy _p D
Y% X
1 DG Dw

Figure 7.20: A step in the proof of Theorem 7.26

Since T is strong, there is a path from every vertex of C to every vertex of
W. Since no vertex of C'is adjacent to any vertex of W, there must be a vertex
u € U that is adjacent to a vertex w € W. However then,

C” - ('Ula v2,...,V,U,w, Ul)

is a cycle whose length is greater than the length of C, a contradiction. L]

If T is a Hamiltonian tournament, then, of course, every vertex of T lies on
every Hamiltonian cycle of T'. Actually, every vertex of T lies on a triangle of
T as well.

Theorem 7.27 FEvery vertex in a nontrivial strong tournament belongs to a
triangle.

Proof. Let v be a vertex in a nontrivial strong tournament 7. By The-
orem 7.26, T is Hamiltonian. Thus, T contains a Hamiltonian cycle (v =

V1,2, ..., Un,v1). Since v is adjacent to ve and adjacent from wv,, there is a
vertex v; with 2 < i < n such that (v,v;) and (v;41,v) are arcs of T. Thus,
(v,v4,v41,v) is a triangle of T' containing v. "

It is perhaps surprising that if a tournament is Hamiltonian, then it must
possess significantly stronger properties. A digraph D of order n > 3 is pan-
cyclic if it contains a cycle of every possible length, that is, D contains a cycle
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of length ¢ for each ¢ = 3,4,...,n and is vertex-pancyclic if each vertex v of
D lies on a cycle of every possible length. Frank Harary and Leo Moser [121]
showed that every nontrivial strong tournament is pancyclic, while John W.
Moon [173] went one step further by obtaining the following result. The proof
given here is due to Carsten Thomassen.

Theorem 7.28 Fvery nontrivial strong tournament is vertex-pancyclic.

Proof. Let T be a strong tournament of order n > 3, and let v; be a vertex
of T. We show that vy lies on an ¢-cycle for each ¢ = 3,4,...,n. We proceed
by induction on /.

Since T is strong, it follows by Theorem 7.27 that vy lies on a 3-cycle.
Assume that v; lies on an f-cycle C = (vy,va,...,vs,v1), where 3 < ¢ <n — 1.
We show that v; lies on an (£ 4 1)-cycle.

Case 1. There is a vertex v not on C' that is adjacent to at least one vertex
of C and is adjacent from at least one vertex of C. This implies that for some
i (1 <i<¥),both (v;,v) and (v,v;41) are arcs of T (where all subscripts are
expressed modulo £). Thus, v; lies on the (¢ + 1)-cycle

(’()1,1}2, ey Uiy Uy Vg1 e e 71)[;7}1)'

Case 2. No vertex v exists as in Case 1. Let U denote the set of all vertices
in V(T) — V(C) that are adjacent from every vertex of C, and let W be the
set of all vertices in V(T') — V(C) that are adjacent to every vertex of C. Then
UUW =V(T)—V(C). Since T is strong, neither U nor W is empty and there
is a vertex u in U and a vertex w in W such that (u,w) € E(T). Thus, vy lies
on the (¢4 1)-cycle

(u, w,v1,v,...,0_1,1u),

completing the proof. [

Corollary 7.29 FEvery nontrivial strong tournament is pancyclic.
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Exercises for Chapter 7

Section 7.1. Introduction to Digraphs

1.

10.

(a) We saw in Theorem 1.14 that there exists no graph whose vertices
have distinct degrees. Show that there exists a digraph of order 5
whose vertices have distinct outdegrees and distinct indegrees.

(b) Does there exist a digraph of order 5 whose vertices have distinct
outdegrees but the same indegree?

Determine all digraphs of order 4 and size 4.

Show that for every positive integer k, there exists a digraph of even
order, half of whose vertices have outdegree a and half have outdegree b
and a — b= k.

If all vertices of a digraph D of order 5 have distinct outdegrees except for
two vertices that have the same outdegree a, then what are the possible
values of a?

Prove or disprove: No digraph contains an odd number of vertices of odd
outdegree or an odd number of vertices of odd indegree.

Prove or disprove: If D; and Ds are two digraphs with V(D1) ={u, ua,
. up}t and V(D2) ={v1, va, ..., vp} such that idp, u; = idp, v; and
odp, u; =odp,v; for i =1,2,...,n, then D; = D,.

Prove that there exist regular tournaments of every odd order but there
are no regular tournaments of even order.

Let T be a tournament with V(T') = {v1, va, ..., v,}. We know that

n n ] n
Zodvi = Zldvi = <2>
=1 =1

(a) Prove that 7", (odv;)? =" (idv;)?.

(b) Prove or disprove: Y., (odv;)? = >""  (idv;)3.
The adjacency matrix A(D) of a digraph D with V(D) = {vy, va, ...,
vp} is the n X n matrix [a;;] defined by a;; = 1 if (v;,v;) € E(D) and
a;; = 0 otherwise.

(a) What information do the row sums and column sums of the adja-
cency matrix of a digraph provide?
(b) Characterize matrices that are adjacency matrices of digraphs.

(a) Prove Theorem 7.2: If D is a digraph such that odv > k > 1 for
every vertex v of D, then D contains a cycle of length at least k+1.
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11.

12.

13.

14.

15.

16.

17.

18.

19.

(b) Prove that if D is a digraph such that idv > k > 1 for every vertex
v of D, then D contains a cycle of length at least k + 1.

Let G be a connected graph of order n > 3. Prove that there is an
orientation of G containing no directed path of length 2 if and only if G
is bipartite.

Prove that for every two positive integers a and b with a < b, there exists
a strong digraph D with rad(D) = a and diam(D) = b.

The center Cen(D) of a strong digraph D is the subdigraph induced by
those vertices v with e(v) = rad(D). Prove that for every oriented graph
D, there exists a strong oriented graph D such that Cen(D) = D;.

Prove that every digraph D contains a set .S of vertices with the properties
(1) no two vertices in S are adjacent in D and (2) for every vertex v of D

=

not in S, there exists a vertex w in S such that d(u,v) < 2.

Section 7.2. Strong Digraphs

Prove Theorem 7.3: Let u and v be two vertices in a digraph D. For every
u —v walk W in D, there exists a uw — v path P such that every arc of P
belongs to W.

Show that a digraph D is strong if and only if its converse D is strong.
Let G be a nontrivial connected graph without bridges.

(a) Show that for every edge e of G and for every orientation of e, there
exists an orientation of the remaining edges of G such that the re-
sulting digraph is strong.

(b) Show that (a) need not be true if we begin with an orientation of
two edges of G.

Let G be a connected graph with cut-vertices. Show that an orientation
D of G is strong if and only if the subdigraph of D induced by the vertices
of each block of G is strong.

According to Theorem 7.5, a nontrivial graph G has a strong orientation
if and only if GG is connected and contains no bridges.

(a) Prove that if G is a nontrivial connected graph with at most two
bridges, then there exists an orientation D of G having the property
that if v and v are any two vertices of D, there is either a u — v path
or a v — u path.

(b) Show that the statement (a) is false if G contains three bridges.
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20

21.

22.

23.

24.

25.

26.

27.

28.

29.
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. Let D be a digraph of order n > 2. Prove that if odv > (n — 1)/2 and
idv > (n —1)/2 for every vertex v of D, then D is strong.

Section 7.3. Eulerian and Hamiltonian Digraphs

Prove Theorem 7.6: Let D be a nontrivial connected digraph. Then D is
Eulerian if and only if odv = idv for every vertex v of D.

Prove that a graph G has an Eulerian orientation if and only if G is
Eulerian.

Prove Theorem 7.7: Let D be a nontrivial connected digraph. Then D
contains an EBulerian trail if and only if D contains two vertices u and v
such that odu = idu + 1 and idv = odv + 1, while odw = idw for all
other vertices w of D. Furthermore, each Eulerian trail of D begins at u
and ends at v.

Prove that if D is a connected digraph containing two vertices v and v
such that od u = id u+k and id v = od v+k for some positive integer k and
odw = idw for all other vertices w of D, then D contains k arc-disjoint
u — v paths.

Let D be a digraph with an Eulerian trail. Then D contains two vertices
u and v such that odu =idu + 1 and idv = odv 4+ 1, where odw = idw
for all other vertices w of D.

(a) Let 7" be a u — z trail in D that cannot be extended to a longer
trail. Must = v?

(b) If T'is a w — v trail in D, must T be an Eulerian trail?

Prove that a nontrivial connected digraph D is Eulerian if and only if
E(D) can be partitioned into subsets E;, 1 < ¢ < k, where the subdigraph
DIFE;] induced by the set F; is a cycle for each .

Prove that if D is a connected digraph such that }°, i py[odv—idv| =
2t, where ¢t > 1, then F(D) can be partitioned into subsets E;, 1 <1i <1,
so that the subgraph G[E;] induced by F; is an open trail for each i.

Let D be a connected digraph of order n with V(D) = {v1,v2,...,v,}.
Prove that if odv; > idwv; for 1 < i < n, then D is Eulerian.

A vertex v in a digraph D is said to be reachable from a vertex u in D
if D contains a u — v path. Let D be a digraph and for each vertex u of
D, let R(u) be the set of vertices reachable from u and let r(u) = |R(u)|.
Since u € R(u) for every vertex u of D, it follows that 7(u) > 1. Prove
that if r(z) # r(y) for every two distinct vertices z and y of D, then D
contains a Hamiltonian path.
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By Corollary 7.9, if D is a nontrivial digraph of order n such that odu +
idv > n when (u,v) ¢ E(D), then D is Hamiltonian. Show that if D
is a nontrivial digraph of order n such that odu + idv > n — 1 when
(u,v) ¢ E(D), then D is strong but may not be Hamiltonian.

Show for infinitely many positive integers n that there exists a digraph
D of order n such that odv > (n —1)/2 and idv > (n—1)/2 for every
vertex v of D but D is not Hamiltonian.

Corollary 7.10 states: If D is a strong digraph of order n such that degv >
n for every vertex v of D, then D is Hamiltonian. Show that if the digraph
D is not required to be strong, then D need not be Hamiltonian.

Section 7.4. Tournaments
Give an example of two non-isomorphic strong tournaments of order 5.
How many tournaments of order 7 are there that are not strong?

Determine those positive integers n for which there exist regular tourna-
ments of order n.

Give an example of two non-isomorphic regular tournaments of the same
order.

Prove Theorem 7.16. If T' is a tournament with exactly k strong compo-
nents, then T is the transitive tournament of order k.

(a) Show that if two vertices v and v have the same score in a tournament
T, then u and v belong to the same strong component of 7.
(b) Prove that every regular tournament is strong.
Which of the following sequences are score sequences of tournaments? For
each sequence that is a score sequence, construct a tournament having the
given sequence as a score sequence.
(a) 0,1,1,4,4
(b) 1,1,1,4,4,4
(c) 1,3,3,3,3,3,5
(d) 2,3,3,4,4,4,4,5.

Show that if 7 : s1,89,...,58, iS a score sequence of a tournament, then
m:n—1—s;,n—1—ss,...,n—1—s, is a score sequence of a tournament.
What tournament T of order n has a score sequence si, s3,...,S, such

that equality holds in (7.1) for every integer k with 1 < k < n?
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Prove Theorem 7.19: A nondecreasing sequence m : S1,Sa, ..., S, of non-
negative integers is a score sequence of a strong tournament if and only if
Y oiiq Si > (g) for1<k<n—1and Y s; = (}). Furthermore, every
tournament whose score sequence satisfies these conditions is strong.

We have seen that there is exactly one transitive tournament of each order.
A tournament of order n > 3 is defined to be circular if whenever (u,v)
and (v, w) are arcs of T, then (w,u) is an arc of T

(a) How many circular tournaments of order 3 are there?

(b) Show that in a tournament of order 3 or more, every vertex, with at
most two exceptions, has positive outdegree and positive indegree.

(¢) How many circular tournaments of order 4 or more are there?

For each positive integer k, there exist round robin tournaments contain-
ing 2k teams with no ties permitted in which k of these teams win r games
and the remaining k of these teams win s games for some r and s with
r # s. What is the minimum value of s for which this is possible?

-

Prove that if u and v are vertices of a tournament such that d(u,v) = k,
then idu > k — 1.

For a tournament T of order n, let
A = max{odv:v € V(T)} and § = min{odv : v € V(T)}.
Prove that if A — 60 < 5, then T is strong.

Let (u,v) be an arc of a tournament 7. Show that if odv > odu, then
(u,v) lies on a triangle of T'.

Show that a tournament can contain three vertices of outdegree 1 but can
never contain four vertices of outdegree 1.

Let T be a tournament of order n > 10. Suppose that T contains two
vertices v and v such that when the arc joining v and v is removed, the
resulting digraph D contains neither a u — v path nor a v — u path. Show
that odp u = odp v.

—

Let u and v be two vertices in a tournament 7T'. Prove that if d(u,v) = k >
2, then T contains a cycle of length ¢ for each integer ¢ with 3 < ¢ < k+1.

Let u and v be two vertices in a tournament 7. Prove that if © and v do
not lie on a common cycle, then odu # od v.

Let T be a tournament with the property that every vertex of T belongs
to a directed 3-cycle. Let u and v be distinct vertices of T'. Prove that
if J[odu —odwv| < 1, then T contains both a directed v — v path and a
directed v — u path.
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Section 7.5. Kings in Tournaments
Show that every vertex in a nontrivial regular tournament is a king.

A tournament 1" of order n can only be regular if n is odd and so odv =
(n — 1)/2 for every vertex v of T. By Exercise 53, every vertex of T is
a king. Prove or disprove: There exists an even integer n > 6 such that
for every tournament 7' of order n for which odv > (n — 2)/2 for each
v € V(T), every vertex of T is a king.

Show that there exists a tournament of order 4 having exactly three kings.
Show that there exists a tournament of order 5 having exactly four kings.

Show that there is an infinite class of tournaments in which every vertex
except one is a king.

A vertex z in a nontrivial tournament is called a serf if for every vertex x
distinct from z, either z is adjacent to z or x is adjacent to a vertex that
is adjacent to z. Prove that every nontrivial tournament has at least one
serf.

Section 7.6. Hamiltonian Tournaments

Prove that if T is a tournament that is not transitive, then T has at least
three Hamiltonian paths.

(a) Tt has been mentioned that every tournament has an odd number
of Hamiltonian paths. If T is a tournament of order 5 that is not
strong, then what is the maximum number of Hamiltonian paths
that 7" can have?

(b) A tournament T of order 9 has no strong components of order 5
or more and contains k£ Hamiltonian paths. What are the possible
values of k7

A tournament T of order 10 contains k& Hamiltonian paths and consists
of two strong components S; and Sy of order 5. The strong component
S1 has V(S1) = {v1,v2,...,v5} and for 1 < i <5, (v;,v;) is an arc of S
it j=i+1orj=1i+2 (addition modulo 5). Determine the number of
Hamiltonian paths in S5 in terms of k.

Prove or disprove: If every vertex of a tournament 7" belongs to a cycle
in T, then T is strong.

(a) Prove or disprove: Every arc of a nontrivial strong tournament 7'
lies on a Hamiltonian cycle of T.

(b) A digraph D is Hamiltonian-connected if for every pair u, v of ver-
tices of D, there exists a Hamiltonian uv — v path. Prove or disprove:
Every vertex-pancyclic tournament is Hamiltonian-connected.
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64. Show that if a tournament 7' has an ¢-cycle, then T has an s-cycle for
s=3,4,...,1.

65. A tournament T of order n contains a k-cycle C' for some k > 4, no
(k+1)-cycle, a (k—1)-cycle C’ having no vertex on C, a (k —1)-cycle C”
having a vertex on C' and k vertices lying on no cycle of T. What is the
minimum value of n in terms of k.



Chapter 8

Flows in Networks

Networks are special digraphs that are useful in modeling certain types of real-
world problems. They can also be used to study problems of connectedness
that occur in digraphs. It is this class of digraphs that is discussed here.

8.1 Networks

A network N is a digraph D with two distinguished vertices v and v, called the
source and sink, respectively, together with a nonnegative real-valued function
c on E(D). The digraph D is called the underlying digraph of N and the
function ¢ is called the capacity function of N. The value c¢(a) = ¢(x,y) of
an arc a = (x,y) of D is called the capacity of a. Any vertex of N distinct
from w and v is called an intermediate vertex of N.

The source u of N can be thought of as the location from which material is
shipped and then transported through NV, eventually reaching its destination,
namely the sink v of N. The capacity of an arc (z,y) in N may be thought of
as the maximum amount of material that can be transported from z to y along
(z,y) per unit time. For example, the capacity of the arc (z,y) may represent
the number of seats available on a direct flight from city x to city y in some
airline network, or perhaps c(z,y) is the capacity of a pipeline from city z to
city y in some oil network, or perhaps ¢(z,y) is the maximum weight of items
that can be transported by truck from city x to city y in some highway network.
The problem then is to maximize the flow of material that can be transported
from the source u to the sink v without exceeding the capacity of any arc.

A network N can be represented by drawing the underlying digraph D of N
and labeling each arc of D with its capacity. A network is shown in Figure 8.1.
In this network, the capacity of the arc (x,y) is then c¢(x,y) = 4. While, in
general, there may be more than one source from which material originates and
more than one sink providing destinations of the material, it suffices to consider
a network with a single source and a single sink (see Exercise 17).

191
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Figure 8.1: A network

For a vertex z in a digraph D, recall that the out-neighborhood NT(z) and
the in-neighborhood N~ (z) of x are defined by

N*(@) = {yeV(D): (v,y)€ E(D)} and
N7 (z) = {yeV(D): (y,z) € E(D)}.
Thus |[N*(z)| = odx and |N~(z)| = id x.
For a digraph D and a real-valued function g defined on E(D), it is conve-

nient to introduce some notation. For subsets X and Y of V(D), define the set
[X,Y] and the number g(X,Y) by

(X, Y]={(z,y):z e X,yeY}

and

g X, Y) = > glxy),

(z,y)e[X,Y]

where g(X,Y) =0if [X,Y] = 0. For z € V(D),

g (@)= > glxy) and g (@)= Y g(y2). (8.1)

yeEN*(z) yEN~ ()

More generally, for X C V(D),

g (X) =) g¢"(x) and g (X) =) g ().

zeX reX

Network Flows |

A flow in a network N with underlying digraph D, source u, sink v and
capacity function c is a real-valued function f on E(D) satisfying

0 < f(a) < c¢(a) for every arc a of D (8.2)
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such that
fT(x) = f~(z) for each intermediate vertex z of D. (8.3)

If f is a function on E(D) defined by f(a) = 0 for every arc a of D, then f
satisfies both (8.2) and (8.3) and so f is a flow, called the zero flow.

The value f(a) = f(x,y) of an arc a = (x,y) is called the flow along the
arc a and can be interpreted as the rate at which material is transported along
a under the flow f. Condition (8.2) requires that the flow along a cannot exceed
the capacity of a. Condition (8.3) is referred to as the conservation equation
and states that the rate at which material is transported into an intermediate
vertex x equals the rate at which material is transported out of x.

For a flow f in a network N, the net flow out of a vertex z is defined by

@) = (@), (84)

while the net flow into z is

f=@) = (). (8.5)

By the conservation equation (8.3), it follows that for every intermediate vertex
x of D, the net flow out of x equals the net flow into x and the common value
of (8.4) and (8.5) is 0.

If f(a) = ¢(a) for an arc a in a network N, then the arc a is said to be
saturated with respect to the flow f. On the other hand, if f(a) < ¢(a), then
the arc a is unsaturated. An example of a flow in a network is shown in
Figure 8.2. The first number associated with an arc is its capacity and for each
arc of IV, the capacity of the arc is a fixed number, while the second number is
the flow along the arc. In general, many flows are possible for a given network.
While the arc (x, t) is saturated for the flow f shown in the network in Figure 8.2
since f(x,t) = c¢(x,t), the arc (w,y) is unsaturated since f(w,y) < c¢(w,y). In
this example, the net flow out of the source u is 3 and the net flow into the
sink v is also 3. As we will soon see, that these two numbers are equal is true
in general.

Figure 8.2: A flow in a network
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Theorem 8.1 Let u and v be the source and sink, respectively, of a network
N with underlying digraph D and let f be a flow defined on N. Then the net
flow out of u equals the net flow into v, that is,

Frw) = f~ () = f~(v) = [ (v).
Proof. Since fT(V(D)) = f~(V(D)), it follows that
o =) . (8.6)
+eV (D) zeV(D)

By (8.3),
fr(x) = f~(z) when z # u,v. (8.7)
By (8.6) then,
Frw)+ ) =~ () + f~(v),

giving the desired result. [

’ Maximum Flows ‘

The value of a flow f in a network N, denoted by val(f), is defined as the
net flow out of the source of N. By Theorem 8.1, val(f) is also the net flow into
the sink of N. For the flow f defined on the network in Figure 8.2, we have
val(f) = 3.

There are certain flows of particular and obvious interest to us. A flow in
a network N whose value is maximum among all flows that can be defined on
N is called a maximum flow. Thus, a flow f defined on N is a maximum
flow if val(f) > val(f’) for every flow f’ defined on N. For a given network, a
major goal is to find a maximum flow. For the purpose of doing this, it will be
convenient to introduce another concept.

Let N be a network with underlying digraph D, source u, sink v and capacity
function ¢. For a set X of vertices in D, let X = V(D) — X. A cutin N is a
set of arcs of the form [X, X|, where u € X and v € X. If K = [X, X] is a cut
in N, then the capacity of K, denoted by cap(K), is

cap(K) = ¢(X, X) = Z c(x,y).
(z,y)€[X,X]

For the network N of Figure 8.2 and X = {u,x}, the cut
K = [X,Y] ={(u,2), (z,y), (z,t)}
in N (see Figure 8.3) has capacity

cap(K) = c(u, z) + c(z,y) + c(z,t) =4+ 4+ 3 =11.
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Figure 8.3: The cut [X, X] in the network N
of Figure 8.2 for X = {u,z}

If K is a cut in a network NV, then any path from the source u to the sink v
must contain at least one arc of K. Consequently, if all arcs of K were removed
from the underlying digraph D of N, then there would be no path from u to v.
So just as a vertex-cut in a graph G separates some pair of vertices in G and
an edge-cut in G separates some pair of vertices in G, a cut in the underlying
digraph D of a network N separates v and v in a certain sense.

Let N be a network with underlying digraph D, source u and sink v. For a
set X of vertices of D with u € X and v € X and a flow f defined on N, the net
flow out of X is fT(X)— f~(X) and the net flow into X is f~(X)— fT(X).
It then follows (see Exercise 8) that

FrX) = 7 (X) = f(X,X) = f(X, X). (8.8)

For the set X = {u,z,t} in the network N in Figure 8.2, f7(X) = 10 and
f~(X) = 7. For this network then, the net flow out of X is f+(X) — f~(X) =
10—7 = 3 = val(f). We now show that for a network N and any cut K = [X, X|
in N, the value of any flow in N is the net flow out of X and that this value
never exceeds the capacity of K.

Theorem 8.2 Let f be a flow in a network N and let K = [X, X] be a cut in
N. Then

val(f) = fH(X) = f7(X) < cap(K).

Proof. Let D be the underlying digraph of N, let v and v be the source and
sink, respectively, of IV and let ¢ be the capacity function of N.
Since f*(z) — f~(z) = 0 for every x € X — {u}, it follows that

YU = (@) = ) = f(u) = val(f).
reX
Furthermore,

DU = @)=Y @)=Y f@)=F(X)-Ff(X)

rzeX rzeX zeX
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and so val(f) = fT(X) — f~(X). Since 0 < f(a) < ¢(a) for every arc a of N,
it follows that

val(f) = fH(X)—f7(X) = (X, X) - (X, X)
< f(X,Y)SC(X,Y)ZC&p(K),

giving the desired result. [

Minimum Cuts ‘

There are, in general, many cuts in a network N and each cut has a capacity.
Any cut in N whose capacity is minimum among all cuts in N is called a
minimum cut. That is, a cut X in N is a minimum cut if cap(K) < cap(K’)
for every cut K’ in N. The following two corollaries provide some important
information about minimum cuts and maximum flows.

Corollary 8.3 If f is a flow in a network N and K is a cut in N such that
val(f) = cap(K), then f is a mazimum flow and K is a minimum cut in N.

Proof. If f*is a maximum flow in N and K* is a minimum cut, then val(f*) <
cap(K*) by Theorem 8.2. Consequently,

val(f) < val(f*) < cap(K™) < cap(K). (8.9)

Since val(f) = cap(K), it follows that there is equality throughout (8.9) and so
val(f) = val(f*) and cap(K™*) = cap(K), that is, f is a maximum flow and K
is a minimum cut. u

Corollary 8.4 If f is flow in a network N with capacity function ¢ and [X, X]|
is a cut in N such that

f(a) = c(a) for all a € [X, X]

and

fla)=0 forallac[X,X],

then f is a mazimum flow in N and [X, X] is a minimum cut.

Corollary 8.4 (see Exercise 9) suggests how the values of a flow f should be
defined on the arcs of a minimum cut in order for f to be a maximum flow.

A network N with source u and sink v is shown in Figure 8.4 together with
a flow f defined on N. As always, the first number associated with an arc a is
its capacity c¢(a) and the second number is the flow f(a). If X = {u, z,y}, then
K =[X,X]isacutin N. Since f(a) = c(a) for all a € [X, X] and f(a) = 0 for

all a € [X, X], it follows by Corollary 8.4 that f is a maximum flow and K is
a minimum cut. Since cap(K) = 4, the value of the maximum flow f is 4.
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Figure 8.4: A cut K = [X, X]| in a network, where X = {u,z, y}

According to Corollary 8.3, if it should ever occur that the value of some
flow f in a network NN equals the capacity of some cut K in N, then f must be a
maximum flow and K is a minimum cut. We next show for any maximum flow
f and any minimum cut K that val(f) = cap(X). In preparation for proving
this, some additional terminology is useful.

For a digraph D, an x — y semipath in D is an alternating sequence

P = (33 = Wp, @1, W1, 02, W2, . .., Wk—-1, Ak, Wk = y)

of distinct vertices and arcs of D beginning with z and ending with y such that
either a; = (w;—1,w;) or a; = (w;, w;—1) for each i (1 <4 < k). In this case,
(w;i—1,w;) is called a forward arc of P and (w;,w;—1) is a backward arc of
P. Hence, when proceeding from z to y along the semipath P in D, we move
in the direction of a forward arc on P and move opposite to the direction of a
backward arc on P.

‘f—Augmenting Semipaths‘

Let N be a network with underlying digraph D and capacity function ¢ and
on which is defined a flow f. Recall that an arc a is unsaturated if f(a) < c(a).
A semipath

P = (wp,a1,w1,a2,..., W1, Ak, W)
in D is said to be f-unsaturated if for each i (1 <i < k),
(i) a; is unsaturated whenever a; is a forward arc and
(ii) f(a;) > 0 whenever a; is a backward arc.

A trivial semipath in D is vacuously f-unsaturated. If P is an f-unsaturated
u —v semipath in D where u and v are the source and sink, respectively, then P
is called an f-augmenting semipath. As we will see, given an f-augmenting
semipath in the underlying digraph D of a network N, it is possible to augment
(alter) the values of the flow f on each arc of P to obtain a new flow f’ whose
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value exceeds that of f. For example, consider the flow f in the network N in
Figure 8.2, shown again in Figure 8.5. Then

P = (u,(t,u),t, (z,t),z,(z,y),v, (y,v),0)

is an f-augmenting semipath.

Figure 8.5: An f-augmenting semipath in a network

Recall that the value of the flow f defined on the network N in Figure 8.5
is f(u,z) + f(u,2) — f(t,u) =3 +1—1= 3. Let f' be the function defined
on E(D) by redefining the flow of each arc on the f-augmenting semipath as

follows:
fla)+1 ifae{(z,y),(y,0)}
Fla)=4 fla)—1 ifac{(tu), (@0}

f(a) otherwise.

Then f is also a flow in N and val(f’) = 4. Consequently, f is not a maximum
flow. In fact, f’ is not a maximum flow either. That f is not a maximum flow
and that N contains an f-augmenting semipath is not a coincidence, as Lester
Randolph Ford, Jr. and Delbert Ray Fulkerson [93] showed.

Theorem 8.5 Let N be a network with underlying digraph D. A flow f in N
is a maximum flow if and only if there is no f-augmenting semipath in D.

Proof. Let u and v be the source and sink, respectively, of N and let ¢ be the
capacity function. Suppose first that D contains an f-augmenting semipath

P = (u=wp,a1,w1, a2, Ws, ..., Wg_1,0k, Wy = V).
Then, for 1 <i <k,
(a) f(a;) < c(a;) whenever a; is a forward arc and
(b) f(a;) > 0 whenever a; is a backward arc.

If there is at least one forward arc a; = (w;—1,w;) on P, let p; be the minimum
value of ¢(a;) — f(a;) over all forward arcs a;. If there is at least one backward
arc a; = (w;, w;—1) on P, let po be the minimum value of f(a;) over all such
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backward arcs a;. If only one of p; and ps is defined, then denote this number
by p; otherwise, let p = min(py, p2).
Define a function f’ on E(D) by

f(a)+p ifaisa forward arc on P
f'(a) =< f(a)—p ifaisa backward arc on P

fa)  ifad E(P).

Then f’ is also a flow. Since val(f’) = val(f) + p, it follows that f is not a
maximum flow.

We now turn to the converse. Assume that there is no f-augmenting semi-
path in D. Let X be the set of all vertices « in D for which there exists an
f-unsaturated u — « semipath. Then v € X and, by assumption, v ¢ X. Thus,
K =[X,X]is acutin N.

Let (y, z) be an arc in K. Since y € X, there exists an f-unsaturated u — y
semipath P in D. Since z € X, there is no f-unsaturated v — z semipath

in D, which implies that f(y,z) = c(y,2). Similarly, if (w,z) € [X, X], then
f(w,z) = 0. Since K = [X, X] is a cut such that f(a) = c(a) for every arc
a € [X,X] and f(a) = 0 for every arc a € [X, X], it follows by Corollary 8.4

that f is a maximum flow. [

8.2 The Max-Flow Min-Cut Theorem

With the aid of Theorem 8.5, Ford and Fulkerson [93] proved a famous result
in 1956 that is known as the Maz-Flow Min-Cut Theorem. Independently, and
also in 1956, Peter Elias, Amiel Feinstein and Claude Elwood Shannon [77]
discovered and proved the very same result.

Theorem 8.6 (The Max-Flow Min-Cut Theorem) In any network, the
value of a mazximum flow equals the capacity of a minimum cut.

Proof. Let f be a maximum flow in a network N having capacity function c.
By Theorem 8.5, there is no f-augmenting semipath in the underlying digraph
D of N. By the proof of Theorem 8.5, since D contains no f-augmenting
semipath, there is a minimum cut K = [X, X] such that

cla) ifaekK
f(a):{ 0 ifae[X,X].

Therefore, by (8.8),

val(f) FrX) = f7(X) = f(X,X) - f(X, X)

= ¢(X,X)—0=cap(K),

as desired. [ ]
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The proof of Theorem 8.5 provides the basis of an algorithm, also due to
Ford and Fulkerson [94], for finding a maximum flow in a network.

Algorithm 8.7 (The Ford—Fulkerson Algorithm) For a network N with
underlying digraph D, source u, sink v and capacity function c,

1. Let f be a flow on D. (The zero flow may be used.)
2. Find an f-augmenting semipath.

3. If there is no f-augmenting semipath, then f is a maximum flow and stop.

If there is an f-augmenting semipath P, then augment P as in the proof
of Theorem 8.5 to produce a new flow f’.

4. Set f = f’ and return to Step 3.

This is a somewhat simplified version of the algorithm given by Ford and
Fulkerson in [94]. They provided a scheme for finding an f-augmenting semipath
for step 2. However, the version we presented contains the two inherent issues.
First of all, Ford and Fulkerson themselves showed that their procedure might
not terminate if the capacities are irrational. Their complex example can be
found in [94]. The second issue is that even if it terminates (as in the case
of only rational capacities), the algorithm may not be efficient. Consider the
network N in Figure 8.6, where the labels on the arcs indicate their capacities
and C' is any constant.

Figure 8.6: A network N

If we unwisely always choose augmenting semipaths that include the only
arc with capacity equal to 1 (which is possible in the original Ford-Fulkerson
Algorithm), then the maximum flow is 2C, no matter what constant C' we
choose, and the number of iterations of the algorithm is 2C' if we start with the
zero flow. Of course, optimally, the algorithm takes just two iterations.
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The Edmonds—Karp Algorithm‘

A slight refinement of the Ford—Fulkerson algorithm, due to the Russian
scientist Efim A. Dinic [69], was first published in 1970 and published indepen-
dently by Jack Edmonds and Richard M. Karp [74] in 1972. The Edmonds-Karp
algorithm, which we describe next, searches for a shortest f-augmenting semi-
path in a network with a given flow f. This is an efficient algorithm, having
complexity O(nm?), where the underlying digraph of the network has order n
and size m.

Let u and v be the source and sink of a network N with underlying digraph
D and let f be a given flow in N (perhaps the zero flow). The algorithm
proceeds by constructing a sequence of labelings of the vertices of D. A vertex
w in D is assigned a label only if there is an f-unsaturated u — w semipath P
in D. The label assigned to w is an ordered pair. If z is the vertex immediately
preceding w on P, then the first coordinate of the label is either x+ or z—,
according to whether the arc immediately preceding w is (z,w) or (w,z). The
second coordinate of the label is a positive number that reflects the potential
change in f along P, which we will soon describe. As we proceed through
the algorithm, a list of labeled vertices is created. At a certain stage of the
algorithm, a list L consisting of some labeled vertices of D is formed. At
some point, the first vertex on L is examined (scanned) and removed from
L to determine whether this vertex is adjacent to certain unlabeled vertices
possessing a particular property, in which case all such vertices are then labeled
and added to L. If the sink v is labeled, then a new flow of greater value can
be obtained. This process is then repeated. On the other hand, if the sink v is
not labeled, then f is a maximum flow. In this case, the labels can be used to
find a minimum cut.

Throughout the course of the algorithm, each vertex of D is considered to
be in one of the following three states:

(1) unlabeled, (2) labeled and unscanned, (3) labeled and scanned.

Prior to the implementation of the algorithm, all vertices are unlabeled. Once
a vertex is assigned a label, it is placed at the end of a list L consisting of
the labeled and unscanned vertices. The vertices of L are scanned on a first-
labeled first-scanned basis, which will guarantee the selection of a shortest f-
augmenting semipath. The Edmonds—Karp algorithm is now stated.

Algorithm 8.8 (The Edmonds—Karp Algorithm) For a network N with
underlying digraph D, source u, sink v and capacity function c,

1. Let f be a flow on D and label each arc of D with the value of f.

2. Label the source v with the ordered pair (—, 00) and add u to the list L
of labeled and unscanned vertices.
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3. If L is empty, then stop. Otherwise, scan and remove the first element of
L, say x, having the label (z+, e(x)) or (z—, €(x)).
3.1 Assign to each unlabeled vertex y for which
(z,y) € E(D) and f(z,y) < c(z,y)
the label (z+, €(y)), where
€(y) = min{e(x), C(.T, y) - f(.]?, y)}
and add y to the end of L.
3.2 Assign to each unlabeled vertex y for which

(y,7) € E(D) and f(y,x) >0
the label (z—, €(y)), where
e(y) = min{e(z), f(y, )}
and add y to the end of L.

4. If v has been labeled, go to Step 5; otherwise return to Step 3.

5. The labels describe an f-augmenting semipath
(u = wo, a1, w1, a9, Wa, ..., Wk—1, Ak, W = V)
where, for 1 < i < k, w; is labeled
(wi—1+, e(w;)) if a; = (w;—1,w;) is a forward arc
or w; is labeled
(wi—1—, e(w;)) if a; = (w;, w;—1) is a backward arc.

In the first case, replace f(w;—1,w;) by f(w;—1,w;) + €(v); while in the
second case, replace f(w;, w;—1) by f(w;, w;—1) — €(v).

6. Discard all labels, remove all vertices from L and return to Step 2.

If the capacity of every arc in a network is an integer, then the value of an
integer-valued flow increases by 1 or more with each iteration of Algorithm 8.8
and the algorithm terminates after finitely many iterations. This is also the case
when the capacity of every arc is a rational number and a given flow is rational-
valued. Since networks commonly encountered in discrete mathematics have
integer capacities, it is integer-valued flows that we seek. For the remainder of
our discussion on flows in networks, in particular in the proof of Theorem 8.9,
we assume that the capacities and flows in networks are integer-valued. It
should be emphasized, however, that Edmonds and Karp [74] proved that if the
underlying digraph of the network has order n and size m, then their algorithm
terminates in at most O(nm?) steps, even with irrational capacities.
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Theorem 8.9 Algorithm 8.8 terminates with a mazimum flow f in N. Fur-

thermore, if X is the set of labeled vertices upon termination, then [ X, X| is a
manimum cut.

Proof. By Theorem 8.5, each time that Step 5 is completed, a new flow f
having a larger value is constructed. If, in Step 3, the list L is empty, then
there is no f-augmenting semipath and so, by Theorem 8.5, f is a maximum
flow and [X, X] is a minimum cut. This process must terminate since for every
flow f/in N,

val(f') < e(u, V(D))

and so Step 5 can be repeated at most c(u, V(D)) times. ]
We now illustrate Algorithm 8.8 for the network shown in Figure 8.7. It is
not difficult to find the flow f shown in Figure 8.7, which we take as the initial

flow. As always, each arc a is labeled with the pair ¢(a), f(a), where ¢(a) is the
capacity of a and f(a) is the flow along a.

Figure 8.7: A flow f in a network

Since an initial flow has been given to the network NV, Step 1 of Algorithm 8.8
has been completed and we have the situation shown in Figure 8.7. Initially,
the source u is assigned the label (—, c0) and the list L of labeled but unscanned
vertices now consists of the vertex u only. Thus Step 2 of Algorithm 8.8 is now
completed.

We now move on to Step 3. Since L is not empty, we do not stop. We
now scan and remove the first element of L from this list. In this case, only u
belongs to L; so, u is now removed from L. Thus, L is now empty. We search
for all vertices x of N such that either (i) (u,z) € E(D) and f(u,z) < c(u, )
or (i) (z,u) € E(D) and f(x,u) > 0. There are two vertices with one of these
two properties, namely r and s. We consider r first. Since (u,r) € E(D),
the first coordinate of the label of r is u+. Since c(u,r) — f(u,r) = 3, the
second coordinate of the label of r is 3 and so ¢(r) = 3. That is, r is assigned
the label (u+,3). The vertex r is then placed at the end of L. Since L was
previously empty, we now have L : r. We now turn to the vertex s. Because
(s,u) € E(D), the first coordinate of the label of s is u—. Because f(s,u) = 2,
the second coordinate of the label of s is 2 and so €(s) = 2. Thus, s is assigned
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the label (u—,2). The vertex s is then added to the end of L (and so s follows
r in the list L). At this moment, we now have three labeled vertices, while the
list L consists of two vertices, namely

labeled vertices: u (—, 00), r (u+,3), s (u—,2) and list L:r,s.

Since we have now completed Step 3, we move on to Step 4. Since v has not
been labeled, we return to Step 3.

Since L is not empty, we do not stop and, instead, we scan and remove the
first element of L, namely r, from this list and search for all unlabeled vertices x
of N such that either (i) (r,x) € E(D) and f(r,z) < c¢(r,z) or (ii) (z,r) € E(D)
and f(z,r) > 0. Only the vertex y has this property, namely (r,y) € E(D) and
f(r,y) < c(r,y). Therefore,

e(y) = minfe(r), ¢(r,y) — f(r,y)} = min{3,2} = 2

and so y is assigned the label (r+,2) and y is placed at the end of L, resulting
in L : s,y. Since Step 3 has been completed, we move on to Step 4. Since v has
not been labeled, we return to Step 3.

Since the list L is not empty, we scan and remove the first vertex, namely
s, from L and search for all unlabeled vertices « of N such that either (i)
(s,xz) € E(D) and f(s,z) < ¢(s,z) or (ii) (z,s) € E(D) and f(z,s) > 0. The
vertices w and t satisfy these properties. Since (w,s) € E(D) and f(w,s) > 0,
it follows that

€(w) = min{e(s), f(w,s)} =min{2,3} =2

and so the vertex w is assigned the label (s—,2) and placed at the end of L.
Since (s,t) € E(D) and f(s,t) < c(s,t), it follows that

e(t) = min{e(s), c(s,t) — f(s,t)} = min{2,3} =2

and so the vertex ¢ is assigned the label (s+,2) and placed at the end of L.
Thus, we currently have the following:

labeled vertices: u (—,00), r (u+,3), s (u—,2), y (r+,2), w (s—,2), ¢
(s+,2)

list L:y,w,t.

Since Step 3 has been completed, we turn to Step 4. Since v has not been
labeled, we once again return to Step 3. The list L is not empty, so the vertex y
on L is removed and scanned. Only one unlabeled vertex is adjacent to or from
y, namely the sink v. Because (y,v) € E(D) and f(y,v) < ¢(y,v), the vertex v
is assigned a label. The first coordinate is y+ and the second coordinate is

e(v) = min{e(y), c(y,v) — f(y,v)} = min{2,3} = 2.
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Thus, the vertex v is assigned the label (y+,2). Since this completes Step 3,
we move on to Step 4. Since v is labeled, we now move on to Step 5. Working
in reverse and beginning with the sink v, we observe that the first coordinate
of the label of v is y+. This tells us that the f-augmenting semipath being
constructed ends with y, (y,v),v. Because the first coordinate of the label of y
is r+, the semipath being constructed ends with r, (r,y),y, (y,v),v. Since the
first coordinate of the label of r is u+, we obtain the following f-augmenting
semipath:

P= (U7 (’LL, T’),T, (Tv y)v Y, (y,’U), U)'

Since e(v) = 2, a new flow f’ (see Figure 8.8) is obtained from f by augmenting
the flow of each arc of P by 2.

Figure 8.8: The f-augmenting semipath and the new flow f’ in the network

Since Step 5 has been completed, we go to Step 6, when the labels of all
vertices of D are removed and the vertices on the list L are removed. The table
below summarizes what has transpired.

u is labeled (—, 00) L:u

u is scanned L:

7 is labeled (u+, 3) L:r

s is labeled (u—,2) L:rs

r is scanned L:s

y is labeled (r+,2) L:s,y

s is scanned L:y

w is labeled (s—,2) L:yw

t is labeled (s+,2) L:yw,t
y is scanned L:w,t

v is labeled (y+,2) L:w,t,v
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We now apply Algorithm 8.8 to the flow f’ in the network N shown in
Figure 8.8. The table below summarizes what occurs in this case.

u is labeled (—, c0)
u is scanned

r is labeled (u+, 1)
s is labeled (u—,2)
r is scanned

5 is scanned

w is labeled (s—, 2)
t is labeled (s+,2)

w is scanned

v is labeled (w+,2)

Tw,t
0t
1 t,v

SESISESESIISIISESES
V)

In this application of Algorithm 8.8, the f’-augmenting semipath
Pl = (u7 (57 U), S, (wa 5)7 w, (U}, U), U)

is obtained. Since €(v) = 2, a new flow f” is obtained from f’ by augmenting
the flow of each arc of P’ by 2, as shown in Figure 8.9.

Figure 8.9: The f’-augmenting semipath and the new flow f” in the network

Once again, Algorithm 8.8 is applied, this time to the flow f” in the network
N shown in Figure 8.9. The table below shows what happens here.

u is labeled (—, 00) L:u
u is scanned L:
r is labeled (u+,1) L:r
r is scanned L:

The algorithm stops and the current flow f” is a maximum flow with val(f"’)
8. Let X consist of the labeled vertices of D, namely X = {u,r}. So K
[X, X], cap(K) = 8 and K is a minimum cut in the network.
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8.3 Menger Theorems for Digraphs

Since Menger’s theorem (Theorem 4.10) and its edge analogue (Theorem 4.17)
both deal with sets that separate two vertices in a graph, it is perhaps not
surprising that these two theorems are closely related to the Max-Flow Min-
Cut Theorem which deals with deleting the arcs of a cut, thereby separating
the source and sink of a network

Recall that Menger’s theorem states that if « and v are nonadjacent vertices
of a graph G, then the maximum number of internally disjoint v — v paths in
G equals the minimum number of vertices that separate w and v. That is,
Menger’s theorem is a “max-min” theorem. As it turns out, there are other
forms of Menger’s theorem. We saw one of these in Theorem 4.17, which is the
edge form of Menger’s theorem. The vertex and edge forms of Menger’s theorem
have natural analogues for digraphs. All four of these results can be proved,
either directly or indirectly, using the Max-Flow Min-Cut Theorem. In each
case, the object is to construct an appropriate network from the given graph or
digraph. For example, for two nonadjacent vertices u and v in a given graph G,
Algorithm 8.8 can be used to determine the minimum number of vertices that
separate u and v as well as such a set of vertices.

While we have defined separating sets of vertices and separating sets of edges
in a graph, we need analogous terminology for digraphs. Let D be a digraph
and let v and v be two nonadjacent vertices of D. A set S C V(D) — {u,v} is
said to be a u — v separating set of vertices if every u —v path in P contains
at least one vertex of S. A set S of arcs in D is a u — v separating set of
arcs if every u — v path in P contains at least one arc of S. We now present
the arc form of Menger’s theorem.

The Arc Form of Menger’s Theorem‘

Theorem 8.10 (The Arc Form of Menger’s Theorem) For distinct ver-
tices u and v in a digraph D, the mazimum number of pairwise arc-disjoint
u — v paths in D equals the minimum number of arcs in a u — v separating set
of arcs.

Proof. Suppose that the maximum number of u — v paths in a collection of
pairwise arc-disjoint v — v paths in D is k and the minimum number of arcs
in a u — v separating set S is £. Since each of these u — v paths contains at
least one arc of S and no arc in S belongs to more than one such v — v path,
it follows that k£ < ¢. It remains to show that ¢ < k.

We now construct a network N with underlying digraph D, source u and
sink v by defining a capacity function ¢ on E(D) such that c¢(a) = 1 for each
arc a of D. By the Max-Flow Min-Cut Theorem (Theorem 8.6), the value
of a maximum flow in N equals the capacity of a minimum cut. Let f be a
maximum flow in N and K a minimum cut. Thus, cap(K) = val(f). We next
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show that £ < cap(K) and val(f) < k, from which it will follow that ¢ < k and
sol=k.

Since K is a minimum cut in IV, the set K is a u — v separating set of arcs
in D. Therefore, ¢ < |K| = cap(K).

Since f is an integer-valued function defined on E(D) such that 0 < f(a) <
c(a) for every arc a of D, it follows that either f(a) = 0 or f(a) =1 for every
arc a of D. Let D; be the digraph obtained from D by deleting all arcs a from
D for which f(a) = 0. Consequently, f(a) =1 for each arc a of D;. Since f is
a flow in D, it follows by (8.7) that

fT(z)=f(z) for each x € V(D) — {u,v}
and that
FHw) = f~(w) = val(f) = [~ (v) = [ (v).
However, for each vertex x in D,
fH(z) =o0dp, z and f~(z)=idp, z.
Therefore,
odp, w =idp, w if w € V(D) — {u, v}
and
odp,u —idp,u = val(f) = idp,v — odp,v.

Since odp,u = idp,u + val(f) and idp,v = odp,v + val(f), it follows by Ex-
ercise 24 in Chapter 7 that the digraph D; and D as well contain val(f) arc-
disjoint u — v paths and so k > val(f). Therefore, £ = k. ]

With the aid of the proof of Theorem 8.10, we use Algorithm 8.8 to de-
termine the maximum number of arc-disjoint v — v paths in the digraph D
of Figure 8.10(a). Define a capacity function ¢ on E(D) such that c¢(a) = 1
for each arc a of D. We then have a network N with underlying digraph D,
source u, sink v and capacity function ¢. Applying Algorithm 8.8, we obtain a
maximum flow f and minimum cut K = [X, X|, where X = {u,u4,us}, so that
val(f) = cap(K) = 3. See Figure 8.10(b). Hence,

K = {(u7u1)7 (u7 UQ), (U5, U)}

Consequently, the maximum number of arc-disjoint ©—v paths in D is 3. Three
such paths are

P = (u,uy,ug,us,v), P = (u,us,v) and P" = (u, us,v).

We now present the digraph analogue of Menger’s theorem itself, which we
refer to as the directed vertex form of Menger’s theorem.
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Uy U2 us

Uy us Ug 1,0  us

(a) (b)

Figure 8.10: Determining the maximum number of
internally disjoint v — v paths in a digraph

The Directed Vertex Form of Menger’s Theorem‘

Theorem 8.11 (The Directed Vertex Form of Menger’s Theorem) Let
D be a digraph and let u and v be distinct vertices of D such that (u,v) ¢ E(D).
Then the mazimum number of internally disjoint u — v paths in D equals the
minimum number of vertices in a u — v separating set of vertices of D.

Proof. Suppose that the maximum number of u — v paths in a collection of
internally disjoint © — v paths in D is k and the minimum number of vertices
in a u — v separating set S of vertices of D is ¢. Since each of these u — v paths
contains a vertex of S and no vertex of S lies on more than one such path, it
follows that £ < £. It remains to show that ¢ < k.

A new digraph D’ is constructed from D by replacing each vertex ¢ # u, v
by two new vertices t' and ¢’ and the arc (¢/,¢”). Suppose that z and y are
two vertices of D such that neither x nor y is w or v, that is, z,y ¢ {u,v}. If
(z,y) is an arc of D, then (z,y) is replaced by (x”,y"). If (u, z) is an arc of D,
then (u, z) is replaced by (u,2). If (x,u) is an arc of D, then (x,u) is replaced
by (z”,u). If (z,v) is an arc of D, then (z,v) is replaced by (z”,v); while if
(v, ) is an arc of D, then (v,z) is replaced by (v,z’). This is summarized in
the table below.

For z,y € V(D) with {z,y} N{u,v} =0,

arcs in D | replaced by | arcs in D’
(z,y) (=", y")
(u, ) (u, ")

(@, u) (=", u)
(w,v) (=", v)

(v, ) (v, 2)

This is illustrated for the digraph D shown in Figure 8.11.
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/ 1

Y Y Y

Figure 8.11: Constructing a digraph D’ from a digraph D

Suppose that k" is the maximum number of pairwise arc-disjoint « — v paths
in D’ and ¢ is the minimum number of arcs in a u — v separating set of arcs in
D’. By Theorem 8.10, ¢/ = k’. We show that £ < ¢’ and k' < k, which will give
us the desired inequality ¢ < k.

Let A be a u— v separating set of arcs in D’ with |A| = ¢/. Thus, A contains
no arc of the form (z,u) or (v, z) where z # wu,v. Each arc a € A is either of
the form

a= (uwxl)v a = (.T/,J?N), a= (y”,x’) ora= (.13”,1})

for some vertices x,y € V(D) — {u,v}. Regardless of what the arc a is, denote
the vertex x involved in a by w,. Furthermore, let

W ={w,: a € A} so that W C V(D) — {u, v}

and |W| < |A| = ¢'. Since A is a u — v separating set of arcs in D’, the set W
is a u — v separating set of vertices in D. Thus, £ < |W| < ¢ and so £ < ¢'.

Next, let P[, Py, ..., P/, be a collection of k" pairwise arc-disjoint u— v paths
in D’. Then each path P/ (1 <i < k) is of the form

/ ! " / " / "
P! = (u, 2,27, 25,25, ..., 2., T, v)
and gives rise to the path
P, = (u,x1,z2,...,T,,0).

From the manner in which the digraph D’ is constructed and the fact that

P{,P;,..., P, are pairwise arc-disjoint, it follows that P, P», ..., Py are inter-
nally disjoint © — v paths in D. Thus, ¥ > k’. Hence, £ < ¢ =k’ < k and so
{=k. [

As an illustration of the proof of Theorem 8.11, consider the digraph D of
Figure 8.12. We seek the maximum number of internally disjoint « — v paths in
D. Although this is rather easy to do in this case, we construct the digraph D’
described in the proof of Theorem 8.11 and determine the maximum number
of pairwise arc-disjoint w — v paths in D’. This number is 2 and two such paths
are
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P = (u,w',w", 2", 2" v) and Py = (u,y',y", 2’2", v).
As described in the proof of Theorem 8.11, this gives rise to the paths
Pl = (U,’IU,Z,U) and P2 = (uayvxvv)7

which constitute a maximum set of internally disjoint © — v paths in D.

Figure 8.12: Illustrating the proof of Theorem 8.11

For a given graph G, an alternative proof of the edge form of Whitney’s
theorem (Theorem 4.18) can be obtained by applying Theorem 8.10 to the
symmetric digraph D with underlying graph G. For vertices u and v in G, it
remains only to observe that there is a one-to-one correspondence between the
u — v paths in G and the (directed) v — v paths in D. A proof of Menger’s
theorem itself (the vertex form for graphs in Theorem 4.10) for a graph G can
also be obtained by applying Theorem 8.11 to the symmetric digraph D whose
underlying graph is G.
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Exercises for Chapter 8

Section 8.1. Networks

1. Let N be the network with source u and sink v shown in Figure 8.13,
where each arc is labeled with its capacity. A function f is defined on the
arcs of N as follows:

flu,8) =3 f(s,t)=3 ftv)=4 f(u,x)=3
flx,y)=3 flyv)=1 [fl@,t)=1 flw,u)=0
fly,w) =2 f(w,v) =2.

Is f a flow?

Figure 8.13: The network IV in Exercise 1
2. Let N be the network with source u and sink v shown in Figure 8.14,
where each arc is labeled with its capacity.

(a) Show that no flow can have a value exceeding 9.
(b) Give an example of a flow f on N such that val(f) = 9.

Figure 8.14: The network N in Exercise 2

3. For the network N shown in Figure 8.15 with source u and sink v, each
arc has unlimited capacity. A flow f in the network is indicated by the
labels on the arcs.
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(a) Determine the missing flows a, b and c.

(b) Determine val(f).

Figure 8.15: The network N in Exercise 3

4. Assume that the network N shown in Figure 8.16 has unlimited capacities.
Give an example of a flow f on N where the flow along each arc is a
positive integer and where the maximum of the flows along the arcs is as
small as possible.

x Y z

Figure 8.16: The network N in Exercise 4

5. Let N be a network with underlying digraph D, source u, sink v, capacity
function ¢ and let f be a flow on N. Suppose that t € V(D) — {u,v}
such that id¢ = 0 and that N’ is obtained from N by deleting ¢. Define a
function f’ on E(D—t) by f'(z,y) = f(z,y) for all arcs (z,y) € E(D—1).
Show that f’ is a flow on N’ and that val(f) = val(f’). Show that the
same conclusion holds if od¢ = 0.

6. A network N with source u and sink v is shown in Figure 8.17, where
each arc is labeled with its capacity. Describe a flow on N where the flow
along each arc is a positive integer.

(a) Determine the net flow out of each vertex.

(b) What is the maximum value of a flow f in the network N?
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(c) Give an example of a minimum cut [X, X|] and determine f(X,X)—
FX, X).

Figure 8.17: The network N in Exercises 6 and 10

Let w and v be two vertices of a digraph D and let A be a set of arcs of
D such that every u — v path in D contains at least one arc of A.

(a) Show that there exists a set of arcs of the form [X, X| where u € X
and v € X and [X, X] C A.

(b) Show that [X, X] may be a proper subset of A.

Let N be a network with underlying digraph D, source u and sink v. For
a set X of vertices of D with u € X and v € X and a flow f defined on
N, prove that f*(X) — f~(X) = f(X,X) — f(X. X).

(a) Prove Corollary 8.4: If f is flow in a network N with capacity

function ¢ and [X, X] is a cut in N such that f(a) = c(a) for all

a € [X,X] and f(a) =0 for all a € [X, X], then f is a mazimum

flow in N and [X, X] is a minimum cut.

(b) Show that the converse of Corollary 8.4 is true.

(a) Let N be the network N of Figure 8.17 in Exercise 6. Show that N
has a flow f other than the zero flow with val(f) = 0.

(b) Discuss a sufficient condition for a network to have a flow f other
than the zero flow with val(f) = 0.
Section 8.2. The Max-Flow Min-Cut Theorem

Use Algorithm 8.8 to find a maximum flow f and a minimum cut K in
the network NV in Figure 8.18.

Use Algorithm 8.8 to find a maximum flow f and a minimum cut K in
the network N in Figure 8.19.
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13.

14.

15.

Figure 8.19: The network NV in Exercise 12

Let N be a network with capacity function ¢ and suppose that [X, X] is
a minimum cut in N. Prove or disprove:

(a) If f1 and f are flows in N that agree on [X, X] and [X, X], then f;
and fo are maximum flows in N.

(b) If f; and fp are maximum flows in IV, then f; and f> agree on [X, X]
and [X, X].

Define a generalized network N to be a digraph D with two distin-
guished vertices u and v called the source and sink, respectively, together
with two nonnegative integer-valued functions ¢; and ¢ on E(D). A flow
in N is a real-valued function f on E(D) that satisfies (8.3) (that is,
ft(z) = f~(z) for each intermediate vertex = of D) as well as

c1(a) < f(a) < ca(a) for every arc a of D. (8.10)
Give an example of a nontrivial generalized network N that has no (legal)
flow.
Section 8.3. Menger Theorems for Digraphs

Use the proof of Theorem 8.11 to find the maximum number of internally
disjoint u — v paths in the digraph D shown in Figure 8.20.
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Yy z

Figure 8.20: The digraph D in Exercise 15

16. Find the maximum number of internally disjoint u—v paths in the digraph
D shown in Figure 8.21.

Figure 8.21: The digraph D in Exercise 16

17. Define a multisource/multisink network N to consist of a digraph D,
two nonempty subsets .S and T of vertices and a nonnegative real-valued
function ¢ defined on F (D). Then D is called the underlying digraph of N,
the vertices in S are called the sources of N, the vertices in T are called
the sinks of N and c is called the capacity function of N. A flowin N is a
real-valued function f on E(D) satisfying (8.2) (that is, 0 < f(a) < ¢(a)
for every arc a of D) and

fT(x) = f~ () for each z € V(D) — S —T.

Using the natural definition for maximum flow and minimum cut in a
multisource/multisink network, explain how the problem of determining
a maximum flow can be reduced to the case of networks with a single
source and sink.



Chapter 9

Automorphisms and
Reconstruction

Determining whether a given graph possesses a property of interest depends on
its structure. One way of studying the structure of graphs is by investigating
their symmetries. A common method of doing this is by means of groups. A
problem concerning how much of the structure of a graph can be determined
from certain subgraphs of a graph is also described.

9.1 The Automorphism Group of a Graph

An automorphism of a graph G is an isomorphism from G to itself. Thus,
an automorphism of G is a permutation of V' (G) that preserves adjacency (and
nonadjacency). Of course, the identity function € on V(G) is an automorphism
of G. The inverse of an automorphism of G is also an automorphism of G, as
is the composition of two automorphisms of G. These observations lead us to
the fact that the set of all automorphisms of a graph G form a group (under
the operation of composition), called the automorphism group or simply the
group of G, which is denoted by Aut(G).

The automorphism group of the graph G; of Figure 9.1 is cyclic of order 2,
which we write as Aut(G1) = Zz (the group of integers modulo 2). In addition
to the identity permutation on V(G1), the group Aut(G1) contains the reflection
a = (uy)(vz), where « is expressed in terms of permutation cycles. That is,

a(u) =y, a() =z, alw) = w, a(z) =v, a(y) = u.

The graph G5 of Figure 9.1 of order 6 has only the identity automorphism
and so Aut(Gs) = Z;. In fact, 6 is the smallest order of a nontrivial graph
whose automorphism group consists only of the identity automorphism.

Every permutation of the vertex set of K, is an automorphism and so
Aut(K,) is the symmetric group S, of order n!. It is known that the symmetric
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w w

Gi: A G : A
O —O o—=0C
U y u

A S S
v x v T Y

O
z
Figure 9.1: Graphs with automorphism groups of orders 2 and 1

group S, is nonabelian only when n > 3. In fact, S3 is the smallest nonabelian
group. The complete graph K3 is shown in Figure 9.2 along with the six el-
ements of Aut(K3). Here, € is the identity, &1 = (u v w) and @z = (u w v)
are rotations, and f; = (v w), B2 = (u w) and B3 = (u v) are reflections.
The group table of Aut(K3) is also shown in Figure 9.2. Associated with the
group Aut(K3) is a graph G of order 6 where V(G) = Aut(K3) such that two
vertices y; and 7, of G are adjacent if and only if 7, and 75 commute (that is,
Y12 = Y2y1) in Aut(K3). In G then, 71 and 7 are adjacent if and only if v,
and v, do not commute. That is, G models commutativity in Aut(K3) and G
models non-commutativity.

€ (C5 %) 51 32 33
€ e a1 ax Bi Py B

u Aut(K3): ap @1 az € B3 B B2
Ky : i\ amlar € ar B By B
Bi| B1 B2 B3 € a1

v w

Ba| B2 B3 B ax € o
B3| Bs B1 P a1 ar €

aq o) Qe
(%1 &3]
€
G

TN

@) O
Bl 63 51 ﬂ?)

Q

O
A Ba

Figure 9.2: The graph K3 and and its automorphism group

The automorphism group of C,,, n > 3, is the dihedral group D,, of order
2n, consisting of n rotations and n reflections. The 4-cycle C4 and the eight
elements of its automorphism group are shown in Figure 9.3.

Next, we present a few basic facts concerning automorphism groups of
graphs. We have already noted that every automorphism of a graph preserves
both adjacency and nonadjacency. This leads to the following observation.
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U v Automophisms:

as = (uw)(v ), ag=(uz wo)
0 ¢1 = (v w), ¢2 = (v )
v ¢3 = (uv)(w x), s = (u x)(v w)

Figure 9.3: A 4-cycle and the elements of its automorphism group

Theorem 9.1 For every graph G, Aut(G) = Aut(G).

We mentioned previously that Aut(K,) = S, for every positive integer
n. Certainly, if G is a graph of order n containing adjacent vertices as well
as nonadjacent vertices, then Aut(G) is isomorphic to a proper subgroup of
the symmetric group S,. Combining this observation with Theorem 9.1 and
Lagrange’s Theorem on the order of a subgroup of a finite group (which states
that the order of a subgroup of a finite group divides the order of the group),
we arrive at the following.

Theorem 9.2 The order | Aut(G)| of the automorphism group of a graph G
of order n is a divisor of n! and equals n! if and only if G = K,, or G = K.

Recall that two labelings of a graph G of order n from the same set of n
labels are considered distinct if they do not produce the same edge set. With
the aid of the automorphism group of a graph G of order n, it is possible to
determine the number of distinct labelings of G.

Theorem 9.3 The number of distinct labelings of a graph G of order n from
a given set of n labels is n!/| Aut(G)|.

Proof. Let S be a set of n labels. Certainly, there exist n! labelings of G
using the elements of S without regard to which labelings are distinct. For a
given labeling of G, each automorphism of G gives rise to an identical labeling
of G; that is, each labeling of G from S determines | Aut(G)| identical labelings
of G. Hence, there are n!/| Aut(G)| distinct labelings of G. L]

As an illustration of Theorem 9.3, consider the graph G = Ps of Figure 9.4
and the set S = {1,2,3}. Since Aut(G) = Zs,, the number of distinct labelings
of G is 3!/2 = 3. The three distinct labelings of G from the set {1,2,3} are
shown in Figure 9.4.
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G: O0—0—o0 S =1{1,2,3}

oO—o0—0 0—0—0 0O—0—o0
1 2 3 1 3 2 2 1 3

Figure 9.4: The distinct labelings of Ps

’ Similar Vertices ‘

Let ¢ be an automorphism of a graph G. If a relation R is defined on
the vertex set of G by u R v if ¢(u) = v, then R has the properties of being
reflexive, symmetric and transitive and therefore is an equivalence relation. The
relation R then produces a partition of V(G) into equivalence classes, referred
to as the orbits of G. Two vertices belonging to the same orbit are called
similar vertices. Therefore, two similar vertices have the same degree. The
automorphism group of the graph G of Figure 9.5 is cyclic of order 3 and G has
four orbits.

Ve U7
U3 Orbits:
{v1}
G : Us Us {U27’U37U4}
{’U5; U7, U9}
(%) V4

{UG, U8, Ulo}

V10 Vg

Figure 9.5: Orbits of a graph

In Chapter 2, we defined the eccentricity e(v) of a vertex v in a connected
graph G as the distance from v to a vertex farthest from v. For the graph G of
Figure 9.6, we compute the eccentricity of each vertex of G. The eccentricity of
each vertex is shown in Figure 9.6 as well. The orbits of this graph are {ry, o},
{s}, {t1,t2}, {u}, {v}, {w1, w2}, {z}, {y} and {z}. Since r; and ry are similar
vertices, they necessarily have the same eccentricity, namely 7. The same can
be said of t; and ty, as well as of w; and wy. This illustrates the fact that
often, when evaluating the value of a certain parameter for each vertex of a
graph, we can do this with fewer calculations by observing that some vertices
are similar. Of course, it is possible for vertices that are not similar to have the
same eccentricity, as is the case with u and x. For the graph G of Figure 9.6,
Aut(Q) is the direct product Zy x Zg X Zs of three cyclic groups of order 2.
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Figure 9.6: Similar vertices in a graph

Vertex-Transitive Graphs

A graph that contains a single orbit is called vertex-transitive. Thus, a
graph G is vertex-transitive if and only if for every two vertices u and v of
G, there exists an automorphism ¢ of G such that ¢(u) = v. Necessarily then,
every vertex-transitive graph is regular. The graphs K, (n > 1), C,, (n > 3) and
K, , (r > 1) are all vertex-transitive. Also, the regular graphs G; = C5 O K,
and Gy = Ky 22, shown in Figure 9.7, are vertex-transitive. The regular graphs
G3 and G4 in Figure 9.7 are not vertex-transitive, however (see Exercise 11).

Figure 9.7: Vertex-transitive graphs and regular graphs
that are not vertex-transitive

The two vertex-transitive graphs G7 and G of Figure 9.7 are Hamiltonian.
In fact, there are many examples of vertex-transitive Hamiltonian graphs. In-
deed, other than K; and Ks, there are only four known connected vertex-
transitive graphs that are not Hamiltonian, namely the Petersen graph and
the Coxeter graph (both shown in Figure 9.8) and the two graphs obtained
from these by replacing each vertex by a triangle. These are called the trun-
cated Petersen graph and the truncated Coxeter graph, also shown in
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Figure 9.8. In fact, Gordon Royle made the following conjecture that these are
the only connected vertex-transitive graphs that are not Hamiltonian.

W

Petersen graph truncated Petersen graph

Coxeter graph truncated Coxeter graph

Figure 9.8: Connected vertex-transitive graphs
that are not Hamiltonian

Royle’s Conjecture FEvery vertex-transitive graph G is Hamiltonian except
when G is K1, Ko, the Petersen graph, the truncated Petersen graph, the Coz-
eter graph or the truncated Cozxeter graph.

All four graphs in Figure 9.8 fail to contain a Hamiltonian cycle; yet all
four contain a Hamiltonian path. Indeed, Laszl6 Lovész made the following
conjecture.

Lovasz’s Conjecture Fuvery connected verter-transitive graph contains a
Hamiltonian path.
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Every digraph also has an automorphism group. An automorphism of a
digraph D is an isomorphism from D to itself; that is, an automorphism of
D is a permutation a on V(D) such that (u,v) is an arc of D if and only if
(au, aw) is an arc of D. The set of all automorphisms under composition forms
a group, called the automorphism group of D, which, as expected, is denoted
by Aut(D). While Aut(G) = Zs for the graph G of Figure 9.5, there is an even
simpler digraph D having Aut(D) 2 Zj. In particular, the digraphs D; and
Dy, of Figure 9.9 have cyclic automorphism groups, namely Aut(D;) = Zs and
Aut(Dg) = Z5.

Dy : D :

Figure 9.9: Digraphs with cyclic automorphism groups

9.2 Cayley Color Graphs

We have seen that with every graph and every digraph, there is a finite group
that can be associated with it. We now consider the reverse question of associ-
ating a digraph and a graph with a given finite group.

A nontrivial group I' is said to be generated by nonidentity elements
hi,ha, ..., hi (and these elements are called generators) of I if every ele-
ment of I" can be expressed as a (finite) product of generators. Every nontrivial
finite group has a finite generating set (often several such sets) since the set
of all nonidentity elements of the group is always a generating set for I'.

Let " be a given nontrivial finite group having the generating set A =
{h1,h2,...,h}. We associate a digraph with T" and A, commonly called the
Cayley color graph of I' with respect to A and denoted by Da(T). The
vertex set of D (T') is the set of group elements of I and so the order of Da(T)
is |I'|. Each generator h; is now regarded as a color. For g1, go € T, there exists
an arc (g1, ge) colored h; in DA(T) if go = g1h;. If h; is a group element of
order 2 (and is therefore self-inverse) and go = g1 h;, then necessarily g1 = g2h;.
When a Cayley color graph D (T') contains each of the arcs (g1, g2) and (g2, 91),
both colored h;, then, for simplicity, it is customary to represent this symmetric
pair of arcs by the single edge g1g2 colored h;. As we have now seen, a Cayley
color graph is actually a digraph, each arc of which is assigned a color, where a
color is a generator in A. This digraph is named for the mathematician Arthur
Cayley because of a famous theorem of his from group theory: Fvery finite
group is isomorphic to a group of permutations.

Before proceeding further, let’s illustrate the concepts just introduced. Let
I’ denote the symmetric group S3 of all permutations on the set {1,2,3}, and
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let A = {a,b}, where a = (123) and b = (12). The six elements of I" can then
be expressed as a product of the elements a and b of I" as follows:

the identity e = b?, a = a, b = b, (132) = a?, (13) = ba, (23) = ab.

The Cayley color graph Da(T") in this case is shown in Figure 9.10.

ba?

Figure 9.10: A Cayley color graph

If the generating set A of a given nontrivial finite group I" with n elements is
chosen to be the set of all nonidentity group elements, then for every two vertices
g1,92 of DA(T), both (g1, g2) and (g2, ¢91) are arcs (although not necessarily of
the same color) and Da(T") is the complete symmetric digraph K of order n
in this case.

Color-Preserving Automorphisms‘

Let T" be a nontrivial finite group with generating set A. Every element « in
the automorphic group Aut(Da(T)) of the Cayley color graph Da(T") has the
property that if (g1, ¢g2) is an arc of Da(T), then (a(g1), @(g2)) is also an arc of
DA(). If for every arc (g1, g2) of Da(I'), the arcs (g1,92) and (a(g1), a(g2))
have the same color, then « is said to be color-preserving. For a given
nontrivial finite group I" with generating set A, the set of all color-preserving
automorphisms of Da (I") forms a subgroup of Aut(Da(T)).

For example, let I' = Z,4 be a cyclic group of order 4 generated by the element
a. Then we can write I' = {g1, g2, 93, g4} where g; = a*~! for i = 1,2, 3,4. Thus,

g1 = a® = e is the identity element of I. The set

A= {92793594} = {a”a2aa3}

of nonidentity elements of I" is a generating set for I". For this group I" and this
generating set A, the Cayley color graph Da(T") is shown in Figure 9.11(a).
Because there are symmetric pairs of arcs of the same color joining the pairs
g1,93 and g2, g4, this Cayley color graph is drawn as shown in Figure 9.11(b).
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In this case, Da(T") is the complete symmetric digraph K and so Aut(Da(T))
is the symmetric group S4. Since every permutation of the elements of I' is an
automorphism of Da (T"), the permutation o = (g1 g2 g4) is an automorphism.
Hence, a maps the arc (g1, g2) into the arc (g2, 94). Since the color of (g1, g2)
is a and the color of (go,g4) is o2, it follows that « is not color-preserving. In
this case, the subgroup of color-preserving automorphisms of Da (I') consists of

€ (91 92 93 94), (91 93)(92 94), (91 94 93 g2),

which is a cyclic group of order 4 and is, therefore, isomorphic to the group I'.
We are about to see that this is no coincidence.

Figure 9.11: The Cayley color graph Da(T") of a cyclic group
I of order 4 with generating set A = {a,a?,a}

A useful characterization of color-preserving automorphisms is given in the
next result (see Exercise 14).

Theorem 9.4 Let I" be a nontrivial finite group with generating set A and let
a be a permutation of V(DA(T')). Then « is a color-preserving automorphism
of DA(T) if and only if a(gh) = (a(g))h for every g € " and h € A.

With the aid of Theorem 9.4, we can now prove the following result.

Theorem 9.5 Let T' be a nontrivial finite group with generating set A. Then
the group of color-preserving automorphisms of Da(T") is isomorphic to T.

Proof. LetT' = {g1,92,...,9n}. Fori=1,2,...,n, define o; : V(Da(T')) —
V(Da()) by ai(gs) = gigs for 1 < s <mn. Since T is a group, the mapping «;
is one-to-one and onto. Let h € A. Then for each i (1 <14 <n) and for each s
(1<s<n),

@i(gsh) = gi(gsh) = (9igs)h = (ai(gs))h.

Hence, by Theorem 9.4, «; is a color-preserving automorphism of Da (T).
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Let « be an arbitrary color-preserving automorphism of Da (T") and let g;
be the identity of I'. Suppose that a(g1) = g». Let gs € . The element g5 of T
can be expressed as a product of generators, say gs = hihg - - - hy, where h; € A
and 1 < j <t¢. Therefore,

Oé(gs) = Oé(glhlhz s ht) = a(91h1h2 e ht—l)ht
= a(g1h1 te ht—2)ht—1ht == Oé(gl)h1h2 R 9r9s-

Thus, a = «a,.

We now show that the mapping ¢ defined by ¢(g;) = «; is an isomorphism
from T to the group of color-preserving automorphisms of Da (I"). The mapping
¢ is already one-to-one and onto. It remains to show that ¢ is operation-
preserving, namely that ¢(gig;) = ¢(g:)¢(g;) for gi,g; € T'. Let gig; = gi.
Then ¢(g:9;) = ¢(gr) = ar and ¢(gi)$(g;) = aicj. Now,

ar(9s) = gr9s = (9:95)9s = 9i(9;9s) = @i(9;9s) = @i((gs)) = (i) gs

and so oy = ;0. n

| Frucht’s Theorem |

In the early years of the 20th century, Germany had been known for its
mathematicians who excelled in group theory. One of these was Issai Schur.
While at the University of Berlin, Schur supervised several doctoral students.
One of Schur’s students was Roberto Frucht (1906-1997), who received his
Ph.D. in 1930 in the area of group theory.

Finding a job as a mathematician in Germany was very difficult during
those days. Frucht wasn’t even able to be hired as a high school teacher since
Frucht was a Czechoslovakian citizen and German citizenship was required.
So, Frucht moved to Italy to work for an insurance company. Frucht stayed
there until 1938. During the time he was in Italy, he had essentially become
mathematically inactive. However, one day in 1936, he received a catalogue
advertising a book on graph theory, the first book written exclusively on graph
theory. Frucht ordered this book and became an enthusiastic graph theorist the
very day that the book arrived.

On page 5 of the first section (Basic Concepts) of the first chapter (Founda-
tions) of this book, the author Dénes Konig [148, p. 5] wrote (translated into
English):

When can a given abstract group be interpreted as the group of a
graph and if this is the case, how can the corresponding graph be
constructed?

Konig’s question on automorphism groups immediately caught Frucht’s at-
tention. After several months of unsuccessfully trying to solve the problem, he
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found a solution that seemed rather easy (after he had found it). Frucht [97]
proved that every finite group has this property. We are now in a position to
describe Frucht’s proof of this result.

If T is the trivial group, then for G = K7, wh have Aut(G) = I'. Therefore,
we may assume that I' is nontrivial and soI' = {g1, g2, ..., gn} wheren > 2. Let
A ={h1,ha, ..., b}, 1 <t < m, be a generating set for I'. We first construct
the Cayley color graph Da (T") of T with respect to A, which, recall, is actually
a digraph. By Theorem 9.5, the group of color-preserving automorphisms of
DA(T) is isomorphic to I'. We now transform the digraph Da(T) into a graph
G by the following technique. Let (g;, g;) be an arc of Da(T") colored hy. Delete
this arc and replace it by the graphical path g;, u;;, ugj, g;. At the vertex u;; we
construct a new path P;; of length 2k — 1 and at the vertex u;; we construct
a path P»’j of length 2k. This construction is now performed for every arc of

,

DA(T). This is illustrated in Figure 9.12 for k£ =1, 2, 3.

O—0
O—0—0
O

hy
o o) o
E
o
o e o o b 0
o
7 1
i %
h3 % |
o 0 o o O o
D () G

Figure 9.12: Constructing a graph G from a given group I'

The addition of the paths P;; and Pi’j in the formation of G is equivalent, in
a sense, to assigning a direction and a color to each arc in the construction of
DAa(T). Observing that every color-preserving automorphism of Da (T') induces
an automorphism of G, and conversely, results in a proof of Frucht’s theorem.

Theorem 9.6 (Frucht’s Theorem) For every finite group T, there exists
a graph G such that Aut(G) = T.
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The condition of having a given group prescribed is not a particularly strin-
gent one for graphs. For example, Herbert Izbicki [133] showed that for ev-
ery finite group I' and integer r > 3, there exists an r-regular graph G with
Aut(G@) = T.

’ Cayley Graphs

We have now seen that for every finite group I' and generating set A, there is
an associated digraph, namely the Cayley color graph Da(T'). The underlying
graph of a Cayley color graph Da (T) is called a Cayley graph and is denoted
by GA(T). Thus, a graph G is a Cayley graph if and only if there exists a finite
group I' and a generating set A for I' such that G = G (T'); that is, the vertices
of G are the elements of I' and two vertices g1 and go of G are adjacent if and
only if either g1 = gah or g = g1h for some h € A.

As observed earlier, the complete symmetric digraph K is a Cayley color
graph; consequently, every complete graph is a Cayley graph. Since Ky O Kj
is the underlying graph of the Cayley color graph of Figure 9.10, Ky OO0 Kj
is also a Cayley graph. Every Cayley graph is necessarily regular. Indeed,
every Cayley graph is vertex-transitive. The converse is not true, however. The
Petersen graph (Figure 9.8), for example, is vertex-transitive but it is not a
Cayley graph.

9.3 The Reconstruction Problem

If ¢ is an automorphism of a nontrivial graph G and u is a vertex of G, then
G —u ™ G — ¢(u), that is, if u and v are similar vertices of a graph G, then
G —u = G —v. The converse of this statement is not true, however. Indeed, the
vertices u and v of the graph G of Figure 9.13 are not similar; yet G—u = G —v.

(3 v

Figure 9.13: A graph with nonsimilar vertices
whose vertex-deleted subgraphs are isomorphic

This comment brings up a question. Suppose that G and H are two graphs
of the same order with V(G) = {v1,v2,...,v,} and V(H) = {uy,ug,...,un},
say. If it should occur that G — vy =2 H — uq, then this does not imply that
G = H. But what if, in addition to having G —v; & H — u1, we also know that
G—v9o=2H—uy, G—v3 = H —u3 and so on, up to G — v, = H — u,? Can
we then conclude that G = H?
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This question is related to the problem of determining how much structure
of a graph G can be recovered from its vertex-deleted subgraphs. This, in fact,
brings us to a famous problem in graph theory.

Reconstructible Graphs‘

A graph G with V(G) = {v1,vs,...,v,}, n > 2, is said to be recon-
structible if for every graph H having V(H) = {u1, ua,...,un}, G—v; & H—u;
for i = 1,2,...,n implies that G = H. Hence, if G is a reconstructible graph,
then the subgraphs G — v, v € V(G), uniquely determine G. It is believed
by many but has never been verified that every graph of order at least 3 is
reconstructible.

The Reconstruction Conjecture FEvery graph of order at least 3 is recon-
structible.

This conjecture is believed to have been made in 1941 and is often attributed
jointly to Paul J. Kelly and Stanislaw M. Ulam. In fact, Kelly was working on
his Ph.D. at that time at the University of Wisconsin with a dissertation on
this topic. At the same time, Ulam had a faculty position at the university.
Kelly spent many years as a faculty member at the University of California at
Santa Barbara. Ulam, born in Poland in 1909, became interested in astron-
omy, physics and mathematics while a teenager and taught himself calculus.
He entered the Polytechnic Institute (now in Lvov, Ukraine) in 1927. One
of his professors there was Kazimierz Kuratowski, whom we will encounter in
Chapter 10. Ulam received his Ph.D. in 1933.

In 1940, Ulam acquired a faculty position at the University of Wisconsin. In
1943 John von Neumann asked to meet Ulam at a railroad station in Chicago.
This resulted in Ulam going to the Los Alamos National Laboratory in New
Mexico to work on the hydrogen bomb with the physicist Edward Teller. While
at Los Alamos, Ulam developed the well-known Monte Carlo method for solv-
ing mathematical problems using a statistical sampling method with random
numbers. Throughout his life, he made important contributions in many areas
of mathematics.

The Reconstruction Problem is the problem of determining the truth
or falsity of the Reconstruction Conjecture. The condition on the order in
the Reconstruction Conjecture is necessary for if G; = Ks, then G is not
reconstructible. This is because if Gy = 2K;, then the subgraphs G; — v,
v € V(Gy), and the subgraphs G2 — v, v € V(G2), are precisely the same.
Thus, G; is not uniquely determined by its subgraphs G; — v, v € V(G;). By
the same reasoning, Gy = 2K, is also not reconstructible. The Reconstruction
Conjecture claims that Ky and 2K are the only non-reconstructible graphs.

If there is a counterexample to the Reconstruction Conjecture, then it must
have order at least 12, for, with the aid of computers, Brendan McKay [166] and
Albert Nijenhuis [177] have shown that all graphs of order less than 12 (and
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greater than 2) are reconstructible. The graph G of Figure 9.14 is therefore
reconstructible since its order is less than 12. Hence the graphs G — v; (1 <
i < 6) uniquely determine G. However, there exists a graph H with V(H) =
{v1,v9,...,v6} such that G —v; € H —v; for 1 <i <5, but G —vg ¥ H — vg.
Therefore, the graphs G —v; (1 < i <5) do not uniquely determine G. On the
other hand, the graphs G — v; (4 < ¢ < 6) do uniquely determine G.

7.)5 U4
UG ’Ul
G:
V3 V2
—7)1 —1}2 —'U3 —’1)4 —’U5 71)6

Figure 9.14: A reconstructible graph

Digraphs are not reconstructible, however. The vertex-deleted subdigraphs
of the tournaments D; and Dy of Figure 9.15 are the same; yet Dy % Ds.
Indeed, Paul K. Stockmeyer [227] showed that there are infinitely many pairs
of counterexamples for digraphs (see [145, 228] as well).

A A

Figure 9.15: Two non-reconstructible digraphs

Recognizable Properties ‘

There are several properties of a graph G that can be identified with the
aid of the subgraphs G — v, v € V(G). We begin with the most elementary of
these.
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Theorem 9.7 If G is a graph of order n > 3 and size m, then n and m as
well as the degrees of the vertices of G are determined from the n subgraphs
G —v,veV(Q).

Proof. It is trivial to determine the number n, which is necessarily one greater
than the order of any subgraph G — v. Also, n is equal to the number of
subgraphs G —v. To determine m, label these subgraphs by G;,i=1,2,...,n.
Let V(G) = {v1,va,...,v,} and suppose that G; = G — v;, where v; € V(G).
Let m; denote the size of GG;. Consider an arbitrary edge e of G, say e = v;uvy.
Then e belongs to n — 2 of the subgraphs G;, namely all except G; and Gj,.
Since Y7, m; counts each edge n— 2 times, it follow that Y"1 ; m; = (n—2)m
and so

Dy M
= Li=1 9.1
m=== (9.1)
The degrees of the vertices of G can be determined by simply noting that
degv, =m—m;,1=1,2,...,n. [

We illustrate Theorem 9.7 with the six subgraphs G —v shown in Figure 9.16
of some unspecified graph G. From these subgraphs we determine n, m and
degv; for i = 1,2,...,6. Clearly, n = 6. By calculating the integers m;
(1 <4 <6), we find that m = 9. Thus, degv; = degvs = 2, degvs = degvy = 3
and degvs = degvg = 4.

Gli GQI
Gs: Gy :
Gsi Ggi

Figure 9.16: The subgraphs G — v of a graph G

We say that a graphical parameter or graphical property is recognizable
if, for each graph G of order at least 3, it is possible to determine the value
of the parameter for G or whether G has the property from the subgraphs
G — v, v € V(G). Theorem 9.7 thus states that for a graph of order at least 3,
the order, the size and the degrees of its vertices are recognizable parameters.
From Theorem 9.7, it also follows that the property of a graph being regular is
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recognizable; indeed, the degree of regularity is a recognizable parameter. For
regular graphs, much more can be said.

Theorem 9.8 Fuvery reqular graph of order at least 3 is reconstructible.

Proof. As we have already mentioned, regularity and the degree of regularity
are recognizable. Thus, without loss of generality, we may assume that G is an
r-regular graph with V(G) = {v1,va,...,v,}, n > 3. It remains to show that G
is uniquely determined by its subgraphs G—wv;, i = 1,2,...,n. Consider G — vy,
say. The graph G — vy then has order n — 1, where r vertices have degree r — 1
and the remaining n — r — 1 vertices have degree r. Adding the vertex v; to
G — vy together with all those edges viv where degg_,, v =7 — 1 produces the
graph G. n

If G has order n > 3, then it can be determined whether G is connected
from the n subgraphs G — v, v € V(G).

Theorem 9.9 For graphs of order at least 3, connectedness is a recognizable
property. In particular, if G is a graph with V(GQ) = {v1,va,...,0n}, n > 3,
then G is connected if and only if at least two of the subgraphs G — v; are
connected.

Proof. Let G be a connected graph. By Theorem 3.1, G contains at least two
vertices that are not cut-vertices, implying the results.

Conversely, assume that there exist vertices vi,vs € V(G) such that both
G — vy and G — vy are connected. Thus, in G — v, and also in G, the vertex v
is connected to each vertex v; for ¢ > 3. Moreover, in G — vy (and thus in G),
vy is connected to each vertex v; for ¢ > 3. Hence, every pair of vertices of G
are connected and so G is connected. [

Since connectedness is a recognizable property, it is possible to determine
from the subgraphs G — v, v € V(G), whether a graph G of order at least 3
is disconnected. We now show that disconnected graphs are reconstructible.
There have been several proofs of this fact. The proof given here is due to
Bennet Manvel [162].

Theorem 9.10 Disconnected graphs of order at least 3 are reconstructible.

Proof. We have already noted that disconnectedness in graphs of order at
least 3 is a recognizable property. Thus, we assume without loss of generality
that G is a disconnected graph with V(G) = {v1,va,...,v,}, n > 3. Further,
let G; = G —wv; for i = 1,2,...,n. From Theorem 9.7, the degrees of the
vertices v;, i = 1,2,...,n, can be determined from the graphs G — v;. Hence, if
G contains an isolated vertex, then G is reconstructible. Assume then that G
has no isolated vertices.

Since every component of G is nontrivial, it follows that k(G;) > k(G) for
i =1,2,...,n and that k(G;) = k(G) for some integer j satisfying 1 < j <
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n. Hence, the number of components of G is min{k(G;) : i = 1,2,...,n}.
Suppose that F' is a component of G of maximum order. Necessarily, F' is a
component of maximum order among the components of the graphs G;, that is,
F is recognizable. Delete a vertex that is not a cut-vertex from F', obtaining F”.

Assume that there are r (> 1) components of G isomorphic to F. The
number 7 is recognizable, as we shall see. Let

S={G;: k(Gi) = k(G)}

and let S’ be the subset of S consisting of all those graphs G; having a minimum
number ¢ of components isomorphic to F. (Observe that if » = 1, then there
exist graphs G; in S containing no components isomorphic to F, that is, £ = 0.)
In general, then, r = £+ 1. Next let S” denote the set of those graphs G; in S’
having a maximum number of components isomorphic to F’.

Assume that Gq,Ga, ..., Gt (t > 1) are the elements of S”. Each graph G;
in S has k(G) components. Since each graph G; (1 < i < t) has a minimum
number of components isomorphic to F, each vertex v; (1 <4 < t) belongs to a
component F; of G isomorphic to F', where the components F; of G (1 < i <t)
are not necessarily distinct. Further, since each graph G; (1 <14 < t) has a
maximum number of components isomorphic to F’, it follows that F; —v; = F’
for each ¢ = 1,2,...,t. Hence, every two of the graphs G1,Gs,...,G; are
isomorphic and G can be produced from (7, say, by replacing a component of
(1 isomorphic to F’ by a component isomorphic to F. [

The Reconstruction Problem is often described in a somewhat playful man-
ner as a problem involving a deck of cards. Suppose that we begin with two
people, say you and a friend, and a graph GG. However, only your friend knows
what the graph G is. For each vertex v of G, the graph G — v (unlabeled!)
is drawn on a card. The set of all such cards is then referred to as a deck.
This deck is then given to you. Your job is to find all graphs H whose set of
vertex-deleted subgraphs are those appearing on the deck of cards. Any graph
H satisfying this information is referred to as a solution to the deck. Of course,
we know that there is at least one solution to the deck, namely the graph G.
Furthermore, if the Reconstruction Conjecture is true, then the graph G is the
only solution to the deck. However, knowing that such a deck has a solution (or
maybe more than one solution) doesn’t mean that finding a solution is easy.

To illustrate this idea, consider the deck of cards shown in Figure 9.17.
The problem is to find all solutions of this deck. Each deck of cards uniquely
determines the order n, size m and the degrees of the vertices of any solution
of the deck.

Let m; denote the size of G; = G —v; (1 <1 < 6). Since there are six cards
in the deck, n = 6. Furthermore, by (9.1),

Dz mi 36

n—2 4
Therefore, the degrees m —m; (1 < i < 6) of the vertices of a solution G of
the deck are 2,2,3,3,4,4. Observe, for example, that the subgraph Gg has size

m = 9.
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Al ¥

G1 G2 G3 G4 G5 G6

Figure 9.17: The subgraphs G — v for one or more graphs G

5 and degree sequence 3,2,2,2,1. Hence any solution G can be obtained by
adding a vertex vg of degree 4 to Gg. Since each solution to the deck must have
degree sequence 4,4, 3, 3,2, 2, the vertex vg must be joined to all vertices of Gg
except one vertex of degree 2. If vg is joined to the two adjacent vertices of
degree 2 in Gg, then any solution of the deck must contain K, as a subgraph.
However, none of the graphs G; (1 <14 < 6) contains Ky. Therefore, vg must
be adjacent to only one of these vertices of degree 2 in G¢. Because these two
vertices are similar, we conclude that the deck of cards shown in Figure 9.17
has the unique solution shown in Figure 9.18.

Figure 9.18: The solution of the deck of cards in Figure 9.17

It can be shown that (connected) graphs of order at least 3 whose comple-
ments are disconnected are reconstructible (Exercise 23). However, it remains
to be shown that all connected graphs of order at least 3 are reconstructible.
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Exercises for Chapter 9

Section 9.1. The Automorphism Group of a Graph

1.

10.

For the graphs GG; and G5 in Figure 9.19, describe the automorphisms of
G and of G2 in terms of permutation cycles.

t Y 1 6
Gll G21
v w T 3 4 5
u z 2 7

Figure 9.19: The graphs G; and of G2 in Exercise 1

. Figure 9.3 shows a 4-cycle C4 and the elements of Aut(Cy).

(a) Construct the group table for Aut(Cly).

(b) Draw the graph G where V(G) = Aut(Cy4) such that two vertices
v1 and 2 of G are adjacent if and only if 7; and 72 commute
in Aut(Cy).

(c) Draw the graph G for the graph G in (b).

. Does there exist a graph H of order 4 such that the graph G with V(G) =

Aut(H) where 1172 € E(G) if and only if 71 and 7, commute in Aut(H)
has order 4?7

. Describe the elements of Aut(Cs).

. Find a nonseparable graph G whose automorphism group is isomorphic

to the cyclic group of order 4.

. Determine the number of distinct labelings of K, .

. For which pairs k,n of positive integers with £ < n does there exist a

graph G of order n having k orbits?

. For which pairs k,n of positive integers does there exist a graph G of

order n and a vertex v of G such that there are exactly k vertices similar
to v?

. Show for every even integer n > 2 that there exists a graph G of order n

such that G has n/2 pairs of similar vertices.

Let G be a graph that is not vertex-transitive and let H be the graph
where V(H) = V(G) and xy € E(H) if and only if # and y are similar
vertices of G. Describe the complement H of H.
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11. Show that the graphs G5 and G4 in Figure 9.7 are not vertex-transitive.

12. Describe the automorphism groups of the digraphs in Figure 9.20.

u U v u v
—_——
v w w T z Y
Figure 9.20: The digraphs in Exercise 12

Section 9.2. Cayley Color Graphs

13. Construct the Cayley color graph of the cyclic group of order 4 when the
generating set A has (a) one element and (b) three elements.

14. Prove Theorem 9.4: Let I' be a nontrivial finite group with generating set
A and let o be a permutation of V(Da(T)). Then « is a color-preserving
automorphism of Da(T) if and only if a(gh) = (a(g))h for every g € T
and h € A.

15. Determine the group of color-preserving automorphisms for the Cayley
color graph Da(T") of Figure 9.21.

g1 =¢€ g2 =a

94:(13 a g3:a2

Figure 9.21: The Cayley color graph Da(T") in Exercise 15

16. For a given finite group I', determine an infinite number of mutually
nonisomorphic graphs whose groups are isomorphic to I'.

17. Show that every n-cycle is a Cayley graph.

18. Show that the cube @3 is a Cayley graph.
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19.

20.

21.

22.
23.

24.
25.

26.

27.

Section 9.3. The Reconstruction Problem

Reconstruct the graph G whose subgraphs G — v,v € V(G) are given in
Figure 9.16.

Reconstruct the graph G whose subgraphs G — v,v € V(G) are given in
Figure 9.22.

Gy : G2 =Gs: Gy=Gs:

Figure 9.22: The subgraphs G — v of the graph G in Exercise 20

Let G be a graph with V(G) = {v1,vq,...,v7} such that G — v; = Ka 4
for i = 1,2,3 and G — v; = K33 for i = 4,5,6,7. Show that G is
reconstructible.

Show that the tournaments of Figure 9.15 are not isomorphic.

(a) Prove that if G is reconstructible, then G is reconstructible.

(b) Prove that every graph of order n (> 3) whose complement is dis-
connected is reconstructible.

Prove that the property of being bipartite for a graph is recognizable.

Reconstruct the graph G whose subgraphs G — v,v € V(G) are given in
Figure 9.23.

Gi(1<i<8): Q i @ o
P OO
Gy - o Gy = Gro

Figure 9.23: The subgraphs G — v of the graph G in Exercise 25

Show that no graph of order at least 3 can be reconstructed from exactly
two of the subgraphs G — v,v € V(G).

In the process of solving the deck of cards in Figure 9.17, we learned that
the order of any solution is n = 6, the size is m = 9 and the degree
sequence of a solution is 4,4,3,3,2,2. Was this enough information to
obtain the solution shown in Figure 9.187
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28. Find all solutions to the deck of cards shown in Figure 9.24.

YY) |

O
S 7 3
G1 G2 Gg G4

] [F] [

Gs G6 G7

Oo—0—oO

Figure 9.24: The deck of cards in Exercise 28

29. Find all solutions to the deck of cards shown in Figure 9.25.

yalvdiicinie i

[¢]

G1 GQ G3 G4 G5 G6

Figure 9.25: The deck of cards in Exercise 29

30. For the deck of cards shown in Figure 9.26, determine, without finding a
solution, whether any solution G is Hamiltonian.

SINEEREARLS

G1 G2 G3 G4 G5 GG

Figure 9.26: The deck of cards in Exercise 30



Chapter 10

Planar Graphs

Of the methods we have described to represent a graph G, probably the most
common and the most useful for determining whether G possesses particular
properties of interest is that of presenting G' by means of a drawing. There are
occasions when the edges in a diagram may cross and other occasions when the
edges in a diagram do not cross. If some pairs of edges in a diagram of a graph
cross, then it may be that there are other drawings of this same graph when no
edges cross — or perhaps this is not possible. It is the class of graphs that can
be drawn in the plane without their edges crossing that will be of interest to
us in this chapter. We will see that a result of Euler plays a central role in this
study.

10.1 The Euler Identity

A polyhedron is a 3-dimensional object whose boundary consists of polygonal
plane surfaces. These surfaces are typically called the faces of the polyhedron.
The boundary of a face consists of the edges and vertices of the polygon. In
this setting, the total number of faces in the polyhedron is commonly denoted
by F', the total number of edges in the polyhedron by E and the total number
of vertices by V. The best known polyhedra are the so-called Platonic solids:
the tetrahedron, cube (hexahedron), octahedron, dodecahedron and
icosahedron. These are shown in Figure 10.1, together with the values of V,
FE and F for these polyhedra.

During the 18th century, many letters (over 160) were exchanged between
Leonhard Euler (who, as we saw in Chapter 5, essentially introduced graph
theory to the world when he solved and then generalized the Konigsberg Bridge
Problem) and Christian Goldbach (well known for stating the conjecture that
every even integer greater than 2 can be expressed as the sum of two primes).
In a letter that Euler wrote to Goldbach on 14 November 1750, he stated a
relationship that existed among the numbers V', E and F for a polyhedron and
which would later become known as:

239



240 CHAPTER 10. PLANAR GRAPHS

‘ 1 N4

tetrahedron cube octahedron

&
N\

dodecahedron icosahedron

Platonicsolid | V | F | F
tetrahedron 4 6 4
cube 8 [ 12| 6
octahedron 6 |12 ]| 8
dodecahedron | 20 | 30 | 12
icosahedron 12 | 30 | 20

Figure 10.1: The five Platonic solids

The Euler Polyhedral Formula If a polyhedron has V wvertices, E edges
and F faces, then

V-E+F=2

That Euler was evidently the first mathematician to observe this formula
(which is actually an identity rather than a formula) may be somewhat sur-
prising in light of the fact that Archimedes and René Descartes both studied
polyhedra long before Fuler. A possible explanation as to why others had over-
looked this identity might be due to the fact that geometry had primarily been
a study of distances.

The Euler Polyhedral Formula appeared in print two years later (in 1752) in
two papers by Euler [87, 88]. In the first of these two papers, Euler stated that
he had been unable to prove the formula. However, in the second paper, he
presented a proof by dissecting polyhedra into tetrahedra. Although his proof
was clever, he nonetheless made some missteps. The first generally accepted
proof was obtained by the French mathematician Adrien-Marie Legendre [153].



10.1. THE EULER IDENTITY 241

Each polyhedron can be converted into a map and then into a graph by
inserting a vertex at each meeting point of the map (which is actually a vertex
of the polyhedron). This is illustrated in Figure 10.2 for the cube.

-]

Figure 10.2: From a polyhedron to a map to a graph

The graphs obtained from the five Platonic solids are shown in Figure 10.3.
These graphs have a property in which we will be especially interested: No two

edges cross (intersect each other) in the graph.

tetrahedron
cube octahedron
dodecahedron icosahedron

Figure 10.3: The graphs of the five Platonic solids

Planar Graphs

A graph G is called a planar graph if G can be drawn in the plane without
any two of its edges crossing. Such a drawing is also called an embedding of G
in the plane. In this case, the embedding is a planar embedding. A graph G
that is already drawn in the plane in this manner is a plane graph. Certainly
then, every plane graph is planar and every planar graph can be drawn as a
plane graph. In particular, all five graphs of the Platonic solids are planar.
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When those points in the plane that correspond to the vertices and edges of
a plane graph G are removed from the plane, the resulting connected pieces of
the plane are the regions of G. One of the regions is unbounded and is called
the exterior region of G. For every planar embedding of a planar graph G
and every region R in this planar embedding, there exists a planar embedding
of G in which R is the exterior region. Consequently, for every edge e (or
vertex v) of G, there is a planar embedding of G for which e (or v) lies on
the boundary of the exterior region. When considering a plane graph G of a
polyhedron, the faces of the polyhedron become the regions of GG, one of which
is the exterior region of G. On the other hand, a planar graph need not be the
graph of any polyhedron. The plane graph H of Figure 10.4 is not the graph of
any polyhedron. This graph has five regions, denoted by Ry, Rs, R3, R4 and
R5, where Rj5 is the exterior region.

Figure 10.4: The boundaries of the regions of a plane graph

For a region R of a plane graph G, the vertices and edges incident with R
form a subgraph of G called the boundary of R. Every edge of G that lies on
a cycle belongs to the boundary of two regions of GG, while every bridge of G
belongs to the boundary of a single region. In Figure 10.4, the boundaries of
the five regions of H are shown as well.

The five graphs G1, G2, G3, G4 and G5 shown in Figure 10.5 are all planar,
although G; and G3 are not plane graphs. The graph G can be drawn as
G2, while G3 can be drawn as G4. In fact, G; (and G3) is the graph of the
tetrahedron. For each graph, its order n, its size m and the number r of regions
are shown as well.

Observe that n —m +r = 2 for each graph of Figure 10.5. Of course, this is
not surprising for Gy since this is the graph of a polyhedron (the tetrahedron)
and n =V, m= F and r = F. In fact, this identity holds for every connected
plane graph.
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3

G5:
G : V Gy
n=4m==6,r=4 n=5m=6,r=3

=4,m=06,r= =5m=6,r= n=9m=12,r=5

O

Figure 10.5: Planar graphs

Theorem 10.1 (The Euler Identity) For every connected plane graph of
order n, size m and having r Tegions,

n—m-+r=2.

Proof. We proceed by induction on the size m of a connected plane graph.
There is only one connected graph of size 0, namely K. In this case, n = 1,
m =0 and r = 1. Since n — m + r = 2, the base case of the induction holds.

Assume for a positive integer m that if H is a connected plane graph of order
n' and size m’/, where m’ < m such that there are r’ regions, then n’—m/+r’ = 2.
Let G be a connected plane graph of order n and size m with r regions. We
consider two cases.

Case 1. G is a tree. In this case, m =n—1andr=1. Thusn—m+r =
n—(n—1)+ 1= 2, producing the desired result.

Case 2. G is not a tree. Since G is connected and is not a tree, it follows
by Theorem 3.10 that G contains an edge e that is not a bridge. In G, the
edge e is on the boundaries of two regions. So in G — e these two regions merge
into a single region. Since G' — e has order n, size m — 1 and r — 1 regions and
m—1 < m, it follows by the induction hypothesis that n—(m—1)+(r—1) =2
andson—m+r=2. L]

The Euler Polyhedron Formula is therefore a special case of Theorem 10.1.
While Euler struggled with the verification of V' — E + F = 2, he did not have
the luxury of a developed graph theory at his disposal.

From Theorem 10.1, it follows that every two planar embeddings of a con-
nected planar graph result in plane graphs having the same number of regions;
thus one can speak of the number of regions of a connected planar graph. For
planar graphs in general, we have the following result. (See Exercise 2.) Recall
that k(G) denotes the number of components of a graph G.
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Corollary 10.2 If G is a plane graph with n vertices, m edges and r regions,
then

n—m-+r=1+k(G).

An Upper Bound for the Size of Planar Graphs

If G is a connected plane graph of order 4 or more, then the boundary of
every region of G must contain at least three edges. This observation is helpful
in showing that with respect to the order of a planar graph, its size cannot be
too great.

Theorem 10.3 If G is a planar graph of order n > 3 and size m, then
m < 3n — 6.

Proof. Since the size of every graph of order 3 cannot exceed 3, the inequality
holds for n = 3. So we may assume that n > 4. Futhermore, we may assume
that the planar graphs under consideration are connected, for otherwise edges
can be added to produce a connected graph. Suppose that G is a connected
planar graph of order n > 4 and size m. Let there be given a planar embedding
of G, resulting in r regions. By the Euler Identity, n — m +r = 2. Let
Ry, Rs, ..., R, be the regions of G and suppose that we denote the number of
edges on the boundary of R; (1 < i <) by m;. Then m; > 3 for 1 < i <r.
Since each edge of G is on the boundary of at most two regions of G, it follows
that

3r§imi < 2m.

i=1
Hence,
6=3n—-3m+3Ir<3In—-3m+2m=3n—m

and so m < 3n — 6. [

By expressing Theorem 10.3 in its contrapositive form, we obtain the fol-
lowing reformulation of the theorem.

Theorem 10.4 IfG is a graph of order n > 5 and size m such that m > 3n—6,
then G is nonplanar.

There is an immediate consequence of this theorem.

Corollary 10.5 FEvery planar graph contains a vertex of degree 5 or less.
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Proof. The result is obvious for planar graphs of order 6 or less. Let G be a
graph of order n and size m all of whose vertices have degree 6 or more. Then
n > 7 and
2m = Z degv > 6n
veV(G)

and so m > 3n. By Theorem 10.4, G is nonplanar. [

The Five Regular Polyhedra‘

We saw, by the Euler Polyhedron Formula, that if V', E and F' are the
number of vertices, edges and faces of a polyhedron, then

V-E+F=2

When dealing with a polyhedron P (as well as the graph of the polyhedron
P), it is customary to represent the number of vertices of degree k by Vj, and
number of faces bounded by a k-cycle (k-sided faces) by Fy. It follows then

that
2E = kVi=) kP (10.1)
k>3 k>3

By Corollary 10.5, every polyhedron has at least one vertex of degree 3, 4 or 5.
As an analogue to this result, we have the following.

Theorem 10.6 At least one face of every polyhedron is bounded by a k-cycle
for some k where k € {3,4,5}.

Proof. Assume, to the contrary, that the statement is false. Then F3 = F; =
F5 = 0. By equation (10.1),

2E:Zka ZZGFk:GZFk:GF.

k>6 k>6 k>6

Hence, £ > 3F. Also,

2E = kVi > 3Vp=3) V,=3V.

k>3 k>3 k>3

By Theorem 10.1, V — E+ F = 2 and so 3V — 3FE + 3F = 6. Hence, 6 =
3V -3E+3F <2FE —3FE+ E =0, which is a contradiction. m

Of the five Platonic solids shown in Figure 10.1, three are cubic polyhedra
(the tetrahedron, cube and dodecahedron) as each vertex in these polyhedra has
degree 3. The dodecahedron has twelve faces, all 5-sided. If the icosahedron
(which has twelve vertices of degree 5 and twenty 3-sided faces) is “truncated”,
replacing each vertex by a pentagon, another polyhedron results — namely a
cubic polyhedron containing twelve 5-sided faces and twenty 6-sided faces. This
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is precisely what occurs with a soccer ball, which has 32 faces, 12 of which are
pentagonal faces and 20 are hexagonal faces. Indeed, every cubic polyhedron
containing only 5-sided and 6-sided faces must contain exactly twelve 5-sided
faces. To see this, suppose that P is a cubic polyhedron with V vertices,
edges and F' faces. Then V = V3, F' = F5 4 Fgs and, by the Euler Polyhedron
Formula, V — E + F = 2. By (10.1), 2E = 3V3 = 5V5 + 6V5. Therefore,

12 = 6V —6E +6F = 6Vs — 6E + 6(F5 + F)
(10F5 4+ 12Fg) — (15F5 + 18Fg) + (6F5 + 6F5) = F.

A regular polyhedron is a polyhedron whose faces are bounded by congru-
ent regular polygons and whose polyhedral angles are congruent. In particular,
for a regular polyhedron, F' = Fy for some s and V = V; for some t, where
s,t € {3,4,5}. For example, a cube is a regular polyhedron with V' = V3 and
F = Fy. There are only four other regular polyhedra. These five regular poly-
hedra are the Platonic solids we saw in Figure 10.1. Over two thousand years
ago, the Greeks were aware that there are only five such polyhedra.

Theorem 10.7 There are exactly five regular polyhedra.

Proof. Let P be a regular polyhedron and let G be an associated plane graph.
Then V — E + F = 2, where V, E and F' denote the number of vertices, edges
and faces of P and the number of vertices, edges and regions of G. Therefore,

—8 = 4FE -4V —4F
= 2E+42FE -4V —4F

= N kR4 ki -4 Vi-4) F

k>3 k>3 k>3 k>3
= Y (k—49F+ Y (k—4)Vi. (10.2)
k>3 k>3

Since G is regular, there exist integers s and ¢ with s,¢ € {3,4,5} such that
F =F; and V = V;. Hence

—8=(s—4)F, + (t — D)V,

Moreover, sFs = 2E = tV;. If s,t > 4, then (10.2) yields —8 = (s — 4)Fs + (¢t —
4)F; > 0, which is impossible. Hence either s = 3 or ¢t = 3. This results in five
possibilities for the pairs s, t.

Case 1. s =3 and t = 3. Here we have
—8 = —Fg - Vg and 3F3 = 3‘/3,

so F5 = V3 = 4. Thus P is the tetrahedron. (That the tetrahedron is the only
regular polyhedron with V3 = F3 = 4 follows from geometric considerations.)

Case 2. s =3 and t = 4. Therefore,
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—8=—F3 and 3F3 =4V,.
Hence F5 = 8 and V; = 6, implying that P is the octahedron.
Case 3. s =3 and t = 5. In this case,
—8=—F3+ Vs and 3F3 =5Vj,
so F3 =20, V5 = 12 and P is the icosahedron.
Case 4. s =4 and t = 3. We find here that
—8=—-V3 and 4F; = 3V3.
Thus V3 =8, F4 = 6 and P is the cube.
Case 5. s =5 and t = 3. For these values,
—8=F;— V3 and 5F5 = 3V3.

Solving for F5 and V3, we find that F5 = 12 and V3 = 20, so P is the dodecahe-
drom. [

The graphs of the five regular polyhedra are shown in Figure 10.3.

The Graphs K5 and Kj3

Theorem 10.4 provides us with a large class of nonplanar graphs.
Corollary 10.8 The graph K5 is nonplanar.

Proof. The graph K5 has order n = 5 and size m = 10. Since m =10 > 9 =
3n — 6, it follows by Theorem 10.4 that K is nonplanar. [

Since it is evident that any graph containing a nonplanar subgraph is itself
nonplanar, it follows that once we know that K5 is nonplanar, we can conclude
that K, is nonplanar for every integer n > 5. Of course, K,, is planar for
1<n<4.

We will soon see that K5 is an especially important nonplanar graph. An-
other important nonplanar graph is K3 3. Since K3 3 has order n = 6 and size
m =9 but m < 3n — 6, Theorem 10.4 cannot be used to establish the nonpla-
narity of K33, however. On the other hand, we can use the fact that K33 is
bipartite to establish this property.

Corollary 10.9 The graph K33 is nonplanar.

Proof. Suppose that K3 3 is planar. Let there be given a planar embedding of
K3 3, resulting in r regions. Thus, by the Euler Identity, n—m+r = 6—-94r =2
and sor = 5. Let Ry, Ro, ..., Rs be the five regions and let m; be the number of
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edges on the boundary of R; (1 <i <5). Since K33 is bipartite, K3 3 contains
no triangles and so m; > 4 for 1 < ¢ < 5. Since every edge of K3 3 lies on the
boundary of a cycle, every edge of K3 3 belongs to the boundary of two regions.
Thus,

5
20 =4r <Y “m; =2m =18,
=1

which is impossible. ]

10.2 Maximal Planar Graphs

A planar graph G is maximal planar if the addition to G of any edge joining
two nonadjacent vertices of G results in a nonplanar graph. Necessarily then, if
a maximal planar graph G of order n > 3 and size m is embedded in the plane
resulting in r regions, then the boundary of every region of G is a triangle and
so 3r = 2m. It then follows by the proof of Theorem 10.3 that m = 3n —6. All
of the graphs shown in Figure 10.6 are maximal planar.

AVANY

Figure 10.6: Maximal planar graphs

A graph G is nearly maximal planar if there exists a planar embedding
of G such that the boundary of every region of G is a cycle, at most one of
which is not a triangle. Thus, every maximal planar graph is nearly maximal
planar (see Figure 10.7(a)). Also, the wheels W,, = C,, V K (n > 3) are nearly
maximal planar (see Figure 10.7(b)). In addition, the graphs in Figures 10.7(c)
and 10.7(d) (where the graph in Figure 10.7(d) is redrawn in Figure 10.7(e))
are nearly maximal planar.

We now derive some results concerning the degrees of the vertices of a max-
imal planar graph.

Theorem 10.10 If G is a maximal planar graph of order 4 or more, then the
degree of every vertex of G is at least 3.

Proof. Let G be a maximal planar graph of order n > 4 and size m and let v
be a vertex of G. Since m = 3n — 6, it follows that G — v has order n — 1 and
size m — degv. Since G — v is planar and n — 1 > 3, it follows that

m—degv <3(n—1)—6

and so m —degv =3n — 6 —degv < 3n — 9. Thus, degv > 3. ]
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(d) ()

Figure 10.7: Nearly maximal planar graphs

Not only is the minimum degree of every maximal planar graph G of order
4 or more at least 3, the graph G is 3-connected (see Exercise 14).

In the early 20th century, Paul August Ludwig Wernicke studied under the
supervision of Hermann Minkowski. (Dénes Konig, who, as we saw, wrote the
first book on graph theory, also studied under Minkowski. Thus, Wernicke and
Konig were “academic brothers”.) By Corollary 10.5 and Theorem 10.10, every
maximal planar graph of order 4 or more contains a vertex of degree 3, 4 or
5. In the very same year that he received his Ph.D., Wernicke [253] proved
that every planar graph that doesn’t have a vertex of a degree less than 5 must
contain a vertex of degree 5 that is adjacent either to a vertex of degree 5 or to
a vertex of degree 6. In the case of maximal planar graphs, Wernicke’s result
states the following.

Theorem 10.11 If G is a mazimal planar graph of order 4 or more, then G
contains at least one of the following: (1) a vertex of degree 3, (2) a vertex of
degree 4, (3) two adjacent vertices of degree 5, (4) two adjacent vertices, one of
which has degree 5 and the other has degree 6.

Proof. Assume, to the contrary, that there exists a maximal planar graph
G of order n > 4 and size m containing none of (1)—(4). By Corollary 10.5,
0(G) = 5. Let there be given a planar embedding of G, resulting in r regions.
Then

n—m-+r=2.
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Suppose that G has n; vertices of degree i for 5 < i < A(G) = A. Then

A A
E n; =n and E in; = 2m = 3r.
i=5 i=5

‘We now compute the number of regions whose boundary contains either a vertex
of degree 5 or a vertex of degree 6. Since the boundary of every region is a
triangle, it follows, by assumption, that no region has two vertices of degree 5
on its boundary or a vertex of degree 5 and a vertex of degree 6 on its boundary.
On the other hand, the boundary of a region could contain two or perhaps
three vertices of degree 6. Each vertex of degree 5 lies on the boundaries of
five regions and every vertex of degree 6 lies on the boundaries of six regions.
Furthermore, every region containing a vertex of degree 6 on its boundary can
contain as many as three vertices of degree 6. Therefore, G has bns regions
whose boundary contains a vertex of degree 5 and at least 6ng/3 = 2ng regions
whose boundary contains at least one vertex of degree 6. Thus,

r > bng+2ng > 5ns +2ng —ny —4ng — -+ — (3A — 20)na
A A
= ) (20— 3i)n; =20n -3 in; = 20(m — r + 2) — 3(2m)
i=5 i=5
= (20m — 20r 4+ 40) — 9r = (30r — 20r + 40) — 9r
= r+40,
which is a contradiction. ]

The following result gives a relationship among the degrees of the vertices
in a maximal planar graph of order at least 4.

T